1
|
La Monica G, Bono A, Alamia F, Lauria A, Martorana A. Bioisosteric heterocyclic analogues of natural bioactive flavonoids by scaffold-hopping approaches: State-of-the-art and perspectives in medicinal chemistry. Bioorg Med Chem 2024; 109:117791. [PMID: 38870715 DOI: 10.1016/j.bmc.2024.117791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
The flavonoid family is a set of well-known bioactive natural molecules, with a wide range of potential therapeutic applications. Despite the promising results obtained in preliminary in vitro/vivo studies, their pharmacokinetic and pharmacodynamic profiles are severely compromised by chemical instability. To address this issue, the scaffold-hopping approach is a promising strategy for the structural optimization of natural leads to discover more potent analogues. In this scenario, this Perspective provides a critical analysis on how the replacement of the chromon-4-one flavonoid core with other bioisosteric nitrogen/sulphur heterocycles might affect the chemical, pharmaceutical and biological properties of the resulting new chemical entities. The investigated derivatives were classified on the basis of their biological activity and potential therapeutic indications. For each session, the target(s), the specific mechanism of action, if available, and the key pharmacophoric moieties were highlighted, as revealed by X-ray crystal structures and in silico structure-based studies. Biological activity data, in vitro/vivo studies, were examined: a particular focus was given on the improvements observed with the new heterocyclic analogues compared to the natural flavonoids. This overview of the scaffold-hopping advantages in flavonoid compounds is of great interest to the medicinal chemistry community to better exploit the vast potential of these natural molecules and to identify new bioactive molecules.
Collapse
Affiliation(s)
- Gabriele La Monica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Alessia Bono
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Federica Alamia
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Antonino Lauria
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy.
| |
Collapse
|
2
|
Anticancer Activity–Structure Relationship of Quinolinone-Core Compounds: An Overall Review. Pharm Chem J 2023. [DOI: 10.1007/s11094-023-02794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
3
|
Gao L, Ge C, Wang S, Xu X, Feng Y, Li X, Wang C, Wang Y, Dai F, Xie S. The Role of p53-Mediated Signaling in the Therapeutic Response of Colorectal Cancer to 9F, a Spermine-Modified Naphthalene Diimide Derivative. Cancers (Basel) 2020; 12:cancers12030528. [PMID: 32106543 PMCID: PMC7139676 DOI: 10.3390/cancers12030528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers due to its frequency and high rate of mortality. Polyamine-vectorized anticancer drugs possess multiple biological properties. Of these drugs, 9F has been shown to inhibit tumor growth and the metastasis of hepatocellular carcinoma. This current study aims to investigate the effects of 9F on CRC and determine its molecular mechanisms of action. Our findings demonstrate that 9F inhibits CRC cell growth by inducing apoptosis and cell cycle arrest, and suppresses migration, invasion and angiogenesis in vitro, resulting in the inhibition of tumor growth and metastasis in vivo. Based on RNA-seq data, further bioinformatic analyses suggest that 9F exerts its anticancer activities through p53 signaling, which is responsible for the altered expression of key regulators of the cell cycle, apoptosis, the epithelial-to-mesenchymal transition (EMT), and angiogenesis. In addition, 9F is more effective than amonafide against CRC. These results show that 9F can be considered as a potential strategy for CRC treatment.
Collapse
Affiliation(s)
- Lei Gao
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Chaochao Ge
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Senzhen Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Xiaojuan Xu
- Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China;
| | - Yongli Feng
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Xinna Li
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Yuxia Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China;
| | - Fujun Dai
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
- Correspondence: (F.D.); (S.X.); Tel.: +86-159-3857-3755 (F.D.); +86-139-3863-7212 (S.X.)
| | - Songqiang Xie
- Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China;
- Correspondence: (F.D.); (S.X.); Tel.: +86-159-3857-3755 (F.D.); +86-139-3863-7212 (S.X.)
