1
|
Tyagi S, Ghovanloo MR, Alsaloum M, Effraim P, Higerd-Rusli GP, Dib-Hajj F, Zhao P, Liu S, Waxman SG, Dib-Hajj SD. Targeted ubiquitination of Na V 1.8 reduces sensory neuronal excitability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636451. [PMID: 39975312 PMCID: PMC11838569 DOI: 10.1101/2025.02.04.636451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Chronic pain and addiction are a significant global health challenge. Voltage-gated sodium channel Na V 1.8, a pivotal driver of pain signaling, is a clinically validated target for the development of novel, non-addictive pain therapeutics. Small molecule inhibitors against Na V 1.8 have shown promise in acute pain indications, but large clinical effect sizes have not yet been demonstrated and efficacy in chronic pain indications are lacking. An alternative strategy to target Na V 1.8 channels for analgesia is to reduce the number of channels that are present on nociceptor membranes. We generated a therapeutic heterobifunctional protein, named UbiquiNa V , that contains a Na V 1.8-selective binding module and the catalytic subunit of the NEDD4 E3 Ubiquitin ligase. We show that UbiquiNav significantly reduces channel expression in the plasma membrane and reduces Na V 1.8 currents in rodent sensory neurons. We demonstrate that UbiquiNa V is selective for Na V 1.8 over other Na V isoforms and other components of the sensory neuronal electrogenisome. We then show that UbiquiNa V normalizes the distribution of Na V 1.8 protein to distal axons, and that UbiquiNa V normalizes the neuronal hyperexcitability in in vitro models of inflammatory and chemotherapy-induced neuropathic pain. Our results serve as a blueprint for the design of therapeutics that leverage the selective ubiquitination of Na V 1.8 channels for analgesia.
Collapse
|
2
|
Zheng K, Li Q, Jiang N, Zhang Y, Zheng Y, Zhang Y, Feng Y, Chen R, Sang X, Chen Q. Plasmodium falciparum selectively degrades α-spectrin of infected erythrocytes after invasion. mBio 2024; 15:e0351023. [PMID: 38470053 PMCID: PMC11005373 DOI: 10.1128/mbio.03510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Remodeling the erythrocyte membrane and skeleton by the malarial parasite Plasmodium falciparum is closely associated with intraerythrocytic development. However, the mechanisms underlying this association remain unclear. In this study, we present evidence that erythrocytic α-spectrin, but not β-spectrin, was dynamically ubiquitinated and progressively degraded during the intraerythrocytic development of P. falciparum, from the ring to the schizont stage. We further observed an upregulated expression of P. falciparum phosphatidylinositol 3-kinase (PfPI3K) in the infected red blood cells during the intraerythrocytic development of the parasite. The data indicated that PfPI3K phosphorylated and activated erythrocytic ubiquitin-protein ligase, leading to increased α-spectrin ubiquitination and degradation during P. falciparum development. We further revealed that inhibition of the activity of PfPI3K impaired P. falciparum development in vitro and Plasmodium berghei infectivity in mice. These findings collectively unveil an important mechanism of PfPI3K-ubiquitin-mediated degradation of α-spectrin during the intraerythrocytic development of Plasmodium species. Proteins in the PfPI3K regulatory pathway are novel targets for effective treatment of severe malaria. IMPORTANCE Plasmodium falciparum is the causative agent of severe malaria that causes millions of deaths globally. The parasite invades human red blood cells and induces a cascade of alterations in erythrocytes for development and proliferation. Remodeling the host erythrocytic cytoskeleton is a necessary process during parasitization, but its regulatory mechanisms remain to be elucidated. In this study, we observed that erythrocytic α-spectrin is selectively degraded after P. falciparum invasion, while β-spectrin remained intact. We found that the α-spectrin chain was profoundly ubiquitinated by E3 ubiquitin ligase and degraded by the 26S proteasome. E3 ubiquitin ligase activity was regulated by P. falciparum phosphatidylinositol 3-kinase (PfPI3K) signaling. Additionally, blocking the PfPI3K-ubiquitin-proteasome pathway in P. falciparum-infected red blood cells reduced parasite proliferation and infectivity. This study deepens our understanding of the regulatory mechanisms of host and malarial parasite interactions and paves the way for the exploration of novel antimalarial drugs.
Collapse
Affiliation(s)
- Kexin Zheng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
- Engineering Research Center of Food Fermentation Technology, College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Qilong Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yanxin Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yuxin Zheng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
3
|
Martínez N, Gragera T, de Lucas MP, Cámara AB, Ballester A, Anta B, Fernández-Medarde A, López-Briones T, Ortega J, Peña-Jiménez D, Barbáchano A, Montero-Calle A, Cordero V, Barderas R, Iglesias T, Yunta M, Oliva JL, Muñoz A, Santos E, Zarich N, Rojas-Cabañeros JM. PKD phosphorylation and COP9/Signalosome modulate intracellular Spry2 protein stability. Oncogenesis 2023; 12:20. [PMID: 37045830 PMCID: PMC10097667 DOI: 10.1038/s41389-023-00465-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Spry2 is a molecular modulator of tyrosine kinase receptor signaling pathways that has cancer-type-specific effects. Mammalian Spry2 protein undergoes tyrosine and serine phosphorylation in response to growth factor stimulation. Spry2 expression is distinctly altered in various cancer types. Inhibition of the proteasome functionality results in reduced intracellular Spry2 degradation. Using in vitro and in vivo assays, we show that protein kinase D (PKD) phosphorylates Spry2 at serine 112 and interacts in vivo with the C-terminal half of this protein. Importantly, missense mutation of Ser112 decreases the rate of Spry2 intracellular protein degradation. Either knocking down the expression of all three mammalian PKD isoforms or blocking their kinase activity with a specific inhibitor contributes to the stabilization of Spry2 wild-type protein. Downregulation of CSN3, a component of the COP9/Signalosome that binds PKD, significantly increases the half-life of Spry2 wild-type protein but does not affect the stability of a Spry2 after mutating Ser112 to the non-phosphorylatable residue alanine. Our data demonstrate that both PKD and the COP9/Signalosome play a significant role in control of Spry2 intracellular stability and support the consideration of the PKD/COP9 complex as a potential therapeutic target in tumors where Spry2 expression is reduced.
Collapse
Affiliation(s)
- Natalia Martínez
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Teresa Gragera
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
- Facultad de Odontología, Universidad Alfonso X el Sabio (UAX), Avenida de la Universidad 1, 28691, Villanueva de la Cañada, Madrid, Spain
| | - María Pilar de Lucas
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Ana Belén Cámara
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Alicia Ballester
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Berta Anta
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Alberto Fernández-Medarde
- Centro de Investigación del Cáncer, IBMCC (CSIC-USAL) and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Universidad de Salamanca, 37007, Salamanca, Spain
| | - Tania López-Briones
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Judith Ortega
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Daniel Peña-Jiménez
- Unidad de Investigación Biomédica, Universidad Alfonso X el Sabio (UAX), Avenida de la Universidad 1, 28691, Villanueva de la Cañada, Madrid, Spain
| | - Antonio Barbáchano
- Instituto de Investigaciones Biomédicas Alberto Sols and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), 28046, Madrid, Spain
| | - Ana Montero-Calle
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Víctor Cordero
- Unidad de Investigación Biomédica, Universidad Alfonso X el Sabio (UAX), Avenida de la Universidad 1, 28691, Villanueva de la Cañada, Madrid, Spain
| | - Rodrigo Barderas
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Teresa Iglesias
- Instituto de Investigaciones Biomédicas Alberto Sols and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain
| | - Mónica Yunta
- Unidad de Investigación Biomédica, Universidad Alfonso X el Sabio (UAX), Avenida de la Universidad 1, 28691, Villanueva de la Cañada, Madrid, Spain
| | - José Luís Oliva
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas Alberto Sols and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), 28046, Madrid, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer, IBMCC (CSIC-USAL) and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Universidad de Salamanca, 37007, Salamanca, Spain
| | - Natasha Zarich
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - José M Rojas-Cabañeros
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| |
Collapse
|
4
|
Cui S, Chen Y, Guo Y, Wang X, Chen D. Hsa-miR-22-3p inhibits liver cancer cell EMT and cell migration/ invasion by indirectly regulating SPRY2. PLoS One 2023; 18:e0281536. [PMID: 36749775 PMCID: PMC9904474 DOI: 10.1371/journal.pone.0281536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
The general mechanism for microRNAs to play biological function is through their inhibition on the expression of their target genes. In cancer, microRNAs may accelerate cell senescence, block angiogenesis, decrease energy supplies, repress tumor cell cycle and promote apoptosis to function as the tumor repressors. On the other hand, microRNAs can modulate tumor suppressor molecules to activate oncogene relevant signaling pathway to initiate tumorigenesis and promote tumor progression. By targeting different genes, miR-22 can function as either a tumor suppressor or a tumor promoter in different types of cancer. In liver cancer, miR-22 mainly functions as a tumor suppressor via its regulation on different genes. In this study, we demonstrated that miR-22 indirectly regulates SPRY2 by inhibiting CBL, an E3 ligase for SPRY2 that has been confirmed. As one of the modulators of the MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-regulated kinase) signaling pathway, SPRY2 plays important roles in many developmental and physiological processes, and its deregulation has been reported in different types of cancer and shown to affect cancer development, progression, and metastasis. By inhibiting the expression of CBL, which stabilizes SPRY2, miR-22 indirectly upregulates SPRY2, thereby suppressing the epithelial-mesenchymal transition (EMT), cell migration, and invasion and decreasing the expression of liver cancer stem cell (CSC) marker genes. The inhibitory effects of miR-22 on EMT, cell migration, and invasion can be blocked by the knockdown of SPRY2 expression in miR-22 overexpressing cells. Additionally, we demonstrated that miR-22 expression inhibits the ERK signaling pathway and that this effect is due to its upregulation of SPRY2. Overall, our study revealed a novel miR-22-3p/CBL/SPRY2/ERK axis that plays an important role in EMT, cell migration, and invasion of liver cancer cells.
