1
|
Yang J, Li N, Zhao X, Guo W, Wu Y, Nie C, Yuan Z. WP1066, a small molecule inhibitor of STAT3, chemosensitizes paclitaxel-resistant ovarian cancer cells to paclitaxel by simultaneously inhibiting the activity of STAT3 and the interaction of STAT3 with Stathmin. Biochem Pharmacol 2024; 221:116040. [PMID: 38311257 DOI: 10.1016/j.bcp.2024.116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/29/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Paclitaxel is widely used to treat cancer, however, drug resistance limits its clinical utility. STAT3 is constitutively activated in some cancers, and contributes to chemotherapy resistance. Currently, several STAT3 inhibitors including WP1066 are used in cancer clinical trials. However, whether WP1066 reverses paclitaxel resistance and the mechanismremains unknown. Here, we report that in contrast to paclitaxel-sensitive parental cells, the expressions of several pro-survival BCL2 family members such as BCL-2, BCL-XL and MCL-1 are higher in paclitaxel-resistant ovarian cancer cells. Meanwhile, STAT3 is constitutively activated while stathmin loses its activity in paclitaxel-resistant cells. Importantly, WP1066 amplifies the inhibition of cell proliferation, colony-forming ability and apoptosis of ovarian cancer cells induced by paclitaxel. Mechanistically, WP1066, on the one hand, interferes the STAT3/Stathmin interaction, causing unleash of STAT3/Stathmin from microtubule, thus destroying microtubule stability. This process results in reduction of Ac-α-tubulin, further causing MCL-1 reduction. On the other hand, WP1066 inhibits phosphorylation of STAT3 by JAK2, and blocks its nuclear translocation, therefore repressing the transcription of pro-survival targets such as BCL-2, BCL-XL and MCL-1. Finally, the two pathways jointly promote cell death. Our findings reveal a new mechanism wherein WP1066 reverses paclitaxel-resistance of ovarian cancer cells by dually inhibiting STAT3 activity and STAT3/Stathmin interaction, which may layfoundation for WP1066 combined with paclitaxel in treating paclitaxel-resistant ovarian cancer.
Collapse
Affiliation(s)
- Jun Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nanjing Li
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyu Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenhao Guo
- Department of Abdominal Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yang Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chunlai Nie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhu Yuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Murata T. Tegument proteins of Epstein-Barr virus: Diverse functions, complex networks, and oncogenesis. Tumour Virus Res 2023; 15:200260. [PMID: 37169175 DOI: 10.1016/j.tvr.2023.200260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
The tegument is the structure between the envelope and nucleocapsid of herpesvirus particles. Viral (and cellular) proteins accumulate to create the layers of the tegument. Some Epstein-Barr virus (EBV) tegument proteins are conserved widely in Herpesviridae, but others are shared only by members of the gamma-herpesvirus subfamily. As the interface to envelope and nucleocapsid, the tegument functions in virion morphogenesis and budding of the nucleocapsid during progeny production. When a virus particle enters a cell, enzymes such as kinase and deubiquitinase, and transcriptional activators are released from the virion to promote virus infection. Moreover, some EBV tegument proteins are involved in oncogenesis. Here, we summarize the roles of EBV tegument proteins, in comparison to those of other herpesviruses.
Collapse
Affiliation(s)
- Takayuki Murata
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
3
|
Lv J, Pan Z, Chen J, Xu R, Wang D, Huang J, Dong Y, Jiang J, Yin X, Cheng H, Guo X. Phosphoproteomic Analysis Reveals Downstream PKA Effectors of AKAP Cypher/ZASP in the Pathogenesis of Dilated Cardiomyopathy. Front Cardiovasc Med 2021; 8:753072. [PMID: 34966794 PMCID: PMC8710605 DOI: 10.3389/fcvm.2021.753072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Dilated cardiomyopathy (DCM) is a major cause of heart failure worldwide. The Z-line protein Cypher/Z-band alternatively spliced PDZ-motif protein (ZASP) is closely associated with DCM, both clinically and in animal models. Our earlier work revealed Cypher/ZASP as a PKA-anchoring protein (AKAP) that tethers PKA to phosphorylate target substrates. However, the downstream PKA effectors regulated by AKAP Cypher/ZASP and their relevance to DCM remain largely unknown.Methods and Results: For the identification of candidate PKA substrates, global quantitative phosphoproteomics was performed on cardiac tissue from wild-type and Cypher-knockout mice with PKA activation. A total of 216 phosphopeptides were differentially expressed in the Cypher-knockout mice; 31 phosphorylation sites were selected as candidates using the PKA consensus motifs. Bioinformatic analysis indicated that differentially expressed proteins were enriched mostly in cell adhesion and mRNA processing. Furthermore, the phosphorylation of β-catenin Ser675 was verified to be facilitated by Cypher. This phosphorylation promoted the transcriptional activity of β-catenin, and also the proliferative capacity of cardiomyocytes. Immunofluorescence staining demonstrated that Cypher colocalised with β-catenin in the intercalated discs (ICD) and altered the cytoplasmic distribution of β-catenin. Moreover, the phosphorylation of two other PKA substrates, vimentin Ser72 and troponin I Ser23/24, was suppressed by Cypher deletion.Conclusions: Cypher/ZASP plays an essential role in β-catenin activation via Ser675 phosphorylation, which modulates cardiomyocyte proliferation. Additionally, Cypher/ZASP regulates other PKA effectors, such as vimentin Ser72 and troponin I Ser23/24. These findings establish the AKAP Cypher/ZASP as a signalling hub in the progression of DCM.
Collapse
Affiliation(s)
- Jialan Lv
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhicheng Pan
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongfei Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Yang Dong
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Jiang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Yin
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hongqiang Cheng
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Xiaogang Guo
| |
Collapse
|
4
|
Xie W, Chen M, Zhai Z, Li H, Song T, Zhu Y, Dong D, Zhou P, Duan L, Zhang Y, Li D, Liu X, Zhou J, Liu M. HIV-1 exposure promotes PKG1-mediated phosphorylation and degradation of stathmin to increase epithelial barrier permeability. J Biol Chem 2021; 296:100644. [PMID: 33839152 PMCID: PMC8105298 DOI: 10.1016/j.jbc.2021.100644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 01/11/2023] Open
Abstract
Exposure of mucosal epithelial cells to the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is known to disrupt epithelial cell junctions by impairing stathmin-mediated microtubule depolymerization. However, the pathological significance of this process and its underlying molecular mechanism remain unclear. Here we show that treatment of epithelial cells with pseudotyped HIV-1 viral particles or recombinant gp120 protein results in the activation of protein kinase G 1 (PKG1). Examination of epithelial cells by immunofluorescence microscopy reveals that PKG1 activation mediates the epithelial barrier damage upon HIV-1 exposure. Immunoprecipitation experiments show that PKG1 interacts with stathmin and phosphorylates stathmin at serine 63 in the presence of gp120. Immunoprecipitation and immunofluorescence microscopy further demonstrate that PKG1-mediated phosphorylation of stathmin promotes its autophagic degradation by enhancing the interaction between stathmin and the autophagy adaptor protein p62. Collectively, these results suggest that HIV-1 exposure exploits the PKG1/stathmin axis to affect the microtubule cytoskeleton and thereby perturbs epithelial cell junctions. Our findings reveal a novel molecular mechanism by which exposure to HIV-1 increases epithelial permeability, which has implications for the development of effective strategies to prevent mucosal HIV-1 transmission.