| |
Collapse
|
4
|
Lin X, Wang L, Wang F. Chondromodulin‑I suppresses tumorigenesis of human osteosarcoma cells. Mol Med Rep 2017; 16:8542-8548. [PMID: 28983591 DOI: 10.3892/mmr.2017.7629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 08/03/2017] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma is the most common type of bone cancer, and accounts for ~3% of cancers that occurring in children. Chondromodulin‑I (ChM-I) is a 25 kDa glycoprotein that is expressed mainly in cartilage. ChM-I demonstrates anti‑angiogenic activity and has been suggested to inhibit endothelial cells from invading cartilage, and then has been shown to be an inhibitor of tumorigenesis. However, it remains unclear if ChM‑I has any direct anti‑tumorigenesis role on osteosarcoma. Therefore, the present study aimed to identify whether ChM‑I has any direct inhibit effect on human osteosarcoma cells. A bromodeoxyuridine incorporation assay was performed on the Saos‑2 human osteosarcoma cell line treated with or without recombinant human ChM‑I, to evaluate its impact on DNA synthesis. An adenovirus carrier for the expression of ChM‑I was constructed and transfected into tumor cells in vitro to evaluate the effect of ChM‑I on tumor cells. Additionally, ChM‑I was knocked down by using small interfering RNA to downregulate the expression of ChM‑I. Cell invasion, migration and cell‑colony formation assays, and xenograft tumor experiments were performed to evaluate the effects of ChM‑I on tumor cells in vitro and in vivo. The results demonstrated that ChM‑I could suppress DNA synthesis of human osteosarcoma cells, and it also exerted an inhibitory effect on the proliferation and colony formation abilities of human osteosarcoma cells. In addition, ChM‑I inhibited cell invasion and migration in vitro and suppressed osteosarcoma cell growth significantly in vivo. In conclusion, ChM‑I directly suppressed the proliferation and growth of osteosarcoma cells in an anchorage‑independent manner, and may therefore be a promising drug for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Xiangbo Lin
- Department of Orthopedics, Rizhao People's Hospital, Rizhao, Shandong 276826, P.R. China
| | - Lijun Wang
- Department of Neurosurgery, Rizhao People's Hospital, Rizhao, Shandong 276826, P.R. China
| | - Faming Wang
- Department of Orthopedics, Wulian People's Hospital, Rizhao, Shandong 262300, P.R. China
| |
Collapse
|
5
|
Li R, Wei P, Wang Y, Liu Y, Liu X, Meng D. Brachyantheraoside A8, a new natural nor-oleanane triterpenoid as a kidney-type glutaminase inhibitor fromStauntonia brachyanthera. RSC Adv 2017. [DOI: 10.1039/c7ra11270j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
With the aim of finding a better kidney-type glutaminase (KGA) inhibitor with potential anti-cancer properties, 18 nor-oleanane triterpenoids fromStauntonia brachyanthera, including 2 new ones, were screened against KGA.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
| | - Peifeng Wei
- College of Pharmacy
- Shaanxi University of Chinese Medicine
- Xianyang 712000
- China
| | - Yue Wang
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
| | - Ying Liu
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
| | - Xuanli Liu
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
| | - Dali Meng
- Key Laboratory of Structure-Based Drug Design and Discovery
- Ministry of Education
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
| |
Collapse
|
6
|
Chen Z, Wei J, Zhu J, Liu W, Cui J, Li H, Chen F. Chm-1 gene-modified bone marrow mesenchymal stem cells maintain the chondrogenic phenotype of tissue-engineered cartilage. Stem Cell Res Ther 2016; 7:70. [PMID: 27150539 PMCID: PMC4858869 DOI: 10.1186/s13287-016-0328-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/01/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Marrow mesenchymal stem cells (MSCs) can differentiate into specific phenotypes, including chondrocytes, and have been widely used for cartilage tissue engineering. However, cartilage grafts from MSCs exhibit phenotypic alternations after implantation, including matrix calcification and vascular ingrowth. METHODS We compared chondromodulin-1 (Chm-1) expression between chondrocytes and MSCs. We found that chondrocytes expressed a high level of Chm-1. We then adenovirally transduced MSCs with Chm-1 and applied modified cells to engineer cartilage in vivo. RESULTS A gross inspection and histological observation indicated that the chondrogenic phenotype of the tissue-engineered cartilage graft was well maintained, and the stable expression of Chm-1 was detected by immunohistological staining in the cartilage graft derived from the Chm-1 gene-modified MSCs. CONCLUSIONS Our findings defined an essential role for Chm-1 in maintaining chondrogenic phenotype and demonstrated that Chm-1 gene-modified MSCs may be used in cartilage tissue engineering.
Collapse
Affiliation(s)
- Zhuoyue Chen
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Jing Wei
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Jun Zhu
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Wei Liu
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Jihong Cui
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Hongmin Li
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China
| | - Fulin Chen
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China. .,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, P.R. China.