Collapse
Affiliation(s)
- Shuaishuai Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yuanyuan Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yunfei Guo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xing Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Dahu Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- * E-mail:
| |
Collapse
|
5
|
Mazewski C, Platanias LC. MNK Proteins as Therapeutic Targets in Leukemia. Onco Targets Ther 2023; 16:283-295. [PMID: 37113687 PMCID: PMC10128080 DOI: 10.2147/ott.s370874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
In leukemia, resistance to therapy is a major concern for survival. MAPK-interacting kinases (MNKs) have been identified as important activators of oncogenic-related signaling and may be mediators of resistance. Recent studies in leukemia models, especially acute myeloid leukemia (AML), have focused on targeting MNKs together with other inhibitors or treating chemotherapy-resistant cells with MNK inhibitors. The preclinical demonstrations of the efficacy of MNK inhibitors in these combination formats would suggest a promising potential for use in clinical trials. Optimizing MNK inhibitors and testing in leukemia models is actively being pursued and may have important implications for the future. These studies are furthering the understanding of the mechanisms of MNKs in cancer which could translate to clinical studies.
Collapse
Affiliation(s)
- Candice Mazewski
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Hematology–Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Correspondence: Candice Mazewski; Leonidas C Platanias, Email ;
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Hematology–Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
6
|
Yang C, Xiang H, Fu K, Jin L, Yuan F, Xue B, Wang Z, Wang L. Lycorine suppresses cell growth and invasion via down-regulation of NEDD4 ligase in bladder cancer. Am J Cancer Res 2022; 12:4708-4720. [PMID: 36381314 PMCID: PMC9641406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023] Open
Abstract
Recent studies have shown that lycorine, a natural alkaloid compound, plays its anti-cancer role in several human malignancies including bladder cancer. However, the molecular mechanism of lycorine-induced antitumor activity has not been sufficiently investigated. The E3 ubiquitin ligase neural precursor cell expressed developmentally downregulated protein 4 (NEDD4, also known as NEDD4-1) plays a crucial role in tumorigenesis and progression of human cancer. Therefore, depletion of NEDD4 could be a prospective therapeutic strategy for the treatment of cancer. In this study, we investigated whether lycorine restrains tumor by inhibiting the expression of NEDD4 in bladder cancer. We observed that lycorine blocked bladder cancer cell proliferation, colony formation, metastasis and invasion. Moreover, we found that overexpression of NEDD4 in bladder cancer cells significantly promoted cell proliferation and motility, whereas downregulating of the NEDD4 gene expression by lycorine or siRNA suppressed cell growth and movement. Notably, lycorine increased gemcitabine sensitivity in bladder cancer cells. Importantly, lycorine significantly reduced tumor growth, whereas overexpression of NEDD4 accelerated tumor growth and rescued lycorine-triggered tumor inhibition in xenograft mouse model. In conclusion, our study demonstrated that lycorine could exert its antineoplastic activity via suppressing NEDD4 pathway in vitro and in vivo. Therefore, inhibition of NEDD4 expression by lycorine might be a potential efficient strategy for bladder cancer.
Collapse
Affiliation(s)
- Chuanlai Yang
- Scientific Research Department, The Second Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Han Xiang
- Department of Urology, The Second Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Kai Fu
- Department of Urology, The Second Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Lu Jin
- Department of Urology, The Second Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Feng Yuan
- Department of Urology, The Second Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Boxin Xue
- Department of Urology, The Second Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Zhiwei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325027, Zhejiang, China
| | - Lixia Wang
- Department of Urology, The Second Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| |
Collapse
|
7
|
Predicting PY motif-mediated protein-protein interactions in the Nedd4 family of ubiquitin ligases. PLoS One 2021; 16:e0258315. [PMID: 34637467 PMCID: PMC8509885 DOI: 10.1371/journal.pone.0258315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/23/2021] [Indexed: 01/07/2023] Open
Abstract
The Nedd4 family contains several structurally related but functionally distinct HECT-type ubiquitin ligases. The members of the Nedd4 family are known to recognize substrates through their multiple WW domains, which recognize PY motifs (PPxY, LPxY) or phospho-threonine or phospho-serine residues. To better understand protein interactor recognition mechanisms across the Nedd4 family, we report the development and implementation of a python-based tool, PxYFinder, to identify PY motifs in the primary sequences of previously identified interactors of Nedd4 and related ligases. Using PxYFinder, we find that, on average, half of Nedd4 family interactions are likely PY-motif mediated. Further, we find that PPxY motifs are more prevalent than LPxY motifs and are more likely to occur in proline-rich regions and that PPxY regions are more disordered on average relative to LPxY-containing regions. Informed by consensus sequences for PY motifs across the Nedd4 interactome, we rationally designed a focused peptide library and employed a computational screen, revealing sequence- and biomolecular interaction-dependent determinants of WW-domain/PY-motif interactions. Cumulatively, our efforts provide a new bioinformatic tool and expand our understanding of sequence and structural factors that contribute to PY-motif mediated interactor recognition across the Nedd4 family.
Collapse
|
8
|
A Sprouty4 Mutation Identified in Kallmann Syndrome Increases the Inhibitory Potency of the Protein towards FGF and Connected Processes. Int J Mol Sci 2021; 22:ijms22042145. [PMID: 33670044 PMCID: PMC7926442 DOI: 10.3390/ijms22042145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/03/2022] Open
Abstract
Kallmann syndrome is the result of innate genetic defects in the fibroblast growth factor (FGF) regulated signaling network causing diminished signal transduction. One of the rare mutations associated with the syndrome alters the Sprouty (Spry)4 protein by converting the serine at position 241 into a tyrosine. In this study, we characterize the tyrosine Spry4 mutant protein in the primary human embryonic lung fibroblasts WI-38 and osteosarcoma-derived cell line U2OS. As demonstrated in a cell signaling assay, Spry4 gains the capability of inhibiting FGF, but not epithelial growth factor (EGF)-induced signaling as a consequence of the tyrosine substitution. Additionally, migration of normal embryonic lung fibroblasts and osteosarcoma-derived cells is potently inhibited by the tyrosine Spry4 variant, while an effect of the wildtype Spry4 protein is hardly measureable. Concerning cell proliferation, the unaltered Spry4 protein is ineffective to influence the WI-38 cells, while the mutated Spry4 protein decelerates the cell doubling. In summary, these data emphasize that like the other mutations associated with Kallmann syndrome the described Spry4 mutation creates a hyperactive version of a selective inhibitory molecule and can thereby contribute to a weakened FGF signaling. Additionally, the study pinpoints a Spry4 variation expanding the applicability of Spry4 in a potential cancer therapy.
Collapse
|
9
|
Locatelli C, Lemonidis K, Salaun C, Tomkinson NCO, Chamberlain LH. Identification of key features required for efficient S-acylation and plasma membrane targeting of sprouty-2. J Cell Sci 2020; 133:jcs249664. [PMID: 33037124 PMCID: PMC7657471 DOI: 10.1242/jcs.249664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/30/2020] [Indexed: 11/24/2022] Open
Abstract
Sprouty-2 is an important regulator of growth factor signalling and a tumour suppressor protein. The defining feature of this protein is a cysteine-rich domain (CRD) that contains twenty-six cysteine residues and is modified by S-acylation. In this study, we show that the CRD of sprouty-2 is differentially modified by S-acyltransferase enzymes. The high specificity/low activity zDHHC17 enzyme mediated restricted S-acylation of sprouty-2, and cysteine-265 and -268 were identified as key targets of this enzyme. In contrast, the low specificity/high activity zDHHC3 and zDHHC7 enzymes mediated more expansive modification of the sprouty-2 CRD. Nevertheless, S-acylation by all enzymes enhanced sprouty-2 expression, suggesting that S-acylation stabilises this protein. In addition, we identified two charged residues (aspartate-214 and lysine-223), present on opposite faces of a predicted α-helix in the CRD, which are essential for S-acylation of sprouty-2. Interestingly, mutations that perturbed S-acylation also led to a loss of plasma membrane localisation of sprouty-2 in PC12 cells. This study provides insight into the mechanisms and outcomes of sprouty-2 S-acylation, and highlights distinct patterns of S-acylation mediated by different classes of zDHHC enzymes.
