1
|
Culej Bošnjak D, Balent T, Korać P, Antica M, Matulić M. Urokinase Plasminogen Activation System Modulation in Transformed Cell Lines. Int J Mol Sci 2025; 26:675. [PMID: 39859388 PMCID: PMC11765620 DOI: 10.3390/ijms26020675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/28/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The role of the plasminogen activation system is to regulate the activity of the extracellular protease plasmin. It comprises the urokinase plasminogen activator (uPA), a specific extracellular protease which activates plasminogen, its inhibitor PAI1, and the urokinase plasminogen activator receptor, uPAR, which localizes the urokinase activity. The plasminogen activation system is involved in tissue remodeling through extracellular matrix degradation, and therefore participates in numerous physiological and pathological processes, which make it a potential biomarker. To investigate the role of these molecules in the cellular processes, we cloned human uPA, PAI1, and uPAR and overexpressed them in two cell lines, the glioblastoma line A1235 and the transformed human embryonal kidney cells HEK 293. We analyzed the urokinase activity and the expression of plasminogen activation system elements on the protein and RNA level by Western blot analysis and RTqPCR. Cell proliferation was followed up by cell counting, cell migration and invasion by wound-healing and the transwell assays, respectively, and cell adhesion and dispersal by spheroid formation. The cells transfected with urokinase sequence had increased urokinase activity and uPA expression, while the PAI1-transfected cells decreased urokinase activity, increased PAI1 expression, and decreased cell migration. HEK 293 cells expressing PAI formed only small spheroids. The effects of the uPA system molecules depended on their interactions with each other and with other molecules in the microenvironment, as well as on the cell-type-specific signaling.
Collapse
Affiliation(s)
- Diana Culej Bošnjak
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102, 10000 Zagreb, Croatia; (T.B.); (P.K.); (M.M.)
| | - Tihana Balent
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102, 10000 Zagreb, Croatia; (T.B.); (P.K.); (M.M.)
| | - Petra Korać
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102, 10000 Zagreb, Croatia; (T.B.); (P.K.); (M.M.)
| | | | - Maja Matulić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102, 10000 Zagreb, Croatia; (T.B.); (P.K.); (M.M.)
| |
Collapse
|
2
|
Bhattacharyya T, Mishra T, Das D, Adhikari SS, Banerjee R. Bis-arylidene oxindoles for colorectal cancer nanotherapy. Bioorg Chem 2024; 146:107294. [PMID: 38507997 DOI: 10.1016/j.bioorg.2024.107294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Oxindoles are potent anti-cancer agents and are also used against microbial and fungal infections and for treating neurodegenerative diseases. These oxindoles are earlier established as estrogen receptor (ER)-targeted agents for killing ER (+) cancer cells. Our previously developed bis-arylidene oxindole, Oxifen (OXF) exhibits effective targeting towards ER (+) cancer cells which has a structural resemblance with tamoxifen. Herein, we have designed and synthesized few structural analogues of OXF such as BPYOX, ACPOX and ACPOXF to examine its cytotoxicity in different cancer as well as non-cancer cell lines and its potential to form self- aggregates in aqueous solution. Among these series of molecules, ACPOXF showed maximum toxicity in colorectal cancer cell line which are ER (-) but it also kills non-cancer cell line HEK-293, thereby reducing its cancer cell selectivity. Incidentally, ACPOXF exhibits self-aggregation, without the help of a co-lipid with nanometric size in aqueous solution. ACPOXF self-aggregate was co-formulated with glucocorticoid receptor (GR) synthetic ligand, dexamethasone (Dex) (called, ACPOXF-Dex aggregate) which could selectively kill ER (-) colorectal cancer cells and also could increase survivability of colon-tumour bearing mice. ACPOXF-Dex induced ROS up-regulation followed by apoptosis through expression of caspase-3. Further, we observed upregulation of antiproliferative factor, p53 and epithelial-to-mesenchymal (EMT) reversal marker E-cadherin in tumour mass. In conclusion, a typical structural modification in ER-targeting Oxifen moiety resulted in its self-aggregation that enabled it to carry a GR-ligand, thus broadening its selective antitumor property especially as colon cancer therapeutics.
Collapse
Affiliation(s)
- Tithi Bhattacharyya
- Division of Oils, Lipid Science & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India.
| | - Tanushree Mishra
- Department of Chemistry, University of Calcutta, Kolkata 700073, India.
| | - Debojyoti Das
- Department of Chemistry, University of Calcutta, Kolkata 700073, India.
| | | | - Rajkumar Banerjee
- Division of Oils, Lipid Science & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India.
| |
Collapse
|
3
|
Mi T, Siriwibool S, Burgess K. Streamlined Protein-Protein Interface Loop Mimicry. Angew Chem Int Ed Engl 2023; 62:e202307092. [PMID: 37849440 DOI: 10.1002/anie.202307092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
Cyclic peptides comprising endocyclic organic fragments, "cyclo-organopeptides", can be probes for perturbing protein-protein interactions (PPIs). Finding loop mimics is difficult because of high conformational variability amongst targets. Backbone Matching (BM), introduced here, helps solve this problem in the illustrative cases by facilitating efficient evaluation of virtual cyclo-organopeptide core-structure libraries. Thus, 86 rigid organic fragments were selected to build a library of 602 cyclo-organopeptides comprising Ala and organic parts: "cyclo-{-(Ala)n -organo-}". The central hypothesis is "hit" library members have accessible low energy conformers corresponding to backbone structures of target protein loops, while library members which cannot attain this conformation are probably unworthy of further evaluation. BM thereby prioritizes candidate loop mimics, so that less than 10 cyclo-organopeptides are needed to be prepared to find leads for two illustrative PPIs: iNOS ⋅ SPSB2, and uPA ⋅ uPAR.
Collapse
Affiliation(s)
- Tianxiong Mi
- Department of Chemistry, Texas A & M University, 77842, College Station, TX, USA
| | - Siriwalee Siriwibool
- School of Chemistry, Institute of Science, Suranaree University of Technology, 30000, Nakhon Ratchasima, Thailand
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, 77842, College Station, TX, USA
| |
Collapse
|
4
|
Brockmueller A, Girisa S, Motallebi M, Kunnumakkara AB, Shakibaei M. Calebin A targets the HIF-1α/NF-κB pathway to suppress colorectal cancer cell migration. Front Pharmacol 2023; 14:1203436. [PMID: 37583906 PMCID: PMC10423823 DOI: 10.3389/fphar.2023.1203436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/14/2023] [Indexed: 08/17/2023] Open
Abstract
Background: Hypoxia-inducible factor-1α (HIF-1α) is one of the major tumor-associated transcription factors modulating numerous tumor properties such as tumor cell metabolism, survival, proliferation, angiogenesis, and metastasis. Calebin A (CA), a compound derived from turmeric, is known for its anti-cancer activity through modulation of the NF-κB pathway. However, its impact on HIF-1α in colorectal cancer (CRC) cell migration is unknown. Methods: Human CRC cells (HCT-116) in 3D alginate and monolayer multicellular TME (fibroblasts/T lymphocytes) were subjected to CA or the HIF-1α inhibitor to explore the efficacy of CA on TME-induced inflammation, migration, and tumor malignancy. Results: CA significantly inhibited TME-promoted proliferation and migration of HCT-116 cells, similar to the HIF-1α inhibitor. Colony formation, toluidine blue staining, and immunolabeling showed that CA inhibited the migration of HCT-116 cells partly by inhibiting HIF-1α, which is critical for CRC cell viability, and these observations were confirmed by electron microscopy. In addition, Western blot analysis confirmed that CA inhibited TME-initiated expression of HIF-1α and biomarkers of metastatic factors (such as NF-κB, β1-integrin, and VEGF), and promoted apoptosis (caspase-3), in a manner comparable to the HIF-1α inhibitor. Finally, TME induced a purposeful pairing between HIF-1α and NF-κB, suggesting that the synergistic interplay between the two tumor-associated transcription factors is essential for CRC cell malignancy and migration and that CA silences these factors in tandem. Conclusion: These results shed light on a novel regulatory modulation of CA signaling in CRC cell migration, partially via HIF-1α/NF-κB with potentially relevant implications for cancer therapy.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Mahzad Motallebi
- Department of Biology, Yadegar-e-Imam Khomeini Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
5
|
Urokinase-Type Plasminogen Activator Receptor (uPAR) Cooperates with Mutated KRAS in Regulating Cellular Plasticity and Gemcitabine Response in Pancreatic Adenocarcinomas. Cancers (Basel) 2023; 15:cancers15051587. [PMID: 36900379 PMCID: PMC10000455 DOI: 10.3390/cancers15051587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal cancers. Given the currently limited therapeutic options, the definition of molecular subgroups with the development of tailored therapies remains the most promising strategy. Patients with high-level gene amplification of urokinase plasminogen activator receptor (uPAR/PLAUR) have an inferior prognosis. We analyzed the uPAR function in PDAC to understand this understudied PDAC subgroup's biology better. METHODS A total of 67 PDAC samples with clinical follow-up and TCGA gene expression data from 316 patients were used for prognostic correlations. Gene silencing by CRISPR/Cas9, as well as transfection of uPAR and mutated KRAS, were used in PDAC cell lines (AsPC-1, PANC-1, BxPC3) treated with gemcitabine to study the impact of these two molecules on cellular function and chemoresponse. HNF1A and KRT81 were surrogate markers for the exocrine-like and quasi-mesenchymal subgroup of PDAC, respectively. RESULTS High levels of uPAR were correlated with significantly shorter survival in PDAC, especially in the subgroup of HNF1A-positive exocrine-like tumors. uPAR knockout by CRISPR/Cas9 resulted in activation of FAK, CDC42, and p38, upregulation of epithelial makers, decreased cell growth and motility, and resistance against gemcitabine that could be reversed by re-expression of uPAR. Silencing of KRAS in AsPC1 using siRNAs reduced uPAR levels significantly, and transfection of mutated KRAS in BxPC-3 cells rendered the cell more mesenchymal and increased sensitivity towards gemcitabine. CONCLUSIONS Activation of uPAR is a potent negative prognostic factor in PDAC. uPAR and KRAS cooperate in switching the tumor from a dormant epithelial to an active mesenchymal state, which likely explains the poor prognosis of PDAC with high uPAR. At the same time, the active mesenchymal state is more vulnerable to gemcitabine. Strategies targeting either KRAS or uPAR should consider this potential tumor-escape mechanism.
Collapse
|
6
|
Enhanced Expression of Plasminogen Activators and Inhibitor in the Healing of Tympanic Membrane Perforation in Rats. J Assoc Res Otolaryngol 2023; 24:159-170. [PMID: 36810718 PMCID: PMC10121974 DOI: 10.1007/s10162-023-00891-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 01/25/2023] [Indexed: 02/23/2023] Open
Abstract
The significance of plasminogen activation during the tympanic membrane (TM) healing is known mainly from studies performed on knock-out mice. In the previous study, we reported activation of genes coding proteins of plasminogen activation and inhibition system in rat's TM perforation healing. The aim of the present study was the evaluation of protein products expressed by these genes and their tissue distribution using Western blotting and immunofluorescent method, respectively, during 10-day observation period after injury. Otomicroscopical and histological evaluation were employed to assess the healing process. The expression of urokinase plasminogen activator (uPA) and its receptor (uPAR) were significantly upregulated in the proliferation phase, with subsequent gradual attenuation during remodeling phase of healing process, when keratinocyte migration was weakening. The expression of plasminogen activator inhibitor type 1 (PAI-1) also showed the highest levels during the proliferation phase. The increase of tissue plasminogen activator (tPA) expression was observed during the whole observation period, with the highest activity during the remodeling phase. Immunofluorescence of these proteins was present mainly in migrating epithelium. Our study found that plasminogen activation (uPA, uPAR, tPA) and inhibitory (PAI-1) molecules form a well-structured regulatory system of the epithelial migration that is critical to the healing of TM after its perforation.