Collapse
Affiliation(s)
- Wei Xie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Mingzhen Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Zhaodong Zhai
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Hongjie Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Ting Song
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Yigao Zhu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Dan Dong
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Peng Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Liangwei Duan
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - You Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China; State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Conserved Herpesvirus Protein Kinases Target SAMHD1 to Facilitate Virus Replication. Cell Rep 2020; 28:449-459.e5. [PMID: 31291580 PMCID: PMC6668718 DOI: 10.1016/j.celrep.2019.04.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/14/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
To ensure a successful infection, herpesviruses have developed elegant strategies to counterbalance the host anti-viral responses. Sterile alpha motif and HD domain 1 (SAMHD1) was recently identified as an intrinsic restriction factor for a variety of viruses. Aside from HIV-2 and the related simian immunodeficiency virus (SIV) Vpx proteins, the direct viral countermeasures against SAMHD1 restriction remain unknown. Using Epstein-Barr virus (EBV) as a primary model, we discover that SAMHD1-mediated anti-viral restriction is antagonized by EBV BGLF4, a member of the conserved viral protein kinases encoded by all herpesviruses. Mechanistically, we find that BGLF4 phosphorylates SAMHD1 and thereby inhibits its deoxynucleotide triphosphate triphosphohydrolase (dNTPase) activity. We further demonstrate that the targeting of SAMHD1 for phosphorylation is a common feature shared by beta- and gamma-herpesviruses. Together, our findings uncover an immune evasion mechanism whereby herpesviruses exploit the phosphorylation of SAMHD1 to thwart host defenses. Herpesviruses have evolved elegant strategies to dampen the host anti-viral responses. Zhang et al. discover a mechanism by which herpesviruses evade SAMHD1-mediated host defenses through phosphorylation, expanding the functional repertoire of viral protein kinases in herpesvirus biology.
Collapse
|
6
|
Magalhães-Junior MJ, Baracat-Pereira MC, Pereira LKJ, Vital CE, Santos MR, Cunha PS, Fernandes KM, Bressan GC, Fietto JLR, Silva-Júnior A, Almeida MR. Proteomic and phosphoproteomic analyses reveal several events involved in the early stages of bovine herpesvirus 1 infection. Arch Virol 2019; 165:69-85. [PMID: 31705208 DOI: 10.1007/s00705-019-04452-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/28/2019] [Indexed: 12/23/2022]
Abstract
Herpesviruses are predicted to express more than 80 proteins during their infection cycle. The proteins synthesized by the immediate early genes and early genes target signaling pathways in host cells that are essential for the successful initiation of a productive infection and for latency. In this study, proteomic and phosphoproteomic tools showed the occurrence of changes in Madin-Darby bovine kidney cells at the early stage of the infection by bovine herpesvirus 1 (BoHV-1). Proteins that had already been described in the early stage of infection for other herpesviruses but not for BoHV-1 were found. For example, stathmin phosphorylation at the initial stage of infection is described for the first time. In addition, two proteins that had not been described yet in the early stages of herpesvirus infections in general were ribonuclease/angiogenin inhibitor and Rab GDP dissociation inhibitor beta. The biological processes involved in these cellular responses were repair and replication of DNA, splicing, microtubule dynamics, and inflammatory responses. These results reveal pathways that might be used as targets for designing antiviral molecules against BoHV-1 infection.
Collapse
Affiliation(s)
- Marcos J Magalhães-Junior
- Laboratory of Animal Molecular Infectology, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.,Laboratory of Proteomics and Protein Biochemistry, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Maria Cristina Baracat-Pereira
- Laboratory of Proteomics and Protein Biochemistry, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil. .,Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Lorena K J Pereira
- Laboratory of Proteomics and Protein Biochemistry, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Camilo E Vital
- Nucleus of Biomolecules Analysis, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marcus R Santos
- Laboratory of Immunobiology and Animal Virology, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Pricila S Cunha
- Laboratory of Cell and Molecular Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Kenner M Fernandes
- Laboratory of Cell Biology, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Gustavo C Bressan
- Laboratory of Animal Molecular Infectology, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Juliana L R Fietto
- Laboratory of Animal Molecular Infectology, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Abelardo Silva-Júnior
- Laboratory of Immunobiology and Animal Virology, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Márcia R Almeida
- Laboratory of Animal Molecular Infectology, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
7
|
Wu Y, Wei F, Tang L, Liao Q, Wang H, Shi L, Gong Z, Zhang W, Zhou M, Xiang B, Wu X, Li X, Li Y, Li G, Xiong W, Zeng Z, Xiong F, Guo C. Herpesvirus acts with the cytoskeleton and promotes cancer progression. J Cancer 2019; 10:2185-2193. [PMID: 31258722 PMCID: PMC6584404 DOI: 10.7150/jca.30222] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/14/2019] [Indexed: 12/26/2022] Open
Abstract
The cytoskeleton is a complex fibrous reticular structure composed of microfilaments, microtubules and intermediate filaments. These components coordinate morphology support and intracellular transport that is involved in a variety of cell activities, such as cell proliferation, migration and differentiation. In addition, the cytoskeleton also plays an important role in viral infection. During an infection by a Herpesvirus, the virus utilizes microfilaments to enter cells and travel to the nucleus by microtubules; the viral DNA replicates with the help of host microfilaments; and the virus particles start assembling with a capsid in the cytoplasm before egress. The cytoskeleton changes in cells infected with Herpesvirus are made to either counteract or obey the virus, thereby promote cell transforming into cancerous ones. This article aims to clarify the interaction between the virus and cytoskeleton components in the process of Herpesvirus infection and the molecular motor, cytoskeleton-associated proteins and drugs that play an important role in the process of a Herpesvirus infection and carcinogenesis process.
