1
|
Wallis NJ, McClellan A, Mörseburg A, Kentistou KA, Jamaluddin A, Dowsett GKC, Schofield E, Morros-Nuevo A, Saeed S, Lam BYH, Sumanasekera NT, Chan J, Kumar SS, Zhang RM, Wainwright JF, Dittmann M, Lakatos G, Rainbow K, Withers D, Bounds R, Ma M, German AJ, Ladlow J, Sargan D, Froguel P, Farooqi IS, Ong KK, Yeo GSH, Tadross JA, Perry JRB, Gorvin CM, Raffan E. Canine genome-wide association study identifies DENND1B as an obesity gene in dogs and humans. Science 2025; 387:eads2145. [PMID: 40048553 DOI: 10.1126/science.ads2145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/10/2025] [Indexed: 03/29/2025]
Abstract
Obesity is a heritable disease, but its genetic basis is incompletely understood. Canine population history facilitates trait mapping. We performed a canine genome-wide association study for body condition score-a measure of obesity-in 241 Labrador retrievers. Using a cross-species approach, we showed that canine obesity genes are also associated with rare and common forms of obesity in humans. The lead canine association was within the gene DENN domain containing 1B (DENND1B). Each copy of the alternate allele was associated with ~7.5% greater body fat. We demonstrate a role for this gene in regulating signaling and trafficking of melanocortin 4 receptor, a critical controller of energy homeostasis. Thus, canine genetics identified obesity genes and mechanisms relevant to both dogs and humans.
Collapse
Affiliation(s)
- Natalie J Wallis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Alyce McClellan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Alexander Mörseburg
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Katherine A Kentistou
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Aqfan Jamaluddin
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Georgina K C Dowsett
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Ellen Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Anna Morros-Nuevo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sadia Saeed
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Brian Y H Lam
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Natasha T Sumanasekera
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Justine Chan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sambhavi S Kumar
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Rey M Zhang
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jodie F Wainwright
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Marie Dittmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Gabriella Lakatos
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Kara Rainbow
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - David Withers
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Rebecca Bounds
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research (NIHR) Cambridge Biomedical Research Centre, Cambridge, UK
| | - Marcella Ma
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Alexander J German
- Institute of Life Course and Medical Sciences and School of Veterinary Science, University of Liverpool, Neston, UK
| | - Jane Ladlow
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David Sargan
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Philippe Froguel
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - I Sadaf Farooqi
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research (NIHR) Cambridge Biomedical Research Centre, Cambridge, UK
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Giles S H Yeo
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - John A Tadross
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Histopathology and Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - John R B Perry
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Eleanor Raffan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Frolov A, Atwood SG, Guzman MA, Martin JR. A Rare Case of Polymicrogyria in an Elderly Individual With Unique Polygenic Underlining. Cureus 2024; 16:e74300. [PMID: 39717325 PMCID: PMC11665267 DOI: 10.7759/cureus.74300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2024] [Indexed: 12/25/2024] Open
Abstract
Polymicrogyria (PMG) is the most common malformation of cortical development (MCD) and presents as an irregularly patterned cortical surface with numerous small gyri and shallow sulci leading to various neurological deficits including developmental delays, intellectual disability, epilepsy, and language and motor issues. The presentation of PMG varies and is often found in conjunction with other congenital anomalies. Histologically, PMG features an abnormal cortical structure and dyslamination, resulting in its classification as a defect of neuronal migration and organization. Due in part to a variety of etiologies, little is known about the molecular mechanism(s) underlining PMG. To address this gap in knowledge, a case study is presented where an elderly individual with a medical history of unspecified PMG was examined postmortem by using a combination of anatomical, magnetic resonance imaging (MRI), histopathological, and genetic techniques. The results of the study allowed the classification of this case as bifrontal PMG. The genetic screening by whole exome sequencing (WES) on the Illumina Next Generation Sequencing (NGS) platform yielded 83 rare (minor allele frequency, MAF ≤ 0.01) pathological/deleterious variants where none of the respective genes has been previously linked to PMG. However, a subsequent analysis of those variants revealed that a significant number of affected genes were associated with most of the biological processes known to be impaired in PMG thereby pointing toward a polygenic nature in the present case. One of the notable features of the WES dataset was the presence of rare pathological/deleterious variants of genes (ADGRA2, PCDHA1, PCDHA12, PTK7, TPGS1, and USP4) involved in the regulation of Wnt signaling potentially highlighting the latter as an important PMG contributor in the present case. Notably, ADGRA2 warrants a closer look as a candidate gene for PMG because it not only regulates cortical patterning but has also been recently linked to two cases of bifrontal PMG with multiple congenital anomalies through its compound heterozygous mutations.
Collapse
Affiliation(s)
- Andrey Frolov
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| | - Stuart G Atwood
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| | - Miguel A Guzman
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, USA
| | - John R Martin
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| |
Collapse
|
3
|
Dou Y, Zhao R, Wu H, Yu Z, Yin C, Yang J, Yang C, Luan X, Cheng Y, Huang T, Bian Y, Han S, Zhang Y, Xu X, Chen ZJ, Zhao H, Zhao S. DENND1A desensitizes granulosa cells to FSH by arresting intracellular FSHR transportation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1620-1634. [PMID: 38709439 DOI: 10.1007/s11427-023-2438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/27/2023] [Indexed: 05/07/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder. Genome-wide association studies (GWAS) have identified several genes associated with this condition, including DENND1A. DENND1A encodes a clathrin-binding protein that functions as a guanine nucleotide exchange factor involved in vesicular transport. However, the specific role of DENND1A in reproductive hormone abnormalities and follicle development disorders in PCOS remain poorly understood. In this study, we investigated DENND1A expression in ovarian granulosa cells (GCs) from PCOS patients and its correlation with hormones. Our results revealed an upregulation of DENND1A expression in GCs from PCOS cases, which was positively correlated with testosterone levels. To further explore the functional implications of DENND1A, we generated a transgenic mouse model overexpressing Dennd1a (TG mice). These TG mice exhibited subfertility, irregular estrous cycles, and increased testosterone production following PMSG stimulation. Additionally, the TG mice displayed diminished responsiveness to FSH, characterized by smaller ovary size, less well-developed follicles, and abnormal expressions of FSH-priming genes. Mechanistically, we found that Dennd1a overexpression disrupted the intracellular trafficking of follicle stimulating hormone receptor (FSHR), promoting its internalization and inhibiting recycling. These findings shed light on the reproductive role of DENND1A and uncover the underlying mechanisms, thereby contributing valuable insights into the pathogenesis of PCOS and providing potential avenues for drug design in PCOS treatment.
Collapse
Affiliation(s)
- Yunde Dou
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Rusong Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, 215008, China
- Gusu School, Nanjing Medical University, Suzhou, 215000, China
| | - Han Wu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Zhiheng Yu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Changjian Yin
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Jie Yang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Chaoyan Yang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Xiaohua Luan
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Yixiao Cheng
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Tao Huang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Yuehong Bian
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Shan Han
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, China
| | - Yuqing Zhang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Xin Xu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Zi-Jiang Chen
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Han Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China.
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.
| | - Shigang Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China.
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.
| |
Collapse
|
4
|
Aguila A, Salah S, Kulasekaran G, Shweiki M, Shaul-Lotan N, Mor-Shaked H, Daana M, Harel T, McPherson PS. A neurodevelopmental disorder associated with a loss-of-function missense mutation in RAB35. J Biol Chem 2024; 300:107124. [PMID: 38432637 PMCID: PMC10966776 DOI: 10.1016/j.jbc.2024.107124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024] Open
Abstract
Rab35 (Ras-associated binding protein) is a small GTPase that regulates endosomal membrane trafficking and functions in cell polarity, cytokinesis, and growth factor signaling. Altered Rab35 function contributes to progression of glioblastoma, defects in primary cilia formation, and altered cytokinesis. Here, we report a pediatric patient with global developmental delay, hydrocephalus, a Dandy-Walker malformation, axial hypotonia with peripheral hypertonia, visual problems, and conductive hearing impairment. Exome sequencing identified a homozygous missense variant in the GTPase fold of RAB35 (c.80G>A; p.R27H) as the most likely candidate. Functional analysis of the R27H-Rab35 variant protein revealed enhanced interaction with its guanine-nucleotide exchange factor, DENND1A and decreased interaction with a known effector, MICAL1, indicating that the protein is in an inactive conformation. Cellular expression of the variant drives the activation of Arf6, a small GTPase under negative regulatory control of Rab35. Importantly, variant expression leads to delayed cytokinesis and altered length, number, and Arl13b composition of primary cilia, known factors in neurodevelopmental disease. Our findings provide evidence of altered Rab35 function as a causative factor of a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Adriana Aguila
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Somaya Salah
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Gopinath Kulasekaran
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Moatasem Shweiki
- Neurosurgery Department, Hadassah Medical Center, Jerusalem, Israel
| | - Nava Shaul-Lotan
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Muhannad Daana
- Child Development Centers, Clalit Health Care Services, Yokne'am Illit, Israel
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Full-Length Transcriptome Maps of Reef-Building Coral Illuminate the Molecular Basis of Calcification, Symbiosis, and Circa-Dian Genes. Int J Mol Sci 2022; 23:ijms231911135. [PMID: 36232445 PMCID: PMC9570262 DOI: 10.3390/ijms231911135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Coral transcriptomic data largely rely on short-read sequencing, which severely limits the understanding of coral molecular mechanisms and leaves many important biological questions unresolved. Here, we sequence the full-length transcriptomes of four common and frequently dominant reef-building corals using the PacBio Sequel II platform. We obtain information on reported gene functions, structures, and expression profiles. Among them, a comparative analysis of biomineralization-related genes provides insights into the molecular basis of coral skeletal density. The gene expression profiles of the symbiont Symbiodiniaceae are also isolated and annotated from the holobiont sequence data. Finally, a phylogenetic analysis of key circadian clock genes among 40 evolutionarily representative species indicates that there are four key members in early metazoans, including cry genes; Clock or Npas2; cyc or Arntl; and tim, while per, as the fifth member, occurs in Bilateria. In summary, this work provides a foundation for further work on the manipulation of skeleton production or symbiosis to promote the survival of these important organisms.
Collapse
|
6
|
Francis CR, Kincross H, Kushner EJ. Rab35 governs apicobasal polarity through regulation of actin dynamics during sprouting angiogenesis. Nat Commun 2022; 13:5276. [PMID: 36075898 PMCID: PMC9458672 DOI: 10.1038/s41467-022-32853-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022] Open
Abstract
In early blood vessel development, trafficking programs, such as those using Rab GTPases, are tasked with delivering vesicular cargo with high spatiotemporal accuracy. However, the function of many Rab trafficking proteins remain ill-defined in endothelial tissue; therefore, their relevance to blood vessel development is unknown. Rab35 has been shown to play an enigmatic role in cellular behaviors which differs greatly between tissue-type and organism. Importantly, Rab35 has never been characterized for its potential contribution in sprouting angiogenesis; thus, our goal was to map Rab35’s primary function in angiogenesis. Our results demonstrate that Rab35 is critical for sprout formation; in its absence, apicobasal polarity is entirely lost in vitro and in vivo. To determine mechanism, we systematically explored established Rab35 effectors and show that none are operative in endothelial cells. However, we find that Rab35 partners with DENNd1c, an evolutionarily divergent guanine exchange factor, to localize to actin. Here, Rab35 regulates actin polymerization through limiting Rac1 and RhoA activity, which is required to set up proper apicobasal polarity during sprout formation. Our findings establish that Rab35 is a potent brake of actin remodeling during blood vessel development. The promiscuous GTPase Rab35 has been shown to be involved in many important cellular functions. In this article, Francis et al. illustrate how Rab35 acts as a critical brake to actin remodeling during sprouting angiogenesis and how it is necessary for proper blood vessel development.