Collapse
|
7
|
Lourenço AL, Chuo SW, Bohn MF, Hann B, Khan S, Yevalekar N, Patel N, Yang T, Xu L, Lv D, Drakas R, Lively S, Craik CS. High-throughput optofluidic screening of single B cells identifies novel cross-reactive antibodies as inhibitors of uPAR with antibody-dependent effector functions. MAbs 2023; 15:2184197. [PMID: 36859773 PMCID: PMC9988344 DOI: 10.1080/19420862.2023.2184197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is an essential regulator for cell signaling in tumor cell proliferation, adhesion, and metastasis. The ubiquitous nature of uPAR in many aggressive cancer types makes uPAR an attractive target for immunotherapy. Here, we present a rapid and successful workflow for developing cross-reactive anti-uPAR recombinant antibodies (rAbs) using high-throughput optofluidic screening of single B-cells from human uPAR-immunized mice. A total of 80 human and cynomolgus uPAR cross-reactive plasma cells were identified, and selected mouse VH/VL domains were linked to the trastuzumab (Herceptin®) constant domains for the expression of mouse-human chimeric antibodies. The resulting rAbs were characterized by their tumor-cell recognition, binding activity, and cell adhesion inhibition on triple-negative breast cancer cells. In addition, the rAbs were shown to enact antibody-dependent cellular cytotoxicity (ADCC) in the presence of either human natural killer cells or peripheral blood mononuclear cells, and were evaluated for the potential use of uPAR-targeting antibody-drug conjugates (ADCs). Three lead antibodies (11857, 8163, and 3159) were evaluated for their therapeutic efficacy in vivo and were shown to suppress tumor growth. Finally, the binding epitopes of the lead antibodies were characterized, providing information on their unique binding modes to uPAR. Altogether, the strategy identified unique cross-reactive antibodies with ADCC, ADC, and functional inhibitory effects by targeting cell-surface uPAR, that can be tested in safety studies and serve as potential immunotherapeutics.
Collapse
Affiliation(s)
- André Luiz Lourenço
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Shih-Wei Chuo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Markus F Bohn
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Byron Hann
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Shireen Khan
- ChemPartner, South San Francisco, California, USA
| | | | - Nitin Patel
- ChemPartner, South San Francisco, California, USA
| | - Teddy Yang
- Shanghai ChemPartner Co Ltd, Shanghai, China
| | - Lina Xu
- Shanghai ChemPartner Co Ltd, Shanghai, China
| | - Dandan Lv
- Shanghai ChemPartner Co Ltd, Shanghai, China
| | - Robert Drakas
- ShangPharma Innovation Inc, South San Francisco, California, USA
| | - Sarah Lively
- ChemPartner, South San Francisco, California, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
8
|
Lien K, Mayer W, Herrera R, Padilla NT, Cai X, Lin V, Pholcharoenchit R, Palefsky J, Tugizov SM. HIV-1 Proteins gp120 and Tat Promote Epithelial-Mesenchymal Transition and Invasiveness of HPV-Positive and HPV-Negative Neoplastic Genital and Oral Epithelial Cells. Microbiol Spectr 2022; 10:e0362222. [PMID: 36314970 PMCID: PMC9770004 DOI: 10.1128/spectrum.03622-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The incidence of human papillomavirus (HPV)-associated anogenital and oropharyngeal cancer in human immunodeficiency virus (HIV)-infected individuals is substantially higher than in HIV-uninfected individuals. HIV may also be a risk factor for the development of HPV-negative head and neck, liver, lung, and kidney cancer. However, the molecular mechanisms underlying HIV-1-associated increase of epithelial malignancies are not fully understood. Here, we showed that HPV-16-immortalized anal AKC-2 and cervical CaSki epithelial cells that undergo prolonged exposure to cell-free HIV-1 virions or HIV-1 viral proteins gp120 and tat respond with the epithelial-mesenchymal transition (EMT) and increased invasiveness. Similar responses were observed in HPV-16-infected SCC-47 and HPV-16-negative HSC-3 oral epithelial cancer cells that were cultured with these viral proteins. EMT induced by gp120 and tat led to detachment of poorly adherent cells from the culture substratum; these cells remained capable of reattachment, upon which they coexpressed both E-cadherin and vimentin, indicative of an intermediate stage of EMT. The reattached cells also expressed stem cell markers CD133 and CD44, which may play a critical role in cancer cell invasion and metastasis. Inhibition of transforming growth factor (TGF)-β1 and MAPK signaling and vimentin expression, and restoration of E-cadherin expression reduced HIV-induced EMT and the invasive activity of HPV-16-immortalized anal and cervical epithelial cells. Collectively, our results suggest that these approaches along with HIV viral suppression with antiretroviral therapy (ART) might be useful to limit the role of HIV-1 infection in the acceleration of HPV-associated or HPV-independent epithelial neoplasia. IMPORTANCE HPV-16-immortalized genital and oral epithelial cells and HPV-negative oral cancer cells that undergo prolonged contact with cell-free HIV-1 virions or with viral proteins gp120 and tat respond by becoming more invasive. EMT cells induced by HIV-1 in cultures of HPV-16-immortalized anal and cervical epithelial cells express the stem cell markers CD133 and CD44. These results suggest that the interaction of HIV-1 with neoplastic epithelial cells may lead to their de-differentiation into cancer stem cells that are resistant to apoptosis and anti-cancer drugs. Thus, this pathway may play a critical role in the development of invasive cancer. Inhibition of TGF-β1 and MAPK signaling and vimentin expression, and restoration of E-cadherin expression reduced HIV-induced EMT and the invasiveness of HPV-16-immortalized anal and cervical epithelial cells. Taken together, these results suggest that these approaches might be exploited to limit the role of HIV-1 infection in the acceleration of HPV-associated or HPV-independent epithelial neoplasia.
Collapse
Affiliation(s)
- Kathy Lien
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Wasima Mayer
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Rossana Herrera
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Nicole T. Padilla
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Xiaodan Cai
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Vicky Lin
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | | | - Joel Palefsky
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Sharof M. Tugizov
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
Monti E, Mancini A, Marras E, Gariboldi MB. Targeting Mitochondrial ROS Production to Reverse the Epithelial-Mesenchymal Transition in Breast Cancer Cells. Curr Issues Mol Biol 2022; 44:5277-5293. [PMID: 36354671 PMCID: PMC9689492 DOI: 10.3390/cimb44110359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 03/03/2024] Open
Abstract
Experimental evidence implicates reactive oxygen species (ROS) generation in the hypoxic stabilization of hypoxia-inducible factor (HIF)-1α and in the subsequent expression of promoters of tumor invasiveness and metastatic spread. However, the role played by mitochondrial ROS in hypoxia-induced Epithelial-Mesenchymal Transition (EMT) activation is still unclear. This study was aimed at testing the hypothesis that the inhibition of hypoxia-induced mitochondrial ROS production, mainly at the mitochondrial Complex III UQCRB site, could result in the reversion of EMT, in addition to decreased HIF-1α stabilization. The role of hypoxia-induced ROS increase in HIF-1α stabilization and the ability of antioxidants, some of which directly targeting mitochondrial Complex III, to block ROS production and HIF-1α stabilization and prevent changes in EMT markers were assessed by evaluating ROS, HIF-1α and EMT markers on breast cancer cells, following 48 h treatment with the antioxidants. The specific role of UQCRB in hypoxia-induced EMT was also evaluated by silencing its expression through RNA interference and by assessing the effects of its downregulation on ROS production, HIF-1α levels, and EMT markers. Our results confirm the pivotal role of UQCRB in hypoxic signaling inducing EMT. Thus, UQCRB might be a new therapeutic target for the development of drugs able to reverse EMT by blocking mitochondrial ROS production.
Collapse
Affiliation(s)
- Elena Monti
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Alessandro Mancini
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- BioUp Sagl, 6900 Lugano, Switzerland
| | - Emanuela Marras
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| |
Collapse
|
10
|
Targeting HIF-1α by Natural and Synthetic Compounds: A Promising Approach for Anti-Cancer Therapeutics Development. Molecules 2022; 27:molecules27165192. [PMID: 36014432 PMCID: PMC9413992 DOI: 10.3390/molecules27165192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/19/2022] Open
Abstract
Advancement in novel target detection using improved molecular cancer biology has opened up new avenues for promising anti-cancer drug development. In the past two decades, the mechanism of tumor hypoxia has become more understandable with the discovery of hypoxia-inducible factor-1α (HIF-1α). It is a major transcriptional regulator that coordinates the activity of various transcription factors and their downstream molecules involved in tumorigenesis. HIF-1α not only plays a crucial role in the adaptation of tumor cells to hypoxia but also regulates different biological processes, including cell proliferation, survival, cellular metabolism, angiogenesis, metastasis, cancer stem cell maintenance, and propagation. Therefore, HIF-1α overexpression is strongly associated with poor prognosis in patients with different solid cancers. Hence, pharmacological targeting of HIF-1α has been considered to be a novel cancer therapeutic strategy in recent years. In this review, we provide brief descriptions of natural and synthetic compounds as HIF-1α inhibitors that have the potential to accelerate anticancer drug discovery. This review also introduces the mode of action of these compounds for a better understanding of the chemical leads, which could be useful as cancer therapeutics in the future.
Collapse
|
11
|
Chu SC, Hsieh YS, Hsu LS, Lin CY, Lai YA, Chen PN. Cinnamaldehyde decreases the invasion and u-PA expression of osteosarcoma by down-regulating the FAK signalling pathway. Food Funct 2022; 13:6574-6582. [PMID: 35678522 DOI: 10.1039/d2fo00634k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer metastasis is the major cause of the high mortality risk of patients with osteosarcoma. Cinnamaldehyde has been shown to exhibit multiple tumour-suppressing activities, but its role in human osteosarcoma is not yet completely defined. In this study, the antimetastatic effect of cinnamaldehyde on highly metastatic human osteosarcoma cells was observed in vitro and in vivo using Saos-2 and 143B cells. Cinnamaldehyde reduced the activity and protein level of urokinase-type plasminogen activator (u-PA) and suppressed the invasion ability of osteosarcoma cells by inhibiting the phosphorylation of focal adhesion kinase. In addition, cinnamaldehyde reduced cell movement, cell-matrix adhesion, and the expression of the mesenchymal markers of epithelial-to-mesenchymal transition, namely, fibronectin and N-cadherin. Importantly, the oral administration of cinnamaldehyde remarkably suppressed the pulmonary metastasis of osteosarcoma in mice. Results indicated that cinnamaldehyde has therapeutic potential for inhibiting osteosarcoma metastasis.
Collapse
Affiliation(s)
- Shu-Chen Chu
- Institute and Department of Food Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Yih-Shou Hsieh
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Li-Sung Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Chin-Yin Lin
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Yi-An Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan. .,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
12
|
Alfano D, Franco P, Stoppelli MP. Modulation of Cellular Function by the Urokinase Receptor Signalling: A Mechanistic View. Front Cell Dev Biol 2022; 10:818616. [PMID: 35493073 PMCID: PMC9045800 DOI: 10.3389/fcell.2022.818616] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR or CD87) is a glycosyl-phosphatidyl-inositol anchored (GPI) membrane protein. The uPAR primary ligand is the serine protease urokinase (uPA), converting plasminogen into plasmin, a broad spectrum protease, active on most extracellular matrix components. Besides uPA, the uPAR binds specifically also to the matrix protein vitronectin and, therefore, is regarded also as an adhesion receptor. Complex formation of the uPAR with diverse transmembrane proteins, including integrins, formyl peptide receptors, G protein-coupled receptors and epidermal growth factor receptor results in intracellular signalling. Thus, the uPAR is a multifunctional receptor coordinating surface-associated pericellular proteolysis and signal transduction, thereby affecting physiological and pathological mechanisms. The uPAR-initiated signalling leads to remarkable cellular effects, that include increased cell migration, adhesion, survival, proliferation and invasion. Although this is beyond the scope of this review, the uPA/uPAR system is of great interest to cancer research, as it is associated to aggressive cancers and poor patient survival. Increasing evidence links the uPA/uPAR axis to epithelial to mesenchymal transition, a highly dynamic process, by which epithelial cells can convert into a mesenchymal phenotype. Furthermore, many reports indicate that the uPAR is involved in the maintenance of the stem-like phenotype and in the differentiation process of different cell types. Moreover, the levels of anchor-less, soluble form of uPAR, respond to a variety of inflammatory stimuli, including tumorigenesis and viral infections. Finally, the role of uPAR in virus infection has received increasing attention, in view of the Covid-19 pandemics and new information is becoming available. In this review, we provide a mechanistic perspective, via the detailed examination of consolidated and recent studies on the cellular responses to the multiple uPAR activities.