Collapse
Affiliation(s)
- Yingfen Wu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Wei
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Le Tang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lei Shi
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Wu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Lu NT, Liu NM, Patel D, Vu JQ, Liu L, Kim CY, Cho P, Khachatoorian R, Patel N, Magyar CE, Ganapathy E, Arumugaswami V, Dasgupta A, French SW. Oncoprotein Stathmin Modulates Sensitivity to Apoptosis in Hepatocellular Carcinoma Cells During Hepatitis C Viral Replication. J Cell Death 2018; 11:1179066018785141. [PMID: 30034249 PMCID: PMC6047100 DOI: 10.1177/1179066018785141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/28/2018] [Indexed: 01/28/2023] Open
Abstract
Patients with chronic hepatitis C virus (HCV) infection risk complications of
cirrhosis, liver failure, and hepatocellular carcinoma (HCC). Previously, our
proteomic examination of hepatocytes carrying a HCV-replicon revealed that
deregulation of cytoskeletal dynamics may be a potential mechanism of
viral-induced HCC growth. Here, we demonstrate the effect of HCV replication on
the microtubule regulator stathmin (STMN1) in HCC cells. We further explore how
the altered activity or synthesis of stathmin affects cellular proliferation and
sensitivity to apoptosis in control HCC cells (Huh7.5) and experimental
HCV-replicon harboring HCC cells (R-Huh7.5). The HCV-replicon harboring HCC
cells (R-Huh 7.5) lack viral structural genes/proteins for acute infectivity and
thus is the standard model for in vitro chronic infection study. Knockdown of
endogenous stathmin reduced sensitivity to apoptosis in replicon cells.
Meanwhile, constitutively active stathmin increased sensitivity to apoptosis in
replicon cells. In addition, overexpression of constitutively active stathmin
reduced cell proliferation in both control and replicon cells. These findings
implicate, for the first time, a novel role for stathmin in viral
replication–related apoptosis. Stathmin’s potential role in HCV replication and
HCC make it a candidate for the future study of viral-induced malignancies.
Collapse
Affiliation(s)
- Nu T Lu
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Hematology and Oncology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Natalie M Liu
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Darshil Patel
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - James Q Vu
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Lisa Liu
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Chae Yeon Kim
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Peter Cho
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ronik Khachatoorian
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Nikita Patel
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Clara E Magyar
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ekambaram Ganapathy
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Vaithilingaraja Arumugaswami
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Surgery and Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Asim Dasgupta
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Samuel Wheeler French
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| |
Collapse
|
9
|
Cytoskeletons in the Closet-Subversion in Alphaherpesvirus Infections. Viruses 2018; 10:v10020079. [PMID: 29438303 PMCID: PMC5850386 DOI: 10.3390/v10020079] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 12/14/2022] Open
Abstract
Actin filaments, microtubules and intermediate filaments form the cytoskeleton of vertebrate cells. Involved in maintaining cell integrity and structure, facilitating cargo and vesicle transport, remodelling surface structures and motility, the cytoskeleton is necessary for the successful life of a cell. Because of the broad range of functions these filaments are involved in, they are common targets for viral pathogens, including the alphaherpesviruses. Human-tropic alphaherpesviruses are prevalent pathogens carried by more than half of the world’s population; comprising herpes simplex virus (types 1 and 2) and varicella-zoster virus, these viruses are characterised by their ability to establish latency in sensory neurons. This review will discuss the known mechanisms involved in subversion of and transport via the cytoskeleton during alphaherpesvirus infections, focusing on protein-protein interactions and pathways that have recently been identified. Studies on related alphaherpesviruses whose primary host is not human, along with comparisons to more distantly related beta and gammaherpesviruses, are also presented in this review. The need to decipher as-yet-unknown mechanisms exploited by viruses to hijack cytoskeletal components—to reveal the hidden cytoskeletons in the closet—will also be addressed.
Collapse
|
10
|
Umaña AC, Iwahori S, Kalejta RF. Direct Substrate Identification with an Analog Sensitive (AS) Viral Cyclin-Dependent Kinase (v-Cdk). ACS Chem Biol 2018; 13:189-199. [PMID: 29215867 DOI: 10.1021/acschembio.7b00972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Viral cyclin-dependent kinases (v-Cdks) functionally emulate their cellular Cdk counterparts. Such viral mimicry is an established phenomenon that we extend here through chemical genetics. Kinases contain gatekeeper residues that limit the size of molecules that can be accommodated within the enzyme active site. Mutating gatekeeper residues to smaller amino acids allows larger molecules access to the active site. Such mutants can utilize bio-orthoganol ATPs for phosphate transfer and are inhibited by compounds ineffective against the wild type protein, and thus are referred to as analog-sensitive (AS) kinases. We identified the gatekeeper residues of the v-Cdks encoded by Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) and mutated them to generate AS kinases. The AS-v-Cdks are functional and utilize different ATP derivatives with a specificity closely matching their cellular ortholog, AS-Cdk2. The AS derivative of the EBV v-Cdk was used to transfer a thiolated phosphate group to targeted proteins which were then purified through covalent capture and identified by mass spectrometry. Pathway analysis of these newly identified direct substrates of the EBV v-Cdk extends the potential influence of this kinase into all stages of gene expression (transcription, splicing, mRNA export, and translation). Our work demonstrates the biochemical similarity of the cellular and viral Cdks, as well as the utility of AS v-Cdks for substrate identification to increase our understanding of both viral infections and Cdk biology.