Collapse
Affiliation(s)
- Carolina Locatelli
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Kimon Lemonidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Christine Salaun
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
10
|
Prabhu SA, Moussa O, Miller WH, del Rincón SV. The MNK1/2-eIF4E Axis as a Potential Therapeutic Target in Melanoma. Int J Mol Sci 2020; 21:E4055. [PMID: 32517051 PMCID: PMC7312468 DOI: 10.3390/ijms21114055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
: Melanoma is a type of skin cancer that originates in the pigment-producing cells of the body known as melanocytes. Most genetic aberrations in melanoma result in hyperactivation of the mitogen activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways. We and others have shown that a specific protein synthesis pathway known as the MNK1/2-eIF4E axis is often dysregulated in cancer. The MNK1/2-eIF4E axis is a point of convergence for these signaling pathways that are commonly constitutively activated in melanoma. In this review we consider the functional implications of aberrant mRNA translation in melanoma and other malignancies. Moreover, we discuss the consequences of inhibiting the MNK1/2-eIF4E axis on the tumor and tumor-associated cells, and we provide important avenues for the utilization of this treatment modality in combination with other targeted and immune-based therapies. The past decade has seen the increased development of selective inhibitors to block the action of the MNK1/2-eIF4E pathway, which are predicted to be an effective therapy regardless of the melanoma subtype (e.g., cutaneous, acral, and mucosal).
Collapse
Affiliation(s)
- Sathyen A. Prabhu
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| | - Omar Moussa
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| | - Wilson H. Miller
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
- Department of Oncology, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada
- McGill Centre for Translational Research in Cancer (MCTRC), McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
- Rossy Cancer Network, McGill University, 1980 Sherbrooke Ouest, #1101, Montreal, QC H3H 1E8, Canada
| | - Sonia V. del Rincón
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
- Department of Oncology, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada
- McGill Centre for Translational Research in Cancer (MCTRC), McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
11
|
Jamsuwan S, Klimaschewski L, Hausott B. Simultaneous Knockdown of Sprouty2 and PTEN Promotes Axon Elongation of Adult Sensory Neurons. Front Cell Neurosci 2020; 13:583. [PMID: 32038175 PMCID: PMC6985068 DOI: 10.3389/fncel.2019.00583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/20/2019] [Indexed: 01/10/2023] Open
Abstract
Sprouty2 (Spry2) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) are both well-established regulators of receptor tyrosine kinase (RTK) signaling, and knockdown of Spry2 or PTEN enhances axon regeneration of dorsal root ganglia (DRG) neurons. The major role of Spry2 is the inhibition of the rat sarcoma RAS/extracellular signal-regulated kinase (ERK) pathway, whereas PTEN acts mainly as an inhibitor of the phosphoinositide 3-kinase (PI3K)/Akt pathway. In non-neuronal cells, Spry2 increases the expression and activity of PTEN, and PTEN enhances the amount of Spry2 by the inhibition of the microRNA-21 (miR-21) that downregulates Spry2. Applying dissociated DRG neuron cultures from wild-type (WT) or Spry2 deficient mice, we demonstrate that PTEN protein was reduced after 72 h during rapid axonal outgrowth on the laminin substrate. Furthermore, PTEN protein was decreased in DRG cultures obtained from homozygous Spry2−/− knockout mice. Vice versa, Spry2 protein was reduced by PTEN siRNA in WT and heterozygous Spry2+/− neurons. Knockdown of PTEN in DRG cultures obtained from homozygous Spry2−/− knockout mice promoted axon elongation without increasing axonal branching. Activation of Akt, but not ERK, was stronger in response to PTEN knockdown in homozygous Spry2−/− DRG neurons than in WT neurons. Together, our study confirms the important role of the signaling modulators Spry2 and PTEN in axon growth of adult DRG neurons. Both function as endogenous inhibitors of neuronal growth factor signaling and their simultaneous knockdown promotes axon elongation more efficiently than the single knockdown of each inhibitor. Furthermore, Spry2 and PTEN are reciprocally downregulated in adult DRG neuron cultures. Axon growth is influenced by multiple factors and our results demonstrate that the endogenous inhibitors of axon growth, Spry2 and PTEN, are co-regulated in adult DRG neuron cultures. Together, our data demonstrate that combined approaches may be more useful to improve nerve regeneration than targeting one single inhibitor of axon growth.
Collapse
Affiliation(s)
- Sataporn Jamsuwan
- Institute of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Lars Klimaschewski
- Institute of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Hausott
- Institute of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Tracing Potential Covalent Inhibitors of an E3 Ubiquitin Ligase through Target-Focused Modelling. Molecules 2019; 24:molecules24173125. [PMID: 31466292 PMCID: PMC6749425 DOI: 10.3390/molecules24173125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022] Open
Abstract
The Nedd4-1 E3 Ubiquitin ligase has been implicated in multiple disease conditions due its overexpression. Although the enzyme may be targeted both covalently and non-covalently, minimal studies provide effective inhibitors against it. Recently, research has focused on covalent inhibitors based on their characteristic, highly-selective warheads and ability to prevent drug resistance. This prompted us to screen for new covalent inhibitors of Nedd4-1 using a combination of computational approaches. However, this task proved challenging due to the limited number of electrophilic moieties available in virtual libraries. Therefore, we opted to divide an existing covalent Nedd4-1 inhibitor into two parts: a non-covalent binding group and a pre-selected α, β-unsaturated ester that forms the covalent linkage with the protein. A non-covalent pharmacophore model was built based on molecular interactions at the binding site. The pharmacophore was then subjected to virtual screening to identify structurally similar hit compounds. Multiple filtrations were implemented prior to selecting four hits, which were validated with a covalent conjugation and later assessed by molecular dynamic simulations. The results showed that, of the four hit molecules, Zinc00937975 exhibited advantageous molecular groups, allowing for favourable interactions with one of the characteristic cysteine residues. Predictive pharmacokinetic analysis further justified the compound as a potential lead molecule, prompting its recommendation for confirmatory biological evaluation. Our inhouse, refined, pharmacophore model approach serves as a robust method that will encourage screening for novel covalent inhibitors in drug discovery.
Collapse
|
13
|
Xie J, Merrett JE, Jensen KB, Proud CG. The MAP kinase-interacting kinases (MNKs) as targets in oncology. Expert Opin Ther Targets 2019; 23:187-199. [DOI: 10.1080/14728222.2019.1571043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jianling Xie
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - James E. Merrett
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Kirk B. Jensen
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Christopher G. Proud
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
14
|
Bjij I, Khan S, Betz R, Cherqaoui D, Soliman MES. Exploring the Structural Mechanism of Covalently Bound E3 Ubiquitin Ligase: Catalytic or Allosteric Inhibition? Protein J 2019; 37:500-509. [PMID: 30232697 DOI: 10.1007/s10930-018-9795-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covalent inhibition has recently gained a resurgence of interest in several drug discovery areas. The expansion of this approach is based on evidence elucidating the selectivity and potency of covalent inhibitors when bound to particular amino acids of a biological target. The Nedd4-1, an E3 ubiquitin ligase, is characterized by two covalent binding sites, of which catalytic Cyscat and allosteric Cysallo are enclosed. This enzyme has demonstrated inhibition at both the above-mentioned binding sites; however, a detailed molecular understanding of the structural mechanism of inhibition upon Cyscat and Cysallo binding remains vague. This prompted us to provide the first account of investigating the preferential covalent binding mode and the underlying structural and molecular dynamic implications. Based on the molecular dynamic analyses, it was evident that although both catalytic and allosteric covalent binding led to greater stability of the enzyme, a preferential covalent mechanism of inhibition was seen in the allosteric-targeted system. This was supported by a more favorable binding energy in the allosteric site compared to the catalytic site, in addition to the larger number of residue interactions and stabilizing hydrogen bonds occurring in the allosteric covalent bound complex. The fundamental dynamic analysis presented in this report compliments, as well as adds to previous experimental findings, thus leading to a crucial understanding of the structural mechanism by which Nedd4-1 is inhibited. The findings from this study may assist in the design of more target-specific Nedd4-1 covalent inhibitors exploring the surface-exposed cysteine residues.
Collapse
Affiliation(s)
- Imane Bjij
- Molecular Bio-Computation & Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa.,Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, Av. My Abdellah, BP2390, Marrakech, Morocco
| | - Shama Khan
- Molecular Bio-Computation & Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Robin Betz
- Biophysics Program, Stanford University, Stanford, CA, 94305, USA
| | - Driss Cherqaoui
- Département de Chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, Av. My Abdellah, BP2390, Marrakech, Morocco
| | - Mahmoud E S Soliman
- Molecular Bio-Computation & Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa.