Collapse
|
13
|
Mierke CT. Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction. Front Cell Dev Biol 2022; 10:789841. [PMID: 35223831 PMCID: PMC8864183 DOI: 10.3389/fcell.2022.789841] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Viscoelasticity and its alteration in time and space has turned out to act as a key element in fundamental biological processes in living systems, such as morphogenesis and motility. Based on experimental and theoretical findings it can be proposed that viscoelasticity of cells, spheroids and tissues seems to be a collective characteristic that demands macromolecular, intracellular component and intercellular interactions. A major challenge is to couple the alterations in the macroscopic structural or material characteristics of cells, spheroids and tissues, such as cell and tissue phase transitions, to the microscopic interferences of their elements. Therefore, the biophysical technologies need to be improved, advanced and connected to classical biological assays. In this review, the viscoelastic nature of cytoskeletal, extracellular and cellular networks is presented and discussed. Viscoelasticity is conceptualized as a major contributor to cell migration and invasion and it is discussed whether it can serve as a biomarker for the cells' migratory capacity in several biological contexts. It can be hypothesized that the statistical mechanics of intra- and extracellular networks may be applied in the future as a powerful tool to explore quantitatively the biomechanical foundation of viscoelasticity over a broad range of time and length scales. Finally, the importance of the cellular viscoelasticity is illustrated in identifying and characterizing multiple disorders, such as cancer, tissue injuries, acute or chronic inflammations or fibrotic diseases.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
14
|
Metrangolo V, Ploug M, Engelholm LH. The Urokinase Receptor (uPAR) as a "Trojan Horse" in Targeted Cancer Therapy: Challenges and Opportunities. Cancers (Basel) 2021; 13:cancers13215376. [PMID: 34771541 PMCID: PMC8582577 DOI: 10.3390/cancers13215376] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Discovered more than three decades ago, the urokinase-type plasminogen activator receptor (uPAR) has now firmly established itself as a versatile molecular target holding promise for the treatment of aggressive malignancies. The copious abundance of uPAR in virtually all human cancerous tissues versus their healthy counterparts has fostered a gradual shift in the therapeutic landscape targeting this receptor from function inhibition to cytotoxic approaches to selectively eradicate the uPAR-expressing cells by delivering a targeted cytotoxic insult. Multiple avenues are being explored in a preclinical setting, including the more innovative immune- or stroma targeting therapies. This review discusses the current state of these strategies, their potentialities, and challenges, along with future directions in the field of uPAR targeting. Abstract One of the largest challenges to the implementation of precision oncology is identifying and validating selective tumor-driving targets to enhance the therapeutic efficacy while limiting off-target toxicity. In this context, the urokinase-type plasminogen activator receptor (uPAR) has progressively emerged as a promising therapeutic target in the management of aggressive malignancies. By focalizing the plasminogen activation cascade and subsequent extracellular proteolysis on the cell surface of migrating cells, uPAR endows malignant cells with a high proteolytic and migratory potential to dissolve the restraining extracellular matrix (ECM) barriers and metastasize to distant sites. uPAR is also assumed to choreograph multiple other neoplastic stages via a complex molecular interplay with distinct cancer-associated signaling pathways. Accordingly, high uPAR expression is observed in virtually all human cancers and is frequently associated with poor patient prognosis and survival. The promising therapeutic potential unveiled by the pleiotropic nature of this receptor has prompted the development of distinct targeted intervention strategies. The present review will focus on recently emerged cytotoxic approaches emphasizing the novel technologies and related limits hindering their application in the clinical setting. Finally, future research directions and emerging opportunities in the field of uPAR targeting are also discussed.
Collapse
Affiliation(s)
- Virginia Metrangolo
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Michael Ploug
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lars H. Engelholm
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-31-43-20-77
| |
Collapse
|
15
|
Catania F, Ujvari B, Roche B, Capp JP, Thomas F. Bridging Tumorigenesis and Therapy Resistance With a Non-Darwinian and Non-Lamarckian Mechanism of Adaptive Evolution. Front Oncol 2021; 11:732081. [PMID: 34568068 PMCID: PMC8462274 DOI: 10.3389/fonc.2021.732081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Although neo-Darwinian (and less often Lamarckian) dynamics are regularly invoked to interpret cancer's multifarious molecular profiles, they shine little light on how tumorigenesis unfolds and often fail to fully capture the frequency and breadth of resistance mechanisms. This uncertainty frames one of the most problematic gaps between science and practice in modern times. Here, we offer a theory of adaptive cancer evolution, which builds on a molecular mechanism that lies outside neo-Darwinian and Lamarckian schemes. This mechanism coherently integrates non-genetic and genetic changes, ecological and evolutionary time scales, and shifts the spotlight away from positive selection towards purifying selection, genetic drift, and the creative-disruptive power of environmental change. The surprisingly simple use-it or lose-it rationale of the proposed theory can help predict molecular dynamics during tumorigenesis. It also provides simple rules of thumb that should help improve therapeutic approaches in cancer.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Deakin, VIC, Australia
| | - Benjamin Roche
- CREEC/CANECEV, MIVEGEC (CREES), Centre de Recherches Ecologiques et Evolutives sur le Cancer, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, Toulouse, France
| | - Frédéric Thomas
- CREEC/CANECEV, MIVEGEC (CREES), Centre de Recherches Ecologiques et Evolutives sur le Cancer, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
16
|
Kisling SG, Natarajan G, Pothuraju R, Shah A, Batra SK, Kaur S. Implications of prognosis-associated genes in pancreatic tumor metastasis: lessons from global studies in bioinformatics. Cancer Metastasis Rev 2021; 40:721-738. [PMID: 34591244 PMCID: PMC8556170 DOI: 10.1007/s10555-021-09991-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy with a 5-year survival rate of 10%. The occurrence of metastasis, among other hallmarks, is the main contributor to its poor prognosis. Consequently, the elucidation of metastatic genes involved in the aggressive nature of the disease and its poor prognosis will result in the development of new treatment modalities for improved management of PC. There is a deep interest in understanding underlying disease pathology, identifying key prognostic genes, and genes associated with metastasis. Computational approaches, which have become increasingly relevant over the last decade, are commonly used to explore such interests. This review aims to address global studies that have employed global approaches to identify prognostic and metastatic genes, while highlighting their methods and limitations. A panel of 48 prognostic genes were identified across these studies, but only five, including ANLN, ARNTL2, PLAU, TOP2A, and VCAN, were validated in multiple studies and associated with metastasis. Their association with metastasis has been further explored here, and the implications of these genes in the metastatic cascade have been interpreted.
Collapse
Affiliation(s)
- Sophia G Kisling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| |
Collapse
|
17
|
Park JY, Shin Y, Won WR, Lim C, Kim JC, Kang K, Husni P, Lee ES, Youn YS, Oh KT. Development of AE147 Peptide-Conjugated Nanocarriers for Targeting uPAR-Overexpressing Cancer Cells. Int J Nanomedicine 2021; 16:5437-5449. [PMID: 34408417 PMCID: PMC8367088 DOI: 10.2147/ijn.s315619] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose An AE147 peptide-conjugated nanocarrier based on PEGylated liposomes was developed in order to target the metastatic tumors overexpressing urokinase-type plasminogen activator receptor (uPAR), which cancer progression via uPA signaling. Therefore, the AE147 peptide-conjugated nanocarrier system may hold the potential for active targeting of metastatic tumors. Methods The AE147 peptide, an antagonist of uPAR, was conjugated to the PEGylated liposomes for targeting metastatic tumors overexpressing uPAR. Docetaxel (DTX), an anticancer drug, was incorporated into the nanocarriers. The structure of the AE147-conjugated nanocarrier, its physicochemical properties, and in vivo biodistribution were evaluated. Results The DTX-loaded nanocarrier showed a spherical structure, a high drug-loading capacity, and a high colloidal stability. Drug carrying AE147 conjugates were actively taken up by the uPAR-overexpressing MDA-MB-231 cancer cells. In vivo animal imaging confirmed that the AE147-conjugated nanoparticles effectively accumulated at the sites of tumor metastasis. Conclusion The AE147-nanocarrier showed potential for targeting metastatic tumor cells overexpressing uPAR and as a nanomedicine platform for theragnosis applications. These results suggest that this novel nano-platform will facilitate further advancements in cancer therapy.
Collapse
Affiliation(s)
- June Yong Park
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Yuseon Shin
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Woong Roeck Won
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chaemin Lim
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Dongjak-gu, Seoul, 06974, Republic of Korea.,Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jae Chang Kim
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Kioh Kang
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Patihul Husni
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Eun Seong Lee
- Division of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Kyung Taek Oh
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Dongjak-gu, Seoul, 06974, Republic of Korea.,College of Pharmacy, Chung-Ang University, Dongjak-gu, Seoul, 06974, Republic of Korea
| |
Collapse
|
18
|
Experimental and Clinical Evidence Supports the Use of Urokinase Plasminogen Activation System Components as Clinically Relevant Biomarkers in Gastroesophageal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13164097. [PMID: 34439251 PMCID: PMC8393967 DOI: 10.3390/cancers13164097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Patients with gastric and oesophageal adenocarcinomas (GOCs) have short life expectancies as their tumours spread to other sites early. This is facilitated by the increased expression of the urokinase plasminogen activation system (uPAS); a feature of the majority of GOCs. There is increasing appreciation of the importance of uPAS expression in a range of cell types within the tumour microenvironment. Abundant clinical evidence indicates that altered expression of uPAS proteins is associated with worse outcomes, including time to tumour recurrence and patient survival. Emerging technologies, including liquid biopsy, suggest a role of uPAS for the detection of circulating tumour cells, which are responsible for the dissemination of cancers. We review and summarise pre-clinical and clinical data that supports the use of uPAS as a biomarker in GOC. Abstract Gastric and oesophageal cancers (GOCs) are lethal cancers which metastasise early and recur frequently, even after definitive surgery. The urokinase plasminogen activator system (uPAS) is strongly implicated in the invasion and metastasis of many aggressive tumours including GOCs. Urokinase plasminogen activator (uPA) interaction with its receptor, urokinase plasminogen activator receptor (uPAR), leads to proteolytic activation of plasminogen to plasmin, a broad-spectrum protease which enables tumour cell invasion and dissemination to distant sites. uPA, uPAR and the plasminogen activator inhibitor type 1 (PAI-1) are overexpressed in some GOCs. Accumulating evidence points to a causal role of activated receptor tyrosine kinase pathways enhancing uPAS expression in GOCs. Expression of these components are associated with poorer clinicopathological features and patient survival. Stromal cells, including tumour-associated macrophages and myofibroblasts, also express the key uPAS proteins, supporting the argument of stromal involvement in GOC progression and adverse effect on patient survival. uPAS proteins can be detected on circulating leucocytes, circulating tumour cells and within the serum; all have the potential to be developed into circulating biomarkers of GOC. Herein, we review the experimental and clinical evidence supporting uPAS expression as clinical biomarker in GOC, with the goal of developing targeted therapeutics against the uPAS.
Collapse
|
19
|
Lee HT, Lee IH, Kim JH, Lee S, Kwak S, Suh MY, Hwang IY, Kang BG, Cha SS, Lee BI, Lee SE, Choi J, Roe JS, Cho EJ, Youn HD. Phosphorylation of OGFOD1 by Cell Cycle-Dependent Kinase 7/9 Enhances the Transcriptional Activity of RNA Polymerase II in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13143418. [PMID: 34298635 PMCID: PMC8304009 DOI: 10.3390/cancers13143418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Among the causes of accelerating cancer properties, dysregulated transcription is considerably prominent in many cancers. However, it is difficult to target transcriptional machineries due to their fundamental importance. Compared to breast cancer cell lines, we found that OGFOD1 aggravates cancers by enhancing RNA polymerase II transcriptional activity and it is improved by cell cycle-dependent kinases. Overall, we uncovered the novel mechanism for how OGFOD1 maliciously functions in breast cancers, suggesting it as a rational cancer treatment target protein. Abstract 2-oxoglutarate and iron-dependent oxygenase domain-containing protein 1 (OGFOD1) expression is upregulated in a variety of cancers and has been related to poor prognosis. However, despite this significance to cancer progression, the precise oncogenic mechanism of OGFOD1 is not understood. We demonstrated that OGFOD1 plays a role in enhancing the transcriptional activity of RNA polymerase II in breast cancer cells. OGFOD1 directly binds to the C-terminal domain of RNA polymerase II to alter phosphorylation status. The elimination of OGFOD1 resulted in decreased tumor development. Additionally, cell cycle-dependent kinase 7 and cell cycle-dependent kinase 9, critical enzymes for activating RNA polymerase II, phosphorylated serine 256 of OGFOD1, whereas a non-phosphorylated mutant OGFOD1 failed to enhance transcriptional activation and tumor growth. Consequently, OGFOD1 helps promote tumor growth by enhancing RNA polymerase II, whereas simultaneous phosphorylation of OGFOD1 by CDK enzymes is essential in stimulating RNA polymerase II-mediated transcription both in vitro and in vivo, and expression of target genes.