Collapse
Affiliation(s)
- Angie C. Umaña
- Institute for Molecular Virology
and McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Satoko Iwahori
- Institute for Molecular Virology
and McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Robert F. Kalejta
- Institute for Molecular Virology
and McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
11
|
The Cdc2/Cdk1 inhibitor, purvalanol A, enhances the cytotoxic effects of taxol through Op18/stathmin in non-small cell lung cancer cells in vitro. Int J Mol Med 2017; 40:235-242. [PMID: 28534969 DOI: 10.3892/ijmm.2017.2989] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 05/03/2017] [Indexed: 11/05/2022] Open
Abstract
Purvalanol A is a highly selective inhibitor of Cdc2 [also known as cyclin-dependent kinase 1 (CDK1)]. Taxol is an anti-tumor chemotherapeutic drug which is widely used clinically. In this study, the CDK1 inhibitor, purvalanol A was applied to explore the relevance of Cdc2 signaling and taxol sensitivity through analyses, such as cellular proliferation and apoptosis assays, ELISA, western blot analysis and immunoprecipitation. We demonstrated that purvalanol A effectively enhanced the taxol-induced apoptosis of NCI-H1299 cells, as well as its inhibitory effects on cellular proliferation and colony formation. In combination, purvalanol A and taxol mainly decreased the expression of oncoprotein 18 (Op18)/stathmin and phosphorylation at Ser16 and Ser38, while purvalanol A alone inhibited the phosphorylation of Op18/stathmin at all 4 serine sites. Co-treatment with purvalanol A and taxol weakened the expression of Bcl-2 and activated the extrinsic cell death pathway through the activation of caspase-3 and caspase-8. Further experiments indicated that Cdc2 kinase activities, including the expression of Cdc2 and the level of phospho-Cdc2 (Thr161) were significantly higher in taxol-resistant NCI-H1299 cells compared with the relatively sensitive CNE1 cells before and following treatment with taxol. These findings suggest that Cdc2 is positively associatd with the development of taxol resistance. The Cdc2 inhibitor, purvalanol A, enhanced the cytotoxic effects of taxol through Op18/stathmin. Our findings may prove to be useful in clinical practice, as they may provide a treatment strategy with which to to reduce the doses of taxol applied clinically, thus alleviating the side-effects.
Collapse
|
12
|
Kuang XY, Chen L, Zhang ZJ, Liu YR, Zheng YZ, Ling H, Qiao F, Li S, Hu X, Shao ZM. Stathmin and phospho-stathmin protein signature is associated with survival outcomes of breast cancer patients. Oncotarget 2016; 6:22227-38. [PMID: 26087399 PMCID: PMC4673159 DOI: 10.18632/oncotarget.4276] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/01/2015] [Indexed: 01/07/2023] Open
Abstract
Currently, Stathmin1 (STMN1) and phospho-STMN1 levels in breast cancers and their clinical implications are unknown. We examined the expression of STMN1 and its serine phospho-site (Ser16, Ser25, Ser38, and Ser63) status by immunohistochemistry. Using Cox regression analysis, a STMN1 expression signature and phosphorylation profile plus clinicopathological characteristics (STMN1-E/P/C) was developed in the training set (n = 204) and applied to the validation set (n = 106). This tool enabled us to separate breast cancer patients into high- and low-risk groups with significantly different disease-free survival (DFS) rates (P < 0.001). Importantly, this STMN1-E/P/C model had a greater prognostic value than the traditional TNM classifier, especially in luminal subtype breast cancer (P = 0.002). Further analysis showed that patients in the low-risk group would benefit more from adjuvant paclitaxel-based chemotherapy (P = 0.002). In conclusion, the STMN1-E/P/C signature is a reliable prognostic indicator for luminal subtype breast cancer and may predict the therapeutic response to paclitaxel-based treatments, potentially facilitating individualized management.
Collapse
Affiliation(s)
- Xia-Ying Kuang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Chen
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Jie Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Yi-Rong Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Zi Zheng
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Ling
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feng Qiao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shan Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Hu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institutes of Biomedical Science, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Kuang XY, Jiang HS, Li K, Zheng YZ, Liu YR, Qiao F, Li S, Hu X, Shao ZM. The phosphorylation-specific association of STMN1 with GRP78 promotes breast cancer metastasis. Cancer Lett 2016; 377:87-96. [PMID: 27130664 DOI: 10.1016/j.canlet.2016.04.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 11/26/2022]
Abstract
Metastasis is a major cause of death in patients with breast cancer. Stathmin1 (STMN1) is a phosphoprotein associated with cancer metastasis. It exhibits a complicated phosphorylation pattern in response to various extracellular signals, but its signaling mechanism is poorly understood. In this study, we report that phosphorylation of STMN1 at Ser25 and Ser38 is necessary to maintain cell migration capabilities and is associated with shorter disease-free survival (DFS) in breast cancer. In addition, we report that glucose-regulated protein of molecular mass 78 (GRP78) is a novel phospho-STMN1 binding protein upon STMN1 Ser25/Ser38 phosphorylation. This phosphorylation-dependent interaction is regulated by MEK kinase and is required for STMN1-GRP78 complex stability and STMN1-mediated migration. We also propose a prognostic model based on phospho-STMN1 and GRP78 to assess metastatic risk in breast cancer patients.
Collapse
Affiliation(s)
- Xia-Ying Kuang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Breast Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - He-Sheng Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kai Li
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi-Zi Zheng
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Rong Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feng Qiao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shan Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Hu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Institutes of Biomedical Science, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Li R, Liao G, Nirujogi RS, Pinto SM, Shaw PG, Huang TC, Wan J, Qian J, Gowda H, Wu X, Lv DW, Zhang K, Manda SS, Pandey A, Hayward SD. Phosphoproteomic Profiling Reveals Epstein-Barr Virus Protein Kinase Integration of DNA Damage Response and Mitotic Signaling. PLoS Pathog 2015; 11:e1005346. [PMID: 26714015 PMCID: PMC4699913 DOI: 10.1371/journal.ppat.1005346] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/28/2015] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV) is etiologically linked to infectious mononucleosis and several human cancers. EBV encodes a conserved protein kinase BGLF4 that plays a key role in the viral life cycle. To provide new insight into the host proteins regulated by BGLF4, we utilized stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics to compare site-specific phosphorylation in BGLF4-expressing Akata B cells. Our analysis revealed BGLF4-mediated hyperphosphorylation of 3,046 unique sites corresponding to 1,328 proteins. Frequency analysis of these phosphosites revealed a proline-rich motif signature downstream of BGLF4, indicating a broader substrate recognition for BGLF4 than its cellular ortholog cyclin-dependent kinase 1 (CDK1). Further, motif analysis of the hyperphosphorylated sites revealed enrichment in ATM, ATR and Aurora kinase substrates while functional analyses revealed significant enrichment of pathways related to the DNA damage response (DDR), mitosis and cell cycle. Phosphorylation of proteins associated with the mitotic spindle assembly checkpoint (SAC) indicated checkpoint activation, an event that inactivates the anaphase promoting complex/cyclosome, APC/C. Furthermore, we demonstrated that BGLF4 binds to and directly phosphorylates the key cellular proteins PP1, MPS1 and CDC20 that lie upstream of SAC activation and APC/C inhibition. Consistent with APC/C inactivation, we found that BGLF4 stabilizes the expression of many known APC/C substrates. We also noted hyperphosphorylation of 22 proteins associated the nuclear pore complex, which may contribute to nuclear pore disassembly and SAC activation. A drug that inhibits mitotic checkpoint activation also suppressed the accumulation of extracellular EBV virus. Taken together, our data reveal that, in addition to the DDR, manipulation of mitotic kinase signaling and SAC activation are mechanisms associated with lytic EBV replication. All MS data have been deposited in the ProteomeXchange with identifier PXD002411 (http://proteomecentral.proteomexchange.org/dataset/PXD002411). Epstein-Barr virus (EBV) is a herpesvirus that is associated with B cell and epithelial human cancers. Herpesviruses encode a protein kinase which is an important regulator of lytic virus replication and is consequently a target for anti-viral drug development. The EBV genome encodes for a serine/threonine protein kinase called BGLF4. Previous work on BGLF4 has largely focused on its cyclin-dependent kinase 1 (CDK1)-like activity. The range of BGLF4 cellular substrates and the full impact of BGLF4 on the intracellular microenvironment still remain to be elucidated. Here, we utilized unbiased quantitative phosphoproteomic approach to dissect the changes in the cellular phosphoproteome that are mediated by BGLF4. Our MS analyses revealed extensive hyperphosphorylation of substrates that are normally targeted by CDK1, Ataxia telangiectasia mutated (ATM), Ataxia telangiectasia and Rad3-related (ATR) proteins and Aurora kinases. The up-regulated phosphoproteins were functionally linked to the DNA damage response, mitosis and cell cycle pathways. Our data demonstrate widespread changes in the cellular phosphoproteome that occur upon BGLF4 expression and suggest that manipulation of the DNA damage and mitotic kinase signaling pathways are central to efficient EBV lytic replication.
