1
|
Sánchez-Soto M, Boldizsar NM, Schardien KA, Madaras NS, Willette BKA, Inbody LR, Dasaro C, Moritz AE, Drube J, Haider RS, Free RB, Hoffman C, Sibley DR. G Protein-Coupled Receptor Kinase 2 Selectively Enhances β-Arrestin Recruitment to the D 2 Dopamine Receptor through Mechanisms That Are Independent of Receptor Phosphorylation. Biomolecules 2023; 13:1552. [PMID: 37892234 PMCID: PMC10605370 DOI: 10.3390/biom13101552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The D2 dopamine receptor (D2R) signals through both G proteins and β-arrestins to regulate important physiological processes, such as movement, reward circuitry, emotion, and cognition. β-arrestins are believed to interact with G protein-coupled receptors (GPCRs) at the phosphorylated C-terminal tail or intracellular loops. GPCR kinases (GRKs) are the primary drivers of GPCR phosphorylation, and for many receptors, receptor phosphorylation is indispensable for β-arrestin recruitment. However, GRK-mediated receptor phosphorylation is not required for β-arrestin recruitment to the D2R, and the role of GRKs in D2R-β-arrestin interactions remains largely unexplored. In this study, we used GRK knockout cells engineered using CRISPR-Cas9 technology to determine the extent to which β-arrestin recruitment to the D2R is GRK-dependent. Genetic elimination of all GRK expression decreased, but did not eliminate, agonist-stimulated β-arrestin recruitment to the D2R or its subsequent internalization. However, these processes were rescued upon the re-introduction of various GRK isoforms in the cells with GRK2/3 also enhancing dopamine potency. Further, treatment with compound 101, a pharmacological inhibitor of GRK2/3 isoforms, decreased β-arrestin recruitment and receptor internalization, highlighting the importance of this GRK subfamily for D2R-β-arrestin interactions. These results were recapitulated using a phosphorylation-deficient D2R mutant, emphasizing that GRKs can enhance β-arrestin recruitment and activation independently of receptor phosphorylation.
Collapse
Affiliation(s)
- Marta Sánchez-Soto
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA (R.B.F.)
| | - Noelia M. Boldizsar
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA (R.B.F.)
| | - Kayla A. Schardien
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA (R.B.F.)
| | - Nora S. Madaras
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA (R.B.F.)
| | - Blair K. A. Willette
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA (R.B.F.)
| | - Laura R. Inbody
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA (R.B.F.)
| | - Christopher Dasaro
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA (R.B.F.)
| | - Amy E. Moritz
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA (R.B.F.)
| | - Julia Drube
- Institut für Molekulare Zellbiologie, CMB-Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745 Jena, Germany (R.S.H.); (C.H.)
| | - Raphael S. Haider
- Institut für Molekulare Zellbiologie, CMB-Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745 Jena, Germany (R.S.H.); (C.H.)
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Birmingham B15 2TT, UK
| | - R. Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA (R.B.F.)
| | - Carsten Hoffman
- Institut für Molekulare Zellbiologie, CMB-Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, D-07745 Jena, Germany (R.S.H.); (C.H.)
| | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA (R.B.F.)
| |
Collapse
|
2
|
Xu J, Pittenger C. The histamine H3 receptor modulates dopamine D2 receptor-dependent signaling pathways and mouse behaviors. J Biol Chem 2023; 299:104583. [PMID: 36871761 PMCID: PMC10139999 DOI: 10.1016/j.jbc.2023.104583] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The histamine H3 receptor (H3R) is highly enriched in the spiny projection neurons (SPNs) of the striatum, in both the D1 receptor (D1R)-expressing and D2 receptor (D2R)-expressing populations. A crossantagonistic interaction between H3R and D1R has been demonstrated in mice, both at the behavioral level and at the biochemical level. Although interactive behavioral effects have been described upon coactivation of H3R and D2R, the molecular mechanisms underlying this interaction are poorly understood. Here, we show that activation of H3R with the selective agonist R-(-)-α-methylhistamine dihydrobromide mitigates D2R agonist-induced locomotor activity and stereotypic behavior. Using biochemical approaches and the proximity ligation assay, we demonstrated the existence of an H3R-D2R complex in the mouse striatum. In addition, we examined consequences of simultaneous H3R-D2R agonism on the phosphorylation levels of several signaling molecules using immunohistochemistry. H3R agonist treatment modulated Akt (serine/threonine PKB)-glycogen synthase kinase 3 beta signaling in response to D2R activation via a β-arrestin 2-dependent mechanism in D2R-SPNs but not in D1R-SPNs. Phosphorylation of mitogen- and stress-activated protein kinase 1 and rpS6 (ribosomal protein S6) was largely unchanged under these conditions. As Akt-glycogen synthase kinase 3 beta signaling has been implicated in several neuropsychiatric disorders, this work may help clarify the role of H3R in modulating D2R function, leading to a better understanding of pathophysiology involving the interaction between histamine and dopamine systems.