| |
Collapse
|
7
|
Lee CF, Yang JS, Tsai FJ, Chiang NN, Lu CC, Huang YS, Chen C, Chen FA. Kaempferol induces ATM/p53-mediated death receptor and mitochondrial apoptosis in human umbilical vein endothelial cells. Int J Oncol 2016; 48:2007-14. [PMID: 26984266 DOI: 10.3892/ijo.2016.3420] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/30/2016] [Indexed: 11/05/2022] Open
Abstract
Kaempferol is a member of the flavonoid compounds found in vegetables and fruits. It is shown to exhibit biological impact and anticancer activity, but no report exists on the angiogenic effect of kaempferol and induction of cell apoptosis in vitro. In this study, we investigated the role of kaempferol on anti-angiogenic property and the apoptotic mechanism of human umbilical vein endothelial cells (HUVECs). Our results demonstrated that kaempferol decreased HUVEC viability in a time- and concentration-dependent manner. Kaempferol also induced morphological changes and sub-G1 phase cell population (apoptotic cells). Kaempferol triggered apoptosis of HUVECs as detecting by DNA fragmentation, comet assay and immunofluorescent staining for activated caspase-3. The caspase signals, including caspase-8, -9 and -3, were time-dependently activated in HUVECs after kaempferol exposure. Furthermore, pre-treatment with a specific inhibitor of caspase-8 (Z-IETD-FMK) significantly reduced the activity of caspase-8, -9 and -3, indicating that extrinsic pathway is a major signaling pathway in kaempferol-treated HUVECs. Importantly, kaempferol promoted reactive oxygen species (ROS) evaluated using flow cytometric assay in HUVECs. We further investigated the upstream extrinsic pathway and showed that kaempferol stimulated death receptor signals [Fas/CD95, death receptor 4 (DR4) and DR5] through increasing the levels of phosphorylated p53 and phosphorylated ATM pathways in HUVECs, which can be individually confirmed by N-acetylcysteine (NAC), ATM specific inhibitor (caffeine) and p53 siRNA. Based on these results, kaempferol-induced HUVEC apoptosis was involved in an ROS-mediated p53/ATM/death receptor signaling. Kaempferol might possess therapeutic effects on cancer treatment in anti-vascular targeting.
Collapse
Affiliation(s)
- Chiu-Fang Lee
- Kaohsiung Veterans General Hospital Pingtung Branch, Pingtung, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Ni-Na Chiang
- Kaohsiung Veterans General Hospital Pingtung Branch, Pingtung, Taiwan, R.O.C
| | - Chi-Cheng Lu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Yu-Syuan Huang
- Department of Pharmacy and Master Program, Tajen University, Pingtung, Taiwan, R.O.C
| | - Chun Chen
- Department of Pharmacy and Master Program, Tajen University, Pingtung, Taiwan, R.O.C
| | - Fu-An Chen
- Department of Pharmacy and Master Program, Tajen University, Pingtung, Taiwan, R.O.C
| |
Collapse
|
8
|
Zhang P, Wang Y, Xu P, Song S, Zhu X, Shi Z, Gao S, Feng X. Chondromodulin-1 functions as a tumor suppressor in gastric adenocarcinoma. Int J Oncol 2015; 47:941-50. [PMID: 26165347 DOI: 10.3892/ijo.2015.3081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/25/2015] [Indexed: 11/05/2022] Open
Abstract
Chondromodulin-1 (ChM1) is a cartilage-specific glycoprotein that stimulates the growth of chondrocytes and inhibits the tube formation of endothelial cells. Endogenously, ChM1 is expressed in the cartilage and is an anti-angiogenic factor. ChM1 has been reported to suppress the proliferation of multiple human tumor cells in an anchorage-independent manner. However, the role of ChM1 in carcinogenesis of gastric cancer remains unknown. By quantitative RT-PCR and western blotting we examined the expression of ChM1 in gastric cancer tissue and normal gastric tissue. In vitro we investigated the functional and mechanistic roles of ChM1 in the inhibition of gastric cancer cell aggressiveness. We observed that ChM1 expression was remarkably downregulated in gastric cancer cell lines compared with the immortal normal gastric epithelial cell line GES-1. Importantly, ChM1 was frequently downregulated in gastric cancer tissue compared with normal gastric tissue. Low ChM1 mRNA expression was associated with higher clinical stages, higher lymph node metastasis, and poorer prognosis of patients. Functional assays in vitro showed that ectopic expression of ChM1 was able to inhibit gastric tumor cell proliferation by arresting the cell cycle. Overall, our findings indicate that ChM1 is a potential tumor suppressor in gastric cancer, suggesting that it may be useful as a biomarker for the treatment and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Ying Wang
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Po Xu
- Department of Urology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Shiyuan Song
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Xiaojuan Zhu
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zhenguo Shi
- Department of Urology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Shegan Gao
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Xiaoshan Feng
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
9
|
Lai KC, Hsu SC, Yang JS, Yu CC, Lein JC, Chung JG. Diallyl trisulfide inhibits migration, invasion and angiogenesis of human colon cancer HT-29 cells and umbilical vein endothelial cells, and suppresses murine xenograft tumour growth. J Cell Mol Med 2014; 19:474-84. [PMID: 25403643 PMCID: PMC4407594 DOI: 10.1111/jcmm.12486] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 07/10/2014] [Indexed: 12/30/2022] Open
Abstract
Angiogenesis inhibitors are beneficial for the prevention and treatment of angiogenesis-dependent diseases including cancer. We examined the cytotoxic, anti-metastatic, anti-cancer and anti-angiogenic effects of diallyl trisulfide (DATS). In HT29 cells, DATS inhibited migration and invasion through the inhibition of focal adhesion kinase (FAK), extracellular signal-regulated kinase, c-Jun N-terminal kinase and p38 which was associated with inhibition of matrix metalloproteinases-2, -7 and -9 and VEGF. In human umbilical vein endothelial cells (HUVEC), DATS inhibited the migration and angiogenesis through FAK, Src and Ras. DATS also inhibited the secretion of VEGF. The capillary-like tube structure formation and migration by HUVEC was inhibited by DATS. The chicken egg chorioallantoic membrane (CAM) assay indicated that DATS treatment inhibited ex-vivo angiogenesis. We investigated the anti-tumour effects of DATS against human colon cancer xenografts in BALB/cnu/nu mice and its anti-angiogenic activity in vivo. In this in-vivo study, DATS also inhibited the tumour growth, tumour weight and angiogenesis (decreased the levels of haemoglobin) in HT29 cells. In conclusion, the present results suggest that the inhibition of angiogenesis may be an important mechanism in colon cancer chemotherapy by DATS.