Collapse
Affiliation(s)
- Renfeng Li
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail: (RL); (AP); (SDH)
| | - Gangling Liao
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Raja Sekhar Nirujogi
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Sneha M. Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Patrick G. Shaw
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tai-Chung Huang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jun Wan
- Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jiang Qian
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Xinyan Wu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dong-Wen Lv
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kun Zhang
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Srikanth S. Manda
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Akhilesh Pandey
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana, United States of America
- * E-mail: (RL); (AP); (SDH)
| | - S. Diane Hayward
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (RL); (AP); (SDH)
| |
Collapse
|
15
|
A locus encompassing the Epstein-Barr virus bglf4 kinase regulates expression of genes encoding viral structural proteins. PLoS Pathog 2014; 10:e1004307. [PMID: 25166506 PMCID: PMC4148442 DOI: 10.1371/journal.ppat.1004307] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 07/01/2014] [Indexed: 12/17/2022] Open
Abstract
The mechanism regulating expression of late genes, encoding viral structural components, is an unresolved problem in the biology of DNA tumor viruses. Here we show that BGLF4, the only protein kinase encoded by Epstein-Barr virus (EBV), controls expression of late genes independent of its effect on viral DNA replication. Ectopic expression of BGLF4 in cells lacking the kinase gene stimulated the transcript levels of six late genes by 8- to 10-fold. Introduction of a BGLF4 mutant that eliminated its kinase activity did not stimulate late gene expression. In cells infected with wild-type EBV, siRNA to BGLF4 (siG4) markedly reduced late gene expression without compromising viral DNA replication. Synthesis of late products was restored upon expression of a form of BGLF4 resistant to the siRNA. Studying the EBV transcriptome using mRNA-seq during the late phase of the lytic cycle in the absence and presence of siG4 showed that BGLF4 controlled expression of 31 late genes. Analysis of the EBV transcriptome identified BGLF3 as a gene whose expression was reduced as a result of silencing BGLF4. Knockdown of BGLF3 markedly reduced late gene expression but had no effect on viral DNA replication or expression of BGLF4. Our findings reveal the presence of a late control locus encompassing BGLF3 and BGLF4 in the EBV genome, and provide evidence for the importance of both proteins in post-replication events that are necessary for expression of late genes.
Collapse
|
16
|
Öhman T, Söderholm S, Hintsanen P, Välimäki E, Lietzén N, MacKintosh C, Aittokallio T, Matikainen S, Nyman TA. Phosphoproteomics combined with quantitative 14-3-3-affinity capture identifies SIRT1 and RAI as novel regulators of cytosolic double-stranded RNA recognition pathway. Mol Cell Proteomics 2014; 13:2604-17. [PMID: 24997996 DOI: 10.1074/mcp.m114.038968] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Viral double-stranded RNA (dsRNA) is the most important viral structure recognized by cytosolic pattern-recognition receptors of the innate immune system, and its recognition results in the activation of signaling cascades that stimulate the production of antiviral cytokines and apoptosis of infected cells. 14-3-3 proteins are ubiquitously expressed regulatory molecules that participate in a variety of cellular processes, and 14-3-3 protein-mediated signaling pathways are activated by cytoplasmic dsRNA in human keratinocytes. However, the functional role of 14-3-3 protein-mediated interactions during viral dsRNA stimulation has remained uncharacterized. Here, we used functional proteomics to identify proteins whose phosphorylation and interaction with 14-3-3 is modulated by dsRNA and to characterize the signaling pathways activated during cytosolic dsRNA-induced innate immune response in human HaCaT keratinocytes. Phosphoproteome analysis showed that several MAPK- and immune-response-related signaling pathways were activated after dsRNA stimulation. Interactome analysis identified RelA-associated inhibitor, high-mobility group proteins, and several proteins associated with host responses to viral infection as novel 14-3-3 target proteins. Functional studies showed that RelA-associated inhibitor regulated dsRNA-induced apoptosis and TNF production. Integrated network analyses of proteomic data revealed that sirtuin1 was a central molecule regulated by 14-3-3s during dsRNA stimulation. Further experiments showed that sirtuin 1 negatively regulated dsRNA-induced NFκB transcriptional activity, suppressed expression of antiviral cytokines, and protected cells from apoptosis in dsRNA-stimulated and encephalomyocarditis-virus-infected keratinocytes. In conclusion, our data highlight the importance of 14-3-3 proteins in antiviral responses and identify RelA-associated inhibitor and sirtuin 1 as novel regulators of antiviral innate immune responses.