Collapse
Affiliation(s)
- Caitlin R Francis
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Hayle Kincross
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO, USA.
| |
Collapse
|
7
|
Ma WJ, Chen Y, Peng JH, Tang C, Zhang L, Liu M, Hu S, Xu H, Tan H, Gu Y, Pan ZZ, Chen G, Zhou ZG, Zhang RX. Stage IV colon cancer patients without DENND2D expression benefit more from neoadjuvant chemotherapy. Cell Death Dis 2022; 13:439. [PMID: 35523764 PMCID: PMC9076603 DOI: 10.1038/s41419-022-04885-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022]
Abstract
According to the EPOC study, chemotherapy could improve 5-year disease-free survival of stage IV colon cancer patients by 8.1%. However, more molecular biomarkers are required to identify patients who need neoadjuvant chemotherapy. DENND2D expression was evaluated by immunohistochemistry in 181 stage IV colon cancer patients. The prognosis was better for patients with DENND2D expression than patients without DENND2D expression (5-year overall survival [OS]: 42% vs. 12%, p = 0.038; 5-year disease-free survival: 20% vs. 10%, p = 0.001). Subgroup analysis of the DENND2D-negative group showed that patients treated with neoadjuvant chemotherapy achieved longer OS than patients without neoadjuvant chemotherapy (RR = 0.179; 95% CI = 0.054-0.598; p = 0.003). DENND2D suppressed CRC proliferation in vitro and in vivo. Downregulation of DENND2D also promoted metastasis to distant organs in vivo. Mechanistically, DENND2D suppressed the MAPK pathway in CRC. Colon cancer patients who were DENND2D negative always showed a worse prognosis and were more likely to benefit from neoadjuvant chemotherapy. DENND2D may be a new prognostic factor and a predictor of the need for neoadjuvant chemotherapy in stage IV colon cancer.
Collapse
Affiliation(s)
- Wen-juan Ma
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Intensive Care Unit Department, Sun Yat-Sen University Cancer Centre, Guangzhou, 510060 Guangdong Province People’s Republic of China
| | - Yukun Chen
- grid.12981.330000 0001 2360 039XZhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan Rd. 2, Guangzhou, 510080 Guangdong Province People’s Republic of China
| | - Jian-hong Peng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Colorectal Surgery, Sun Yat-Sen University Cancer Centre, Guangzhou, 510060 Guangdong Province People’s Republic of China
| | - Chaoming Tang
- grid.410737.60000 0000 8653 1072The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, QingYuan, Guangdong Province People’s Republic of China
| | - Ling Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province People’s Republic of China
| | - Min Liu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Ultrasound, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province People’s Republic of China
| | - Shanshan Hu
- grid.430387.b0000 0004 1936 8796Department of Statistics, Rutgers University, New Brunswick, NJ 08854 USA
| | - Haineng Xu
- grid.25879.310000 0004 1936 8972Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Hua Tan
- grid.267308.80000 0000 9206 2401School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Yangkui Gu
- grid.488530.20000 0004 1803 6191Intervention Department, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province People’s Republic of China
| | - Zhi-zhong Pan
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Colorectal Surgery, Sun Yat-Sen University Cancer Centre, Guangzhou, 510060 Guangdong Province People’s Republic of China
| | - Gong Chen
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Colorectal Surgery, Sun Yat-Sen University Cancer Centre, Guangzhou, 510060 Guangdong Province People’s Republic of China
| | - Zhong-guo Zhou
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province People’s Republic of China
| | - Rong-xin Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Colorectal Surgery, Sun Yat-Sen University Cancer Centre, Guangzhou, 510060 Guangdong Province People’s Republic of China
| |
Collapse
|
8
|
Deo N, Redpath G. Serotonin Receptor and Transporter Endocytosis Is an Important Factor in the Cellular Basis of Depression and Anxiety. Front Cell Neurosci 2022; 15:804592. [PMID: 35280519 PMCID: PMC8912961 DOI: 10.3389/fncel.2021.804592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Depression and anxiety are common, debilitating psychiatric conditions affecting millions of people throughout the world. Current treatments revolve around selective serotonin reuptake inhibitors (SSRIs), yet these drugs are only moderately effective at relieving depression. Moreover, up to 30% of sufferers are SSRI non-responders. Endocytosis, the process by which plasma membrane and extracellular constituents are internalized into the cell, plays a central role in the regulation of serotonin (5-hydroxytryptophan, 5-HT) signaling, SSRI function and depression and anxiety pathogenesis. Despite their therapeutic potential, surprisingly little is known about the endocytosis of the serotonin receptors (5-HT receptors) or the serotonin transporter (SERT). A subset of 5-HT receptors are endocytosed by clathrin-mediated endocytosis following serotonin binding, while for the majority of 5-HT receptors the endocytic regulation is not known. SERT internalizes serotonin from the extracellular space into the cell to limit the availability of serotonin for receptor binding and signaling. Endocytosis of SERT reduces serotonin uptake, facilitating serotonin signaling. SSRIs predominantly inhibit SERT, preventing serotonin uptake to enhance 5-HT receptor signaling, while hallucinogenic compounds directly activate specific 5-HT receptors, altering their interaction with endocytic adaptor proteins to induce alternate signaling outcomes. Further, multiple polymorphisms and transcriptional/proteomic alterations have been linked to depression, anxiety, and SSRI non-response. In this review, we detail the endocytic regulation of 5-HT receptors and SERT and outline how SSRIs and hallucinogenic compounds modulate serotonin signaling through endocytosis. Finally, we will examine the deregulated proteomes in depression and anxiety and link these with 5-HT receptor and SERT endocytosis. Ultimately, in attempting to integrate the current studies on the cellular biology of depression and anxiety, we propose that endocytosis is an important factor in the cellular basis of depression and anxiety. We will highlight how a thorough understanding 5-HT receptor and SERT endocytosis is integral to understanding the biological basis of depression and anxiety, and to facilitate the development of a next generation of specific, efficacious antidepressant treatments.
Collapse
Affiliation(s)
- Nikita Deo
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Gregory Redpath
- European Molecular Biology Lab (EMBL) Australia Node in Single Molecule Science, School of Medical Sciences and the Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Gregory Redpath
| |
Collapse
|
9
|
Exploration of Alternative Splicing (AS) Events in MDV-Infected Chicken Spleens. Genes (Basel) 2021; 12:genes12121857. [PMID: 34946806 PMCID: PMC8701255 DOI: 10.3390/genes12121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Marek’s disease (MD) was an immunosuppression disease induced by Marek’s disease virus (MDV). MD caused huge economic loss to the global poultry industry, but it also provided an ideal model for studying diseases induced by the oncogenic virus. Alternative splicing (AS) simultaneously produced different isoform transcripts, which are involved in various diseases and individual development. To investigate AS events in MD, RNA-Seq was performed in tumorous spleens (TS), spleens from the survivors (SS) without any lesion after MDV infection, and non-infected chicken spleens (NS). In this study, 32,703 and 25,217 AS events were identified in TS and SS groups with NS group as the control group, and 1198, 1204, and 348 differently expressed (DE) AS events (p-value < 0.05 and FDR < 0.05) were identified in TS vs. NS, TS vs. SS, SS vs. NS, respectively. Additionally, Function enrichment analysis showed that ubiquitin-mediated proteolysis, p53 signaling pathway, and phosphatidylinositol signaling system were significantly enriched (p-value < 0.05). Small structural variations including SNP and indel were analyzed based on RNA-Seq data, and it showed that the TS group possessed more variants on the splice site region than those in SS and NS groups, which might cause more AS events in the TS group. Combined with previous circRNA data, we found that 287 genes could produce both circular and linear RNAs, which suggested these genes were more active in MD lymphoma transformation. This study has expanded the understanding of the MDV infection process and provided new insights for further analysis of resistance/susceptibility mechanisms.
Collapse
|
10
|
Ramanathan B, Murugan J, Velayutham K. Pilot study on evaluation and determination of the prevalence of Polycystic Ovarian Syndrome (PCOS) associated gene markers in the South Indian population. Indian J Endocrinol Metab 2021; 25:551-558. [PMID: 35355907 PMCID: PMC8959196 DOI: 10.4103/ijem.ijem_340_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/26/2021] [Accepted: 12/10/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS) is typically characterized by a spectrum of manifestations that include menstrual irregularities, anovulation, cysts, hyperandrogenic features like hirsutism, acne, alopecia, and various metabolic complications. The pathology of PCOS is complex and several mechanisms have been potentially involved in the genetic abnormalities/dysfunctions. Hence, the present study aims to examine the prevalence and association of polymorphisms in candidate genes (thyroid adenoma-associated gene [THADA], luteinizing hormone and human chorionic gonadotropin receptor [LHCGR], DENN domain containing 1A [DENND1A], follicle-stimulating hormone receptor [FSHR], Connexin37 [CX37], angiotensin-converting enzyme [ACE], insulin receptor [INSR] and calpain 10 [CAPN10]) in PCOS patients of the South Indian regional population. METHODS The study group included 20 PCOS cases and 10 controls, whose deoxyribonucleic acid (DNA) were genotyped by the polymerase chain reaction (PCR), PCR-restriction fragment length polymorphism (RFLP), and PCR product sequencing to determine the prevalence of the DENND1A (rs10818854), LHCGR (rs13405728), FSHR (rs2349415), THADA (rs13429458), CX37 (rs1764391), ACE (rs1799752), INSR (rs1799817), and CAPN10 (rs2975760) polymorphisms. Clinical examinations including anthropometric measurements, biochemical investigations relevant to glucose metabolism, and hormones were measured. RESULTS A significant difference was observed in the DENND1A (rs10818854) polymorphism between the control and PCOS patients (P = 0.001). The variants of LHCGR, FSHR, THADA, CX37, ACE, INSR, and CAPN10 were not statistically significant with PCOS. The body mass index (BMI) (P = 0.01), triglycerides (P = 0.01), and dehydroepiandrosterone sulfate (DHEAS) (P = 0.05) were significantly different between the PCOS patients and controls. Significant results were observed in rs1799817 single nucleotide polymorphisms (SNP) of INSR with elevated levels of triglycerides and rs10818854 of DENND1A, rs13429458 of THADA, rs2349415 of FSHR with the high levels of DHEAS. CONCLUSION In the study population, the presence of rs10818854 of DENND1A polymorphism may be associated with the risk of PCOS and high levels of DHEAS.