Collapse
Affiliation(s)
- Han-Teo Lee
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea
| | - Il-Hwan Lee
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
| | - Jae-Hwan Kim
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
| | - Sangho Lee
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea
| | - Sojung Kwak
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
| | - Min-Young Suh
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
| | - In-Young Hwang
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
| | - Bu-Gyeong Kang
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Korea; (B.-G.K.); (S.-S.C.)
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Korea; (B.-G.K.); (S.-S.C.)
| | - Byung-Il Lee
- Research Institute, National Cancer Center, Goyang-si 10408, Korea;
| | - Sang-Eun Lee
- Cardiology Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Jinmi Choi
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
- College of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Eun-Jung Cho
- College of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Hong-Duk Youn
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (H.-T.L.); (I.-H.L.); (J.-H.K.); (S.L.); (S.K.); (M.-Y.S.); (I.-Y.H.); (J.C.)
- Correspondence: ; Tel.: +82-2-740-8250; Fax: +82-2-3668-7622
| |
Collapse
|
20
|
Chen G, Sun J, Xie M, Yu S, Tang Q, Chen L. PLAU Promotes Cell Proliferation and Epithelial-Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma. Front Genet 2021; 12:651882. [PMID: 34093649 PMCID: PMC8173099 DOI: 10.3389/fgene.2021.651882] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/23/2021] [Indexed: 12/26/2022] Open
Abstract
Plasminogen activator, urokinase (uPA) is a secreted serine protease whose Dysregulation is often accompanied by various cancers. However, the biological functions and potential mechanisms of PLAU in head and neck squamous cell carcinoma (HNSCC) remain undetermined. Here, the expression, prognosis, function, and coexpression genetic networks of PLAU in HNSCC were investigated by a series of public bioinformatics tools. A Higher PLAU level predicted a poorer clinical outcome. Meanwhile, functional network analysis implied that PLAU and associated genes mainly regulated cell-substrate adhesion, tissue migration, and extracellular matrix binding. The top 4 significantly associated genes are C10orf55, ITGA5, SERPINE1, and TNFRSF12A. Pathway enrichment analysis indicated that PLAU might activate the epithelial-to-mesenchymal transition (EMT) process, which could explain the poor prognosis in HNSCC. Besides, genes associated with PLAU were also enriched in EMT pathways. We further validated the bioinformatics analysis results by in vivo and in vitro experiments. Then, we found that much more PLAU was detected in HNSCC tissues, and the silencing of PLAU inhibit the proliferation, migration, and EMT process of CAL27 cell lines. Notably, the downregulation of PLAU decreased the expression of TNFRSF12A. Moreover, knockdown TNFRSF12A also inhibits cell proliferation and migration. In vivo experiment results indicated that PLAU inhibition could suppress tumor growth. Collectively, PLAU is necessary for tumor progression and can be a diagnostic and prognostic biomarker in HNSCC.
Collapse
Affiliation(s)
- Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Shaoling Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
21
|
Plasmin and Plasminogen System in the Tumor Microenvironment: Implications for Cancer Diagnosis, Prognosis, and Therapy. Cancers (Basel) 2021; 13:cancers13081838. [PMID: 33921488 PMCID: PMC8070608 DOI: 10.3390/cancers13081838] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In this review, we present a detailed discussion of how the plasminogen-activation system is utilized by tumor cells in their unrelenting attack on the tissues surrounding them. Plasmin is an enzyme which is responsible for digesting several proteins that hold the tissues surrounding solid tumors together. In this process tumor cells utilize the activity of plasmin to digest tissue barriers in order to leave the tumour site and spread to other parts of the body. We specifically focus on the role of plasminogen receptor—p11 which is an important regulatory protein that facilitates the conversion of plasminogen to plasmin and by this means promotes the attack by the tumour cells on their surrounding tissues. Abstract The tumor microenvironment (TME) is now being widely accepted as the key contributor to a range of processes involved in cancer progression from tumor growth to metastasis and chemoresistance. The extracellular matrix (ECM) and the proteases that mediate the remodeling of the ECM form an integral part of the TME. Plasmin is a broad-spectrum, highly potent, serine protease whose activation from its precursor plasminogen is tightly regulated by the activators (uPA, uPAR, and tPA), the inhibitors (PAI-1, PAI-2), and plasminogen receptors. Collectively, this system is called the plasminogen activation system. The expression of the components of the plasminogen activation system by malignant cells and the surrounding stromal cells modulates the TME resulting in sustained cancer progression signals. In this review, we provide a detailed discussion of the roles of plasminogen activation system in tumor growth, invasion, metastasis, and chemoresistance with specific emphasis on their role in the TME. We particularly review the recent highlights of the plasminogen receptor S100A10 (p11), which is a pivotal component of the plasminogen activation system.
Collapse
|
22
|
Jeong JH, Kim H, Park SH, Park H, Jeong M, Kwak S, Sung GJ, Song JH, Na Y, Choi KC. A New TGF-β1 Inhibitor, CTI-82, Antagonizes Epithelial-Mesenchymal Transition through Inhibition of Phospho-SMAD2/3 and Phospho-ERK. BIOLOGY 2020; 9:biology9070143. [PMID: 32605257 PMCID: PMC7408591 DOI: 10.3390/biology9070143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) is highly expressed in the tumor microenvironment and known to play a multifunctional role in cancer progression. In addition, TGF-β1 promotes metastasis by inducing epithelial–mesenchymal transition (EMT) in a variety of tumors. Thus, inhibition of TGF-β1 is considered an important strategy in the treatment of cancer. In most tumors, TGF-β1 signal transduction exhibits modified or non-functional characteristics, and TGF-β1 inhibitors have various inhibitory effects on cancer cells. Currently, many studies are being conducted to develop TGF-β1 inhibitors from non-toxic natural compounds. We aimed to develop a new TGF-β1 inhibitor to suppress EMT in cancer cells. As a result, improved chalcone-like chain CTI-82 was identified, and its effect was confirmed in vitro. We showed that CTI-82 blocked TGF-β1-induced EMT by inhibiting the cell migration and metastasis of A549 lung cancer cells. In addition, CTI-82 reduced the TGF-β1-induced phosphorylation of SMAD2/3 and inhibited the expression of various EMT markers. Our results suggest that CTI-82 inhibits tumor growth, migration, and metastasis.
Collapse
Affiliation(s)
- Ji-Hoon Jeong
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.J.); (H.K.); (S.-H.P.); (H.P.); (M.J.); (S.K.); (G.-J.S.); (J.-H.S.)
| | - Hyunhee Kim
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.J.); (H.K.); (S.-H.P.); (H.P.); (M.J.); (S.K.); (G.-J.S.); (J.-H.S.)
| | - Seung-Ho Park
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.J.); (H.K.); (S.-H.P.); (H.P.); (M.J.); (S.K.); (G.-J.S.); (J.-H.S.)
| | - Hayeon Park
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.J.); (H.K.); (S.-H.P.); (H.P.); (M.J.); (S.K.); (G.-J.S.); (J.-H.S.)
| | - Minseok Jeong
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.J.); (H.K.); (S.-H.P.); (H.P.); (M.J.); (S.K.); (G.-J.S.); (J.-H.S.)
| | - Sungmin Kwak
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.J.); (H.K.); (S.-H.P.); (H.P.); (M.J.); (S.K.); (G.-J.S.); (J.-H.S.)
| | - Gi-Jun Sung
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.J.); (H.K.); (S.-H.P.); (H.P.); (M.J.); (S.K.); (G.-J.S.); (J.-H.S.)
| | - Ji-Hye Song
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.J.); (H.K.); (S.-H.P.); (H.P.); (M.J.); (S.K.); (G.-J.S.); (J.-H.S.)
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon 487-010, Korea
- Correspondence: (Y.N.); (K.-C.C.); Tel.: +82-2-3010-2087 (K.-C.C.); Fax: +82-2-3010-2642 (K.-C.C.)
| | - Kyung-Chul Choi
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.J.); (H.K.); (S.-H.P.); (H.P.); (M.J.); (S.K.); (G.-J.S.); (J.-H.S.)
- Correspondence: (Y.N.); (K.-C.C.); Tel.: +82-2-3010-2087 (K.-C.C.); Fax: +82-2-3010-2642 (K.-C.C.)
| |
Collapse
|
23
|
Zhang R, Tang BS, Guo JF. Research advances on neurite outgrowth inhibitor B receptor. J Cell Mol Med 2020; 24:7697-7705. [PMID: 32542927 PMCID: PMC7348171 DOI: 10.1111/jcmm.15391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 12/24/2022] Open
Abstract
Neurite outgrowth inhibitor‐B (Nogo‐B) is a membrane protein which is extensively expressed in multiple organs, especially in endothelial cells and vascular smooth muscle cells of blood vessels and belongs to the reticulon protein family. Notably, its specific receptor, Nogo‐B receptor (NgBR), encoded by NUS1, has been implicated in many crucial cellular processes, such as cholesterol trafficking, lipid metabolism, dolichol synthesis, protein N‐glycosylation, vascular remodelling, angiogenesis, tumorigenesis and neurodevelopment. In recent years, accumulating studies have demonstrated the statistically significant changes of NgBR expression levels in human diseases, including Niemann‐Pick type C disease, fatty liver, congenital disorders of glycosylation, persistent pulmonary hypertension of the newborn, invasive ductal breast carcinoma, malignant melanoma, non‐small cell lung carcinoma, paediatric epilepsy and Parkinson's disease. Besides, both the in vitro and in vivo studies have shown that NgBR overexpression or knockdown contribute to the alteration of various pathophysiological processes. Thus, there is a broad development potential in therapeutic strategies by modifying the expression levels of NgBR.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
24
|
Yin Y, Shelke GV, Lässer C, Brismar H, Lötvall J. Extracellular vesicles from mast cells induce mesenchymal transition in airway epithelial cells. Respir Res 2020; 21:101. [PMID: 32357878 PMCID: PMC7193353 DOI: 10.1186/s12931-020-01346-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Background In the airways, mast cells are present in close vicinity to epithelial cells, and they can interact with each other via multiple factors, including extracellular vesicles (EVs). Mast cell-derived EVs have a large repertoire of cargos, including proteins and RNA, as well as surface DNA. In this study, we hypothesized that these EVs can induce epithelial to mesenchymal transition (EMT) in airway epithelial cells. Methods In this in-vitro study we systematically determined the effects of mast cell-derived EVs on epithelial A549 cells. We determined the changes that are induced by EVs on A549 cells at both the RNA and protein levels. Moreover, we also analyzed the rapid changes in phosphorylation events in EV-recipient A549 cells using a phosphorylated protein microarray. Some of the phosphorylation-associated events associated with EMT were validated using immunoblotting. Results Morphological and transcript analysis of epithelial A549 cells indicated that an EMT-like phenotype was induced by the EVs. Transcript analysis indicated the upregulation of genes involved in EMT, including TWIST1, MMP9, TGFB1, and BMP-7. This was accompanied by downregulation of proteins such as E-cadherin and upregulation of Slug-Snail and matrix metalloproteinases. Additionally, our phosphorylated-protein microarray analysis revealed proteins associated with the EMT cascade that were upregulated after EV treatment. We also found that transforming growth factor beta-1, a well-known EMT inducer, is associated with EVs and mediates the EMT cascade induced in the A549 cells. Conclusion Mast cell-derived EVs mediate the induction of EMT in epithelial cells, and our evidence suggests that this is triggered through the induction of protein phosphorylation cascades.