Collapse
Affiliation(s)
- Tiina Öhman
- From the ‡Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | - Sandra Söderholm
- From the ‡Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland; §Finnish Institute of Occupational Health, FI-00250 Helsinki, Finland
| | - Petteri Hintsanen
- ¶Institute for Molecular Medicine Finland (FIMM), FI-00014 University of Helsinki, Helsinki, Finland
| | - Elina Välimäki
- From the ‡Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland; §Finnish Institute of Occupational Health, FI-00250 Helsinki, Finland
| | - Niina Lietzén
- From the ‡Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | - Carol MacKintosh
- **University of Dundee, Dundee, Scotland DD1 5EH, United Kingdom
| | - Tero Aittokallio
- ¶Institute for Molecular Medicine Finland (FIMM), FI-00014 University of Helsinki, Helsinki, Finland
| | - Sampsa Matikainen
- §Finnish Institute of Occupational Health, FI-00250 Helsinki, Finland
| | - Tuula A Nyman
- From the ‡Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland;
| |
Collapse
|
17
|
Yip YY, Yeap YYC, Bogoyevitch MA, Ng DCH. cAMP-dependent protein kinase and c-Jun N-terminal kinase mediate stathmin phosphorylation for the maintenance of interphase microtubules during osmotic stress. J Biol Chem 2013; 289:2157-69. [PMID: 24302736 DOI: 10.1074/jbc.m113.470682] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dynamic microtubule changes after a cell stress challenge are required for cell survival and adaptation. Stathmin (STMN), a cytoplasmic microtubule-destabilizing phosphoprotein, regulates interphase microtubules during cell stress, but the signaling mechanisms involved are poorly defined. In this study ectopic expression of single alanine-substituted phospho-resistant mutants demonstrated that STMN Ser-38 and Ser-63 phosphorylation were specifically required to maintain interphase microtubules during hyperosmotic stress. STMN was phosphorylated on Ser-38 and Ser-63 in response to hyperosmolarity, heat shock, and arsenite treatment but rapidly dephosphorylated after oxidative stress treatment. Two-dimensional PAGE and Phos-tag gel analysis of stress-stimulated STMN phospho-isoforms revealed rapid STMN Ser-38 phosphorylation followed by subsequent Ser-25 and Ser-63 phosphorylation. Previously, we delineated stress-stimulated JNK targeting of STMN. Here, we identified cAMP-dependent protein kinase (PKA) signaling as responsible for stress-induced STMN Ser-63 phosphorylation. Increased cAMP levels induced by cholera toxin triggered potent STMN Ser-63 phosphorylation. Osmotic stress stimulated an increase in PKA activity and elevated STMN Ser-63 and CREB (cAMP-response element-binding protein) Ser-133 phosphorylation that was substantially attenuated by pretreatment with H-89, a PKA inhibitor. Interestingly, PKA activity and subsequent phosphorylation of STMN were augmented in the absence of JNK activation, indicating JNK and PKA pathway cross-talk during stress regulation of STMN. Taken together our study indicates that JNK- and PKA-mediated STMN Ser-38 and Ser-63 phosphorylation are required to preserve interphase microtubules in response to hyperosmotic stress.
Collapse
Affiliation(s)
- Yan Y Yip
- From the Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
18
|
Liu YR, Huang SY, Chen JY, Wang LHC. Microtubule depolymerization activates the Epstein–Barr virus lytic cycle through protein kinase C pathways in nasopharyngeal carcinoma cells. J Gen Virol 2013; 94:2750-2758. [DOI: 10.1099/vir.0.058040-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Elevated levels of antibodies against Epstein–Barr virus (EBV) and the presence of viral DNA in plasma are reliable biomarkers for the diagnosis of nasopharyngeal carcinoma (NPC) in high-prevalence areas, such as South-East Asia. The presence of these viral markers in the circulation suggests that a minimal level of virus reactivation may have occurred in an infected individual, although the underlying mechanism of reactivation remains to be elucidated. Here, we showed that treatment with nocodazole, which provokes the depolymerization of microtubules, induces the expression of two EBV lytic cycle proteins, Zta and EA-D, in EBV-positive NPC cells. This effect was independent of mitotic arrest, as viral reactivation was not abolished in cells synchronized at interphase. Notably, the induction of Zta by nocodazole was mediated by transcriptional upregulation via protein kinase C (PKC). Pre-treatment with inhibitors for PKC or its downstream signalling partners p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) abolished the nocodazole-mediated induction of Zta and EA-D. Interestingly, the effect of nocodazole, as well as colchicine and vinblastine, on lytic gene expression occurred only in NPC epithelial cells but not in cells derived from lymphocytes. These results establish a novel role of microtubule integrity in controlling the EBV life cycle through PKC and its downstream pathways, which represents a tissue-specific mechanism for controlling the life-cycle switch of EBV.
Collapse
Affiliation(s)
- Yi-Ru Liu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
- Graduate Program of Biotechnology in Medicine of National Tsing Hua University and National Health Research Institutes, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Sheng-Yen Huang
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
- Graduate Program of Biotechnology in Medicine of National Tsing Hua University and National Health Research Institutes, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
| | - Lily Hui-Ching Wang
- Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
19
|
Brice A, Moseley GW. Viral interactions with microtubules: orchestrators of host cell biology? Future Virol 2013. [DOI: 10.2217/fvl.12.137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Viral interaction with the microtubule (MT) cytoskeleton is critical to infection by many viruses. Most data regarding virus–MT interaction indicate key roles in the subcellular transport of virions/viral genomic material to sites of replication, assembly and egress. However, the MT cytoskeleton orchestrates diverse processes in addition to subcellular cargo transport, including regulation of signaling pathways, cell survival and mitosis, suggesting that viruses, expert manipulators of the host cell, may use the virus–MT interface to control multiple aspects of cell biology. Several lines of evidence support this idea, indicating that specific viral proteins can modify MT dynamics and/or structure and regulate processes such as apoptosis and innate immune signaling through MT-dependent mechanisms. Here, the authors review general aspects of virus–MT interactions, with emphasis on viral mechanisms that modify MT dynamics and functions to affect processes beyond virion transport. The emerging importance of discrete viral protein–MT interactions in pathogenic processes indicates that these interfaces may represent new targets for future therapeutics and vaccine development.