| |
Collapse
|
15
|
Lewis MA, Nolan LS, Cadge BA, Matthews LJ, Schulte BA, Dubno JR, Steel KP, Dawson SJ. Whole exome sequencing in adult-onset hearing loss reveals a high load of predicted pathogenic variants in known deafness-associated genes and identifies new candidate genes. BMC Med Genomics 2018; 11:77. [PMID: 30180840 PMCID: PMC6123954 DOI: 10.1186/s12920-018-0395-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/21/2018] [Indexed: 12/22/2022] Open
Abstract
Background Deafness is a highly heterogenous disorder with over 100 genes known to underlie human non-syndromic hearing impairment. However, many more remain undiscovered, particularly those involved in the most common form of deafness: adult-onset progressive hearing loss. Despite several genome-wide association studies of adult hearing status, it remains unclear whether the genetic architecture of this common sensory loss consists of multiple rare variants each with large effect size or many common susceptibility variants each with small to medium effects. As next generation sequencing is now being utilised in clinical diagnosis, our aim was to explore the viability of diagnosing the genetic cause of hearing loss using whole exome sequencing in individual subjects as in a clinical setting. Methods We performed exome sequencing of thirty patients selected for distinct phenotypic sub-types from well-characterised cohorts of 1479 people with adult-onset hearing loss. Results Every individual carried predicted pathogenic variants in at least ten deafness-associated genes; similar findings were obtained from an analysis of the 1000 Genomes Project data unselected for hearing status. We have identified putative causal variants in known deafness genes and several novel candidate genes, including NEDD4 and NEFH that were mutated in multiple individuals. Conclusions The high frequency of predicted-pathogenic variants detected in known deafness-associated genes was unexpected and has significant implications for current diagnostic sequencing in deafness. Our findings suggest that in a clinic setting, efforts should be made to a) confirm key sequence results by Sanger sequencing, b) assess segregations of variants and phenotypes within the family if at all possible, and c) use caution in applying current pathogenicity prediction algorithms for diagnostic purposes. We conclude that there may be a high number of pathogenic variants affecting hearing in the ageing population, including many in known deafness-associated genes. Our findings of frequent predicted-pathogenic variants in both our hearing-impaired sample and in the larger 1000 Genomes Project sample unselected for auditory function suggests that the reference population for interpreting variants for this very common disorder should be a population of people with good hearing for their age rather than an unselected population. Electronic supplementary material The online version of this article (10.1186/s12920-018-0395-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Morag A Lewis
- Wolfson Centre for Age-Related Diseases, King's College London, WC2R 2LS, London, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Lisa S Nolan
- UCL Ear Institute, University College London, WC1X 8EE, London, UK
| | - Barbara A Cadge
- UCL Ear Institute, University College London, WC1X 8EE, London, UK
| | - Lois J Matthews
- Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | - Judy R Dubno
- Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, WC2R 2LS, London, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Sally J Dawson
- UCL Ear Institute, University College London, WC1X 8EE, London, UK.
| |
Collapse
|
16
|
Karhausen JA, Qi W, Smeltz AM, Li YJ, Shah SH, Kraus WE, Mathew JP, Podgoreanu MV, Kertai MD. Genome-Wide Association Study Links Receptor Tyrosine Kinase Inhibitor Sprouty 2 to Thrombocytopenia after Coronary Artery Bypass Surgery. Thromb Haemost 2018; 118:1572-1585. [PMID: 30103242 DOI: 10.1055/s-0038-1667199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Thrombocytopenia after cardiac surgery independently predicts stroke, acute kidney injury and death. To understand the underlying risks and mechanisms, we analysed genetic variations associated with thrombocytopenia in patients undergoing coronary artery bypass grafting (CABG) surgery. MATERIALS AND METHODS Study subjects underwent isolated on-pump CABG surgery at Duke University Medical Center. Post-operative thrombocytopenia was defined as platelet count < 100 × 109/L. Using a logistic regression model adjusted for clinical risk factors, we performed a genome-wide association study in a discovery cohort (n = 860) and validated significant findings in a replication cohort (n = 296). Protein expression was assessed in isolated platelets by immunoblot. RESULTS A total of 63 single-nucleotide polymorphisms met a priori discovery thresholds for replication, but only 1 (rs9574547) in the intergenic region upstream of sprouty 2 (SPRY2) met nominal significance in the replication cohort. The minor allele of rs9574547 was associated with a lower risk for thrombocytopenia (discovery cohort, odds ratio, 0.45, 95% confidence interval, 0.30-0.67, p = 9.76 × 10-5) with the overall association confirmed by meta-analysis (meta-p = 7.88 × 10-6). Immunoblotting demonstrated expression of SPRY2 and its dynamic regulation during platelet activation. Treatment with a functional SPRY2 peptide blunted platelet extracellular signal-regulated kinase (ERK) phosphorylation after agonist stimulation. CONCLUSION We identified the association of a genetic polymorphism in the intergenic region of SPRY2 with a decreased incidence of thrombocytopenia after CABG surgery. Because SPRY2-an endogenous receptor tyrosine kinase inhibitor-is present in platelets and modulates essential signalling pathways, these findings support a role for SPRY2 as a novel modulator of platelet responses after cardiac surgery.
Collapse
Affiliation(s)
- Jörn A Karhausen
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Duke University, Durham, North Carolina, United States
| | - Wenjing Qi
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Duke University, Durham, North Carolina, United States
| | - Alan M Smeltz
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Duke University, Durham, North Carolina, United States
| | - Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Duke University, Durham, North Carolina, United States.,Molecular Physiology Institute, Duke University Medical Center, Duke University, Durham, North Carolina, United States
| | - Svati H Shah
- Molecular Physiology Institute, Duke University Medical Center, Duke University, Durham, North Carolina, United States.,Division of Cardiology, Department of Medicine, Duke University Medical Center, Duke University, Durham, North Carolina, United States
| | - William E Kraus
- Molecular Physiology Institute, Duke University Medical Center, Duke University, Durham, North Carolina, United States.,Division of Cardiology, Department of Medicine, Duke University Medical Center, Duke University, Durham, North Carolina, United States
| | - Joseph P Mathew
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Duke University, Durham, North Carolina, United States
| | - Mihai V Podgoreanu
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Duke University, Durham, North Carolina, United States
| | - Miklos D Kertai
- Department of Anesthesiology, Duke Perioperative Genomics Program, Duke University Medical Center, Duke University, Durham, North Carolina, United States.,Department of Anesthesiology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, United States
| | | |
Collapse
|
17
|
Encoding human serine phosphopeptides in bacteria for proteome-wide identification of phosphorylation-dependent interactions. Nat Biotechnol 2018; 36:638-644. [PMID: 29889213 PMCID: PMC6590076 DOI: 10.1038/nbt.4150] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 04/04/2018] [Indexed: 11/19/2022]
|
18
|
Bachofner M, Speicher T, Bogorad RL, Muzumdar S, Derrer CP, Hürlimann F, Böhm F, Nanni P, Kockmann T, Kachaylo E, Meyer M, Padrissa-Altés S, Graf R, Anderson DG, Koteliansky V, Auf dem Keller U, Werner S. Large-Scale Quantitative Proteomics Identifies the Ubiquitin Ligase Nedd4-1 as an Essential Regulator of Liver Regeneration. Dev Cell 2017; 42:616-625.e8. [PMID: 28890072 DOI: 10.1016/j.devcel.2017.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/16/2017] [Accepted: 07/26/2017] [Indexed: 01/20/2023]
Abstract
The liver is the only organ in mammals that fully regenerates even after major injury. To identify orchestrators of this regenerative response, we performed quantitative large-scale proteomics analysis of cytoplasmic and nuclear fractions from normal versus regenerating mouse liver. Proteins of the ubiquitin-proteasome pathway were rapidly upregulated after two-third hepatectomy, with the ubiquitin ligase Nedd4-1 being a top hit. In vivo knockdown of Nedd4-1 in hepatocytes through nanoparticle-mediated delivery of small interfering RNA caused severe liver damage and inhibition of cell proliferation after hepatectomy, resulting in liver failure. Mechanistically, we demonstrate that Nedd4-1 is required for efficient internalization of major growth factor receptors involved in liver regeneration and their downstream mitogenic signaling. These results highlight the power of large-scale proteomics to identify key players in liver regeneration and the importance of posttranslational regulation of growth factor signaling in this process. Finally, they identify an essential function of Nedd4-1 in tissue repair.
Collapse
Affiliation(s)
- Marc Bachofner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Tobias Speicher
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Roman L Bogorad
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sukalp Muzumdar
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Carina P Derrer
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Fabrizio Hürlimann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Friederike Böhm
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Paolo Nanni
- Functional Genomics Center Zürich, University of Zürich/ETH Zürich, 8057 Zürich, Switzerland
| | - Tobias Kockmann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland; Functional Genomics Center Zürich, University of Zürich/ETH Zürich, 8057 Zürich, Switzerland
| | - Ekaterina Kachaylo
- Swiss HPB Center, Division of Visceral and Transplantation Surgery, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Michael Meyer
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Susagna Padrissa-Altés
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Rolf Graf
- Swiss HPB Center, Division of Visceral and Transplantation Surgery, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Health Science Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Victor Koteliansky
- Skolkovo Institute of Science and Technology, ul. Novaya, d.100, Skolkovo 143025, Russian Federation
| | - Ulrich Auf dem Keller
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland.