Collapse
Affiliation(s)
- Balaji Ramanathan
- Department of Molecular Genetics, Alpha Health Foundation, Madurai, Tamil Nadu, India
| | - Jeyasudha Murugan
- Department of Molecular Genetics, Alpha Health Foundation, Madurai, Tamil Nadu, India
| | - Kumaravel Velayutham
- Department of Molecular Genetics, Alpha Health Foundation, Madurai, Tamil Nadu, India
| |
Collapse
|
11
|
Kulasekaran G, Chaineau M, Piscopo VEC, Verginelli F, Fotouhi M, Girard M, Tang Y, Dali R, Lo R, Stifani S, McPherson PS. An Arf/Rab cascade controls the growth and invasiveness of glioblastoma. J Cell Biol 2021; 220:e202004229. [PMID: 33443570 PMCID: PMC7812876 DOI: 10.1083/jcb.202004229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma is the most common and deadly malignant brain cancer. We now demonstrate that loss of function of the endosomal GTPase Rab35 in human brain tumor initiating cells (BTICs) increases glioblastoma growth and decreases animal survival following BTIC implantation in mouse brains. Mechanistically, we identify that the GTPase Arf5 interacts with the guanine nucleotide exchange factor (GEF) for Rab35, DENND1/connecdenn, and allosterically enhances its GEF activity toward Rab35. Knockdown of either Rab35 or Arf5 increases cell migration, invasiveness, and self-renewal in culture and enhances the growth and invasiveness of BTIC-initiated brain tumors in mice. RNAseq of the tumors reveals up-regulation of the tumor-promoting transcription factor SPOCD1, and disruption of the Arf5/Rab35 axis in glioblastoma cells leads to strong activation of the epidermal growth factor receptor, with resulting enhancement of SPOCD1 levels. These discoveries reveal an unexpected cascade between an Arf and a Rab and indicate a role for the cascade, and thus endosomal trafficking, in brain tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Peter S. McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Park EW, Kawai K, Egami Y, Araki N. A novel DENND1B-localized structure found at the basal side of adherent cells. Histochem Cell Biol 2020; 155:9-18. [PMID: 33135087 DOI: 10.1007/s00418-020-01935-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 11/30/2022]
Abstract
Rab35 is a small G protein involved in various cellular events including clathrin-dependent endocytosis, phagocytosis, and autophagy. DENND1B, a DENN family member, acts as a guanine nucleotide exchange factor (GEF) for Rab35 to convert it to the GTP-bound active form from the GDP-bound inactive form. DENND1B contains the DENN domain which harbors GEF activity for Rab35 in the N-terminus, while the clathrin binding motif and adaptor protein-2-interaction motif are at the C-terminus. In this study, we investigated the intracellular localization of DENN1B in various cell types and found novel DENND1B-localized gathered line structures in BS-C-1 cells and in some other cell types. The localization of DENND1B to gathered line structures was dependent on a specific region located in the C-terminus of DENND1B protein. DENND1B-localized gathered lines were partially associated with microtubules but not with F-actin; instead, F-actin bundles surrounded the assembly of gathered lines. We also show that the gathered line structures appeared at the bottom of spreading lamellipodia and disappeared at the retracting site during cell motility in EGF-stimulated BS-C-1 cells. These results shed light on a new role for DENND1B in the regulation of cell migration.
Collapse
Affiliation(s)
- Eugene Won Park
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa, 761-0793, Japan
| | - Katsuhisa Kawai
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa, 761-0793, Japan
| | - Youhei Egami
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa, 761-0793, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa, 761-0793, Japan.
| |
Collapse
|
13
|
Teves ME, Modi BP, Kulkarni R, Han AX, Marks JS, Subler MA, Windle J, Newall JM, McAllister JM, Strauss JF. Human DENND1A.V2 Drives Cyp17a1 Expression and Androgen Production in Mouse Ovaries and Adrenals. Int J Mol Sci 2020; 21:ijms21072545. [PMID: 32268539 PMCID: PMC7177906 DOI: 10.3390/ijms21072545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 01/19/2023] Open
Abstract
The DENND1A locus is associated with polycystic ovary syndrome (PCOS), a disorder characterized by androgen excess. Theca cells from ovaries of PCOS women have elevated levels of a DENND1A splice variant (DENND1A.V2). Forced expression of this variant in normal theca cells increases androgen biosynthesis and CYP17A1 expression, whereas knockdown of the transcript in PCOS theca cells reduced androgen production and CYP17A1 mRNA. We attempted to create a murine model of PCOS by expressing hDENND1A.V2 using standard transgenic approaches. There is no DENND1A.V2 protein equivalent in mice, and the murine Dennd1a gene is essential for viability since Dennd1a knockout mice are embryonically lethal, suggesting that Dennd1a is developmentally critical. Three different hDENND1A.V2 transgenic mice lines were created using CMV, Lhcgr, and TetOn promoters. The hDENND1A.V2 mice expressed hDENND1A.V2 transcripts. While hDENND1A.V2 protein was not detectable by Western blot analyses, appropriate hDENND1A.V2 immunohistochemical staining was observed. Corresponding Cyp17a1 mRNA levels were elevated in ovaries and adrenals of CMV transgenic mice, as were plasma steroid production by theca interstitial cells isolated from transgenic ovaries. Even though the impact of robust hDENND1A.V2 expression could not be characterized, our findings are consistent with the notion that elevated hDENND1A.V2 has a role in the hyperandrogenemia of PCOS.
Collapse
Affiliation(s)
- Maria E. Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Bhavi P. Modi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA; (B.P.M.); (R.K.); (M.A.S.); (J.W.)
| | - Rewa Kulkarni
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA; (B.P.M.); (R.K.); (M.A.S.); (J.W.)
| | - Angela X. Han
- Department of Pathology, Penn State Hershey College of Medicine, Hershey, PA 17033, USA; (A.X.H.); (J.S.M.); (J.M.N.)
| | - Jamaia S. Marks
- Department of Pathology, Penn State Hershey College of Medicine, Hershey, PA 17033, USA; (A.X.H.); (J.S.M.); (J.M.N.)
| | - Mark A. Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA; (B.P.M.); (R.K.); (M.A.S.); (J.W.)
| | - Jolene Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA; (B.P.M.); (R.K.); (M.A.S.); (J.W.)
| | - Jordan M. Newall
- Department of Pathology, Penn State Hershey College of Medicine, Hershey, PA 17033, USA; (A.X.H.); (J.S.M.); (J.M.N.)
| | - Jan M. McAllister
- Department of Pathology, Penn State Hershey College of Medicine, Hershey, PA 17033, USA; (A.X.H.); (J.S.M.); (J.M.N.)
- Correspondence: (J.M.M.); (J.F.S.III); Tel.: +1-717-531-4073 (J.M.M.); +1-(215)-519-0614 (J.F.S.III)
| | - Jerome F. Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA 23298, USA;
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA; (B.P.M.); (R.K.); (M.A.S.); (J.W.)
- Correspondence: (J.M.M.); (J.F.S.III); Tel.: +1-717-531-4073 (J.M.M.); +1-(215)-519-0614 (J.F.S.III)
| |
Collapse
|
14
|
Kinoshita R, Homma Y, Fukuda M. Rab35-GEFs, DENND1A and folliculin differentially regulate podocalyxin trafficking in two- and three-dimensional epithelial cell cultures. J Biol Chem 2020; 295:3652-3663. [PMID: 31992598 PMCID: PMC7076212 DOI: 10.1074/jbc.ra119.011646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/24/2020] [Indexed: 11/06/2022] Open
Abstract
Polarized epithelial cells have functionally distinct apical and basolateral membranes through which they communicate with external and internal bodily environments, respectively. The establishment and maintenance of this asymmetric structure depend on polarized trafficking of specific cargos, but the precise molecular mechanism is incompletely understood. We previously showed that Rab35, a member of the Rab family small GTPases, differentially regulates the trafficking of an apical cargo, podocalyxin (PODXL), in two-dimensional (2D) and three-dimensional (3D) Madin-Darby canine kidney (MDCK) II cell cultures through specific interactions with two distinct effectors, OCRL inositol polyphosphate-5-phosphatase (OCRL) and ArfGAP with coiled-coil, ankyrin repeat and pleckstrin homology domains 2 (ACAP2), respectively. However, whether the upstream regulators of Rab35 also differ depending on the culture conditions remains completely unknown. Here, we investigated four known guanine nucleotide exchange factors (GEFs) of Rab35, namely DENN domain-containing 1A (DENND1A), DENND1B, DENND1C, and folliculin (FLCN), and demonstrate that DENND1A and FLCN exhibit distinct requirements for Rab35-dependent PODXL trafficking under the two culture conditions. In 3D cell cultures, only DENDN1A-knockout cysts exhibited the inverted localization of PODXL similar to that of Rab35-knockout cysts. Moreover, the DENN domain, harboring GEF activity toward Rab35, was required for proper PODXL trafficking to the apical membrane. By contrast, FLCN-knockdown cells specifically accumulated PODXL in actin-rich structures similar to the Rab35-knockdown cells in 2D cell cultures. Our findings indicate that two distinct functional cascades of Rab35, the FLCN-Rab35-OCRL and the DENND1A-Rab35-ACAP2 axes, regulate PODXL trafficking in 2D and 3D MDCK II cell cultures, respectively.
Collapse
Affiliation(s)
- Riko Kinoshita
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuta Homma
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
15
|
Kulkarni R, Teves ME, Han AX, McAllister JM, Strauss JF. Colocalization of Polycystic Ovary Syndrome Candidate Gene Products in Theca Cells Suggests Novel Signaling Pathways. J Endocr Soc 2019; 3:2204-2223. [PMID: 31723719 PMCID: PMC6839531 DOI: 10.1210/js.2019-00169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022] Open
Abstract
Genome-wide association studies identified loci associated with polycystic ovary syndrome (PCOS), including those near the LH receptor gene (LHCGR), a clathrin-binding protein (DENND1A) that functions as a guanine nucleotide exchange factor, and the gene encoding RAB5B, a GTPase involved in vesicular trafficking. We proposed that these three PCOS loci could be assembled into a functional network that contributes to altered gene expression in theca cells, resulting in increased androgen synthesis. The functional significance of this network was supported by our discovery that a truncated protein splice variant of the DENND1A gene, termed DENND1A.V2, is elevated in PCOS theca cells, and that forced expression of DENND1A.V2 in normal theca cells increased CYP11A1 and CYP17A1 expression and androgen synthesis, a hallmark of PCOS. In this study, we demonstrate the colocalization of LHCGR, DENND1AV.2, and RAB5B proteins in various cellular compartments in normal and PCOS theca cells by immunofluorescence. Human chorionic gonadotropin and forskolin stimulation was shown to affect the cytoplasmic distribution of LHCGR, DENND1A.V2, and RAB5B. DENND1A.V2 accumulated in the nuclei of the theca cells. Moreover, PCOS theca cells, following forskolin treatment, had a significantly greater relative abundance of nuclear DENND1A.V2. RAB5B also accumulated in the nuclei of PCOS theca cells treated with forskolin. In contrast, LHCGR did not enter the nucleus. This cytological evidence, and the previously reported increase in androgen biosynthesis with forced expression of DENND1A.V2 in normal theca cells, raises the possibility that DENND1A.V2 and RAB5B participate in increasing transcription of genes involved in androgen synthesis.