Collapse
Affiliation(s)
- Yanan Yin
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University, School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Ganesh Vilas Shelke
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,The Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden. .,Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Dept. of Applied Physics, Royal Institute of Technology, PO Box 1031, 17121, Solna, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
25
|
Semina EV, Rubina KA, Shmakova AA, Rysenkova KD, Klimovich PS, Aleksanrushkina NA, Sysoeva VY, Karagyaur MN, Tkachuk VA. Downregulation of uPAR promotes urokinase translocation into the nucleus and epithelial to mesenchymal transition in neuroblastoma. J Cell Physiol 2020; 235:6268-6286. [PMID: 31990070 PMCID: PMC7318179 DOI: 10.1002/jcp.29555] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
The urokinase system is involved in a variety of physiological processes, such as fibrinolysis, matrix remodeling, wound healing, and regeneration. Upon binding to its cognate receptor urokinase‐type plasminogen activator receptor (uPAR), urokinase‐type plasminogen activator (uPA) catalyzes the conversion of plasminogen to plasmin and the activation of matrix metalloproteases. Apart from this, uPA–uPAR interaction can lead to the activation of transcription factors, mitogen‐activated protein kinase signaling pathways and RTK cascades. Elevated expression of uPA and uPAR is markedly associated with cancer progression and metastasis and correlates with a poor prognosis in clinics. Targeting the urokinase system has proved to be effective in experimental models in vitro and in vivo, however, in clinics the inhibition of the uPA/uPAR system has fallen short of expectations, suggesting that the question of the functional relevance of uPA/uPAR system is far from being moot. Recently, using CRISPR/Cas9 technology, we have shown that uPAR knockout decreases the proliferation of neuroblastoma Neuro2a cells in vitro. In the present study we demonstrate that uPAR expression is essential for maintaining the epithelial phenotype in Neuro2a cells and that uPAR silencing promotes epithelial‐mesenchymal transition (EMT) and increased cell migration. Accordingly, uPAR knockout results in the downregulation of epithelial markers (E‐cadherin, occludin, and claudin‐5) and in the increase of mesenchymal markers (N‐cadherin, α‐smooth muscle actin, and interleukin‐6). In search of the molecular mechanism underlying these changes, we identified uPA as a key component. Two key insights emerged as a result of this work: in the absence of uPAR, uPA is translocated into the nucleus where it is presumably involved in the activation of transcription factors (nuclear factor κB and Snail) resulting in EMT. In uPAR‐expressing cells, uPAR functions as a uPA “trap” that binds uPA on the cell surface and promotes controlled uPA internalization and degradation in lysosomes.
Collapse
Affiliation(s)
- Ekaterina V Semina
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - Kseniya A Rubina
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Morohogenesis and Tissue Reparation, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Anna A Shmakova
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - Karina D Rysenkova
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - Polina S Klimovich
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - Natalya A Aleksanrushkina
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Veronika Y Sysoeva
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim N Karagyaur
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Vsevolod A Tkachuk
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
26
|
Alkhadar H, Macluskey M, White S, Ellis I. Nerve growth factor-induced migration in oral and salivary gland tumour cells utilises the PI3K/Akt signalling pathway: Is there a link to perineural invasion? J Oral Pathol Med 2019; 49:227-234. [PMID: 31782565 DOI: 10.1111/jop.12979] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVES The aims of this study were to investigate the role of nerve growth factor on perineural invasion in oral and salivary gland tumour cell lines and whether there is an involvement of PI3K/Akt pathway. MATERIALS AND METHODS Four cell lines were investigated: HSG and TYS (salivary gland tumours), SAS-H1 (oral squamous cell carcinoma) and HaCaT (human skin keratinocyte). Initially, Boyden chamber assay was done to examine the effect of different concentration of nerve growth factor on cell migration. Western blot/ immunofluorescence techniques were used to investigate the phosphorylation status of the Akt pathway within the cells in response to nerve growth factor. The effect of this growth factor and the addition of an Akt inhibitor on cell morphology and migration were also examined using scatter/scratch assays. RESULTS Nerve growth factor triggered the PI3K/Akt pathway in oral and salivary tumour cells and induced oral and salivary tumour cell scattering and migration. Inhibitor assays confirmed that oral and salivary gland tumour cell scattering and migration is Akt dependent. CONCLUSIONS Nerve growth factor can stimulate scattering and migration in cells derived from oral and salivary gland tumours, thereby potentially enhancing perineural invasion. Phosphorylated Akt controls cancer cell migration and scattering. Blocking the Akt pathway may inhibit cell migration and therefore perineural invasion and metastasis.
Collapse
Affiliation(s)
- Huda Alkhadar
- Unit of Cell and Molecular Biology, Dundee Dental School, University of Dundee, Dundee, UK
| | - Michaelina Macluskey
- Department of Oral Surgery, Medicine and Pathology, Dundee Dental School, University of Dundee, Dundee, UK
| | - Sharon White
- Department of Oral Surgery, Medicine and Pathology, Dundee Dental School, University of Dundee, Dundee, UK
| | - Ian Ellis
- Unit of Cell and Molecular Biology, Dundee Dental School, University of Dundee, Dundee, UK
| |
Collapse
|
27
|
Cleistanthin A inhibits the invasion of MDA-MB-231 human breast cancer cells: involvement of the β-catenin pathway. Pharmacol Rep 2019; 72:188-198. [PMID: 32016834 DOI: 10.1007/s43440-019-00012-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/01/2019] [Accepted: 10/11/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cleistanthin A (CleA), a natural diphyllin glycoside, has been shown to suppress the invasion of cancer cells, but the underlying mechanisms remain unclear. Here, the inhibitory effect of CleA on the invasion of MDA-MB-231 human breast cancer cells was investigated, and the mechanisms involved were clarified. METHODS Cell viability was studied by MTT assay. The migration and invasion of MDA-MB-231 cells were assessed by wound healing assay and transwell assay, respectively. The enzymatic activity of matrix metalloproteinases (MMPs) was detected by gelatin zymography. mRNA and protein levels were detected by qRT-PCR and Western blotting, respectively. Nuclear translocation of β-catenin was observed by immunofluorescence and detected by Western blotting. RESULTS CleA effectively inhibited the migration and invasion of MDA-MB-231 cells and suppressed the expression and activation of MMP-2/9. Moreover, the expression and nuclear translocation of β-catenin were reduced by CleA treatment, as well as transcription of the Cyclin D1 and c-myc genes. In addition, the inhibitory effect of CleA on the β-catenin pathway was attributed to the promotion of β-catenin degradation by inhibition of GSK3β phosphorylation. When the phosphorylation of GSK3β was induced by LiCl, the inhibitory effect of CleA on the β-catenin pathway and the invasion of MDA-MB-231 cells were almost reversed. CONCLUSION CleA suppressed the invasion of MDA-MB-231 cells, likely through the β-catenin pathway.
Collapse
|
28
|
Jaiswal RK, Yadava PK. TGF-β-mediated regulation of plasminogen activators is human telomerase reverse transcriptase dependent in cancer cells. Biofactors 2019; 45:803-817. [PMID: 31317567 DOI: 10.1002/biof.1543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023]
Abstract
Telomerase is a specialized reverse transcriptase/terminal transferase enzyme that adds telomeric repeat sequences at the extreme end of a newly replicated chromosome. Apart from telomere lengthening, telomerase has many extracurricular activities. Telomerase is known to regulate the expression of many genes and helps in cancer progression and epithelial-to-mesenchymal transitions (EMTs). We have previously reported that human telomerase reverse transcriptase (hTERT) regulates the expression of plasminogen activator such as urokinase-type plasminogen activator (uPA) in cancer cells following a genome-wide transcriptomic study. Here, we present data substantiating these results in terms of real-time assays, western blots, and immunofluorescence. Another aim of this study is to find out the possible mechanism by which hTERT regulates the expression of plasminogen activators. We have used some molecular biology techniques such as quantitative real-time polymerase chain reaction, western blotting, and immunofluorescence and some assays such as wound healing assay and colony formation assay to solve this question. In this study, we show a positive association between hTERT and uPA. We also demonstrate that hTERT enhances uPA expression concomitant with EMT. Knocking down of hTERT reduces uPA expression as well as reverses EMT in cancer cells. We have also found that uPA is a transforming growth factor beta (TGF-β)-induced protein. Our observations establish that TGF-β-induced uPA expression is hTERT dependent.
Collapse
Affiliation(s)
- Rishi K Jaiswal
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Pramod K Yadava
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| |
Collapse
|
29
|
Platel V, Faure S, Corre I, Clere N. Endothelial-to-Mesenchymal Transition (EndoMT): Roles in Tumorigenesis, Metastatic Extravasation and Therapy Resistance. JOURNAL OF ONCOLOGY 2019; 2019:8361945. [PMID: 31467544 PMCID: PMC6701373 DOI: 10.1155/2019/8361945] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Abstract
Cancer cells evolve in a very complex tumor microenvironment, composed of several cell types, among which the endothelial cells are the major actors of the tumor angiogenesis. Today, these cells are also characterized for their plasticity, as endothelial cells have demonstrated their potential to modify their phenotype to differentiate into mesenchymal cells through the endothelial-to-mesenchymal transition (EndoMT). This cellular plasticity is mediated by various stimuli including transforming growth factor-β (TGF-β) and is modulated dependently of experimental conditions. Recently, emerging evidences have shown that EndoMT is involved in the development and dissemination of cancer and also in cancer cell to escape from therapeutic treatment. In this review, we summarize current updates on EndoMT and its main induction pathways. In addition, we discuss the role of EndoMT in tumorigenesis, metastasis, and its potential implication in cancer therapy resistance.
Collapse
Affiliation(s)
- Valentin Platel
- Micro & Nanomédecines Translationnelles-MINT, Univ Angers, INSERM U1066, CNRS UMR 6021, Angers, France
| | - Sébastien Faure
- Micro & Nanomédecines Translationnelles-MINT, Univ Angers, INSERM U1066, CNRS UMR 6021, Angers, France
| | - Isabelle Corre
- Sarcomes Osseux et Remodelage des Tissus Calcifiés Phy-OS, Université de Nantes INSERM UMR U1238, Faculté de Médecine, F-44035 Nantes, France
| | - Nicolas Clere
- Micro & Nanomédecines Translationnelles-MINT, Univ Angers, INSERM U1066, CNRS UMR 6021, Angers, France
| |
Collapse
|
30
|
Metabolic flexibility in melanoma: A potential therapeutic target. Semin Cancer Biol 2019; 59:187-207. [PMID: 31362075 DOI: 10.1016/j.semcancer.2019.07.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/11/2019] [Accepted: 07/23/2019] [Indexed: 01/01/2023]
Abstract
Cutaneous melanoma (CM) represents one of the most metastasizing and drug resistant solid tumors. CM is characterized by a remarkable metabolic plasticity and an important connection between oncogenic activation and energetic metabolism. In fact, melanoma cells can use both cytosolic and mitochondrial compartments to produce adenosine triphosphate (ATP) during cancer progression. However, the CM energetic demand mainly depends on glycolysis, whose upregulation is strictly linked to constitutive activation of BRAF/MAPK pathway affected by BRAFV600E kinase mutant. Furthermore, the impressive metabolic plasticity of melanoma allows the development of resistance mechanisms to BRAF/MEK inhibitors (BRAFi/MEKi) and the adaptation to microenvironmental changes. The metabolic interaction between melanoma cells and tumor microenvironment affects the immune response and CM growth. In this review article, we describe the regulation of melanoma metabolic alterations and the metabolic interactions between cancer cells and microenvironment that influence melanoma progression and immune response. Finally, we summarize the hallmarks of melanoma therapies and we report BRAF/MEK pathway targeted therapy and mechanisms of metabolic resistance.