Collapse
Affiliation(s)
- Jian Xu
- Department of Psychiatry, Yale University. ,
| | - Christopher Pittenger
- Department of Psychiatry, Yale University; Department of Psychology, Yale University; Department of Child Study Center, Yale University; Department of Interdepartmental Neuroscience Program, Yale University; Department of Wu-Tsai Institute, Yale University; Department of Center for Brain and Mind Health, Yale University.
| |
Collapse
|
3
|
Burström V, Ågren R, Betari N, Valle-León M, Garro-Martínez E, Ciruela F, Sahlholm K. Dopamine-induced arrestin recruitment and desensitization of the dopamine D4 receptor is regulated by G protein-coupled receptor kinase-2. Front Pharmacol 2023; 14:1087171. [PMID: 36778010 PMCID: PMC9911804 DOI: 10.3389/fphar.2023.1087171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
The dopamine D4 receptor (D4R) is expressed in the retina, prefrontal cortex, and autonomic nervous system and has been implicated in attention deficit hyperactivity disorder (ADHD), substance use disorders, and erectile dysfunction. D4R has also been investigated as a target for antipsychotics due to its high affinity for clozapine. As opposed to the closely related dopamine D2 receptor (D2R), dopamine-induced arrestin recruitment and desensitization at the D4R have not been studied in detail. Indeed, some earlier investigations could not detect arrestin recruitment and desensitization of this receptor upon its activation by agonist. Here, we used a novel nanoluciferase complementation assay to study dopamine-induced recruitment of β-arrestin2 (βarr2; also known as arrestin3) and G protein-coupled receptor kinase-2 (GRK2) to the D4R in HEK293T cells. We also studied desensitization of D4R-evoked G protein-coupled inward rectifier potassium (GIRK; also known as Kir3) current responses in Xenopus oocytes. Furthermore, the effect of coexpression of GRK2 on βarr2 recruitment and GIRK response desensitization was examined. The results suggest that coexpression of GRK2 enhanced the potency of dopamine to induce βarr2 recruitment to the D4R and accelerated the rate of desensitization of D4R-evoked GIRK responses. The present study reveals new details about the regulation of arrestin recruitment to the D4R and thus increases our understanding of the signaling and desensitization of this receptor.
Collapse
Affiliation(s)
- Viktor Burström
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Richard Ågren
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Nibal Betari
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Marta Valle-León
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Barcelona, Spain
| | - Emilio Garro-Martínez
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Barcelona, Spain
| | - Kristoffer Sahlholm
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden,Department of Neuroscience, Karolinska Institutet, Solna, Sweden,Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Barcelona, Spain,*Correspondence: Kristoffer Sahlholm,
| |
Collapse
|
4
|
Echeverría E, Ripoll S, Fabián L, Shayo C, Monczor F, Fernández NC. Novel inhibitors of phosphorylation independent activity of GRK2 modulate cAMP signaling. Pharmacol Res Perspect 2022; 10:e00913. [PMID: 35184416 PMCID: PMC8858223 DOI: 10.1002/prp2.913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/10/2022] Open
Abstract
G protein-coupled receptors kinase 2 (GRK2) plays a major role in receptor regulation and, as a consequence, in cell biology and physiology. GRK2-mediated receptor desensitization is performed by its kinase domain, which exerts receptor phosphorylation promoting G protein uncoupling and the cessation of signaling, and by its RGS homology (RH) domain, able to interrupt G protein signaling. Since GRK2 activity is exacerbated in several pathologies, many efforts to develop inhibitors have been conducted. Most of them were directed toward GRK2 kinase activity and showed encouraging results on in vitro systems and animal models. Nevertheless, limitations including unspecific effects or pharmacokinetics issues prevented them from advancing to clinical trials. Surprisingly, even though the RH domain demonstrated the ability to desensitize GPCRs, this domain has been less explored. Herein, we show in vitro activity of a series of compounds that, by inhibiting GRK2 RH domain, increase receptor cAMP response, avoid GRK2 translocation to the plasma membrane, inhibit coimmunoprecipitation of GRK2 with Gαs subunit of heterotrimeric G protein, and prevent receptor desensitization. Also, we preliminarily evaluated candidates' ADMET properties and observed suitable lipophilicity and cytotoxicity. These novel inhibitors of phosphorylation-independent actions of GRK2 might be useful in elucidating other RH domain roles and lay the foundation for the development of innovative pharmacologic therapy for diseases where GRK2 activity is exacerbated.