Collapse
Affiliation(s)
- Rewa Kulkarni
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Maria E Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Angela X Han
- Department of Pathology, Penn State Hershey College of Medicine, Hershey, Pennsylvania
| | - Jan M McAllister
- Department of Pathology, Penn State Hershey College of Medicine, Hershey, Pennsylvania
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
16
|
Kuhns S, Seixas C, Pestana S, Tavares B, Nogueira R, Jacinto R, Ramalho JS, Simpson JC, Andersen JS, Echard A, Lopes SS, Barral DC, Blacque OE. Rab35 controls cilium length, function and membrane composition. EMBO Rep 2019; 20:e47625. [PMID: 31432619 PMCID: PMC6776896 DOI: 10.15252/embr.201847625] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Rab and Arl guanine nucleotide-binding (G) proteins regulate trafficking pathways essential for the formation, function and composition of primary cilia, which are sensory devices associated with Sonic hedgehog (Shh) signalling and ciliopathies. Here, using mammalian cells and zebrafish, we uncover ciliary functions for Rab35, a multitasking G protein with endocytic recycling, actin remodelling and cytokinesis roles. Rab35 loss via siRNAs, morpholinos or knockout reduces cilium length in mammalian cells and the zebrafish left-right organiser (Kupffer's vesicle) and causes motile cilia-associated left-right asymmetry defects. Consistent with these observations, GFP-Rab35 localises to cilia, as do GEF (DENND1B) and GAP (TBC1D10A) Rab35 regulators, which also regulate ciliary length and Rab35 ciliary localisation. Mammalian Rab35 also controls the ciliary membrane levels of Shh signalling regulators, promoting ciliary targeting of Smoothened, limiting ciliary accumulation of Arl13b and the inositol polyphosphate 5-phosphatase (INPP5E). Rab35 additionally regulates ciliary PI(4,5)P2 levels and interacts with Arl13b. Together, our findings demonstrate roles for Rab35 in regulating cilium length, function and membrane composition and implicate Rab35 in pathways controlling the ciliary levels of Shh signal regulators.
Collapse
Affiliation(s)
- Stefanie Kuhns
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Cecília Seixas
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Sara Pestana
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Bárbara Tavares
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Renata Nogueira
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Raquel Jacinto
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - José S Ramalho
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Jeremy C Simpson
- School of Biology and Environmental ScienceUniversity College DublinDublin 4Ireland
| | - Jens S Andersen
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | | | - Susana S Lopes
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Duarte C Barral
- CEDOCNOVA Medical School|Faculdade de Ciências MédicasUniversidade NOVA de LisboaLisboaPortugal
| | - Oliver E Blacque
- School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
| |
Collapse
|
17
|
Zhang J, Zhang K, Qi L, Hu Q, Shen Z, Liu B, Deng J, Zhang C, Zhang Y. DENN domain-containing protein FAM45A regulates the homeostasis of late/multivesicular endosomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:916-929. [DOI: 10.1016/j.bbamcr.2019.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/25/2019] [Indexed: 11/27/2022]
|
18
|
Shi J, Gao Q, Cao Y, Fu J. Dennd1a, a susceptibility gene for polycystic ovary syndrome, is essential for mouse embryogenesis. Dev Dyn 2019; 248:351-362. [PMID: 30884041 DOI: 10.1002/dvdy.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/28/2019] [Accepted: 03/13/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The DENND1A has been identified as a guanine nucleotide exchange factor for small GTPase Rab35, which functions in endocytic trafficking to mediate the recycling of selective cargos. Genetic alterations within the DENND1A gene have been implicated in human disease such as polycystic ovary syndrome (PCOS). However, the role of DENND1A in developmental and reproductive processes is largely unknown. RESULTS Using Dennd1a gene knockout mice, we uncovered that homogeneous Dennd1a-/- mutants died around embryonic day (E) 14.5. The brain of Dennd1a-/- embryos exhibited defects, partially attributed to the dysregulation of cell division and survival in the telencephalon. The transcription of Fgf8 mRNA was ectopically elevated in the dorsal midline of telencephalon, concomitant with a decrease of active β-catenin and Axin2 in the brain of Dennd1a-/- embryos. During liver morphogenesis, the ablation of Dennd1a impaired hepatic cell proliferation, the differentiation of hepatocyte, and hepatic hematopoiesis. In addition, loss of Dennd1a also affected the development of primordial germ cells. CONCLUSIONS We demonstrate that Dennd1a, a susceptibility gene for PCOS, is essential for embryogenesis, probably through the mediation of endocytic recycling of selective cargos that are involved in cell signaling crucial for the development of multiple embryonic organ systems.
Collapse
Affiliation(s)
- Jingjing Shi
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
| | - Qing Gao
- Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongzhi Cao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
| | - Jiang Fu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
19
|
Bulek K, Chen X, Parron V, Sundaram A, Herjan T, Ouyang S, Liu C, Majors A, Zepp J, Gao J, Dongre A, Bodaszewska-Lubas M, Echard A, Aronica M, Carman J, Garantziotis S, Sheppard D, Li X. IL-17A Recruits Rab35 to IL-17R to Mediate PKCα-Dependent Stress Fiber Formation and Airway Smooth Muscle Contractility. THE JOURNAL OF IMMUNOLOGY 2019; 202:1540-1548. [PMID: 30683702 DOI: 10.4049/jimmunol.1801025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
Abstract
IL-17A is a critical proinflammatory cytokine for the pathogenesis of asthma including neutrophilic pulmonary inflammation and airway hyperresponsiveness. In this study, by cell type-specific deletion of IL-17R and adaptor Act1, we demonstrated that IL-17R/Act1 exerts a direct impact on the contraction of airway smooth muscle cells (ASMCs). Mechanistically, IL-17A induced the recruitment of Rab35 (a small monomeric GTPase) and DennD1C (guanine nucleotide exchange factor [GEF]) to the IL-17R/Act1 complex in ASMCs, resulting in activation of Rab35. Rab35 knockdown showed that IL-17A-induced Rab35 activation was essential for protein kinase Cα (PKCα) activation and phosphorylation of fascin at Ser39 in ASMCs, allowing F-actin to interact with myosin to form stress fibers and enhance the contraction induced by methacholine. PKCα inhibitor or Rab35 knockdown indeed substantially reduced IL-17A-induced stress fiber formation in ASMCs and attenuated IL-17A-enhanced, methacholine-induced contraction of airway smooth muscle. Taken together, these data indicate that IL-17A promotes airway smooth muscle contraction via direct recruitment of Rab35 to IL-17R, followed by PKCα activation and stress fiber formation.
Collapse
Affiliation(s)
- Katarzyna Bulek
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195; .,Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Xing Chen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Vandy Parron
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Aparna Sundaram
- Lung Biology Center, University of California San Francisco, San Francisco, CA 94143
| | - Tomasz Herjan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195.,Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Suidong Ouyang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Caini Liu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Alana Majors
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Jarod Zepp
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Ji Gao
- Discovery Biology, Bristol-Myers Squibb, Princeton, NJ 08543; and
| | - Ashok Dongre
- Discovery Biology, Bristol-Myers Squibb, Princeton, NJ 08543; and
| | - Malgorzata Bodaszewska-Lubas
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Pasteur Institute, 75015 Paris, France
| | - Mark Aronica
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Julie Carman
- Discovery Biology, Bristol-Myers Squibb, Princeton, NJ 08543; and
| | - Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Dean Sheppard
- Lung Biology Center, University of California San Francisco, San Francisco, CA 94143
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195;
| |
Collapse
|
20
|
Ye B, Duan B, Deng W, Wang Y, Chen Y, Cui J, Sun S, Zhang Y, Du J, Gu L, Lin L, Tang Y. EGF Stimulates Rab35 Activation and Gastric Cancer Cell Migration by Regulating DENND1A-Grb2 Complex Formation. Front Pharmacol 2018; 9:1343. [PMID: 30524285 PMCID: PMC6261971 DOI: 10.3389/fphar.2018.01343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/31/2018] [Indexed: 12/23/2022] Open
Abstract
Aims: The aim of this study was to reveal the specific molecular mechanisms by which DENND1A accepts EGF signaling and activates Rab35 in gastric cancer. Methods: The expression of proteins related to DENND1A was examined by western blot analysis. Activation of Rab35 was assessed by GST-pulldown. The interaction of DENND1A and Grb2 was assessed by GST-pulldown and co-immunoprecipitation assays. The relationship between DENND1A and cell migration and invasion was detected using wound healing and transwell by gene overexpression and RNA interference. Results: EGF stimulation significantly promoted cell migration, whereas transfection with siRab35 partially inhibited EGF-promoted cell migration. DENND1A is also involved in these processes and active Rab35. Moreover, DENND1A binds to the N-terminal and C-terminal SH3 domains of Grb2 through PRD. Of special interest is the observation that EGFR can recruit Grb2-DENND1A complex under EGF stimulation. Further results reveal that the higher the expression of DENND1A, the shorter progression-free survival of gastric cancer patients. Conclusion: In summary, we confirmed that EGF-Grb2-DENND1A-Rab35 signaling pathway with the interaction of DENND1A and Grb2 as a regulatory center could regulate gastric cancer cell migration and invasion. Ultimately, the expression level of DENND1A predicts the survival status of gastric cancer patients and may become one of the important targets for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Bixing Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Biao Duan
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Wenjie Deng
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yueyuan Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Jie Cui
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Shixiu Sun
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Luo Gu
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Lin Lin
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yurong Tang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Haley R, Wang Y, Zhou Z. The small GTPase RAB-35 defines a third pathway that is required for the recognition and degradation of apoptotic cells. PLoS Genet 2018; 14:e1007558. [PMID: 30138370 PMCID: PMC6107108 DOI: 10.1371/journal.pgen.1007558] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/12/2018] [Indexed: 01/18/2023] Open
Abstract
In metazoans, apoptotic cells are swiftly engulfed by phagocytes and degraded inside phagosomes. Multiple small GTPases in the Rab family are known to function in phagosome maturation by regulating vesicle trafficking. We discovered rab-35 as a new gene important for apoptotic cell clearance from a genetic screen targeting putative Rab GTPases in Caenorhabditis elegans. We further identified TBC-10 as a putative GTPase-activating protein (GAP), and FLCN-1 and RME-4 as two putative Guanine Nucleotide Exchange Factors (GEFs), for RAB-35. We found that RAB-35 was required for the efficient incorporation of early endosomes to phagosomes and for the timely degradation of apoptotic cell corpses. More specifically, RAB-35 promotes two essential events that initiate phagosome maturation: the switch of phagosomal membrane phosphatidylinositol species from PtdIns(4,5)P2 to PtdIns(3)P, and the recruitment of the small GTPase RAB-5 to phagosomal surfaces. These functions of RAB-35 were previously unknown. Remarkably, although the phagocytic receptor CED-1 regulates these same events, RAB-35 and CED-1 appear to function independently. Upstream of degradation, RAB-35 also facilitates the recognition of apoptotic cells independently of the known CED-1 and CED-5 pathways. RAB-35 localizes to extending pseudopods and is further enriched on nascent phagosomes, consistent with its dual roles in regulating apoptotic cell-recognition and phagosome maturation. Epistasis analyses indicate that rab-35 acts in parallel to both of the canonical ced-1/6/7 and ced-2/5/10/12 clearance pathways. We propose that RAB-35 acts as a robustness factor, defining a novel pathway that aids these canonical pathways in both the recognition and degradation of apoptotic cells.