Collapse
|
31
|
Cui Z, Sun S, Liu Q, Zhou X, Gao S, Peng P, Li Q. MicroRNA-378-3p/5p suppresses the migration and invasiveness of oral squamous carcinoma cells by inhibiting KLK4 expression. Biochem Cell Biol 2019; 98:154-163. [PMID: 31265790 DOI: 10.1139/bcb-2019-0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Distant metastasis frequently occurs in oral squamous cell carcinoma (OSCC) and contributes to the adverse prognosis for patients with OSCC. However, the potential mechanisms behind the metastasis have not yet been clarified. This study investigated the role of miR-378 in the migration and invasiveness of OSCC in vitro and in vivo. According to our results, the migration and invasiveness of OSCC cells were increased in cells overexpressing miR-378, and reduced in cells where miR-378-3p/5p was silenced. In addition, overexpression of miR-378 suppressed the expressions and activities of matrix metalloproteinase 9 (MMP-9) and MMP-2. Epithelial-mesenchymal transition (EMT) was restrained by overexpression of miR-378, as evidenced by an increase in E-cadherin expression and decrease in N-cadherin and uPA expression. However, knockdown of miR-378-3p/5p produced the opposite results. Moreover, kallikrein-related peptidase 4 (KLK4) was confirmed to be a target gene of miR-378. Overexpression of KLK4 reversed the induced decrease in migration and invasiveness of cells overexpressing miR-378 by upregulating the levels of MMP-9, MMP-2, and N-cadherin, and downregulating the level of E-cadhrin. Finally, the number of metastasis nodules in the lung tissues of nude mice was reduced by overexpression of miR-378, whereas the number of metastases increased with knockdown of miR-378. Taken together, our results suggest that the miR-378-KLK4 axis is involved in the mechanisms behind the migration and invasiveness of OSCC cells. Targeting the miR-378-KLK4 axis may be an effective measure for treating OSCC.
Collapse
Affiliation(s)
- Zhi Cui
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Shiqun Sun
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Qilin Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Xuechun Zhou
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Siyu Gao
- Department of Pedodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Peixuan Peng
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| | - Qianpeng Li
- VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun 130021, P.R. China
| |
Collapse
|
32
|
Hsieh SL, Hsieh S, Lai PY, Wang JJ, Li CC, Wu CC. Carnosine Suppresses Human Colorectal Cell Migration and Intravasation by Regulating EMT and MMP Expression. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:477-494. [PMID: 30909731 DOI: 10.1142/s0192415x19500241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Carnosine is an endogenous dipeptide found in the vertebrate skeletal muscles that is usually obtained through the diet. To investigate the mechanism by which carnosine regulates the migration and intravasation of human colorectal cancer (CRC) cells, we used cultured HCT-116 cells as an experimental model in this study. We examined HCT-116 cell migratory and intravasive abilities and expression of epithelial-mesenchymal transition (EMT)-associated molecules and matrix metalloproteinases (MMPs) after carnosine treatment. The results showed that both migration and invasion were inhibited in cells treated with carnosine. We found significant decreases in Twist-1 protein levels and increases in E-cadherin protein levels in HCT-116 cells after carnosine exposure. Although plasminogen activator (uPA) and MMP-9 mRNA and protein levels were decreased, TIMP-1 mRNA and protein levels were increased. Furthermore, the cytosolic levels of phosphorylated I κ B (p-I κ B) and NF- κ B DNA-binding activity were reduced after carnosine treatment. These results indicate that carnosine inhibits the migration and intravasation of human CRC cells. The regulatory mechanism may occur by suppressing NF- κ B activity and modulating MMP and EMT-related gene expression in HCT-116 cells.
Collapse
Affiliation(s)
- Shu-Ling Hsieh
- * Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - ShuChen Hsieh
- † Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Po-Yu Lai
- * Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Jyh-Jye Wang
- ‡ Department of Nutrition and Health Science, Fooyin University, Kaohsiung 83102, Taiwan
| | - Chien-Chun Li
- § Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chih-Chung Wu
- ¶ Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| |
Collapse
|
33
|
The prognostic relevance of urokinase-type plasminogen activator (uPA) in the blood of patients with metastatic breast cancer. Sci Rep 2019; 9:2318. [PMID: 30783124 PMCID: PMC6381129 DOI: 10.1038/s41598-018-37259-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 12/04/2018] [Indexed: 12/01/2022] Open
Abstract
In breast cancer (BC), elevated levels of urokinase-type plasminogen activator (uPA) in tumor tissue have been confirmed as a strong prognostic factor in level-of-evidence-1 studies. The aim of the present study was to evaluate the clinical relevance of uPA levels in serum of metastatic BC patients and to compare uPA with other blood-based biomarkers. 252 patients were enrolled in this prospective, multicentre study. Blood samples were collected before begin of first-line or later-line systemic treatment. Serum uPA was quantified by a commercially available ELISA. Circulating tumor cells (CTCs) were detected using CellSearch; other biomarkers (EGFR, VEGF, HER2, RAS p21, TIMP1, CAIX) by ELISA. Using the ROC analysis, the optimal cut-off value (determined by the Youden index) of serum uPA was 2.52 ng/ml. Using this value, 26% of patients had elevated uPA levels. Patients with visceral metastasis and more than one metastatic site were significantly more likely to present with elevated uPA levels. CTC status, serum HER2, RAS p21, CAIX, TIMP1 and VEGF correlated significantly with uPA levels. Elevated uPA levels predicted shorter overall and progression-free survival in univariate analysis (median OS: 7.5 months [95%-CI 4.5–10.5 months] vs. not reached, p < 0.001; PFS: 4.8 [95%-CI: 3.1–6.5] vs. 9.1 [7.4–10.8] months, p < 0.001). In multivariate analysis, elevated uPA, presence of ≥5 CTCs, elevated RAS p21, higher grading and higher line of therapy were independent predictors of shorter OS, while elevated CTC counts, higher line of therapy and negative estrogen receptor status were independent predictors of shorter PFS. In conclusion, elevated uPA levels independently predict reduced overall survival and improved prognostication in patients with known CTC status. Whether high serum uPA might identify patients most likely to benefit from therapies targeting uPA, remains to be evaluated in future trials.
Collapse
|
34
|
Kanno Y. The Role of Fibrinolytic Regulators in Vascular Dysfunction of Systemic Sclerosis. Int J Mol Sci 2019; 20:ijms20030619. [PMID: 30709025 PMCID: PMC6387418 DOI: 10.3390/ijms20030619] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 02/08/2023] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease of autoimmune origin characterized by vascular dysfunction and extensive fibrosis of the skin and visceral organs. Vascular dysfunction is caused by endothelial cell (EC) apoptosis, defective angiogenesis, defective vasculogenesis, endothelial-to-mesenchymal transition (EndoMT), and coagulation abnormalities, and exacerbates the disease. Fibrinolytic regulators, such as plasminogen (Plg), plasmin, α2-antiplasmin (α2AP), tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA) and its receptor (uPAR), plasminogen activator inhibitor 1 (PAI-1), and angiostatin, are considered to play an important role in the maintenance of endothelial homeostasis, and are associated with the endothelial dysfunction of SSc. This review considers the roles of fibrinolytic factors in vascular dysfunction of SSc.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto 610-0395, Japan.
| |
Collapse
|
35
|
Dai B, Yang T, Shi X, Ma N, Kang Y, Zhang J, Zhang Y. HMQ-T-F5 (1-(4-(2-aminoquinazolin-7-yl)phenyl)-3-(2‑bromo‑5- (trifluoromethoxy)phenyl) thiourea) suppress proliferation and migration of human cervical HeLa cells via inhibiting Wnt/β-catenin signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 51:48-57. [PMID: 30466627 DOI: 10.1016/j.phymed.2018.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/14/2018] [Accepted: 06/18/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Drug therapy plays an important role in the treatment of cervical cancer, which is one of the most common solid tumors in women. Therefore, it is important to seek more effective and less toxic therapies. PURPOSE The aim of this study is to investigate the therapeutic potential of HMQ-T-F5 (1-(4-(2-aminoquinazolin-7-yl)phenyl)-3-(2‑bromo‑5-(trifluoromethoxy) phenyl)thiourea) (F5) for cervical cancer and explore the related mechanism. METHODS By performing MTT assay, colony formation assay, flow cytometry, wound-healing assay, transwell assay, immunofluorescent staining and siRNA assay, we study the effect of F5 on human cervical HeLa cells. The mechanism of F5 was also investigated. RESULTS We found that F5 significantly inhibited HeLa cell proliferation, led to accumulation of cells in the S phase, and induced apoptosis and inhibited migration. Mechanistically, F5 inhibited HeLa cell growth and migration through repressing the expression and nuclear translocation of β-catenin, enhancing Axin expression, inhibiting the phosphorylation of LRP5/6 and GSK3β, as well as downregulating the Wnt downstream targeted proteins. Knockdown of a checkpoint β-catenin by siRNA significantly attenuated HeLa cell proliferation. Furthermore, XAV939, an inhibitor of β-catenin, was used to treat HeLa cells and the results demonstrated that F5 inhibited proliferation and migration via the inhibition of the Wnt/β-catenin pathway. CONCLUSION Our findings demonstrated that F5 can target β-catenin potentially and is useful in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Bingling Dai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Street, #54, Xi'an 710061, Shaanxi Province, P.R. China.
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Street, #54, Xi'an 710061, Shaanxi Province, P.R. China.
| | - Xianpeng Shi
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Street, #54, Xi'an 710061, Shaanxi Province, P.R. China.
| | - Nan Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Street, #54, Xi'an 710061, Shaanxi Province, P.R. China.
| | - Yuan Kang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Street, #54, Xi'an 710061, Shaanxi Province, P.R. China.
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Street, #54, Xi'an 710061, Shaanxi Province, P.R. China.
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Street, #54, Xi'an 710061, Shaanxi Province, P.R. China.
| |
Collapse
|
36
|
Dergilev KV, Stepanova VV, Beloglazova IB, Tsokolayev ZI, Parfenova EV. Multifaced Roles of the Urokinase System in the Regulation of Stem Cell Niches. Acta Naturae 2018; 10:19-32. [PMID: 30713759 PMCID: PMC6351041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 12/02/2022] Open
Abstract
Proliferation, subsequent migration to the damaged area, differentiation into appropriate cell types, and/or secretion of biologically active molecules and extracellular vesicles are important processes that underlie the involvement of stem/progenitor cells in the repair and regeneration of tissues and organs. All these functions are regulated through the interaction between stem cells and the microenvironment in the tissue cell niches that control these processes through direct cell-cell interactions, production of the extracellular matrix, release of extracellular vesicles, and secretion of growth factors, cytokines, chemokines, and proteases. One of the most important proteolytic systems involved in the regulation of cell migration and proliferation is the urokinase system represented by the urokinase plasminogen activator (uPA, urokinase), its receptor (uPAR), and inhibitors. This review addresses the issues of urokinase system involvement in the regulation of stem cell niches in various tissues and analyzes the possible effects of this system on the signaling pathways responsible for the proliferation, programmed cell death, phenotype modulation, and migration properties of stem cells.