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
19
|
Gao X, Hicks KC, Neumann P, Patel TB. Hypoxia inducible factors regulate the transcription of the sprouty2 gene and expression of the sprouty2 protein. PLoS One 2017; 12:e0171616. [PMID: 28196140 PMCID: PMC5308774 DOI: 10.1371/journal.pone.0171616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/23/2017] [Indexed: 12/15/2022] Open
Abstract
Receptor Tyrosine Kinase (RTK) signaling plays a major role in tumorigenesis and normal development. Sprouty2 (Spry2) attenuates RTK signaling and inhibits processes such as angiogenesis, cell proliferation, migration and survival, which are all upregulated in tumors. Indeed in cancers of the liver, lung, prostate and breast, Spry2 protein levels are markedly decreased correlating with poor patient prognosis and shorter survival. Thus, it is important to understand how expression of Spry2 is regulated. While prior studies have focused on the post-translation regulation of Spry2, very few studies have focused on the transcriptional regulation of SPRY2 gene. Here, we demonstrate that in the human hepatoma cell line, Hep3B, the transcription of SPRY2 is inhibited by the transcription regulating hypoxia inducible factors (HIFs). HIFs are composed of an oxygen regulated alpha subunit (HIF1α or HIF2α) and a beta subunit (HIF1β). Intriguingly, silencing of HIF1α and HIF2α elevates SPRY2 mRNA and protein levels suggesting HIFs reduce the transcription of the SPRY2 promoter. In silico analysis identified ten hypoxia response elements (HREs) in the proximal promoter and first intron of SPRY2. Using chromatin immunoprecipitation (ChIP), we show that HIF1α/2α bind near the putative HREs in the proximal promoter and intron of SPRY2. Our studies demonstrated that not only is the SPRY2 promoter methylated, but silencing HIF1α/2α reduced the methylation. ChIP assays also showed DNA methyltransferase1 (DNMT1) binding to the proximal promoter and first intron of SPRY2 and silencing HIF1α/2α decreased this association. Additionally, silencing of DNMT1 mimicked the HIF1α/2α silencing-mediated increase in SPRY2 mRNA and protein. While simultaneous silencing of HIF1α/2α and DNMT1 increased SPRY2 mRNA a little more, the increase was not additive suggesting a common mechanism by which DNMT1 and HIF1α/2α regulate SPRY2 transcription. Together these data suggest that the transcription of SPRY2 is inhibited by HIFs, in part, via DNMT1- mediated methylation.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Kristin C. Hicks
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Paul Neumann
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
| | - Tarun B. Patel
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Santag S, Siegel F, Wengner AM, Lange C, Bömer U, Eis K, Pühler F, Lienau P, Bergemann L, Michels M, von Nussbaum F, Mumberg D, Petersen K. BAY 1143269, a novel MNK1 inhibitor, targets oncogenic protein expression and shows potent anti-tumor activity. Cancer Lett 2016; 390:21-29. [PMID: 28043914 DOI: 10.1016/j.canlet.2016.12.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 12/29/2022]
Abstract
The initiation of mRNA translation has received increasing attention as an attractive target for cancer treatment in the recent years. The oncogenic eukaryotic translation initiation factor 4E (eIF4E) is the major substrate of MAP kinase-interacting kinase 1 (MNK1), and it is located at the junction of the cancer-associated PI3K and MAPK pathways. The fact that MNK1 is linked to cell transformation and tumorigenesis renders the kinase a promising target for cancer therapy. We identified a novel small molecule MNK1 inhibitor, BAY 1143269, by high-throughput screening and lead optimization. In kinase assays, BAY 1143269 showed potent and selective inhibition of MNK1. By targeting MNK1 activity, BAY 1143269 strongly regulated downstream factors involved in cell cycle regulation, apoptosis, immune response and epithelial-mesenchymal transition in vitro or in vivo. In addition, BAY 1143269 demonstrated strong efficacy in monotherapy in cell line and patient-derived non-small cell lung cancer xenograft models as well as delayed tumor regrowth in combination treatment with standard of care chemotherapeutics. In summary, the inhibition of MNK1 activity with a highly potent and selective inhibitor BAY 1143269 may provide an innovative approach for anti-cancer therapy.
Collapse
Affiliation(s)
- Susann Santag
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Franziska Siegel
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Antje M Wengner
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Claudia Lange
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Ulf Bömer
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Knut Eis
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Florian Pühler
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Philip Lienau
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Linda Bergemann
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Martin Michels
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Franz von Nussbaum
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Dominik Mumberg
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Kirstin Petersen
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|
21
|
Bramham CR, Jensen KB, Proud CG. Tuning Specific Translation in Cancer Metastasis and Synaptic Memory: Control at the MNK-eIF4E Axis. Trends Biochem Sci 2016; 41:847-858. [PMID: 27527252 DOI: 10.1016/j.tibs.2016.07.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 02/07/2023]
Abstract
The eukaryotic translation initiation factor (eIF) 4E, which binds to the 5'-cap of mRNA, undergoes phosphorylation on a single conserved serine, executed by the mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs). However, the functional consequences and physiological roles of MNK signalling have remained obscure. Now, new pharmacological and genetic tools have provided unprecedented insights into the function of MNKs and eIF4E phosphorylation. The studies suggest that MNKs control the translation of specific mRNAs in cancer metastasis and neuronal synaptic plasticity by a novel mechanism involving the regulation of the translational repressor, cytoplasmic fragile-X protein-interacting protein 1 (CYFIP1). These recent breakthroughs go a long way to resolving the longstanding enigma and controversy surrounding the function of the MNK-eIF4E axis in cancer cell biology and neurobiology.
Collapse
Affiliation(s)
- Clive R Bramham
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, 5009 Bergen, Norway.
| | - Kirk B Jensen
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Christopher G Proud
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
22
|
Hicks KC, Patel TB. Sprouty2 Protein Regulates Hypoxia-inducible Factor-α (HIFα) Protein Levels and Transcription of HIFα-responsive Genes. J Biol Chem 2016; 291:16787-801. [PMID: 27281823 DOI: 10.1074/jbc.m116.714139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 12/14/2022] Open
Abstract
The α-subunits of hypoxia-inducible factors (HIF1α and HIF2α) promote transcription of genes that regulate glycolysis and cell survival and growth. Sprouty2 (Spry2) is a modulator of receptor tyrosine kinase signaling and inhibits cell proliferation by a number of different mechanisms. Because of the seemingly opposite actions of HIFα subunits and Spry2 on cellular processes, we investigated whether Spry2 regulates the levels of HIF1α and HIF2α proteins. In cell lines from different types of tumors in which the decreased protein levels of Spry2 have been associated with poor prognosis, silencing of Spry2 elevated HIF1α protein levels. Increases in HIF1α and HIF2α protein levels due to silencing of Spry2 also up-regulated HIFα target genes. Using HIF1α as a prototype, we show that Spry2 decreases HIF1α stability and enhances the ubiquitylation of HIF1α by a von Hippel-Lindau protein (pVHL)-dependent mechanism. Spry2 also exists in a complex with HIF1α. Because Spry2 can also associate with pVHL, using a mutant form of Spry2 (3P/3A-Spry2) that binds HIF1α, but not pVHL, we show that WT-Spry2, but not the 3P/3A-Spry2 decreases HIF1α protein levels. In accordance, expression of WT-Spry2, but not 3P/3A-Spry2 results in a decrease in HIF1α-sensitive glucose uptake. Together our data suggest that Spry2 acts as a scaffold to bring more pVHL/associated E3 ligase in proximity of HIF1α and increase its ubiquitylation and degradation. This represents a novel action for Spry2 in modulating biological processes regulated by HIFα subunits.
Collapse
Affiliation(s)
- Kristin C Hicks
- From the Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, Illinois 60153, and
| | - Tarun B Patel
- the Albany College of Pharmacy and Health Sciences, Albany, New York 12208
| |
Collapse
|
23
|
Kral R, Doriguzzi A, Mayer CE, Krenbek D, Setinek U, Sutterlüty-Fall H. Differential Effects of Variations at Codon 106 on Sprouty2 Functions in Lung Cancer-Derived Cells. J Cell Biochem 2016; 117:1822-32. [PMID: 26727965 DOI: 10.1002/jcb.25482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/04/2016] [Indexed: 11/09/2022]
Abstract
Sprouty2 is a modulator of receptor tyrosine kinase-mediated signalling with an important role during lung carcinogenesis. Here, we characterize a Sprouty2 variant harbouring a substitution of proline 106 with serine. Serine substitution fails to influence expression, but accumulation of slower migrating phosphatase-sensitive forms indicates that its presence facilitates phosphorylation. In normal lung cells the serine variant is slightly more potent in inhibiting proliferation and migration. Additionally non-malignant cells expressing the major Sprouty2 variant attach more effective to fibronectin, while the serine variant only weakly stimulates cell adhesion. Mechanistically, the serine variant interferes less effectively with mitogen-activated protein kinase induction in response to serum. Concerning the positive Sprouty2 effect on epidermal growth factor receptor activation the serine variant is more potent. In all lung cancer-derived cell lines proliferation is more effectively inhibited if the Sprouty2 protein harbours the serine. In contrast, an increased interference of the serine Sprouty2 variant is only observed in cells with unaltered K-Ras. In cells harbouring a K-Ras mutation the serine conversion weakens the reduction of migration velocity indicating that dependent on the status of K-Ras the serine influences Sprouty2 functions differently. Accordingly, cell adhesion in cells with unaffected K-Ras is only stimulated by a Sprouty2 protein harbouring proline, while a serine conversion improves the attachment of the cells with constitutive active Ras. In summary our studies demonstrate that substitution of proline by serine at position 106 has biological significance and that the observed effects of this conversion depend on the activation status of endogenous K-Ras. J. Cell. Biochem. 117: 1822-1832, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rosana Kral
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Angelina Doriguzzi
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christoph-Erik Mayer
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Dagmar Krenbek
- Institute for Pathology and Bacteriology, Otto Wagner Hospital, Baumgartner Höhe, A-1140 Vienna, Austria
| | - Ulrike Setinek
- Institute for Pathology and Bacteriology, Otto Wagner Hospital, Baumgartner Höhe, A-1140 Vienna, Austria
| | - Hedwig Sutterlüty-Fall
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| |
Collapse
|
24
|
Barbáchano A, Fernández-Barral A, Pereira F, Segura MF, Ordóñez-Morán P, Carrillo-de Santa Pau E, González-Sancho JM, Hanniford D, Martínez N, Costales-Carrera A, Real FX, Pálmer HG, Rojas JM, Hernando E, Muñoz A. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene 2015; 35:2991-3003. [PMID: 26455323 DOI: 10.1038/onc.2015.366] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/02/2015] [Accepted: 08/28/2015] [Indexed: 12/29/2022]
Abstract
SPROUTY-2 (SPRY2) is a modulator of tyrosine kinase receptor signaling with receptor- and cell type-dependent inhibitory or enhancing effects. Studies on the action of SPRY2 in major cancers are conflicting and its role remains unclear. Here we have dissected SPRY2 action in human colon cancer. Global transcriptomic analyses show that SPRY2 downregulates genes encoding tight junction proteins such as claudin-7 and occludin and other cell-to-cell and cell-to-matrix adhesion molecules in human SW480-ADH colon carcinoma cells. Moreover, SPRY2 represses LLGL2/HUGL2, PATJ1/INADL and ST14, main regulators of the polarized epithelial phenotype, and ESRP1, an epithelial-to-mesenchymal transition (EMT) inhibitor. A key action of SPRY2 is the upregulation of the major EMT inducer ZEB1, as these effects are reversed by ZEB1 knock-down by means of RNA interference. Consistently, we found an inverse correlation between the expression level of claudin-7 and those of SPRY2 and ZEB1 in human colon tumors. Mechanistically, ZEB1 upregulation by SPRY2 results from the combined induction of ETS1 transcription factor and the repression of microRNAs (miR-200 family, miR-150) that target ZEB1 RNA. Moreover, SPRY2 increased AKT activation by epidermal growth factor, whereas AKT and also Src inhibition reduced the induction of ZEB1. Altogether, these data suggest that AKT and Src are implicated in SPRY2 action. Collectively, these results show a tumorigenic role of SPRY2 in colon cancer that is based on the dysregulation of tight junction and epithelial polarity master genes via upregulation of ZEB1. The dissection of the mechanism of action of SPRY2 in colon cancer cells is important to understand the upregulation of this gene in a subset of patients with this neoplasia that have poor prognosis.