Collapse
Affiliation(s)
- Ryan Haley
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Ying Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
22
|
Differential association of DENND1A genetic variants with polycystic ovary syndrome in Tunisian but not Bahraini Arab women. Gene 2018; 647:79-84. [DOI: 10.1016/j.gene.2018.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/06/2018] [Indexed: 01/22/2023]
|
23
|
Shaughnessy R, Echard A. Rab35 GTPase and cancer: Linking membrane trafficking to tumorigenesis. Traffic 2018; 19:247-252. [PMID: 29314576 DOI: 10.1111/tra.12546] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022]
Abstract
Rab35 is a small GTPase that is involved in many cellular processes, including membrane trafficking, cell polarity, lipid homeostasis, immunity, phagocytosis and cytokinesis. Recent studies showed that activating mutations confer Rab35 with oncogenic properties. Conversely, downregulation of Rab35 inverts apico-basal cell polarity and promotes cell migration. Here we review Rab35's known functions in membrane trafficking and signaling, cell division and cell migration in cancer cells and discuss the importance of Rab35-dependent membrane trafficking in cancer progression.
Collapse
Affiliation(s)
- Ronan Shaughnessy
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR3691, Paris, France
| |
Collapse
|
24
|
Mayers JR, Hu T, Wang C, Cárdenas JJ, Tan Y, Pan J, Bednarek SY. SCD1 and SCD2 Form a Complex That Functions with the Exocyst and RabE1 in Exocytosis and Cytokinesis. THE PLANT CELL 2017; 29:2610-2625. [PMID: 28970336 PMCID: PMC5774579 DOI: 10.1105/tpc.17.00409] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/12/2017] [Accepted: 09/26/2017] [Indexed: 05/21/2023]
Abstract
Although exocytosis is critical for the proper trafficking of materials to the plasma membrane, relatively little is known about the mechanistic details of post-Golgi trafficking in plants. Here, we demonstrate that the DENN (Differentially Expressed in Normal and Neoplastic cells) domain protein STOMATAL CYTOKINESIS DEFECTIVE1 (SCD1) and SCD2 form a previously unknown protein complex, the SCD complex, that functionally interacts with subunits of the exocyst complex and the RabE1 family of GTPases in Arabidopsis thaliana Consistent with a role in post-Golgi trafficking, scd1 and scd2 mutants display defects in exocytosis and recycling of PIN2-GFP. Perturbation of exocytosis using the small molecule Endosidin2 results in growth inhibition and PIN2-GFP trafficking defects in scd1 and scd2 mutants. In addition to the exocyst, the SCD complex binds in a nucleotide state-specific manner with Sec4p/Rab8-related RabE1 GTPases and overexpression of wild-type RabE1 rescues scd1 temperature-sensitive mutants. Furthermore, SCD1 colocalizes with the exocyst subunit, SEC15B, and RabE1 at the cell plate and in distinct punctae at or near the plasma membrane. Our findings reveal a mechanism for plant exocytosis, through the identification and characterization of a protein interaction network that includes the SCD complex, RabE1, and the exocyst.
Collapse
Affiliation(s)
| | - Tianwei Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chao Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jessica J Cárdenas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Yuqi Tan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Sebastian Y Bednarek
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
25
|
Activity-Dependent Degradation of Synaptic Vesicle Proteins Requires Rab35 and the ESCRT Pathway. J Neurosci 2017; 36:8668-86. [PMID: 27535913 DOI: 10.1523/jneurosci.0725-16.2016] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/29/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Synaptic vesicle (SV) pools must maintain a functional repertoire of proteins to efficiently release neurotransmitter. The accumulation of old or damaged proteins on SV membranes is linked to synaptic dysfunction and neurodegeneration. However, despite the importance of SV protein turnover for neuronal health, the molecular mechanisms underlying this process are largely unknown. Here, we have used dissociated rat hippocampal neurons to investigate the pathway for SV protein degradation. We find that neuronal activity drives the degradation of a subset of SV proteins and that the endosomal sorting complex required for transport (ESCRT) machinery and SV-associated GTPase Rab35 are key elements of this use-dependent degradative pathway. Specifically, neuronal activity induces Rab35 activation and binding to the ESCRT-0 protein Hrs, which we have identified as a novel Rab35 effector. These actions recruit the downstream ESCRT machinery to SV pools, thereby initiating SV protein degradation via the ESCRT pathway. Our findings show that the Rab35/ESCRT pathway facilitates the activity-dependent removal of specific proteins from SV pools, thereby maintaining presynaptic protein homeostasis. SIGNIFICANCE STATEMENT Synaptic transmission is mediated by the release of chemical neurotransmitters from synaptic vesicles (SVs). This tightly regulated process requires a functional pool of SVs, necessitating cellular mechanisms for removing old or damaged proteins that could impair SV cycling. Here, we show that a subset of SV proteins is degraded in an activity-dependent manner and that key steps in this degradative pathway are the activation of the small GTPase Rab35 and the subsequent recruitment of the endosomal sorting complex required for transport (ESCRT) machinery to SV pools. Further, we demonstrate that ESCRT-0 component Hrs is an effector of Rab35, thus providing novel mechanistic insight into the coupling of neuronal activity with SV protein degradation and the maintenance of functional SV pools.
Collapse
|
26
|
Amick J, Ferguson SM. C9orf72: At the intersection of lysosome cell biology and neurodegenerative disease. Traffic 2017; 18:267-276. [PMID: 28266105 DOI: 10.1111/tra.12477] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 12/13/2022]
Abstract
The discovery that expansion of a hexanucleotide repeat within a noncoding region of the C9orf72 gene causes amyotrophic lateral sclerosis and frontotemporal dementia raised questions about C9orf72 protein function and potential disease relevance. The major predicted structural feature of the C9orf72 protein is a DENN (differentially expressed in normal and neoplastic cells) domain. As DENN domains are best characterized for regulation of specific Rab GTPases, it has been proposed that C9orf72 may also act through regulation of a GTPase target. Recent genetic and cell biological studies furthermore indicate that the C9orf72 protein functions at lysosomes as part of a larger complex that also contains the Smith-Magenis chromosome region 8 (SMCR8) and WD repeat-containing protein 41 (WDR41) proteins. An important role for C9orf72 at lysosomes is supported by defects in lysosome morphology and mTOR complex 1 (mTORC1) signaling arising from C9orf72 KO in diverse model systems. Collectively, these new findings define a C9orf72-containing protein complex and a lysosomal site of action as central to C9orf72 function and provide a foundation for the elucidation of direct physiological targets for C9orf72. Further elucidation of mechanisms whereby C9orf72 regulates lysosome function will help to determine how the reductions in C9orf72 expression levels that accompany hexanucleotide repeat expansions contribute to disease pathology.
Collapse
Affiliation(s)
- Joseph Amick
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut
| | - Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
27
|
The association of DENND1A gene polymorphisms and polycystic ovary syndrome risk: a systematic review and meta-analysis. Arch Gynecol Obstet 2016; 294:1073-1080. [PMID: 27488699 DOI: 10.1007/s00404-016-4159-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Polycystic ovary syndrome is heterogeneity disease, and the association with DEEND1A gene has been discussed incompatibly for a long time. We conducted a meta-analysis to evaluate the rs10818854, rs2479106, and rs10986105 polymorphism in DENND1A gene with PCOS susceptibility. METHODS Meta-analysis was performed for common allele versus rare allele using random effect model on published papers from January 1, 1980 to October 1, 2015. Subgroup analysis, sensitivity analysis and publication bias were also carried out ultimately. The combined odds ratio (OR) with 95 % confidence interval (95 % CI) was calculated to estimate the strength of the association. RESULTS The results showed that rs10818854 (OR = 1.36, 95 % CI 1.12-1.61) and rs10986105 (OR = 1.39, 95 % CI 1.20-1.58) polymorphism increased the risk of PCOS probably. A significant association was also found between rs2479106 mutation and Asian PCOS patients but not Europeans (OR = 1.32, 95 % CI 1.25-1.39; OR = 1.01, 95 % CI 0.97-1.05, respectively). CONCLUSIONS In conclusion, the DENND1A gene variant is likely to have influence on PCOS risk. Further studies are warranted to assess these associations in greater detail, especially in different populations and different subtype of PCOS patients.
Collapse
|
28
|
Klinkert K, Echard A. Rab35 GTPase: A Central Regulator of Phosphoinositides and F-actin in Endocytic Recycling and Beyond. Traffic 2016; 17:1063-77. [PMID: 27329675 DOI: 10.1111/tra.12422] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/12/2016] [Accepted: 06/12/2016] [Indexed: 12/11/2022]
Abstract
Rab35 is one of the first discovered members of the large Rab GTPase family, yet it received little attention for 10 years being considered merely as a Rab1-like GTPase. In 2006, Rab35 was recognized as a unique Rab GTPase localized both at the plasma membrane and on endosomes, playing essential roles in endocytic recycling and cytokinesis. Since then, Rab35 has become one of the most studied Rabs involved in a growing number of cellular functions, including endosomal trafficking, exosome release, phagocytosis, cell migration, immunological synapse formation and neurite outgrowth. Recently, Rab35 has been acknowledged as an oncogenic GTPase with activating mutations being found in cancer patients. In this review, we provide a comprehensive summary of known Rab35-dependent cellular functions and detail the few Rab35 effectors characterized so far. We also review how the Rab35 GTP/GDP cycle is regulated, and emphasize a newly discovered mechanism that controls its tight activation on newborn endosomes. We propose that the involvement of Rab35 in such diverse and apparently unrelated cellular functions can be explained by the central role of this GTPase in regulating phosphoinositides and F-actin, both on endosomes and at the plasma membrane.
Collapse
Affiliation(s)
- Kerstin Klinkert
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, 25-28 rue du Dr Roux, 75724, Paris, France.,Centre National de la Recherche Scientifique, UMR3691, 75015, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Institut de formation doctorale, 75252, Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, 25-28 rue du Dr Roux, 75724, Paris, France. .,Centre National de la Recherche Scientifique, UMR3691, 75015, Paris, France.
| |
Collapse
|
29
|
Enterohaemorrhagic E. coli modulates an ARF6:Rab35 signaling axis to prevent recycling endosome maturation during infection. J Mol Biol 2016; 428:3399-407. [PMID: 27261256 PMCID: PMC5013874 DOI: 10.1016/j.jmb.2016.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023]
Abstract
Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC/EHEC) manipulate a plethora of host cell processes to establish infection of the gut mucosa. This manipulation is achieved via the injection of bacterial effector proteins into host cells using a Type III secretion system. We have previously reported that the conserved EHEC and EPEC effector EspG disrupts recycling endosome function, reducing cell surface levels of host receptors through accumulation of recycling cargo within the host cell. Here we report that EspG interacts specifically with the small GTPases ARF6 and Rab35 during infection. These interactions target EspG to endosomes and prevent Rab35-mediated recycling of cargo to the host cell surface. Furthermore, we show that EspG has no effect on Rab35-mediated uncoating of newly formed endosomes, and instead leads to the formation of enlarged EspG/TfR/Rab11 positive, EEA1/Clathrin negative stalled recycling structures. Thus, this paper provides a molecular framework to explain how EspG disrupts recycling whilst also reporting the first known simultaneous targeting of ARF6 and Rab35 by a bacterial pathogen. EHEC delivers effector proteins into host cells to establish infection in the gut The effector EspG interacts with GTP-ARF6 confining EspG to recycling endosomes During infection EspG interacts preferentially with Rab35, not Rab1 Spatial restriction of bacterial effectors during infection determines their function
Collapse
|
30
|
Ishida M, E Oguchi M, Fukuda M. Multiple Types of Guanine Nucleotide Exchange Factors (GEFs) for Rab Small GTPases. Cell Struct Funct 2016; 41:61-79. [PMID: 27246931 DOI: 10.1247/csf.16008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rab small GTPases are highly conserved master regulators of membrane traffic in all eukaryotes. The same as the activation and inactivation of other small GTPases, the activation and inactivation of Rabs are tightly controlled by specific GEFs (guanine nucleotide exchange factors) and GAPs (GTPase-activating proteins), respectively. Although almost all Rab-GAPs reported thus far have a TBC (Tre-2/Bub2/Cdc16)/Rab-GAP domain in common, recent accumulating evidence has indicated the existence of a number of structurally unrelated types of Rab-GEFs, including DENN proteins, VPS9 proteins, Sec2 proteins, TRAPP complexes, heterodimer GEFs (Mon1-Ccz1, HPS1-HPS4 (BLOC-3 complex), Ric1-Rgp1 and Rab3GAP1/2), and other GEFs (e.g., REI-1 and RPGR). In this review article we provide an up-to-date overview of the structures and functions of all putative Rab-GEFs in mammals, with a special focus on their substrate Rabs, interacting proteins, associations with genetic diseases, and intracellular localizations.