Collapse
Affiliation(s)
- Kuang-Chi Lai
- Department of Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
10
|
Lee HY, Wang LT, Li YH, Pan SL, Chen YL, Teng CM, Liou JP. Effect of C7-substitution of 1-arylsulfonyl-5-(N-hydroxyacrylamide)indolines on the selectivity towards a subclass of histone deacetylases. Org Biomol Chem 2014; 12:8966-76. [DOI: 10.1039/c4ob00542b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Prasad S, Kim JH, Gupta SC, Aggarwal BB. Targeting death receptors for TRAIL by agents designed by Mother Nature. Trends Pharmacol Sci 2014; 35:520-36. [PMID: 25128958 DOI: 10.1016/j.tips.2014.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/01/2014] [Accepted: 07/11/2014] [Indexed: 12/17/2022]
Abstract
Selective killing of cancer cells is one of the major goals of cancer therapy. Although chemotherapeutic agents are being used for cancer treatment, they lack selectivity toward tumor cells. Among the six different death receptors (DRs) identified to date, DR4 and DR5 are selectively expressed on cancer cells. Therefore, unlike chemotherapeutic agents, these receptors can potentially mediate selective killing of tumor cells. In this review we outline various nutraceuticals derived from 'Mother Nature' that can upregulate DRs and thus potentiate apoptosis. These nutraceuticals increase tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of cancer cells through different mechanisms. First, nutraceuticals have been found to induce DRs through the upregulation of various signaling molecules. Second, nutraceuticals can downregulate tumor cell-survival pathways. Third, nutraceuticals alone have been found to activate cell-death pathways. Although both TRAIL and agonistic antibodies against DR4 and DR5 are in clinical trials, combination with nutraceuticals is likely to boost their anticancer potential.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ji Hye Kim
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Orally active microtubule-targeting agent, MPT0B271, for the treatment of human non-small cell lung cancer, alone and in combination with erlotinib. Cell Death Dis 2014; 5:e1162. [PMID: 24722287 PMCID: PMC5424107 DOI: 10.1038/cddis.2014.128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/15/2014] [Accepted: 02/28/2014] [Indexed: 12/14/2022]
Abstract
Microtubule-binding agents, such as taxanes and vinca alkaloids, are used in the treatment of cancer. The limitations of these treatments, such as resistance to therapy and the need for intravenous administration, have encouraged the development of new agents. MPT0B271 (N-[1-(4-Methoxy-benzenesulfonyl)-2,3-dihydro-1H-indol-7-yl]-1-oxy-isonicotinamide), an orally active microtubule-targeting agent, is a completely synthetic compound that possesses potent anticancer effects in vitro and in vivo. Tubulin polymerization assay and immunofluorescence experiment showed that MPT0B271 caused depolymerization of tubulin at both molecular and cellular levels. MPT0B271 reduced cell growth and viability at nanomolar concentrations in numerous cancer cell lines, including a multidrug-resistant cancer cell line NCI/ADR-RES. Further studies indicated that MPT0B271 is not a substrate of P-glycoprotein (P-gp), as determined by flow cytometric analysis of rhodamine-123 (Rh-123) dye efflux and the calcein acetoxymethyl ester (calcein AM) assay. MPT0B271 also caused G2/M cell-cycle arrest, accompanied by the up-regulation of cyclin B1, p-Thr161 Cdc2/p34, serine/threonine kinases polo-like kinase 1, aurora kinase A and B and the downregulation of Cdc25C and p-Tyr15 Cdc2/p34 protein levels. The appearance of MPM2 and the nuclear translocation of cyclin B1 denoted M phase arrest in MPT0B271-treated cells. Moreover, MPT0B271 induced cell apoptosis in a concentration-dependent manner; it also reduced the expression of Bcl-2, Bcl-xL, and Mcl-1 and increased the cleavage of caspase-3 and -7 and poly (ADP-ribose) polymerase (PARP). Finally, this study demonstrated that MPT0B271 in combination with erlotinib significantly inhibits the growth of the human non-small cell lung cancer A549 cells as compared with erlotinib treatment alone, both in vitro and in vivo. These findings identify MPT0B271 as a promising new tubulin-binding compound for the treatment of various cancers.