Collapse
Affiliation(s)
- A Barbáchano
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - A Fernández-Barral
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - F Pereira
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - M F Segura
- Department of Pathology, New York University School of Medicine, New York, USA
| | - P Ordóñez-Morán
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - E Carrillo-de Santa Pau
- Epithelial Carcinogenesis Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - J M González-Sancho
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - D Hanniford
- Department of Pathology, New York University School of Medicine, New York, USA
| | - N Martínez
- Unidad de Biología Celular, Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - A Costales-Carrera
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - F X Real
- Epithelial Carcinogenesis Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - H G Pálmer
- Stem cells and Cancer Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - J M Rojas
- Unidad de Biología Celular, Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - E Hernando
- Department of Pathology, New York University School of Medicine, New York, USA
| | - A Muñoz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
25
|
Doriguzzi A, Haigl B, Gsur A, Sutterlüty-Fall H. The increased Sprouty4 expression in response to serum is transcriptionally controlled by Specific protein 1. Int J Biochem Cell Biol 2015; 64:220-8. [PMID: 25957915 DOI: 10.1016/j.biocel.2015.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/17/2015] [Accepted: 04/28/2015] [Indexed: 11/29/2022]
Abstract
Sprouty proteins control length and intensity of the intracellular signal transduction cascade activated by mitogens in the cellular environment. As part of a negative feedback loop, their expression is supposed to be elevated by the same factors. In this report, Sprouty4 expression in response to serum and the underlying regulatory mechanisms were investigated. We verified that Sprouty4 expression is activated by serum addition in all tested cells independent of their origin. Strict correlation between Sprouty4 protein levels and promoter activity indicates mainly transcriptional regulation of Sprouty4 serum-responsiveness. Induction of the mitogen-activated protein kinase pathway is required for Sprouty4 promoter activation in the presence of serum. Nonetheless, signal transduction via this pathway is not sufficient to fully induce the Sprouty4 promoter. Instead, deletion and mutation analysis identified two annotated Specific protein 1 binding sites as the critical cis-elements responsible for conferring the serum induction of the promoter. Corroborating, repressed Specific protein 1 activity or levels result in constitutive lowered transcriptional activity of the Sprouty4 promoter. These data demonstrate that Specific protein 1 plays a crucial role in the regulation of Sprouty4 in response to serum.
Collapse
Affiliation(s)
- Angelina Doriguzzi
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Barbara Haigl
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Hedwig Sutterlüty-Fall
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Abstract
Sprouty proteins are evolutionarily conserved modulators of MAPK/ERK pathway. Through interacting with an increasing number of effectors, mediators, and regulators with ultimate influence on multiple targets within or beyond ERK, Sprouty orchestrates a complex, multilayered regulatory system and mediates a crosstalk among different signaling pathways for a coordinated cellular response. As such, Sprouty has been implicated in various developmental and physiological processes. Evidence shows that ERK is aberrantly activated in malignant conditions. Accordingly, Sprouty deregulation has been reported in different cancer types and shown to impact cancer development, progression, and metastasis. In this article, we have tried to provide an overview of the current knowledge about the Sprouty physiology and its regulatory functions in health, as well as an updated review of the Sprouty status in cancer. Putative implications of Sprouty in cancer biology, their clinical relevance, and their proposed applications are also revisited. As a developing story, however, role of Sprouty in cancer remains to be further elucidated.
Collapse
Affiliation(s)
- Samar Masoumi-Moghaddam
- UNSW Department of Surgery, University of New South Wales, St George Hospital, Kogarah, Sydney, NSW, 2217, Australia,
| | | | | |
Collapse
|
27
|
A SPRY2 mutation leading to MAPK/ERK pathway inhibition is associated with an autosomal dominant form of IgA nephropathy. Eur J Hum Genet 2015; 23:1673-8. [PMID: 25782674 DOI: 10.1038/ejhg.2015.52] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/16/2015] [Accepted: 02/20/2015] [Indexed: 11/08/2022] Open
Abstract
IgA nephropathy (IgAN) represents the most common primary glomerulonephritis worldwide with a prevalence of 25-50% among patients with primary glomerulopathies. In ~5-10% of the patients the disease segregates with an autosomal dominant (AD) pattern. Association studies identified loci on chromosomes 1q32, 6p21, 8p23, 17p13, 22q12, whereas classical linkage studies on AD families identified loci on chromosomes 2q36, 4q26-31, 6q22, 17q12-22. We have studied a large Sicilian family where IgAN segregates with an AD transmission. To identify the causal gene, the exomes of two affected and one unaffected individual have been sequenced. From the bioinformatics analysis a p.(Arg119Trp) variant in the SPRY2 gene was identified as the probable disease-causing mutation. Moreover, functional characterization of this variant showed that it is responsible for the inhibition of the MAPK/ERK1/2 pathway. The same effect was observed in two sporadic IgAN patients carriers of wild-type SPRY2, suggesting that downregulation of the MAPK/ERK1/2 pathway represents a common mechanism leading to IgAN.
Collapse
|
28
|
Itch is required for lateral line development in zebrafish. PLoS One 2014; 9:e111799. [PMID: 25369329 PMCID: PMC4219781 DOI: 10.1371/journal.pone.0111799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/03/2014] [Indexed: 11/20/2022] Open
Abstract
The zebrafish posterior lateral line is formed during early development by the deposition of neuromasts from a migrating primordium. The molecular mechanisms regulating the regional organization and migration of the primordium involve interactions between Fgf and Wnt/β-catenin signaling and the establishment of specific cxcr4b and cxcr7b cytokine receptor expression domains. Itch has been identified as a regulator in several different signaling pathways, including Wnt and Cxcr4 signaling. We identified two homologous itch genes in zebrafish, itcha and itchb, with generalized expression patterns. By reducing itchb expression in particular upon morpholino knockdown, we demonstrated the importance of Itch in regulating lateral line development by perturbing the patterns of cxcr4b and cxcr7b expression. Itch knockdown results in a failure to down-regulate Wnt signaling and overexpression of cxcr4b in the primordium, slowing migration of the posterior lateral line primordium and resulting in abnormal development of the lateral line.
Collapse
|
29
|
Proud CG. Mnks, eIF4E phosphorylation and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:766-73. [PMID: 25450520 DOI: 10.1016/j.bbagrm.2014.10.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/06/2014] [Accepted: 10/18/2014] [Indexed: 01/18/2023]
Abstract
The MAP kinase signal-integrating kinases or MAP kinase-interacting protein kinases (Mnks) are activated by signaling through the oncogenic MAP kinase (ERK) pathway. The best-known Mnk substrate is eukaryotic initiation factor eIF4E, the protein which binds the 5'-cap structure of eukaryotic mRNAs and helps to recruit ribosomes to them. eIF4E is a well-established proto-oncogene, whose expression or activation is associated with transformation and tumorigenesis. Mnks phosphorylate eIF4E at a single site. Increasing evidence implicates the Mnks and/or phosphorylation of eIF4E in cell transformation, tumorigenesis or tumor progression, in a growing range of settings. Mnks and/or the phosphorylation of eIF4E have been suggested to regulate the expression of proteins involved in cell cycle progression, cell survival and cell motility. Further work is needed to extend our understanding of the impact of the Mnks on gene expression, explore the biochemical mechanisms involved and evaluate the utility of targeting the Mnks in cancer therapy. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Christopher G Proud
- South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
| |
Collapse
|
30
|
Joshi S, Platanias LC. Mnk kinase pathway: Cellular functions and biological outcomes. World J Biol Chem 2014; 5:321-333. [PMID: 25225600 PMCID: PMC4160526 DOI: 10.4331/wjbc.v5.i3.321] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/10/2014] [Accepted: 06/03/2014] [Indexed: 02/05/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) interacting protein kinases 1 and 2 (Mnk1 and Mnk2) play important roles in controlling signals involved in mRNA translation. In addition to the MAPKs (p38 or Erk), multiple studies suggest that the Mnk kinases can be regulated by other known kinases such as Pak2 and/or other unidentified kinases by phosphorylation of residues distinct from the sites phosphorylated by the MAPKs. Several studies have established multiple Mnk protein targets, including PSF, heterogenous nuclear ribonucleoprotein A1, Sprouty 2 and have lead to the identification of distinct biological functions and substrate specificity for the Mnk kinases. In this review we discuss the pathways regulating the Mnk kinases, their known substrates as well as the functional consequences of engagement of pathways controlled by Mnk kinases. These kinases play an important role in mRNA translation via their regulation of eukaryotic initiation factor 4E (eIF4E) and their functions have important implications in tumor biology as well as the regulation of drug resistance to anti-oncogenic therapies. Other studies have identified a role for the Mnk kinases in cap-independent mRNA translation, suggesting that the Mnk kinases can exert important functional effects independently of the phosphorylation of eIF4E. The role of Mnk kinases in inflammation and inflammation-induced malignancies is also discussed.