Collapse
Affiliation(s)
- Morié Ishida
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University
| | | | | |
Collapse
|
31
|
Ioannou MS, McPherson PS. Regulation of Cancer Cell Behavior by the Small GTPase Rab13. J Biol Chem 2016; 291:9929-37. [PMID: 27044746 DOI: 10.1074/jbc.r116.715193] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The members of the Rab family of GTPases are master regulators of cellular membrane trafficking. With ∼70 members in humans, Rabs have been implicated in all steps of membrane trafficking ranging from vesicle formation and transport to vesicle docking/tethering and fusion. Vesicle trafficking controls the localization and levels of a myriad of proteins, thus regulating cellular functions including proliferation, metabolism, cell-cell adhesion, and cell migration. It is therefore not surprising that impairment of Rab pathways is associated with diseases including cancer. In this review, we highlight evidence supporting the role of Rab13 as a potent driver of cancer progression.
Collapse
Affiliation(s)
- Maria S Ioannou
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Peter S McPherson
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
32
|
Casarini L, Simoni M, Brigante G. Is polycystic ovary syndrome a sexual conflict? A review. Reprod Biomed Online 2016; 32:350-61. [DOI: 10.1016/j.rbmo.2016.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/23/2022]
|
33
|
Allaire PD, McPherson PS, Ritter B. Analysis of connecdenn 1-3 (DENN1A-C) GEF activity for Rab35. Methods Mol Biol 2016; 1298:217-31. [PMID: 25800846 DOI: 10.1007/978-1-4939-2569-8_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rabs (Ras-related proteins in brain) form the largest family of small GTPases and control numerous aspects of membrane trafficking at multiple cellular sites. Rab GTPases toggle between an inactive GDP-bound state and an active GTP-bound state. Activation of Rab GTPases requires guanine nucleotide exchange factors (GEFs) that interact with inactive GDP-bound Rabs and catalyze the removal of GDP, allowing GTP to bind. The largest single family of GEFs for Rabs is comprised of proteins bearing a DENN (differentially expressed in normal and neoplastic cells) domain. In this chapter we describe a biochemical method that directly measures the exchange activity of DENN domains by monitoring loading of GTP onto a Rab GTPase. Rabs are first purified from bacterial or mammalian sources and are then loaded with GDP. Purified DENN domains or DENN domain-bearing proteins are added in the presence of [(35)S]GTPγS and the transfer of [(35)S]GTPγS to the Rab is measured by filtering the reaction over nitrocellulose membranes to trap the Rab and thus the associated [(35)S]GTPγS.
Collapse
Affiliation(s)
- Patrick D Allaire
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
| | | | | |
Collapse
|
34
|
Zhang T, Hu Y, Ju J, Hou L, Li Z, Xiao D, Li Y, Yao J, Wang C, Zhang Y, Zhang L. Downregulation of miR-522 suppresses proliferation and metastasis of non-small cell lung cancer cells by directly targeting DENN/MADD domain containing 2D. Sci Rep 2016; 6:19346. [PMID: 26783084 PMCID: PMC4726064 DOI: 10.1038/srep19346] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/07/2015] [Indexed: 12/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC), one of the most common causes of cancer-related death, is a worldwide public health problem. MicroRNAs (miRNAs) have recently been identified as a novel class of regulators of carcinogenesis and tumor progression, including miRNAs associated with NSCLC. This study aimed to explore the role of miR-522 in NSCLC and the mechanisms underlying this role. We report here that miR-522 expression was significantly increased in both human NSCLC tissues and cell lines. Furthermore, an MTT assay, 5-Ethynyl-2′-deoxyuridine (EdU) assay kit and flow cytometry confirmed that the inhibition of miR-522 suppressed NSCLC cells proliferation and induced apoptosis. Compared with miR-522 overexpression, miR-522 inhibitor markedly reduced cells migration and invasion, as indicated by wound-healing and transwell assays. In addition, a luciferase assay identified DENN/MADD domain containing 2D (DENND2D) as a direct target of miR-522. qRT-PCR and western blot analyses indicated the reciprocal expression of miR-522 and DENND2D in NSCLC tissue samples. DENND2D was involved in miR-522 induced proliferation and metastasis of NSCLC cells by a miRNA-masking antisense oligonucleotides (miR-mask) technology. These data highlight a novel molecular interaction between miR-522 and DENND2D, which indicates that targeting miR-522 may constitute a potential therapy for NSCLC.
Collapse
Affiliation(s)
- Tianze Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yingying Hu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China.,Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jin Ju
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Liangyu Hou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Zhange Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Dan Xiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Yongchao Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jianyu Yao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Chao Wang
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Linyou Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
35
|
Yang CW, Hojer CD, Zhou M, Wu X, Wuster A, Lee WP, Yaspan BL, Chan AC. Regulation of T Cell Receptor Signaling by DENND1B in TH2 Cells and Allergic Disease. Cell 2016; 164:141-155. [PMID: 26774822 DOI: 10.1016/j.cell.2015.11.052] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/11/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
Abstract
The DENN domain is an evolutionary conserved protein module found in all eukaryotes and serves as an exchange factor for Rab-GTPases to regulate diverse cellular functions. Variants in DENND1B are associated with development of childhood asthma and other immune disorders. To understand how DENND1B may contribute to human disease, Dennd1b(-/-) mice were generated and exhibit hyper-allergic responses following antigen challenge. Dennd1b(-/-) TH2, but not other TH cells, exhibit delayed receptor-induced T cell receptor (TCR) downmodulation, enhanced TCR signaling, and increased production of effector cytokines. As DENND1B interacts with AP-2 and Rab35, TH2 cells deficient in AP-2 or Rab35 also exhibit enhanced TCR-mediated effector functions. Moreover, human TH2 cells carrying asthma-associated DENND1B variants express less DENND1B and phenocopy Dennd1b(-/-) TH2 cells. These results provide a molecular basis for how DENND1B, a previously unrecognized regulator of TCR downmodulation in TH2 cells, contributes to asthma pathogenesis and how DENN-domain-containing proteins may contribute to other human disorders.
Collapse
Affiliation(s)
- Chiao-Wen Yang
- Department of Immunology, Genentech, One DNA Way, South San Francisco, CA 94080, USA
| | - Caroline D Hojer
- Department of Immunology, Genentech, One DNA Way, South San Francisco, CA 94080, USA
| | - Meijuan Zhou
- Department of Translational Immunology, Genentech, One DNA Way, South San Francisco, CA 94080, USA
| | - Xiumin Wu
- Department of Translational Immunology, Genentech, One DNA Way, South San Francisco, CA 94080, USA
| | - Arthur Wuster
- Department of Human Genetics, Genentech, One DNA Way, South San Francisco, CA 94080, USA; Department of Bioinformatics and Computational Biology, Genentech, One DNA Way, South San Francisco, CA 94080, USA
| | - Wyne P Lee
- Department of Translational Immunology, Genentech, One DNA Way, South San Francisco, CA 94080, USA
| | - Brian L Yaspan
- Department of Human Genetics, Genentech, One DNA Way, South San Francisco, CA 94080, USA
| | - Andrew C Chan
- Research, Genentech, One DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
36
|
Molecular imaging analysis of Rab GTPases in the regulation of phagocytosis and macropinocytosis. Anat Sci Int 2015; 91:35-42. [DOI: 10.1007/s12565-015-0313-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/26/2015] [Indexed: 12/22/2022]
|
37
|
Wheeler DB, Zoncu R, Root DE, Sabatini DM, Sawyers CL. Identification of an oncogenic RAB protein. Science 2015; 350:211-7. [PMID: 26338797 PMCID: PMC4600465 DOI: 10.1126/science.aaa4903] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 08/24/2015] [Indexed: 12/16/2022]
Abstract
In a short hairpin RNA screen for genes that affect AKT phosphorylation, we identified the RAB35 small guanosine triphosphatase (GTPase)-a protein previously implicated in endomembrane trafficking-as a regulator of the phosphatidylinositol 3'-OH kinase (PI3K) pathway. Depletion of RAB35 suppresses AKT phosphorylation in response to growth factors, whereas expression of a dominant active GTPase-deficient mutant of RAB35 constitutively activates the PI3K/AKT pathway. RAB35 functions downstream of growth factor receptors and upstream of PDK1 and mTORC2 and copurifies with PI3K in immunoprecipitation assays. Two somatic RAB35 mutations found in human tumors generate alleles that constitutively activate PI3K/AKT signaling, suppress apoptosis, and transform cells in a PI3K-dependent manner. Furthermore, oncogenic RAB35 is sufficient to drive platelet-derived growth factor receptor α to LAMP2-positive endomembranes in the absence of ligand, suggesting that there may be latent oncogenic potential in dysregulated endomembrane trafficking.
Collapse
Affiliation(s)
- Douglas B Wheeler
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. Weill Cornell/Rockefeller University/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David M Sabatini
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02142, USA. David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
38
|
Novel microscopy-based screening method reveals regulators of contact-dependent intercellular transfer. Sci Rep 2015; 5:12879. [PMID: 26271723 PMCID: PMC4536488 DOI: 10.1038/srep12879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/10/2015] [Indexed: 12/23/2022] Open
Abstract
Contact-dependent intercellular transfer (codeIT) of cellular constituents can have functional consequences for recipient cells, such as enhanced survival and drug resistance. Pathogenic viruses, prions and bacteria can also utilize this mechanism to spread to adjacent cells and potentially evade immune detection. However, little is known about the molecular mechanism underlying this intercellular transfer process. Here, we present a novel microscopy-based screening method to identify regulators and cargo of codeIT. Single donor cells, carrying fluorescently labelled endocytic organelles or proteins, are co-cultured with excess acceptor cells. CodeIT is quantified by confocal microscopy and image analysis in 3D, preserving spatial information. An siRNA-based screening using this method revealed the involvement of several myosins and small GTPases as codeIT regulators. Our data indicates that cellular protrusions and tubular recycling endosomes are important for codeIT. We automated image acquisition and analysis to facilitate large-scale chemical and genetic screening efforts to identify key regulators of codeIT.