Collapse
|
13
|
Zhang D, Zheng L, Shi H, Chen X, Wan Y, Zhang H, Li M, Lu L, Luo S, Yin T, Lin H, He S, Luo Y, Yang L. Suppression of peritoneal tumorigenesis by placenta-derived mesenchymal stem cells expressing endostatin on colorectal cancer. Int J Med Sci 2014; 11:870-9. [PMID: 25013366 PMCID: PMC4081308 DOI: 10.7150/ijms.8758] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/11/2014] [Indexed: 02/05/2023] Open
Abstract
MSCs-based therapy for cancer is a relatively new but rapidly growing area of research. Human term placenta, an attractive source of MSCs (PMSCs), appears to have great advantage due to its easy access without invasive procedures, its lack of ethical issues and its high-throughput and young age. In the present study, we isolated MSCs from placenta and characterized their morphology and differentiation capacities. We next investigated the underlying antitumor effects and the potential mechanism of PMSCs to express endostatin using adenoviral transduction (Ad-Endo) in a colorectal peritoneal carcinomatosis (CRPC) mouse model. For in vitro experiments, the migratory potential of Ad-Endo-PMSCs towards tumor cells was demonstrated using a double-chamber assay, and the anti-angiogenesis ability of endostatin from engineered PMSCs was evaluated using the tube formation assay. For the in vivo study, mice harboring CT26 colorectal cancer indicated a significant reduction in tumor nodules and a prolongation of survival following Ad-Endo-PMSCs therapy. These observations were associated with significantly decreased tumor cell proliferation and blood vessel counts as well as increased tumor cell apoptosis. These data suggested the potential of PMSCs-based gene therapy for the targeted delivery of therapeutic proteins in cancer.
Collapse
Affiliation(s)
- Dongmei Zhang
- 1. State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Lan Zheng
- 2. Department of Obstetrics and Gynecology, Second West China Hospital of Sichuan University, Chengdu, 610041, P. R. China
| | - Huashan Shi
- 1. State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiancheng Chen
- 1. State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yang Wan
- 1. State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Hailong Zhang
- 1. State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Meng Li
- 1. State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Lian Lu
- 1. State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Shuntao Luo
- 1. State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Tao Yin
- 1. State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Honggang Lin
- 1. State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Shasha He
- 1. State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yan Luo
- 1. State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Li Yang
- 1. State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
14
|
Chiang JH, Yang JS, Lu CC, Hour MJ, Liu KC, Lin JH, Lee TH, Chung JG. Effect of DNA damage response by quinazolinone analogue HMJ-38 on human umbilical vein endothelial cells: evidence for γH2A.X and DNA-PK-dependent pathway. Hum Exp Toxicol 2013; 33:590-601. [PMID: 24064905 DOI: 10.1177/0960327113504791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present study aims to explore the mechanism of quinazolinone analogue HMJ-38-induced DNA damage in endothelial cells in vitro. We attempt to evaluate the antiangiogenetic response utilizing human umbilical vein endothelial cells (HUVECs). Herein, the results demonstrated that HMJ-38 incubation triggered DNA damage behavior and showed a longer DNA migration in HUVECs based on the comet assay and the analysis of DNA agarose gel electrophoresis to contact DNA smears. We further gained to determine a marker of DNA double strand breaks, phosphorylated histone H2A.X (Ser139) (γH2A.X), in HMJ-38-treated HUVECs by flow cytometry and Western blotting assay. We consider that HMJ-38 has caused an increase in γH2A.X, and DNA damage seemed to mediate through DNA-dependent serine/threonine protein kinase (DNA-PK) binding to Ku70/Ku80 as well as advanced activated p-Akt (Ser473) and stimulated phosphorylated glycogen synthase kinase-3β (p-GSK-3β) conditions in HUVECs. Importantly, the effect of above DNA damage response was prevented by N-acetyl-l-cysteine (a reactive oxygen species scavenger), and NU7026 (a DNA-PK inhibitor) could attenuate DNA-PK catalytic subunit and phosphorylation of H2A.X on Ser139 expression in comparison with HMJ-38 alone treated HUVECs. Therefore, HMJ-38-provoked DNA damage stress in HUVECs probably led to the activation of γH2A.X/DNA-PK/GSK-3β signaling. In summary, our novel finding provides more information addressing the pharmacological approach of newly synthesized HMJ-38 for further development and therapeutic application in antiangiogenetic effect of cancer chemotherapy.