Collapse
|
31
|
Saritas-Yildirim B, Silva EM. The role of targeted protein degradation in early neural development. Genesis 2014; 52:287-99. [PMID: 24623518 DOI: 10.1002/dvg.22771] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 11/08/2022]
Abstract
As neural stem cells differentiate into neurons during neurogenesis, the proteome of the cells is restructured by de novo expression and selective removal of regulatory proteins. The control of neurogenesis at the level of gene regulation is well documented and the regulation of protein abundance through protein degradation via the Ubiquitin/26S proteasome pathway is a rapidly developing field. This review describes our current understanding of the role of the proteasome pathway in neurogenesis. Collectively, the studies show that targeted protein degradation is an important regulatory mechanism in the generation of new neurons.
Collapse
|
32
|
Chen FJ, Lee KW, Lai CC, Lee SP, Shen HH, Tsai SP, Liu BH, Wang LM, Liou GG. Structure of native oligomeric Sprouty2 by electron microscopy and its property of electroconductivity. Biochem Biophys Res Commun 2013; 439:351-6. [PMID: 24012675 DOI: 10.1016/j.bbrc.2013.08.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 12/28/2022]
Abstract
Receptor tyrosine kinases (RTKs) regulate many cellular processes, and Sprouty2 (Spry2) is known as an important regulator of RTK signaling pathways. Therefore, it is worth investigating the properties of Spry2 in more detail. In this study, we found that Spry2 is able to self-assemble into oligomers with a high-affinity KD value of approximately 16nM, as determined through BIAcore surface plasmon resonance analysis. The three-dimensional (3D) structure of Spry2 was resolved using an electron microscopy (EM) single-particle reconstruction approach, which revealed that Spry2 is donut-shaped with two lip-cover domains. Furthermore, the method of energy dispersive spectrum obtained through EM was analyzed to determine the elements carried by Spry2, and the results demonstrated that Spry2 is a silicon- and iron-containing protein. The silicon may contribute to the electroconductivity of Spry2, and this property exhibits a concentration-dependent feature. This study provides the first report of a silicon- and iron-containing protein, and its 3D structure may allow us (1) to study the potential mechanism through the signal transduction is controlled by switching the electronic transfer on or off and (2) to develop a new type of conductor or even semiconductor using biological or half-biological hybrid materials in the future.
Collapse
Affiliation(s)
- Feng-Jung Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC; Department of Photonics & Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Annenkov A. Receptor tyrosine kinase (RTK) signalling in the control of neural stem and progenitor cell (NSPC) development. Mol Neurobiol 2013; 49:440-71. [PMID: 23982746 DOI: 10.1007/s12035-013-8532-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/09/2013] [Indexed: 01/04/2023]
Abstract
Important developmental responses are elicited in neural stem and progenitor cells (NSPC) by activation of the receptor tyrosine kinases (RTK), including the fibroblast growth factor receptors, epidermal growth factor receptor, platelet-derived growth factor receptors and insulin-like growth factor receptor (IGF1R). Signalling through these RTK is necessary and sufficient for driving a number of developmental processes in the central nervous system. Within each of the four RTK families discussed here, receptors are activated by sets of ligands that do not cross-activate receptors of the other three families, and therefore, their activation can be independently regulated by ligand availability. These RTK pathways converge on a conserved core of signalling molecules, but differences between the receptors in utilisation of signalling molecules and molecular adaptors for intracellular signal propagation become increasingly apparent. Intracellular inhibitors of RTK signalling are widely involved in the regulation of developmental signalling in NSPC and often determine developmental outcomes of RTK activation. In addition, cellular responses of NSPC to the activation of a given RTK may be significantly modulated by signal strength. Cellular propensity to respond also plays a role in developmental outcomes of RTK signalling. In combination, these mechanisms regulate the balance between NSPC maintenance and differentiation during development and in adulthood. Attribution of particular developmental responses of NSPC to specific pathways of RTK signalling becomes increasingly elucidated. Co-activation of several RTK in developing NSPC is common, and analysis of co-operation between their signalling pathways may advance knowledge of RTK role in NSPC development.
Collapse
Affiliation(s)
- Alexander Annenkov
- Bone and Joint Research Unit, William Harvey Research Institute, Bart's and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK,
| |
Collapse
|
34
|
Rathmanner N, Haigl B, Vanas V, Doriguzzi A, Gsur A, Sutterlüty-Fall H. Sprouty2 but not Sprouty4 is a potent inhibitor of cell proliferation and migration of osteosarcoma cells. FEBS Lett 2013; 587:2597-605. [PMID: 23831057 DOI: 10.1016/j.febslet.2013.06.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/17/2013] [Accepted: 06/22/2013] [Indexed: 10/26/2022]
Abstract
As negative regulators of receptor tyrosine kinase-mediated signalling, Sprouty proteins fulfil important roles during carcinogenesis. In this report, we demonstrate that Sprouty2 protein expression inhibits cell proliferation and migration in osteosarcoma-derived cells. Although earlier reports describe a tumour-promoting function, these results indicate that Sprouty proteins also have the potential to function as tumour suppressors in sarcoma. In contrast to Sprouty2, Sprouty4 expression failed to interfere with proliferation and migration of the osteosarcoma-derived cells, possibly due to a less pronounced interference with mitogen-activated protein kinase activity. Sequences within the NH2-terminus are responsible for the specific inhibitory function of Sprouty2 protein.
Collapse
Affiliation(s)
- Nadine Rathmanner
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
35
|
Proteasomal Degradation Resolves Competition between Cell Polarization and Cellular Wound Healing. Cell 2012; 150:151-64. [DOI: 10.1016/j.cell.2012.05.030] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/20/2012] [Accepted: 05/10/2012] [Indexed: 01/06/2023]
|
36
|
Terabayashi T, Sakaguchi M, Shinmyozu K, Ohshima T, Johjima A, Ogura T, Miki H, Nishinakamura R. Phosphorylation of Kif26b promotes its polyubiquitination and subsequent proteasomal degradation during kidney development. PLoS One 2012; 7:e39714. [PMID: 22768111 PMCID: PMC3387196 DOI: 10.1371/journal.pone.0039714] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 05/25/2012] [Indexed: 01/24/2023] Open
Abstract
Kif26b, a member of the kinesin superfamily proteins (KIFs), is essential for kidney development. Kif26b expression is restricted to the metanephric mesenchyme, and its transcription is regulated by a zinc finger transcriptional regulator Sall1. However, the mechanism(s) by which Kif26b protein is regulated remain unknown. Here, we demonstrate phosphorylation and subsequent polyubiquitination of Kif26b in the developing kidney. We find that Kif26b interacts with an E3 ubiquitin ligase, neural precursor cell expressed developmentally down-regulated protein 4 (Nedd4) in developing kidney. Phosphorylation of Kif26b at Thr-1859 and Ser-1962 by the cyclin-dependent kinases (CDKs) enhances the interaction of Kif26b with Nedd4. Nedd4 polyubiquitinates Kif26b and thereby promotes degradation of Kif26b via the ubiquitin-proteasome pathway. Furthermore, Kif26b lacks ATPase activity but does associate with microtubules. Nocodazole treatment not only disrupts the localization of Kif26b to microtubules but also promotes phosphorylation and polyubiquitination of Kif26b. These results suggest that the function of Kif26b is microtubule-based and that Kif26b degradation in the metanephric mesenchyme via the ubiquitin-proteasome pathway may be important for proper kidney development.