Collapse
|
39
|
Kulasekaran G, Nossova N, Marat AL, Lund I, Cremer C, Ioannou MS, McPherson PS. Phosphorylation-dependent Regulation of Connecdenn/DENND1 Guanine Nucleotide Exchange Factors. J Biol Chem 2015; 290:17999-18008. [PMID: 26055712 DOI: 10.1074/jbc.m115.636712] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Indexed: 12/19/2022] Open
Abstract
Connecdenn 1/2 are DENN (differentially expressed in normal and neoplastic cells) domain-bearing proteins that function as GEFs (guanine nucleotide exchange factors) for the small GTPase Rab35. Disruption of connecdenn/Rab35 function leads to defects in the recycling of multiple cargo proteins from endosomes with altered cell function, yet the regulation of connecdenn GEF activity is unexplored. We now demonstrate that connecdenn 1/2 are autoinhibited such that the purified, full-length proteins have significantly less Rab35 binding and GEF activity than the isolated DENN domain. Both proteins are phosphorylated with prominent phosphorylation sites between residues 500 and 600 of connecdenn 1. A large scale proteomics screen revealed that connecdenn 1 is phosphorylated at residues Ser-536 and Ser-538 in an Akt-dependent manner in response to insulin stimulation of adipocytes. Interestingly, we find that an Akt inhibitor reduces connecdenn 1 interaction with Rab35 after insulin treatment of adipocytes. Remarkably, a peptide flanking Ser-536/Ser-538 binds the DENN domain of connecdenn 1, whereas a phosphomimetic peptide does not. Moreover, connecdenn 1 interacts with 14-3-3 proteins, and this interaction is also disrupted by Akt inhibition and by mutation of Ser-536/Ser-538. We propose that Akt phosphorylation of connecdenn 1 downstream of insulin activation regulates connecdenn 1 function through an intramolecular interaction.
Collapse
Affiliation(s)
- Gopinath Kulasekaran
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Nadya Nossova
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Andrea L Marat
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Ingrid Lund
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Christopher Cremer
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Maria S Ioannou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|
40
|
Kanda M, Shimizu D, Nomoto S, Takami H, Hibino S, Oya H, Hashimoto R, Suenaga M, Inokawa Y, Kobayashi D, Tanaka C, Yamada S, Fujii T, Nakayama G, Sugimoto H, Koike M, Fujiwara M, Kodera Y. Prognostic impact of expression and methylation status of DENN/MADD domain-containing protein 2D in gastric cancer. Gastric Cancer 2015; 18:288-96. [PMID: 24695972 DOI: 10.1007/s10120-014-0372-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/12/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Patients with advanced gastric cancer (GC) have an adverse prognosis even after curative resection. Development of novel diagnostic and therapeutic approaches for GC is urgently required. METHODS The expression and methylation status of DENN/MADD domain-containing protein 2D (DENND2D), a member of the membrane trafficking proteins, were evaluated in 12 GC cell lines and 112 pairs of surgical specimens. Subgroup analysis based on tumor differentiation, location, and morphology was also performed. Expression and distribution of DENND2D protein were determined by immunohistochemistry. RESULTS The majority of GC cell lines (75%) and tissues (79%) showed reduced expression of DENND2D mRNA compared with noncancerous gastric tissues. GC tissues showed a significantly lower mean expression level of mRNA and a higher frequency of promoter hypermethylation of DENND2D than corresponding noncancerous tissues. No significant differences in DENND2D mRNA expression and methylation status were found between GC subtypes categorized by tumor differentiation, location, and morphology. The expression patterns of DENND2D protein were confirmed to be consistent with those of DENND2D mRNA. Downregulation of DENND2D mRNA in GC tissues was significantly associated with factors related to more advanced GC and subsequent adverse prognosis. Among 72 patients who underwent R0 resection, downregulation of DENND2D mRNA in GC tissues was an independent prognostic factor and associated with early recurrence. CONCLUSIONS Our results suggested that DENND2D is a putative tumor suppressor gene regulated by promoter hypermethylation in GC. Downregulation of DENND2D can serve as a novel tumor biomarker to predict progression and early recurrence of all types of GC.
Collapse
Affiliation(s)
- Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gammoh E, Arekat MR, Saldhana FL, Madan S, Ebrahim BH, Almawi WY. DENND1A gene variants in Bahraini Arab women with polycystic ovary syndrome. Gene 2015; 560:30-3. [DOI: 10.1016/j.gene.2015.01.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 01/21/2023]
|
42
|
Ioannou MS, Bell ES, Girard M, Chaineau M, Hamlin JNR, Daubaras M, Monast A, Park M, Hodgson L, McPherson PS. DENND2B activates Rab13 at the leading edge of migrating cells and promotes metastatic behavior. ACTA ACUST UNITED AC 2015; 208:629-48. [PMID: 25713415 PMCID: PMC4347646 DOI: 10.1083/jcb.201407068] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DENND2B, in a complex with the Rab13 effector MICAL-L2, activates Rab13 at the cell periphery, promoting the dynamic remodeling of the cell’s leading edge during tumor cell migration both in vitro and in vivo. The small guanosine triphosphatase Rab13 functions in exocytic vesicle trafficking in epithelial cells. Alterations in Rab13 activity have been observed in human cancers, yet the mechanism of Rab13 activation and its role in cancer progression remain unclear. In this paper, we identify the DENN domain protein DENND2B as the guanine nucleotide exchange factor for Rab13 and develop a novel Förster resonance energy transfer–based Rab biosensor to reveal activation of Rab13 by DENND2B at the leading edge of migrating cells. DENND2B interacts with the Rab13 effector MICAL-L2 at the cell periphery, and this interaction is required for the dynamic remodeling of the cell’s leading edge. Disruption of Rab13-mediated trafficking dramatically limits the invasive behavior of epithelial cells in vitro and the growth and migration of highly invasive cancer cells in vivo. Thus, blocking Rab13 activation by DENND2B may provide a novel target to limit the spread of epithelial cancers.
Collapse
Affiliation(s)
- Maria S Ioannou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Emily S Bell
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Martine Girard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Mathilde Chaineau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Jason N R Hamlin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Mark Daubaras
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Anie Monast
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Morag Park
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY 10461
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute; and Department of Biochemistry, Goodman Cancer Centre; McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
43
|
Benton MC, Johnstone A, Eccles D, Harmon B, Hayes MT, Lea RA, Griffiths L, Hoffman EP, Stubbs RS, Macartney-Coxson D. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss. Genome Biol 2015; 16:8. [PMID: 25651499 PMCID: PMC4301800 DOI: 10.1186/s13059-014-0569-x] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 12/11/2014] [Indexed: 12/18/2022] Open
Abstract
Background Environmental factors can influence obesity by epigenetic mechanisms. Adipose tissue plays a key role in obesity-related metabolic dysfunction, and gastric bypass provides a model to investigate obesity and weight loss in humans. Results Here, we investigate DNA methylation in adipose tissue from obese women before and after gastric bypass and significant weight loss. In total, 485,577 CpG sites were profiled in matched, before and after weight loss, subcutaneous and omental adipose tissue. A paired analysis revealed significant differential methylation in omental and subcutaneous adipose tissue. A greater proportion of CpGs are hypermethylated before weight loss and increased methylation is observed in the 3′ untranslated region and gene bodies relative to promoter regions. Differential methylation is found within genes associated with obesity, epigenetic regulation and development, such as CETP, FOXP2, HDAC4, DNMT3B, KCNQ1 and HOX clusters. We identify robust correlations between changes in methylation and clinical trait, including associations between fasting glucose and HDAC4, SLC37A3 and DENND1C in subcutaneous adipose. Genes investigated with differential promoter methylation all show significantly different levels of mRNA before and after gastric bypass. Conclusions This is the first study reporting global DNA methylation profiling of adipose tissue before and after gastric bypass and associated weight loss. It provides a strong basis for future work and offers additional evidence for the role of DNA methylation of adipose tissue in obesity. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0569-x) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Miyamoto Y, Yamamori N, Torii T, Tanoue A, Yamauchi J. Rab35, acting through ACAP2 switching off Arf6, negatively regulates oligodendrocyte differentiation and myelination. Mol Biol Cell 2014; 25:1532-42. [PMID: 24600047 PMCID: PMC4004601 DOI: 10.1091/mbc.e13-10-0600] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocyte precursor cells differentiate into oligodendrocytes to form myelin sheaths. Rab35/ACAP2 and cytohesin-2 antagonistically control oligodendrocyte differentiation and myelination through Arf6 on/off regulation, presenting a unique way of regulating oligodendrocyte differentiation and myelination by a small GTPase network. Oligodendrocyte precursor cells differentiate to produce myelin sheaths that insulate axons to ensure fast propagation of action potentials. Many aspects of differentiation are regulated by multiple extracellular signals. However, their intracellular signalings remain elusive. We show that Rab35 and its effector, ACAP2, a GTPase-activating protein that switches off Arf6 activity, negatively regulate oligodendrocyte morphological differentiation. Knockdown of Rab35 or ACAP2 with their respective small interfering RNAs promotes differentiation. As differentiation initiates, the activities of Rab35 and ACAP2 are down-regulated. The activity of Arf6, in contrast, is up-regulated. Arf6 knockdown inhibits differentiation, indicating that Rab35 and ACAP2 negatively regulate differentiation by down-regulating Arf6. Importantly, as differentiation proceeds, the activity of cytohesin-2, a guanine nucleotide exchange factor that switches on Arf6 activity, is up-regulated. Pharmacological inhibition of cytohesin-2 inhibits differentiation, suggesting that cytohesin-2 promotes differentiation by activating Arf6. Furthermore, using oligodendrocyte-neuronal cocultures, we find that knockdown of Rab35 or ACAP2 promotes myelination, whereas inhibition of cytohesin-2 or knockdown of Arf6 inhibits myelination. Thus Rab35/ACAP2 and cytohesin-2 antagonistically control oligodendrocyte differentiation and myelination through Arf6 regulation, presenting a unique small GTPase on/off switching mechanism.
Collapse
Affiliation(s)
- Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan Japan Human Health Sciences Foundation, Chuo, Tokyo 103-0001, Japan Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
| | | | | | | | | |
Collapse
|
45
|
Hibino S, Kanda M, Oya H, Takami H, Shimizu D, Nomoto S, Hishida M, Niwa Y, Koike M, Yamada S, Nishikawa Y, Asai M, Nakayama G, Fujii T, Sugimoto H, Fujiwara M, Kodera Y. Reduced expression of DENND2D through promoter hypermethylation is an adverse prognostic factor in squamous cell carcinoma of the esophagus. Oncol Rep 2013; 31:693-700. [PMID: 24317529 DOI: 10.3892/or.2013.2901] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 10/25/2013] [Indexed: 11/06/2022] Open
Abstract
Esophageal cancer ranks sixth in cancer mortality worldwide and patients with esophageal squamous cell carcinoma (ESCC) have a poor prognosis with a 5-year survival rate of less than 10%. Elucidation of the mechanisms of carcinogenesis and tumor progression in esophageal cancer is urgently required to develop targets for therapy and prognostic biomarkers. In the present study, the expression and regulatory mechanism of the differentially expressed in normal and neoplastic cells domain containing 2D (DENND2D), which is a regulator of Rab GTPases, were investigated to explore its potential as a tumor suppressor gene for ESCC. The level of DENND2D mRNA expression in ESCC cell lines and surgical specimens was determined using a quantitative real-time reverse transcription-polymerase chain reaction assay, and the relationship between the expression levels of DENND2D mRNA and clinicopathological factors was evaluated. The expression and distribution of DENND2D were determined using immunohistochemistry. DNA methylation analysis was performed to determine the regulatory mechanism of DENND2D expression in ESCC. The level of DENND2D mRNA expression was reduced in 8/9 ESCC cell lines and in 59/65 surgical specimens, and the mean expression levels were significantly lower in cancerous tissues compared to corresponding normal tissues (p<0.001). The expression pattern of DENND2D protein and mRNA was consistent. Downregulation of DENND2D mRNA in ESCC tissues was identified as an independent prognostic factor in multivariate analysis (hazard ratio, 2.194; p=0.039). The DENND2D promoter was methylated in 5/9 ESCC cell lines, and DNA demethylation reactivated DENND2D mRNA expression. Hypermethylation of DENND2D was frequently detected in ESCC tissues (64.6%) and was significantly associated with downregulation of DENND2D mRNA expression (P=0.008). Taken together, our data suggest that DENND2D is a candidate tumor suppressor gene that was inactivated by promoter hypermethylation in patients with ESCC and may serve as a novel biomarker of ESCC.