Collapse
Affiliation(s)
- Aaron Brice
- Viral Immune Evasion & Pathogenicity Laboratory, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia
| | - Gregory W Moseley
- Viral Immune Evasion & Pathogenicity Laboratory, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
20
|
Liu F, Sun YL, Xu Y, Liu F, Wang LS, Zhao XH. Expression and phosphorylation of stathmin correlate with cell migration in esophageal squamous cell carcinoma. Oncol Rep 2012; 29:419-24. [PMID: 23229199 PMCID: PMC3583596 DOI: 10.3892/or.2012.2157] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/21/2012] [Indexed: 01/30/2023] Open
Abstract
Microtubules play extensive roles in cellular processes, including cell motility. Stathmin is an important protein which destabilizes microtubules. The essential function of stathmin is closely associated with its phosphorylation status. Stathmin is overexpressed in many human cancers and has a significant relationship with clinical characteristics such as grade, tumor size and prognosis. We demonstrated that stathmin was overexpressed in ESCC tissues using both 2-DE and immunohistochemistry analysis. In addition, overexpression of stathmin was significantly correlated with histological grade in ESCC. However, no correlation was found with age, gender and lymph node metastasis. Knockdown of stathmin with siRNA impaired cell migration in KYSE30 and KYSE410 cells. When EC0156 cells were treated with paclitaxel, stathmin was stably phosphorylated and migration was impaired. These observations suggest that stathmin may have a more important function in ESCC development and migration. The present study provides further understanding of the importance of stathmin in ESCC therapy or diagnosis.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | | | | | | | | | | |
Collapse
|
21
|
Tian X, Tian Y, Sarich N, Wu T, Birukova AA. Novel role of stathmin in microtubule-dependent control of endothelial permeability. FASEB J 2012; 26:3862-74. [PMID: 22700873 DOI: 10.1096/fj.12-207746] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microtubule (MT) dynamics in vascular endothelium are modulated by vasoactive mediators and are critically involved in the control of endothelial cell (EC) permeability via Rho GTPase-dependent crosstalk with the actin cytoskeleton. However, the role of regulators in MT stability in these mechanisms remains unclear. This study investigated the involvement of the MT-associated protein stathmin in the mediation of agonist-induced permeability in EC cultures and vascular leak in vivo. Thrombin treatment of human pulmonary ECs induced rapid dephosphorylation and activation of stathmin. Inhibition of stathmin activity by small interfering RNA-based knockdown or cAMP-mediated phosphorylation abrogated thrombin-induced F-actin remodeling and Rho-dependent EC hyperpermeability, while expression of a phosphorylation-deficient stathmin mutant exacerbated thrombin-induced EC barrier disruption. Stathmin suppression preserved the MT network against thrombin-induced MT disassembly and release of Rho-specific guanine nucleotide exchange factor, GEF-H1. The protective effects of stathmin knockdown were observed in vivo in the mouse 2-hit model of ventilator-induced lung injury and were linked to MT stabilization and down-regulation of Rho signaling in the lung. These results demonstrate the mechanism of stathmin-dependent control of MT dynamics, Rho signaling, and permeability and suggest novel potential pharmacological interventions in the prevention of increased vascular leak via modulation of stathmin activity.
Collapse
Affiliation(s)
- Xinyong Tian
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
22
|
Lin X, Tang M, Tao Y, Li L, Liu S, Guo L, Li Z, Ma X, Xu J, Cao Y. Epstein-Barr virus-encoded LMP1 triggers regulation of the ERK-mediated Op18/stathmin signaling pathway in association with cell cycle. Cancer Sci 2012; 103:993-9. [PMID: 22417000 DOI: 10.1111/j.1349-7006.2012.02271.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 12/17/2011] [Accepted: 02/26/2012] [Indexed: 11/30/2022] Open
Abstract
The MAPKs are activated by a variety of cellular stimuli to participate in a series of signaling cascades and mediate diverse intracellular responses. One potential target of the MAPKs is Op18/stathmin, a molecule that acts as an integrator of diverse cell signaling pathways and regulates the dynamics of microtubules, which are involved in modulating a variety of cellular processes, including cell cycle progression and cell growth. Our study focused on the regulation of the MAPK-mediated Op18/stathmin signaling pathway, which is triggered by the Epstein-Barr virus-encoded latent membrane protein 1 ( LMP1) oncogene in nasopharyngeal carcinoma cells. The results showed that the activity of MAPK, which was induced by LMP1, varied with cell cycle progression; LMP1 upregulated phosphorylation of ERK during the G(1)/S phase, but negatively regulated phosphorylation of ERK during the G(2)/M phase. We found that the regulation of Op18/stathmin signaling by LMP1 was mainly mediated through ERK. The inhibition of LMP1 expression attenuated the interaction of ERK with Op18/stathmin and promoted microtubule depolymerization. These findings indicate the existence of a new cell cycle-associated signaling pathway in which LMP1 regulates ERK-mediated Op18/stathmin signaling.
Collapse
Affiliation(s)
- Xuechi Lin
- Cancer Research Institute, Changsha, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
SUMO binding by the Epstein-Barr virus protein kinase BGLF4 is crucial for BGLF4 function. J Virol 2012; 86:5412-21. [PMID: 22398289 DOI: 10.1128/jvi.00314-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
An Epstein-Barr virus (EBV) protein microarray was used to screen for proteins binding noncovalently to the small ubiquitin-like modifier SUMO2. Among the 11 SUMO binding proteins identified was the conserved protein kinase BGLF4. The mutation of potential SUMO interaction motifs (SIMs) in BGLF4 identified N- and C-terminal SIMs. The mutation of both SIMs changed the intracellular localization of BGLF4 from nuclear to cytoplasmic, while BGLF4 mutated in the N-terminal SIM remained predominantly nuclear. The mutation of the C-terminal SIM yielded an intermediate phenotype with nuclear and cytoplasmic staining. The transfer of BGLF4 amino acids 342 to 359 to a nuclear green fluorescent protein (GFP)-tagged reporter protein led to the relocalization of the reporter to the cytoplasm. Thus, the C-terminal SIM lies adjacent to a nuclear export signal, and coordinated SUMO binding by the N- and C-terminal SIMs blocks export and allows the nuclear accumulation of BGLF4. The mutation of either SIM prevented SUMO binding in vitro. The ability of BGLF4 to abolish the SUMOylation of the EBV lytic cycle transactivator ZTA was dependent on both BGLF4 SUMO binding and BGLF4 kinase activity. The global profile of SUMOylated cell proteins was also suppressed by BGLF4 but not by the SIM or kinase-dead BGLF4 mutant. The effective BGLF4-mediated dispersion of promyelocytic leukemia (PML) bodies was dependent on SUMO binding. The SUMO binding function of BGLF4 was also required to induce the cellular DNA damage response and to enhance the production of extracellular virus during EBV lytic replication. Thus, SUMO binding by BGLF4 modulates BGLF4 function and affects the efficiency of lytic EBV replication.