Collapse
Affiliation(s)
- Takeshi Terabayashi
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- The Global COE “Cell Fate Regulation Research and Education Unit,” Kumamoto University, Honjo, Kumamoto, Japan
| | - Masaji Sakaguchi
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- The Global COE “Cell Fate Regulation Research and Education Unit,” Kumamoto University, Honjo, Kumamoto, Japan
| | - Kaori Shinmyozu
- Proteomics Laboratory, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Ai Johjima
- The Global COE “Cell Fate Regulation Research and Education Unit,” Kumamoto University, Honjo, Kumamoto, Japan
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Teru Ogura
- The Global COE “Cell Fate Regulation Research and Education Unit,” Kumamoto University, Honjo, Kumamoto, Japan
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- The Global COE “Cell Fate Regulation Research and Education Unit,” Kumamoto University, Honjo, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
37
|
Anderson K, Nordquist KA, Gao X, Hicks KC, Zhai B, Gygi SP, Patel TB. Regulation of cellular levels of Sprouty2 protein by prolyl hydroxylase domain and von Hippel-Lindau proteins. J Biol Chem 2011; 286:42027-42036. [PMID: 22006925 DOI: 10.1074/jbc.m111.303222] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sprouty (Spry) proteins modulate the actions of receptor tyrosine kinases during development and tumorigenesis. Decreases in cellular levels of Spry, especially Sprouty2 (Spry2), have been implicated in the growth and progression of tumors of the breast, prostate, lung, and liver. During development and tumor growth, cells experience hypoxia. Therefore, we investigated how hypoxia modulates the levels of Spry proteins. Hypoxia elevated the levels of all four expressed Spry isoforms in HeLa cells. Amounts of endogenous Spry2 in LS147T and HEP3B cells were also elevated by hypoxia. Using Spry2 as a prototype, we demonstrate that silencing and expression of prolyl hydroxylase domain proteins (PHD1-3) increase and decrease, respectively, the cellular content of Spry2. Spry2 also preferentially interacted with PHD1-3 and von Hippel-Lindau protein (pVHL) during normoxia but not in hypoxia. Additionally, Spry2 is hydroxylated on Pro residues 18, 144, and 160, and substitution of these residues with Ala enhanced stability of Spry2 and abrogated its interactions with pVHL. Silencing of pVHL increased levels of Spry2 by decreasing its ubiquitylation and degradation and thereby augmented the ability of Spry2 to inhibit FGF-elicited activation of ERK1/2. Thus, prolyl hydroxylase mediated hydroxylation and subsequent pVHL-elicited ubiquitylation of Spry2 target it for degradation and, consequently, provide a novel mechanism of regulating growth factor signaling.
Collapse
Affiliation(s)
- Kimberly Anderson
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153
| | - Kyle A Nordquist
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153; Institute of Signal Transduction, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153
| | - Xianlong Gao
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153; Institute of Signal Transduction, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153
| | - Kristin C Hicks
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153
| | - Bo Zhai
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Tarun B Patel
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153; Institute of Signal Transduction, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153.
| |
Collapse
|
38
|
Abstract
The four ESCRT (endocytic sorting complexes required for transport) complexes (ESCRT-0, -I, -II, and -III) normally operate sequentially in the trafficking of cellular cargo. HIV-1 Gag trafficking and release as virus-like particles (VLPs) require the participation of ESCRTs; however, its use of ESCRTs is selective and nonsequential. Specifically, Gag trafficking to release sites on the plasma membrane does not require ESCRT-0 or -II. It is known that a bypass of ESCRT-0 is achieved by the direct linkage of the ESCRT-I component, Tsg101, to the primary L domain motif (PTAP) in Gag and that bypass of ESCRT-II is achieved by the linkage of Gag to ESCRT-III through the adaptor protein Alix. However, the mechanism by which Gag suppresses the interaction of bound ESCRT-I with ESCRT-II is unknown. Here we show (i) that VLP release requires the steady-state level of Sprouty 2 (Spry2) in COS-1 cells, (ii) that Spry2 binds the ESCRT-II component Eap20, (iii) that binding Eap20 permits Spry2 to disrupt ESCRT-I interaction with ESCRT-II, and (iv) that coexpression of Gag with a Spry2 fragment that binds Eap20 increases VLP release. Spry2 also facilitated release of P7L-Gag (i.e., release in the absence of Tsg101 binding). In this case, rescue required the secondary L domain (YPX(n)L) in HIV-1 Gag that binds Alix and the region in Spry2 that binds Eap20. The results identify Spry2 as a novel cellular factor that facilitates release driven by the primary and secondary HIV-1 Gag L domains.
Collapse
|
39
|
Mayer CE, Haigl B, Jantscher F, Siegwart G, Grusch M, Berger W, Sutterlüty H. Bimodal expression of Sprouty2 during the cell cycle is mediated by phase-specific Ras/MAPK and c-Cbl activities. Cell Mol Life Sci 2010; 67:3299-311. [PMID: 20461437 PMCID: PMC11115549 DOI: 10.1007/s00018-010-0379-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 04/14/2010] [Accepted: 04/20/2010] [Indexed: 10/19/2022]
Abstract
Sprouty2 is an important inhibitor of cell proliferation and signal transduction. In this study, we found a bimodal expression of Sprouty2 protein during cell cycle progression after exit from quiescence, whereas elevated Sprouty4 expression in the G1 phase stayed high throughout the rest of the cell cycle. Induction of the mitogen-activated protein kinase via activated Ras was crucial for increased Sprouty2 expression at the G0/G1 transition. Following the first peak, accelerated proteasomal protein degradation caused a transient attenuation of Sprouty2 abundance during late G1. Since the decline in its expression was abolished by dominant negative c-Cbl and the timely restricted interaction between Sprouty2 and c-Cbl disappeared at the second peak of Sprouty2 expression, we conclude that the second phase in the cell cycle-specific expression profile of Sprouty2 is solely dependent on ubiquitination by c-Cbl. Our results suggest that Sprouty2 abundance is the result of strictly coordinated activities of Ras and c-Cbl.
Collapse
Affiliation(s)
- Christoph-Erik Mayer
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
40
|
Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. Proc Natl Acad Sci U S A 2010; 107:13984-90. [PMID: 20679220 DOI: 10.1073/pnas.1008136107] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) are protein-serine/threonine kinases that are activated by ERK or p38 and phosphorylate eIF4E, which is involved in cap-dependent translation initiation. However, Mnk1/2 double knockout (Mnk-DKO) mice show normal cell growth and development despite an absence of eIF4E phosphorylation. Here we show that the tumorigenesis occurring in the Lck-Pten mouse model (referred to here as tPten(-/-) mice) can be suppressed by the loss of Mnk1/2. Phosphorylation of eIF4E was greatly enhanced in lymphomas of parental tPten(-/-) mice compared with lymphoid tissues of wild-type mice, but was totally absent in lymphomas of tPten(-/-); Mnk-DKO mice. Notably, stable knockdown of Mnk1 in the human glioma cell line U87MG resulted in dramatically decreased tumor formation when these cells were injected into athymic nude mice. Our data demonstrate an oncogenic role for Mnk1/2 in tumor development, and highlight these molecules as potential anticancer drug targets that could be inactivated with minimal side effects.
Collapse
|
41
|
Lee SA, Ladu S, Evert M, Dombrowski F, De Murtas V, Chen X, Calvisi DF. Synergistic role of Sprouty2 inactivation and c-Met up-regulation in mouse and human hepatocarcinogenesis. Hepatology 2010; 52:506-17. [PMID: 20683950 PMCID: PMC2920762 DOI: 10.1002/hep.23681] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED Sprouty2 (Spry2), a negative feedback regulator of the Ras/mitogen-activated protein kinase (MAPK) pathway, is frequently down-regulated in human hepatocellular carcinoma (HCC). We tested the hypothesis that loss of Spry2 cooperates with unconstrained activation of the c-Met protooncogene to induce hepatocarcinogenesis via in vitro and in vivo approaches. We found coordinated down-regulation of Spry2 protein expression and activation of c-Met as well as its downstream effectors extracellular signal-regulated kinase (ERK) and v-akt murine thymoma viral oncogene homolog (AKT) in a subset of human HCC samples with poor outcome. Mechanistic studies revealed that Spry2 function is disrupted in human HCC via multiple mechanisms at both transcriptional and post-transcriptional level, including promoter hypermethylation, loss of heterozygosity, and proteosomal degradation by neural precursor cell expressed, developmentally down-regulated 4 (NEDD4). In HCC cell lines, Spry2 overexpression inhibits c-Met-induced cell proliferation as well as ERK and AKT activation, whereas loss of Spry2 potentiates c-Met signaling. Most importantly, we show that blocking Spry2 activity via a dominant negative form of Spry2 cooperates with c-Met to promote hepatocarcinogenesis in the mouse liver by sustaining proliferation and angiogenesis. The tumors exhibited high levels of activated ERK and AKT, recapitulating the subgroup of human HCC with a clinically aggressive phenotype. CONCLUSION The occurrence of frequent genetic, epigenetic, and biochemical events leading to Spry2 inactivation provides solid evidence that Spry2 functions as a tumor suppressor gene in liver cancer. Coordinated deregulation of Spry2 and c-Met signaling may be a pivotal oncogenic mechanism responsible for unrestrained activation of ERK and AKT pathways in human hepatocarcinogenesis.
Collapse
Affiliation(s)
- Susie A. Lee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA
| | - Sara Ladu
- Department of Medicine and Aging, University of Chieti, Chieti, Italy
| | - Matthias Evert
- Institut fur Pathologie, Ernst-Moritz-Arndt-Universitat, Greifswald, Germany
| | - Frank Dombrowski
- Institut fur Pathologie, Ernst-Moritz-Arndt-Universitat, Greifswald, Germany
| | - Valentina De Murtas
- Institut fur Pathologie, Ernst-Moritz-Arndt-Universitat, Greifswald, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, Liver Center, University of California, San Francisco, CA
| | - Diego F. Calvisi
- Institut fur Pathologie, Ernst-Moritz-Arndt-Universitat, Greifswald, Germany
| |
Collapse
|