Collapse
Affiliation(s)
- Emiliana Echeverría
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA‐UBA‐CONICET)Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
| | - Sonia Ripoll
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA‐UBA‐CONICET)Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
| | - Lucas Fabián
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA‐UBA‐CONICET)Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
| | - Carina Shayo
- Laboratorio de Patología y Farmacología MolecularInstituto de Biología y Medicina Experimental (IByME)CONICETBuenos AiresArgentina
| | - Federico Monczor
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA‐UBA‐CONICET)Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
| | - Natalia C. Fernández
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA‐UBA‐CONICET)Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
5
|
Ågren R, Sahlholm K. G protein-coupled receptor kinase-2 confers isoform-specific calcium sensitivity to dopamine D 2 receptor desensitization. FASEB J 2021; 35:e22013. [PMID: 34699610 DOI: 10.1096/fj.202100704rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 11/11/2022]
Abstract
The dopamine D2 receptor (D2 R) functions as an autoreceptor on dopaminergic cell bodies and terminals and as a postsynaptic receptor on a variety of neurons in the central nervous system. As a result of alternative splicing, the D2 R is expressed as two isoforms: long (D2L R) and short (D2S R) differing by a stretch of 29 residues in the third intracellular loop, with D2S R being the predominant presynaptic isoform. Recent reports described a Ca2+ sensitivity of the desensitization time course of potassium currents elicited via D2S R, but not via D2L R, when either isoform was selectively expressed in dopaminergic neurons. Here, we aimed to study the mechanism behind this subtype-specific Ca2+ sensitivity. Thus, we measured the desensitization of potassium channel responses evoked by D2L R and D2S R using two-electrode voltage clamp in Xenopus oocytes in the absence and presence of different amounts of β-arrestin2 and G protein-coupled receptor kinase-2 (GRK2), both of which are known to play important roles in D2 R desensitization in native cells. We found that co-expression of both GRK2 and β-arrestin2 was necessary for reconstitution of the Ca2+ sensitivity of D2S R desensitization, while D2L R did not display Ca2+ sensitivity under these conditions. The effect of Ca2+ chelation by BAPTA-AM to slow the rate of D2S R desensitization was mimicked by the GRK2 inhibitor, Cmpd101, and by the kinase-inactivating GRK2 mutation, K220R, but not by the PKC inhibitor, Gö6976, nor by the calmodulin antagonist, KN-93. Thus, Ca2+ -sensitive desensitization of D2S R appears to be mediated via a GRK2 phosphorylation-dependent mechanism.