Collapse
Affiliation(s)
- J-H Chiang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - J-S Yang
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| | - C-C Lu
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - M-J Hour
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - K-C Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - J-H Lin
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - T-H Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - J-G Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
15
|
Newly synthesized quinazolinone HMJ-38 suppresses angiogenetic responses and triggers human umbilical vein endothelial cell apoptosis through p53-modulated Fas/death receptor signaling. Toxicol Appl Pharmacol 2013; 269:150-62. [DOI: 10.1016/j.taap.2013.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 03/09/2013] [Accepted: 03/12/2013] [Indexed: 01/28/2023]
|
16
|
Ji Y, Li K, Xiao X, Zheng S, Xu T, Chen S. Effects of propranolol on the proliferation and apoptosis of hemangioma-derived endothelial cells. J Pediatr Surg 2012; 47:2216-2223. [PMID: 23217879 DOI: 10.1016/j.jpedsurg.2012.09.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 09/01/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND/PURPOSE Propranolol, a non-selective beta-blocker, has recently been introduced as a novel treatment modality for proliferating hemangiomas. However, the mechanism of action of this therapy is unknown. In this study, we investigated propranolol in the etiology of hemangiomas that are associated with the proliferation and apoptosis of hemangioma-derived endothelial cells (HemECs). METHODS HemECs were isolated from freshly resected hemangioma specimens. We studied propranolol-treated HemECs in vitro. We measured the effect of propranolol on HemEC viability using the Cell Counting Kit-8 (CCK-8) assay and proliferation and apoptosis using a BrdU labeling assay, annexin-V-fluorescein isothiocyanate/propidium iodide flow cytometry, and Hoechst 33342 fluorescent staining. We explored the potential mechanisms of propranolol-induced HemEC dysfunction using western blot analysis, a caspase assay kit, and real-time quantitative PCR. RESULTS We observed that propranolol had inhibitory effects on the viability and proliferation of HemECs. HemEC apoptosis significantly increased with 100 μM propranolol treatment. Vascular endothelial growth factor (VEGF) expression was down-regulated by propranolol in a dose-dependent manner. We also demonstrated activation of the caspase cascade, including caspase-9 and caspase-3 of the intrinsic pathway, and an increased p53 gene expression and Bax/Bcl-xL ratio in HemECs treated with 100 μM propranolol. CONCLUSIONS We obtained novel data that suggests propranolol could inhibit HemEC proliferation and induce apoptosis. The effects were likely mediated through the suppression of VEGF expression, activation of caspase-9 and caspase-3, up-regulation of the pro-apoptotic genes p53 and Bax and down-regulation of the anti-apoptotic gene Bcl-xL.
Collapse
Affiliation(s)
- Yi Ji
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, 201102, China
| | | | | | | | | | | |
Collapse
|
17
|
CHENG YUNGYI, YANG JAISING, TSAI SHIHCHANG, LIAW CHIHCHUANG, CHUNG JINGGUNG, HUANG LIJIAU, LEE KUOHSIUNG, LU CHICHENG, CHIEN HSICHENG, TSUZUKI MINORU, KUO SHENGCHU. The newly synthesized 2-(3-hydroxy-5-methoxyphenyl)-6,7-methylenedioxyquinolin-4-one triggers cell apoptosis through induction of oxidative stress and upregulation of the p38 MAPK signaling pathway in HL-60 human leukemia cells. Oncol Rep 2012; 28:1482-90. [PMID: 22825350 DOI: 10.3892/or.2012.1923] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/20/2012] [Indexed: 11/05/2022] Open
|
18
|
TRAIL death receptors DR4 and DR5 mediate cerebral microvascular endothelial cell apoptosis induced by oligomeric Alzheimer's Aβ. Cell Death Dis 2012; 3:e321. [PMID: 22695614 PMCID: PMC3388229 DOI: 10.1038/cddis.2012.55] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vascular deposition of amyloid-β (Aβ) in sporadic and familial Alzheimer's disease, through poorly understood molecular mechanisms, leads to focal ischemia, alterations in cerebral blood flow, and cerebral micro-/macro-hemorrhages, significantly contributing to cognitive impairment. Here, we show that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptors DR4 and DR5 specifically mediate oligomeric Aβ induction of extrinsic apoptotic pathways in human microvascular cerebral endothelial cells with activation of both caspase-8 and caspase-9. The caspase-8 inhibitor cellular FLICE-like inhibitory protein (cFLIP) is downregulated, and mitochondrial paths are engaged through BH3-interacting domain death agonist (Bid) cleavage. Upregulation of DR4 and DR5 and colocalization with Aβ at the cell membrane suggests their involvement as initiators of the apoptotic machinery. Direct binding assays using receptor chimeras confirm the specific interaction of oligomeric Aβ with DR4 and DR5 whereas apoptosis protection achieved through RNA silencing of both receptors highlights their active role in downstream apoptotic pathways unveiling new targets for therapeutic intervention.