Collapse
|
24
|
Li R, Zhu J, Xie Z, Liao G, Liu J, Chen MR, Hu S, Woodard C, Lin J, Taverna SD, Desai P, Ambinder RF, Hayward GS, Qian J, Zhu H, Hayward SD. Conserved herpesvirus kinases target the DNA damage response pathway and TIP60 histone acetyltransferase to promote virus replication. Cell Host Microbe 2012; 10:390-400. [PMID: 22018239 DOI: 10.1016/j.chom.2011.08.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/25/2011] [Accepted: 08/26/2011] [Indexed: 11/25/2022]
Abstract
Herpesviruses, which are major human pathogens, establish life-long persistent infections. Although the α, β, and γ herpesviruses infect different tissues and cause distinct diseases, they each encode a conserved serine/threonine kinase that is critical for virus replication and spread. The extent of substrate conservation and the key common cell-signaling pathways targeted by these kinases are unknown. Using a human protein microarray high-throughput approach, we identify shared substrates of the conserved kinases from herpes simplex virus, human cytomegalovirus, Epstein-Barr virus (EBV), and Kaposi's sarcoma-associated herpesvirus. DNA damage response (DDR) proteins were statistically enriched, and the histone acetyltransferase TIP60, an upstream regulator of the DDR pathway, was required for efficient herpesvirus replication. During EBV replication, TIP60 activation by the BGLF4 kinase triggers EBV-induced DDR and also mediates induction of viral lytic gene expression. Identification of key cellular targets of the conserved herpesvirus kinases will facilitate the development of broadly effective antiviral strategies.
Collapse
Affiliation(s)
- Renfeng Li
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Joehanes R, Johnson AD, Barb JJ, Raghavachari N, Liu P, Woodhouse KA, O'Donnell CJ, Munson PJ, Levy D. Gene expression analysis of whole blood, peripheral blood mononuclear cells, and lymphoblastoid cell lines from the Framingham Heart Study. Physiol Genomics 2011; 44:59-75. [PMID: 22045913 DOI: 10.1152/physiolgenomics.00130.2011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Despite a growing number of reports of gene expression analysis from blood-derived RNA sources, there have been few systematic comparisons of various RNA sources in transcriptomic analysis or for biomarker discovery in the context of cardiovascular disease (CVD). As a pilot study of the Systems Approach to Biomarker Research (SABRe) in CVD Initiative, this investigation used Affymetrix Exon arrays to characterize gene expression of three blood-derived RNA sources: lymphoblastoid cell lines (LCL), whole blood using PAXgene tubes (PAX), and peripheral blood mononuclear cells (PBMC). Their performance was compared in relation to identifying transcript associations with sex and CVD risk factors, such as age, high-density lipoprotein, and smoking status, and the differential blood cell count. We also identified a set of exons that vary substantially between participants, but consistently in each RNA source. Such exons are thus stable phenotypes of the participant and may potentially become useful fingerprinting biomarkers. In agreement with previous studies, we found that each of the RNA sources is distinct. Unlike PAX and PBMC, LCL gene expression showed little association with the differential blood count. LCL, however, was able to detect two genes related to smoking status. PAX and PBMC identified Y-chromosome probe sets similarly and slightly better than LCL.
Collapse
Affiliation(s)
- Roby Joehanes
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ahmed AA, Wang X, Lu Z, Goldsmith J, Le XF, Grandjean G, Bartholomeusz G, Broom B, Bast RC. Modulating microtubule stability enhances the cytotoxic response of cancer cells to Paclitaxel. Cancer Res 2011; 71:5806-17. [PMID: 21775522 DOI: 10.1158/0008-5472.can-11-0025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The extracellular matrix protein TGFBI enhances the cytotoxic response of cancer cells to paclitaxel by affecting integrin signals that stabilize microtubules. Extending the implications of this knowledge, we tested the more general hypothesis that cancer cell signals which increase microtubule stability before exposure to paclitaxel may increase its ability to stabilize microtubules and thereby enhance its cytotoxicity. Toward this end, we carried out an siRNA screen to evaluate how genetic depletion affected microtubule stabilization, cell viability, and apoptosis. High content microscopic analysis was carried out in the absence or presence of paclitaxel. Kinase knockdowns that stabilized microtubules strongly enhanced the effects of paclitaxel treatment. Conversely, kinase knockdowns that enhanced paclitaxel-mediated cytotoxicity sensitized cells to microtubule stabilization by paclitaxel. The siRNA screen identified several genes that have not been linked previously to microtubule regulation or paclitaxel response. Gene shaving and Bayesian resampling used to classify these genes suggested three pathways of paclitaxel-induced cell death related to apoptosis and microtubule stability, apoptosis alone, or neither process. Our results offer a functional classification of the genetic basis for paclitaxel sensitivity and they support the hypothesis that stabilizing microtubules prior to therapy could enhance antitumor responses to paclitaxel treatment.
Collapse
Affiliation(s)
- Ahmed Ashour Ahmed
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu F, Liu F, Sun YL, Zhao XH. Significance of STMN1 expression in esophageal squamous cell carcinoma. Shijie Huaren Xiaohua Zazhi 2010; 18:1306-1312. [DOI: 10.11569/wcjd.v18.i13.1306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of Stathmin 1 (STMN1) protein in esophageal squamous cell carcinoma (ESCC) tissue and cell lines and to evaluate its correlation with the clinicopathologic parameters of ESCC.
METHODS: One-dimensional (1-D) Western blot was performed to determine the expression of STMN1 in 8 ESCC cell lines. Two-dimensional (2-D) Western blot was used to determine modified STMN1 in KYSE180 cells. Western blot and immunohistochemistry (IHC) were employed to determine the expression of STMN1 in ESCC specimens. The chi-square test was used to analyze IHC results.
RESULTS: STMN1 was widely expressed in ESCC cells, including WHCO1, EC0156, KYSE510, KYSE180, KYSE170, KYSE150, KYSE140 and KYSE30 cell lines. Two STMN1 protein spots were detected in KYSE180 cells on 2-D Western blot: one stronger signal and one weaker signal located in more basic area, which suggests that STMN1 protein may be modified in KYSE180 cells. Western blot analysis showed that STMN1 was overexpressed in 69.2% (9/13) of ESCC specimens compared with their normal epithelial counterparts. IHC assay also demonstrated that the positive rate of STMN1 expression was significantly higher in ESCC tissue than in matched adjacent normal tissue (P < 0.05). STMN1 expression is not correlated with age, gender, differentiation, tumor grade and lymph node metastasis.
CONCLUSION: The expression of STMN1 protein is up-regulated in both ESCC tissue and cell lines and may be modified in some ESCC cell lines. STMN1 might exert an oncogenic function in ESCC. Dynamic measurement of STMN1 expression level might aid to evaluate the progression of ESCC.
Collapse
|