Collapse
Affiliation(s)
- K. V. Dergilev
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, 3rd Cherepkovskaya Str., 15a, Moscow, 121552, Russia
| | - V. V. Stepanova
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - I. B. Beloglazova
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, 3rd Cherepkovskaya Str., 15a, Moscow, 121552, Russia
- Laboratory of Post-Genomic Technologies in Medicine, Faculty of Fundamental Medicine, Moscow State University, Lomonosovsky Ave., 27-1, Moscow, 119991, Russia
| | - Z. I. Tsokolayev
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, 3rd Cherepkovskaya Str., 15a, Moscow, 121552, Russia
| | - E. V. Parfenova
- Laboratory of Angiogenesis, National Medical Research Center of Cardiology, 3rd Cherepkovskaya Str., 15a, Moscow, 121552, Russia
- Laboratory of Post-Genomic Technologies in Medicine, Faculty of Fundamental Medicine, Moscow State University, Lomonosovsky Ave., 27-1, Moscow, 119991, Russia
| |
Collapse
|
37
|
Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, Hanash SM, Bapat SA, Rangarajan A, Levine H. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther 2018; 194:161-184. [PMID: 30268772 DOI: 10.1016/j.pharmthera.2018.09.007] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer metastasis and therapy resistance are the major unsolved clinical challenges, and account for nearly all cancer-related deaths. Both metastasis and therapy resistance are fueled by epithelial plasticity, the reversible phenotypic transitions between epithelial and mesenchymal phenotypes, including epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). EMT and MET have been largely considered as binary processes, where cells detach from the primary tumor as individual units with many, if not all, traits of a mesenchymal cell (EMT) and then convert back to being epithelial (MET). However, recent studies have demonstrated that cells can metastasize in ways alternative to traditional EMT paradigm; for example, they can detach as clusters, and/or occupy one or more stable hybrid epithelial/mesenchymal (E/M) phenotypes that can be the end point of a transition. Such hybrid E/M cells can integrate various epithelial and mesenchymal traits and markers, facilitating collective cell migration. Furthermore, these hybrid E/M cells may possess higher tumor-initiation and metastatic potential as compared to cells on either end of the EMT spectrum. Here, we review in silico, in vitro, in vivo and clinical evidence for the existence of one or more hybrid E/M phenotype(s) in multiple carcinomas, and discuss their implications in tumor-initiation, tumor relapse, therapy resistance, and metastasis. Together, these studies drive the emerging notion that cells in a hybrid E/M phenotype may occupy 'metastatic sweet spot' in multiple subtypes of carcinomas, and pathways linked to this (these) hybrid E/M state(s) may be relevant as prognostic biomarkers as well as a promising therapeutic targets.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| | - Jason A Somarelli
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Maya Sheth
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Adrian Biddle
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Andrew J Armstrong
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Sharmila A Bapat
- National Center for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| |
Collapse
|
38
|
Bydoun M, Sterea A, Weaver ICG, Bharadwaj AG, Waisman DM. A novel mechanism of plasminogen activation in epithelial and mesenchymal cells. Sci Rep 2018; 8:14091. [PMID: 30237490 PMCID: PMC6148250 DOI: 10.1038/s41598-018-32433-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/03/2018] [Indexed: 12/22/2022] Open
Abstract
Cancer dissemination is initiated by the movement of cells into the vasculature which has been reported to be triggered by EMT (epithelial to mesenchymal transition). Cellular dissemination also requires proteases that remodel the extracellular matrix. The protease, plasmin is a prominent player in matrix remodeling and invasion. Despite the contribution of both EMT and the plasminogen activation (PA) system to cell dissemination, these processes have never been functionally linked. We reveal that canonical Smad-dependent TGFβ1 signaling and FOXC2-mediated PI3K signaling in cells undergoing EMT reciprocally modulate plasminogen activation partly by regulating the plasminogen receptor, S100A10 and the plasminogen activation inhibitor, PAI-1. Plasminogen activation and plasminogen-dependent invasion were more prominent in epithelial-like cells and were partly dictated by the expression of S100A10 and PAI-1.
Collapse
Affiliation(s)
- Moamen Bydoun
- Department of Pathology, Halifax, Nova Scotia, Canada
| | - Andra Sterea
- Department of Physiology and Biophysics, Halifax, Nova Scotia, Canada
| | - Ian C G Weaver
- Department of Pathology, Halifax, Nova Scotia, Canada
- Department of Psychology and Neuroscience, Halifax, Nova Scotia, Canada
- Department of Psychiatry, Halifax, Nova Scotia, Canada
- Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alamelu G Bharadwaj
- Department of Biochemistry and Molecular Biology, Halifax, Nova Scotia, Canada
| | - David M Waisman
- Department of Pathology, Halifax, Nova Scotia, Canada.
- Department of Biochemistry and Molecular Biology, Halifax, Nova Scotia, Canada.
| |
Collapse
|
39
|
Zhou X, Wang J, Chen J, Qi Y, Di Nan, Jin L, Qian X, Wang X, Chen Q, Liu X, Xu Y. Optogenetic control of epithelial-mesenchymal transition in cancer cells. Sci Rep 2018; 8:14098. [PMID: 30237527 PMCID: PMC6147862 DOI: 10.1038/s41598-018-32539-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is one of the most important mechanisms in the initiation and promotion of cancer cell metastasis. The phosphoinositide 3-kinase (PI3K) signaling pathway has been demonstrated to be involved in TGF-β induced EMT, but the complicated TGF-β signaling network makes it challenging to dissect the important role of PI3K on regulation of EMT process. Here, we applied optogenetic controlled PI3K module (named ‘Opto-PI3K’), which based on CRY2 and the N-terminal of CIB1 (CIBN), to rapidly and reversibly control the endogenous PI3K activity in cancer cells with light. By precisely modulating the kinetics of PI3K activation, we found that E-cadherin is an important downstream target of PI3K signaling. Compared with TGF-β treatment, Opto-PI3K had more potent effect in down-regulation of E-cadherin expression, which was demonstrated to be regulated in a light dose-dependent manner. Surprisingly, sustained PI3K activation induced partial EMT state in A549 cells that is highly reversible. Furthermore, we demonstrated that Opto-PI3K only partially mimicked TGF-β effects on promotion of cell migration in vitro. These results reveal the importance of PI3K signaling in TGF-β induced EMT, suggesting other TGF-β regulated signaling pathways are necessary for the full and irreversible promotion of EMT in cancer cells. In addition, our study implicates the great promise of optogenetics in cancer research for mapping input-output relationships in oncogenic pathways.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China
| | - Jian Wang
- Department of Respiratory Oncology, The 117th Hospital of PLA, Hangzhou, 310013, China
| | - Junye Chen
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China.,Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yuankai Qi
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China
| | - Di Nan
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China
| | - Luhong Jin
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China
| | - Xiaohan Qian
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China
| | - Xinyi Wang
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China
| | - Qingyong Chen
- Department of Respiratory Oncology, The 117th Hospital of PLA, Hangzhou, 310013, China.
| | - Xu Liu
- Department of Optical Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 310027, China
| | - Yingke Xu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China. .,Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| |
Collapse
|
40
|
Zhang H, Peng C, Huang H, Lai Y, Hu C, Li F, Wang D. Effects of amiloride on physiological activity of stem cells of human lung cancer and possible mechanism. Biochem Biophys Res Commun 2018; 504:1-5. [PMID: 29958884 DOI: 10.1016/j.bbrc.2018.06.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Lung cancer is a common malignant tumor, the cancer stem cells (CSCs) were regarded responsible for the development of cancer tissue. The effects of amiloride on lung cancer stem cells and the possible mechanism were not much investigated. In this study, human NCI-H1975 lung CSCs were selected by flow cytometry, and the effects of amiloride at different concentrations (0, 12.5, 25, 50, and 100 μmol/L) were evaluated on proliferation, migration, invasion and apoptosis of CSCs using cell counting kit-8 and Transwell migration assays as well as flow cytometry. Wstern blot analysis was performed to investigate the effect of amiloride on the level of proteins in uPA system, NF-kB pathway, and PI3K-AKT-mTOR pathway in CSCs. As a result, we found that amiloride inhibited proliferation, migration and invasion of lung CSCs, and promoted apoptosis. Further, we found that amiloride decreased levels of target proteins in the uPA system, as well as the NF-kB and PI3K-AKT-mTOR pathways. These results indicated that amiloride could inhibit proliferation, migration and invasion of lung CSCs, and promotes apoptosis, these effects may be related to decreased levels of proteins in the uPA system, the NF-kB pathway, and the PI3K-AKT-mTOR pathway.
Collapse
Affiliation(s)
- Hengshuo Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Caixia Peng
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - He Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Yongxin Lai
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Chenchen Hu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Fei Li
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Degui Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
41
|
Bouris P, Manou D, Sopaki-Valalaki A, Kolokotroni A, Moustakas A, Kapoor A, Iozzo RV, Karamanos NK, Theocharis AD. Serglycin promotes breast cancer cell aggressiveness: Induction of epithelial to mesenchymal transition, proteolytic activity and IL-8 signaling. Matrix Biol 2018; 74:35-51. [PMID: 29842969 DOI: 10.1016/j.matbio.2018.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Serglycin is an intracellular proteoglycan that is expressed and constitutively secreted by numerous malignant cells, especially prominent in the highly-invasive, triple-negative MDA-MB-231 breast carcinoma cells. Notably, de novo expression of serglycin in low aggressive estrogen receptor α (ERα)-positive MCF7 breast cancer cells promotes an aggressive phenotype. In this study, we discovered that serglycin promoted epithelial to mesenchymal transition (EMT) in MCF7 cells as shown by increased expression of mesenchymal markers vimentin, fibronectin and EMT-related transcription factor Snail2. These phenotypic traits were also associated with the development of drug resistance toward various chemotherapy agents and induction of their proteolytic potential as shown by the increased expression of matrix metalloproteinases, including MMP-1, MMP-2, MMP-9, MT1-MMP and up-regulation of urokinase-type plasminogen activator. Knockdown of serglycin markedly reduced the expression of these proteolytic enzymes in MDA-MB-231 cells. In addition, serglycin expression was closely linked to a pro-inflammatory gene signature including the chemokine IL-8 in ERα-negative breast cancer cells and tumors. Notably, serglycin regulated the secretion of IL-8 in breast cancer cells independently of their ERα status and promoted their proliferation, migration and invasion by triggering IL-8/CXCR2 downstream signaling cascades including PI3K, Src and Rac activation. Thus, serglycin promotes the establishment of a pro-inflammatory milieu in breast cancer cells that evokes an invasive mesenchymal phenotype via autocrine activation of IL-8/CXCR2 signaling axis.
Collapse
Affiliation(s)
- Panagiotis Bouris
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Anastasia Sopaki-Valalaki
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Anthi Kolokotroni
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE 75123 Uppsala, Sweden
| | - Aastha Kapoor
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece.
| |
Collapse
|
42
|
Urokinase plasminogen activator secreted by cancer-associated fibroblasts induces tumor progression via PI3K/AKT and ERK signaling in esophageal squamous cell carcinoma. Oncotarget 2018; 8:42300-42313. [PMID: 28404945 PMCID: PMC5522068 DOI: 10.18632/oncotarget.15857] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/13/2017] [Indexed: 11/25/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are believed to influence tumor behavior and clinical outcomes. We previously showed that conditioned medium (CM) from CAFs induces proliferation and motility of esophageal squamous cell carcinoma (ESCC) cells. Here, we investigated the molecular mechanisms by which the CAF-secreted proteins induce ESCC development and progression. Using antibody arrays, we identified urokinase plasminogen activator (uPA) as one of the main proteins whose release was increased in CAFs compared to normal fibroblasts (NFs). Immunohistochemical analysis of pathological sections showed that uPA-positive cells were localized at the boundaries of tumor and stroma tissues, in stroma between tumor nests, and within the tumors. Increased stromal uPA levels (132/146 cases) correlated with tumor invasion (p < 0.05) and overall survival of ESCC patients (p < 0.05). In vitro assays showed that uPA promotes ESCC cell proliferation, migration, and invasion via PI3K/AKT and ERK signaling pathways. In vivo, anti-uPA antibody suppressed tumor growth in ESCC xenografts. These results suggest that uPA released from stroma, and especially from CAFs, might be a predictive marker for ESCC diagnosis and prognosis, as well as an effective therapeutic target.
Collapse
|
43
|
Molecular mechanism of Poria cocos combined with oxaliplatin on the inhibition of epithelial-mesenchymal transition in gastric cancer cells. Biomed Pharmacother 2018; 102:865-873. [PMID: 29710543 DOI: 10.1016/j.biopha.2018.03.134] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Natural product Poria cocos possesses antitumor effect. This study will explore the molecular mechanism of Poria cocos combined with chemotherapy in the inhibition of gastric cancer cell EMT process. METHODS The experiment was divided into blank control group, Poria cocos group, oxaliplatin group and Poria cocos combined with oxaliplatin group. Scratch and Transwell assay were used to detect cell migration and invasion respectively. RT-qPCR and Western Blot analyses were used to detect mRNA and protein expression of the epithelial-mesenchymal transition (EMT) related factors including Snail, Twist, Vimentin, E-cadherin and N-cadherin respectively. Morphologic assessment was performed with HPIAS-1000 automated image analysis system. RESULTS The migration and invasion abilities of gastric cancer cells in the Poria cocos combined with oxaliplatin group were significantly decreased (P < 0.01). The mRNA and protein expression of Snail, Twist, Vimentin and N-cadherin were significantly decreased while the mRNA and protein expression of E-cadherin were significantly increased (P < 0.01) compared with blank control group. Nude mice model of gastric cancer was successfully established. Poria cocos combined with oxaliplatin could significantly inhibit gastric tumor progression. The expression of EMT related factors were consistent with in vitro study. Morphologic assessment showed that the nucleus area, perimeter, mean diameter, volume, long diameter and shape factor in the Poria cocos combined with oxaliplatin group were significantly different compared with the blank control group (P < 0.01) but not significantly different compared with the normal control. CONCLUSIONS Poria cocos combined with oxaliplatin could significantly inhibit the migration and invasion of gastric cancer cells. Through both in vitro and in vivo studies, it is confirmed that Poria cocos combined with oxaliplatin could significantly inhibit the EMT process of gastric cancer. Poria cocos combined with oxaliplatin could significantly affect the morphology changes of gastric cancer cells. These findings may provide a theoretical guidance for the clinical treatment of gastric cancer.