Collapse
|
19
|
Park MH, Jo M, Won D, Song HS, Han SB, Song MJ, Hong JT. Snake venom toxin from Vipera lebetina turanica induces apoptosis of colon cancer cells via upregulation of ROS- and JNK-mediated death receptor expression. BMC Cancer 2012; 12:228. [PMID: 22681760 PMCID: PMC3584847 DOI: 10.1186/1471-2407-12-228] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/16/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Abundant research suggested that the cancer cells avoid destruction by the immune system through down-regulation or mutation of death receptors. Therefore, it is very important that finding the agents that increase the death receptors of cancer cells. In this study, we demonstrated that the snake venom toxin from Vipera lebetina turanica induce the apoptosis of colon cancer cells through reactive oxygen species (ROS) and c-Jun N-terminal kinases (JNK) dependent death receptor (DR4 and DR5) expression. METHODS We used cell viability assays, DAPI/TUNEL assays, as well as western blot for detection of apoptosis related proteins and DRs to demonstrate that snake venom toxin-induced apoptosis is DR4 and DR5 dependent. We carried out transient siRNA knockdowns of DR4 and DR5 in colon cancer cells. RESULTS We showed that snake venom toxin inhibited growth of colon cancer cells through induction of apoptosis. We also showed that the expression of DR4 and DR5 was increased by treatment of snake venom toxin. Moreover, knockdown of DR4 or DR5 reversed the effect of snake venom toxin. Snake venom toxin also induced JNK phosphorylation and ROS generation, however, pretreatment of JNK inhibitor and ROS scavenger reversed the inhibitory effect of snake venom toxin on cancer cell proliferation, and reduced the snake venom toxin-induced upregulation of DR4 and DR5 expression. CONCLUSIONS Our results indicated that snake venom toxin could inhibit human colon cancer cell growth, and these effects may be related to ROS and JNK mediated activation of death receptor (DR4 and DR5) signals.
Collapse
Affiliation(s)
- Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 12 Gaeshin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763, South Korea
| | - MiRan Jo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 12 Gaeshin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763, South Korea
| | - Dohee Won
- College of Pharmacy and Medical Research Center, Chungbuk National University, 12 Gaeshin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763, South Korea
| | - Ho Sueb Song
- College of Oriental Medicine, Kyungwon University, San 65 Bokjeong-dong, Sujeong-gu, Seongnam, Gyeonggii
| | - Sang Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 12 Gaeshin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763, South Korea
| | - Min Jong Song
- Department of Obstetrics and Gynecology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea
- College of Pharmacy and Medical Research Center, Chungbuk National University, 48 Gaeshin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763, South Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 12 Gaeshin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763, South Korea
- College of Pharmacy and Medical Research Center, Chungbuk National University, 48 Gaeshin-dong, Heungduk-gu, Cheongju, Chungbuk, 361-763, South Korea
| |
Collapse
|
20
|
Lai MJ, Huang HL, Pan SL, Liu YM, Peng CY, Lee HY, Yeh TK, Huang PH, Teng CM, Chen CS, Chuang HY, Liou JP. Synthesis and biological evaluation of 1-arylsulfonyl-5-(N-hydroxyacrylamide)indoles as potent histone deacetylase inhibitors with antitumor activity in vivo. J Med Chem 2012; 55:3777-91. [PMID: 22439863 DOI: 10.1021/jm300197a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A series of 1-arylsulfonyl-5-(N-hydroxyacrylamide)indoles has been identified as a new class of histone deacetylase inhibitors. Compounds 8, 11, 12, 13, and 14 demonstrated stronger antiproliferative activities than 1 (SAHA) with GI(50) values ranging from 0.36 to 1.21 μM against Hep3B, MDA-MB-231, PC-3, and A549 human cancer cell lines. Lead compound 8 showed remarkable HDAC 1, 2, and 6 isoenzymes inhibitory activities with IC(50) values of 12.3, 4.0, 1.0 nM, respectively, which are comparable to 1. In in vivo efficacy evaluation against lung A549 xenograft model, 8 displayed better antitumor activity than compound 1.
Collapse
Affiliation(s)
- Mei-Jung Lai
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
A New Player in the Development of TRAIL Based Therapies for Hepatocarcinoma Treatment: ATM Kinase. Cancers (Basel) 2012; 4:354-78. [PMID: 24213315 PMCID: PMC3712690 DOI: 10.3390/cancers4020354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/15/2012] [Accepted: 03/26/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. HCCs are genetically and phenotypically heterogeneous tumors characterized by very poor prognosis, mainly due to the lack, at present, of effective therapeutic options, as these tumors are rarely suitable for radiotherapy and often resistant to chemotherapy protocols. In the last years, agonists targeting the Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL) death receptor, has been investigated as a valuable promise for cancer therapy, based on their selectivity for malignant cells and low toxicity for healthy cells. However, many cancer models display resistance to death receptor induced apoptosis, pointing to the requirement for the development of combined therapeutic approaches aimed to selectively sensitize cancer cells to TRAIL. Recently, we identified ATM kinase as a novel modulator of the ability of chemotherapeutic agents to enhance TRAIL sensitivity. Here, we review the biological determinants of HCC responsiveness to TRAIL and provide an exhaustive and updated analysis of the molecular mechanisms exploited for combined therapy in this context. The role of ATM kinase as potential novel predictive biomarker for combined therapeutic approaches based on TRAIL and chemotherapeutic drugs will be closely discussed.