Collapse
Affiliation(s)
- Soki Hibino
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hisaharu Oya
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shuji Nomoto
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mitsuhiro Hishida
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yukiko Niwa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoko Nishikawa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mikako Asai
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroyuki Sugimoto
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
46
|
Kanda M, Nomoto S, Oya H, Takami H, Hibino S, Hishida M, Suenaga M, Yamada S, Inokawa Y, Nishikawa Y, Asai M, Fujii T, Sugimoto H, Kodera Y. Downregulation of DENND2D by promoter hypermethylation is associated with early recurrence of hepatocellular carcinoma. Int J Oncol 2013; 44:44-52. [PMID: 24189587 DOI: 10.3892/ijo.2013.2165] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/25/2013] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide and its prognosis is poor. Novel targets for treating recurrence and progression along with associated biomarkers are urgently required. In this study, the expression and regulatory mechanism of DENN/MADD domain containing 2D (DENND2D) were investigated in an attempt to identify a tumor suppressor gene for HCC regulated by silencing through promoter hypermethylation. The levels of DENND2D expression in HCC cell lines and surgical specimens were determined using a quantitative polymerase chain reaction assay and the relationship between the expression levels of DENND2D mRNA and clinicopathological factors was evaluated. The expression and distribution of DENND2D were determined using immunohistochemistry. DNA methylation analysis was performed to determine the regulatory mechanisms of DENND2D expression in HCC. Most HCC cell lines (89%) and surgical specimens (78%) expressed lower levels of DENND2D mRNA compared with normal liver tissue. In contrast, there was no significant difference in the expression levels of DENND2D mRNA between normal tissues of HCC patients with and without cirrhosis. The expression patterns of DENND2D protein and mRNA were consistent. Patients with significantly lower levels of DENND2D mRNA in HCC tissues had remarkably earlier recurrences after hepatectomy and their prognosis worsened. The DENND2D promoter was methylated in eight out of nine HCC cell lines and DNA demethylation reactivated DENND2D mRNA expression. Hypermethylation of DENND2D was frequently detected in HCC tissues (75%) and was significantly associated with downregulation of DENND2D mRNA expression. DENND2D is a candidate tumor suppressor gene that is inactivated by promoter hypermethylation in patients with HCC and may serve as a novel biomarker of early recurrence of HCC.
Collapse
Affiliation(s)
- Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
McMichael CM, Reynolds GD, Koch LM, Wang C, Jiang N, Nadeau J, Sack FD, Gelderman MB, Pan J, Bednarek SY. Mediation of clathrin-dependent trafficking during cytokinesis and cell expansion by Arabidopsis stomatal cytokinesis defective proteins. THE PLANT CELL 2013; 25:3910-25. [PMID: 24179130 PMCID: PMC3877817 DOI: 10.1105/tpc.113.115162] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/17/2013] [Accepted: 09/27/2013] [Indexed: 05/20/2023]
Abstract
Stomatal cytokinesis defective1 (SCD1) encodes a putative Rab guanine nucleotide exchange factor that functions in membrane trafficking and is required for cytokinesis and cell expansion in Arabidopsis thaliana. Here, we show that the loss of SCD2 function disrupts cytokinesis and cell expansion and impairs fertility, phenotypes similar to those observed for scd1 mutants. Genetic and biochemical analyses showed that SCD1 function is dependent upon SCD2 and that together these proteins are required for plasma membrane internalization. Further specifying the role of these proteins in membrane trafficking, SCD1 and SCD2 proteins were found to be associated with isolated clathrin-coated vesicles and to colocalize with clathrin light chain at putative sites of endocytosis at the plasma membrane. Together, these data suggest that SCD1 and SCD2 function in clathrin-mediated membrane transport, including plasma membrane endocytosis, required for cytokinesis and cell expansion.
Collapse
Affiliation(s)
- Colleen M. McMichael
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Gregory D. Reynolds
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Lisa M. Koch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Chao Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Nan Jiang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Jeanette Nadeau
- Department of Plant Biology, Ohio State University, Columbus, Ohio 43210
| | - Fred D. Sack
- Department of Plant Biology, Ohio State University, Columbus, Ohio 43210
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Max B. Gelderman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Jianwei Pan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Sebastian Y. Bednarek
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Address correspondence to
| |
Collapse
|
48
|
Shah M, Baterina OY, Taupin V, Farquhar MG. ARH directs megalin to the endocytic recycling compartment to regulate its proteolysis and gene expression. ACTA ACUST UNITED AC 2013; 202:113-27. [PMID: 23836931 PMCID: PMC3704979 DOI: 10.1083/jcb.201211110] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ARH is required for the trafficking of megalin from early endosomes to the endocytic recycling compartment, where megalin undergoes intramembrane proteolysis, releasing a tail fragment that represses megalin transcription. Receptors internalized by endocytosis can return to the plasma membrane (PM) directly from early endosomes (EE; fast recycling) or they can traffic from EE to the endocytic recycling compartment (ERC) and recycle from there (slow recycling). How receptors are sorted for trafficking along these two pathways remains unclear. Here we show that autosomal recessive hypercholesterolemia (ARH) is required for trafficking of megalin, a member of the LDL receptor family, from EE to the ERC by coupling it to dynein; in the absence of ARH, megalin returns directly to the PM from EE via the connecdenn2/Rab35 fast recycling pathway. Binding of ARH to the endocytic adaptor AP-2 prevents fast recycling of megalin. ARH-mediated trafficking of megalin to the ERC is necessary for γ-secretase mediated cleavage of megalin and release of a tail fragment that mediates transcriptional repression. These results identify a novel mechanism for sorting receptors for trafficking to the ERC and link ERC trafficking to regulated intramembrane proteolysis (RIP) and expression of megalin.
Collapse
Affiliation(s)
- Mehul Shah
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
49
|
Melén E, Granell R, Kogevinas M, Strachan D, Gonzalez JR, Wjst M, Jarvis D, Ege M, Braun-Fahrländer C, Genuneit J, Horak E, Bouzigon E, Demenais F, Kauffmann F, Siroux V, Michel S, von Berg A, Heinzmann A, Kabesch M, Probst-Hensch NM, Curjuric I, Imboden M, Rochat T, Henderson J, Sterne JAC, McArdle WL, Hui J, James AL, William Musk A, Palmer LJ, Becker A, Kozyrskyj AL, Chan-Young M, Park JE, Leung A, Daley D, Freidin MB, Deev IA, Ogorodova LM, Puzyrev VP, Celedón JC, Brehm JM, Cloutier MM, Canino G, Acosta-Pérez E, Soto-Quiros M, Avila L, Bergström A, Magnusson J, Söderhäll C, Kull I, Scholtens S, Marike Boezen H, Koppelman GH, Wijga AH, Marenholz I, Esparza-Gordillo J, Lau S, Lee YA, Standl M, Tiesler CMT, Flexeder C, Heinrich J, Myers RA, Ober C, Nicolae DL, Farrall M, Kumar A, Moffatt MF, Cookson WOCM, Lasky-Su J. Genome-wide association study of body mass index in 23 000 individuals with and without asthma. Clin Exp Allergy 2013; 43:463-74. [PMID: 23517042 DOI: 10.1111/cea.12054] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/28/2012] [Accepted: 10/22/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Both asthma and obesity are complex disorders that are influenced by environmental and genetic factors. Shared genetic factors between asthma and obesity have been proposed to partly explain epidemiological findings of co-morbidity between these conditions. OBJECTIVE To identify genetic variants that are associated with body mass index (BMI) in asthmatic children and adults, and to evaluate if there are differences between the genetics of BMI in asthmatics and healthy individuals. METHODS In total, 19 studies contributed with genome-wide analysis study (GWAS) data from more than 23 000 individuals with predominantly European descent, of whom 8165 are asthmatics. RESULTS We report associations between several DENND1B variants (P = 2.2 × 10(-7) for rs4915551) on chromosome 1q31 and BMI from a meta-analysis of GWAS data using 2691 asthmatic children (screening data). The top DENND1B single nucleotide polymorphisms(SNPs) were next evaluated in seven independent replication data sets comprising 2014 asthmatics, and rs4915551 was nominally replicated (P < 0.05) in two of the seven studies and of borderline significance in one (P = 0.059). However, strong evidence of effect heterogeneity was observed and overall, the association between rs4915551 and BMI was not significant in the total replication data set, P = 0.71. Using a random effects model, BMI was overall estimated to increase by 0.30 kg/m(2) (P = 0.01 for combined screening and replication data sets, N = 4705) per additional G allele of this DENND1BSNP. FTO was confirmed as an important gene for adult and childhood BMI regardless of asthma status. CONCLUSIONS AND CLINICAL RELEVANCE DENND1B was recently identified as an asthma susceptibility gene in a GWAS on children, and here, we find evidence that DENND1B variants may also be associated with BMI in asthmatic children. However, the association was overall not replicated in the independent data sets and the heterogeneous effect of DENND1B points to complex associations with the studied diseases that deserve further study.
Collapse
Affiliation(s)
- E Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chaineau M, Ioannou MS, McPherson PS. Rab35: GEFs, GAPs and effectors. Traffic 2013; 14:1109-17. [PMID: 23905989 DOI: 10.1111/tra.12096] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 12/27/2022]
Abstract
Rabs are the largest family of small GTPases and are master regulators of membrane trafficking. Following activation by guanine-nucleotide exchange factors (GEFs), each Rab binds a specific set of effector proteins that mediate the various downstream functions of that Rab. Then, with the help of GTPase-activating proteins, the Rab converts GTP to GDP, terminating its function. There are over 60 Rabs in humans and only a subset has been analyzed in any detail. Recently, Rab35 has emerged as a key regulator of cargo recycling at endosomes, with an additional role in regulation of the actin cytoskeleton. Here, we will focus on the regulation of Rab35 activity by the connecdenn/DENND1 family of GEFs and the TBC1D10/EPI64 family of GTPase-activating proteins. We will describe how analysis of these proteins, as well as a plethora of Rab35 effectors has provided insights into Rab35 function. Finally, we will describe how Rab35 provides a novel link between the Rab and Arf family of GTPases with implications for tumor formation and invasiveness.
Collapse
Affiliation(s)
- Mathilde Chaineau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | | | |
Collapse
|