Collapse
|
44
|
Chiu YJ, Hour MJ, Jin YA, Lu CC, Tsai FJ, Chen TL, Ma H, Juan YN, Yang JS. Disruption of IGF‑1R signaling by a novel quinazoline derivative, HMJ‑30, inhibits invasiveness and reverses epithelial-mesenchymal transition in osteosarcoma U‑2 OS cells. Int J Oncol 2018; 52:1465-1478. [PMID: 29568964 PMCID: PMC5873869 DOI: 10.3892/ijo.2018.4325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 03/01/2018] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is the most common primary malignancy of the bone and is characterized by local invasion and distant metastasis. Over the past 20 years, long-term outcomes have reached a plateau even with aggressive therapy. Overexpression of insulin-like growth factor 1 receptor (IGF‑1R) is associated with tumor proliferation, invasion and migration in osteosarcoma. In the present study, our group developed a novel quinazoline derivative, 6-fluoro‑2-(3-fluorophenyl)-4-(cyanoanilino)quinazoline (HMJ‑30), in order to disrupt IGF‑1R signaling and tumor invasiveness in osteosarcoma U‑2 OS cells. Molecular modeling, immune-precipitation, western blotting and phosphorylated protein kinase sandwich ELISA assays were used to confirm this hypothesis. The results demonstrated that HMJ‑30 selectively targeted the ATP-binding site of IGF‑1R and inhibited its downstream phosphoinositide 3-kinase/protein kinase B, Ras/mitogen-activated protein kinase, and IκK/nuclear factor-κB signaling pathways in U‑2 OS cells. HMJ‑30 inhibited U‑2 OS cell invasion and migration and downregulated protein levels and activities of matrix metalloproteinase (MMP)‑2 and MMP-9. An increase in protein levels of tissue inhibitor of metalloproteinase (TIMP)‑1 and TIMP‑2 was also observed. Furthermore, HMJ‑30 caused U‑2 OS cells to aggregate and form tight clusters, and these cells were flattened, less elongated and displayed cobblestone-like shapes. There was an increase in epithelial markers and a decrease in mesenchymal markers, indicating that the cells underwent the reverse epithelial-mesenchymal transition (EMT) process. Overall, these results demonstrated the potential molecular mechanisms underlying the effects of HMJ‑30 on invasiveness and EMT in U‑2 OS cells, suggesting that this compound deserves further investigation as a potential anti-osteosarcoma drug.
Collapse
Affiliation(s)
- Yu-Jen Chiu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veteran General Hospital, Taipei 112, Taiwan, R.O.C
| | - Mann-Jen Hour
- School of Pharmacy, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Yi-An Jin
- Department of Dermatology, Taipei Medical University Hospital, Taipei 110, Taiwan, R.O.C
| | - Chi-Cheng Lu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Tai-Lin Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei 112, Taiwan, R.O.C
| | - Hsu Ma
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veteran General Hospital, Taipei 112, Taiwan, R.O.C
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| |
Collapse
|
45
|
Dai B, Yang T, Ma Y, Ma N, Shi X, Zhang D, Zhang J, Zhang Y. HMQ-T-F2 exert antitumour effects by upregulation of Axin in human cervical HeLa cells. J Cell Mol Med 2018. [PMID: 29516635 PMCID: PMC5908098 DOI: 10.1111/jcmm.13577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Looking for novel, effective and less toxic therapies for cervical cancer is of significant importance. In this study, we reported that HMQ‐T‐F2(F2) significantly inhibited cell proliferation and transplantable tumour growth. Mechanistically, HMQ‐T‐F2 inhibited HeLa cell growth through repressing the expression and nuclear translocation of β‐catenin, enhancing Axin expression, as well as downregulating the Wnt downstream targeted proteins. Knock‐down of a checkpoint β‐catenin by siRNA significantly attenuated HeLa cell proliferation. Furthermore, XAV939, an inhibitor of β‐catenin, was used to treat HeLa cells and the results demonstrated that HMQ‐T‐F2 inhibited proliferation and migration via the inhibition of the Wnt/β‐catenin pathway.
Collapse
Affiliation(s)
- Bingling Dai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yujiao Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Nan Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xianpeng Shi
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
46
|
Spiral shape microfluidic channel for selective isolating of heterogenic circulating tumor cells. Biosens Bioelectron 2018; 101:311-316. [DOI: 10.1016/j.bios.2017.10.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/29/2017] [Accepted: 10/16/2017] [Indexed: 11/17/2022]
|
47
|
uPA/uPAR and SERPINE1 in head and neck cancer: role in tumor resistance, metastasis, prognosis and therapy. Oncotarget 2018; 7:57351-57366. [PMID: 27385000 PMCID: PMC5302994 DOI: 10.18632/oncotarget.10344] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/13/2016] [Indexed: 12/25/2022] Open
Abstract
There is strong evidence supporting the role of the plasminogen activator system in head and neck squamous cell carcinoma (HNSCC), particularly of its uPA (urokinase plasminogen activator) / uPAR (urokinase plasminogen activator receptor) and SERPINE1 components. Overexpression of uPA/uPAR and SERPINE1 enhances tumor cell migration and invasion and plays a key role in metastasis development, conferring poor prognosis. The apparent paradox of uPA/uPAR and its inhibitor SERPINE1 producing similar effects is solved by the identification of SERPINE1 activated signaling pathways independent of uPA inhibition. Both uPA/uPAR and SERPINE1 are directly linked to the induction of epithelial-to-mesenchymal transition, the acquisition of stem cell properties and resistance to antitumor agents. The aim of this review is to provide insight on the deregulation of these proteins in all these processes. We also summarize their potential value as prognostic biomarkers or potential drug targets in HNSCC patients. Concomitant overexpression of uPA/uPAR and SERPINE1 is associated with a higher risk of metastasis and could be used to identify patients that would benefit from an adjuvant treatment. In the future, the specific inhibitors of uPA/uPAR and SERPINE1, which are still under development, could be used to design new therapeutic strategies in HNSCCs.
Collapse
|
48
|
The Urokinase Receptor Induces a Mesenchymal Gene Expression Signature in Glioblastoma Cells and Promotes Tumor Cell Survival in Neurospheres. Sci Rep 2018; 8:2982. [PMID: 29445239 PMCID: PMC5813209 DOI: 10.1038/s41598-018-21358-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/02/2018] [Indexed: 01/10/2023] Open
Abstract
PLAUR encodes the urokinase receptor (uPAR), which promotes cell survival, migration, and resistance to targeted cancer therapeutics in glioblastoma cells in culture and in mouse model systems. Herein, we show that patient survival correlates inversely with PLAUR mRNA expression in gliomas of all grades, in glioblastomas, and in the subset of glioblastomas that demonstrate the mesenchymal gene expression signature. PLAUR clusters with genes that define the more aggressive mesenchymal subtype in transcriptome profiles of glioblastoma tissue and glioblastoma cells in neurospheres, which are enriched for multipotent cells with stem cell-like qualities. When PLAUR was over-expressed or silenced in glioblastoma cells, neurosphere growth and expression of mesenchymal subtype biomarkers correlated with uPAR abundance. uPAR also promoted glioblastoma cell survival in neurospheres. Constitutively-active EGF Receptor (EGFRvIII) promoted neurosphere growth; however, unlike uPAR, EGFRvIII did not induce the mesenchymal gene expression signature. Immunohistochemical analysis of human glioblastomas showed that uPAR is typically expressed by a small sub-population of the cancer cells; it is thus reasonable to conclude that this subpopulation of cells is responsible for the effects of PLAUR on patient survival. We propose that uPAR-expressing glioblastoma cells demonstrate a mesenchymal gene signature, an increased capacity for cell survival, and stem cell-like properties.
Collapse
|
49
|
Huber MC, Falkenberg N, Hauck SM, Priller M, Braselmann H, Feuchtinger A, Walch A, Schmitt M, Aubele M. Cyr61 and YB-1 are novel interacting partners of uPAR and elevate the malignancy of triple-negative breast cancer. Oncotarget 2018; 7:44062-44075. [PMID: 27286449 PMCID: PMC5190079 DOI: 10.18632/oncotarget.9853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/16/2016] [Indexed: 11/29/2022] Open
Abstract
The triple-negative breast cancer (TNBC) is a very aggressive tumor type often occurring in young women and is associated with a bad prognosis for the patients. TNBC lacks established targets for breast cancer therapy, such as the estrogen receptor (ER), progesterone receptor (PR) and the human epidermal growth factor receptor 2 (HER2). Therefore, novel therapeutic targets and strategies are needed for an improved treatment of this breast cancer subtype. TNBC and respective cell lines often overexpress proteins of the urokinase plasminogen activator system (uPAS) including uPA, its receptor uPAR and inhibitor PAI-1, which together with co-factors contribute to the malignancy of TNBC. Here, two novel interacting partners of uPAR, the cysteine-rich angiogenic inducer 61 (Cyr61) and the Y-box-binding protein 1 (YB-1) were identified and their differential expression demonstrated in TNBC cells as well as in tumors. In the TNBC cohort, both interactors significantly correlated with expression levels of cathepsin B, c-Met and the tumor grade. In addition, expression levels of Cyr61 significantly correlated with cathepsin D (p=0.03), insulin receptor (p≤0.001), insulin-like growth factor receptor 1 (IGF1R, p=0.015) and also with YB-1 (p=0.0004) levels. The interactions of uPAR with Cyr61 significantly correlated with expression levels of tumor-promoting biomarkers including plasminogen (p=0.0014), cathepsin B (p=0.032), c-Met (p=0.0192) as well as with the tumor grade (p=0.02). In multivariate survival analysis, YB-1 showed independent prognostic value (p=0.01). As the novel interacting partners, also together with uPAR, contribute to tumor progression and metastasis, both may be potential therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Michaela C Huber
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Natalie Falkenberg
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Stefanie M Hauck
- Research Unit of Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Markus Priller
- Research Unit of Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Herbert Braselmann
- Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Annette Feuchtinger
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany.,Research Unit of Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Axel Walch
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany.,Research Unit of Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Manfred Schmitt
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technische Universität München, München 81675, Germany
| | - Michaela Aubele
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| |
Collapse
|
50
|
Jaiswal RK, Varshney AK, Yadava PK. Diversity and functional evolution of the plasminogen activator system. Biomed Pharmacother 2018; 98:886-898. [PMID: 29571259 DOI: 10.1016/j.biopha.2018.01.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 01/08/2023] Open
Abstract
The urokinase plasminogen activator system is a family of serine proteases which consists of uPA (urokinase plasminogen activator), uPAR (urokinase type plasminogen activator receptor) and PAI-1 (plasminogen activator inhibitor 1). In addition to their significant roles in activation, these proteases act as key regulators of the tumor microenvironment and are involved in the metastatic process in many cancers. High levels of uPA system proteases in many human cancer predicts poor patient prognosis and strongly indicated a key role of uPA system in cancer metastasis. Individual components of uPA system are found to be differentially expressed in cancer cells compared to normal cells and therefore are potential therapeutic targets. In this review, we present the molecular and cellular mechanisms underlying the role of uPA system in cancer progression. Epithelial to mesenchymal transitions (EMT) is the main cause of the cancer cell metastasis. We have also attempted to relate the role of uPA signaling in EMT of cancer cells.
Collapse
Affiliation(s)
- Rishi Kumar Jaiswal
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Akhil Kumar Varshney
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pramod Kumar Yadava
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|