Collapse
|
22
|
Chen CH, Liao CH, Chang YL, Guh JH, Pan SL, Teng CM. Protopine, a novel microtubule-stabilizing agent, causes mitotic arrest and apoptotic cell death in human hormone-refractory prostate cancer cell lines. Cancer Lett 2011; 315:1-11. [PMID: 22033245 DOI: 10.1016/j.canlet.2011.09.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 09/22/2011] [Accepted: 09/29/2011] [Indexed: 10/16/2022]
Abstract
In this study, we investigated the anticancer effect of protopine on human hormone-refractory prostate cancer (HRPC) cells. Protopine exhibited an anti-proliferative effect by induction of tubulin polymerization and mitotic arrest, which ultimately led to apoptotic cell death. The data suggest that protopine increased the activity of cyclin-dependent kinase 1 (Cdk1)/cyclin B1 complex and that contributed to cell apoptosis by modulating mitochondria-mediated signaling pathways, such as Bcl-2 phosphorylation and Mcl-1 down-regulation. In conclusion, the data suggest that protopine is a novel microtubule stabilizer with anticancer activity in HRPC cells through apoptotic pathway by modulating Cdk1 activity and Bcl-2 family of proteins.
Collapse
Affiliation(s)
- Chun-Han Chen
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, ROC
| | | | | | | | | | | |
Collapse
|
23
|
Xie SQ, Li Q, Zhang YH, Wang JH, Mei ZH, Zhao J, Wang CJ. NPC-16, a novel naphthalimide-polyamine conjugate, induced apoptosis and autophagy in human hepatoma HepG2 cells and Bel-7402 cells. Apoptosis 2011; 16:27-34. [PMID: 20809291 DOI: 10.1007/s10495-010-0537-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The antitumor effects and molecular mechanism of NPC-16, a novel naphthalimide-polyamine conjugate, were evaluated in HepG2 cells and Bel-7402 cells. Apoptosis and necrosis were evaluated by Annexin V-FITC detection kit, and autophagy by acridine orange and Lyso-Tracker Red staining. The change of mitochondrial transmembrane potential was measured using rhodamine 123 staining. The protein expression of Beclin 1, LC3 II and mTOR, p70S6 K, 14-3-3, caspase, and Bcl-2 family members was detected by immunofluorescence assays and Western Blot. Here, we elucidated the nature of cellular response of HepG2 cells and Bel-7402 cells to NPC-16 at IC(50). NPC-16 induced caspase-dependent apoptosis via the mitochondrial pathway and death receptor pathway in Bel-7402 cells. Differently, NPC-16 triggered HepG2 cells both apoptosis and autophagy, further autophagy facilitated cellular apoptosis. Furthermore, mTOR signal pathway was involved in NPC-16-mediated autophagy in HepG2 cells. Thus, NPC-16 may be useful as a potential template for investigation the molecular mechanism of naphthalimide-polyamine conjugate against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Song-qiang Xie
- Institute of Chemical Biology, Henan University, Kaifeng, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Wu PP, Liu KC, Huang WW, Chueh FS, Ko YC, Chiu TH, Lin JP, Kuo JH, Yang JS, Chung JG. Diallyl trisulfide (DATS) inhibits mouse colon tumor in mouse CT-26 cells allograft model in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:672-676. [PMID: 21315571 DOI: 10.1016/j.phymed.2011.01.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 10/21/2010] [Accepted: 01/04/2011] [Indexed: 05/30/2023]
Abstract
Our earlier studies showed that DATS induced apoptosis in human colon cancer HT29 and colo 205 cell lines in vitro. However, there is no report to show that DATS induced apoptosis in vitro and inhibited CT26 cancer cells in vivo on a murine allograft animal model. In vitro studies, the results indicated that DATS induced morphological changes and induction of apoptosis in CT26 cells. In vivo studies, CT26 cancer cells were implanted into BALB/c mice and groups of mice were treated with vehicle, DATS (10 and 50 mg/kg of body weight). DATS were injected once per four days intraperitoneally (i.p.), with treatment starting 4 weeks prior to cells inoculation. Treatment with vehicle or with 10 and 50 mg/kg of DATS resulted in a reduction in tumor volume and weight. Tumor volume and total hemoglobin in allograft mice treated with 50 mg/kg DATS were significantly smaller than that in the control group. These findings indicated that DATS inhibits tumor growth in an allograft animal model. Thus, DATS may represent a colon cancer preventive agent and can be used in the future.
Collapse
Affiliation(s)
- Ping-Ping Wu
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|