Collapse
Affiliation(s)
- Richard Ågren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kristoffer Sahlholm
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Rodriguez-Contreras D, Condon AF, Buck DC, Asad N, Dore TM, Verbeek DS, Tijssen MAJ, Shinde U, Williams JT, Neve KA. Signaling-Biased and Constitutively Active Dopamine D2 Receptor Variant. ACS Chem Neurosci 2021; 12:1873-1884. [PMID: 33974399 DOI: 10.1021/acschemneuro.0c00712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A dopamine D2 receptor mutation was recently identified in a family with a novel hyperkinetic movement disorder. Compared to the wild type D2 receptor, the novel allelic variant D2-I212F activates a Gαi1β1γ2 heterotrimer with higher potency and modestly enhanced basal activity in human embryonic kidney (HEK) 293 cells and has decreased capacity to recruit arrestin3. We now report that omitting overexpressed G protein-coupled receptor kinase-2 (GRK2) decreased the potency and efficacy of quinpirole for arrestin recruitment. The relative efficacy of quinpirole for arrestin recruitment to D2-I212F compared to D2-WT was considerably lower without overexpressed GRK2 than with added GRK2. D2-I212F exhibited higher basal activation of GαoA than Gαi1 but little or no increase in the potency of quinpirole relative to D2-WT. Other signs of D2-I212F constitutive activity for G protein-mediated signaling, in addition to basal activation of Gαi/o, were enhanced basal inhibition of forskolin-stimulated cyclic AMP accumulation that was reversed by the inverse agonists sulpiride and spiperone and a ∼4-fold increase in the apparent affinity of D2-I212F for quinpirole, determined from competition binding assays. In mouse midbrain slices, inhibition of tonic current by the inverse agonist sulpiride in dopamine neurons expressing D2-I212F was consistent with our hypothesis of enhanced constitutive activity and sensitivity to dopamine relative to D2-WT. Molecular dynamics simulations with D2 receptor models suggested that an ionic lock between the cytoplasmic ends of the third and sixth α-helices that constrains many G protein-coupled receptors in an inactive conformation spontaneously breaks in D2-I212F. Overall, these results confirm that D2-I212F is a constitutively active and signaling-biased D2 receptor mutant and also suggest that the effect of the likely pathogenic variant in a given brain region will depend on the nature of G protein and GRK expression.
Collapse
Affiliation(s)
- Dayana Rodriguez-Contreras
- Research Service, VA Portland Health Care System, and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Alec F. Condon
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - David C. Buck
- Research Service, VA Portland Health Care System, Portland, Oregon 97239, United States
| | - Naeem Asad
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Timothy M. Dore
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Dineke S. Verbeek
- Expertise Center Movement Disorders and Department of Genetics, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Marina A. J. Tijssen
- Expertise Center Movement Disorders and Department of Neurology, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Ujwal Shinde
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - John T. Williams
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Kim A. Neve
- Research Service, VA Portland Health Care System, and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, United States
| |
Collapse
|
7
|
Mann A, Keen AC, Mark H, Dasgupta P, Javitch JA, Canals M, Schulz S, Robert Lane J. New phosphosite-specific antibodies to unravel the role of GRK phosphorylation in dopamine D 2 receptor regulation and signaling. Sci Rep 2021; 11:8288. [PMID: 33859231 PMCID: PMC8050214 DOI: 10.1038/s41598-021-87417-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
The dopamine D2 receptor (D2R) is the target of drugs used to treat the symptoms of Parkinson’s disease and schizophrenia. The D2R is regulated through its interaction with and phosphorylation by G protein receptor kinases (GRKs) and interaction with arrestins. More recently, D2R arrestin-mediated signaling has been shown to have distinct physiological functions to those of G protein signalling. Relatively little is known regarding the patterns of D2R phosphorylation that might control these processes. We aimed to generate antibodies specific for intracellular D2R phosphorylation sites to facilitate the investigation of these mechanisms. We synthesised double phosphorylated peptides corresponding to regions within intracellular loop 3 of the hD2R and used them to raise phosphosite-specific antibodies to capture a broad screen of GRK-mediated phosphorylation. We identify an antibody specific to a GRK2/3 phosphorylation site in intracellular loop 3 of the D2R. We compared measurements of D2R phosphorylation with other measurements of D2R signalling to profile selected D2R agonists including previously described biased agonists. These studies demonstrate the utility of novel phosphosite-specific antibodies to investigate D2R regulation and signalling.
Collapse
Affiliation(s)
- Anika Mann
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Alastair C Keen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Hanka Mark
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Pooja Dasgupta
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Jonathan A Javitch
- Departments of Psychiatry and Pharmacology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, USA
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
| | - J Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK. .,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK.
| |
Collapse
|
8
|
Gurevich EV, Gurevich VV. GRKs as Modulators of Neurotransmitter Receptors. Cells 2020; 10:52. [PMID: 33396400 PMCID: PMC7823573 DOI: 10.3390/cells10010052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 01/08/2023] Open
Abstract
Many receptors for neurotransmitters, such as dopamine, norepinephrine, acetylcholine, and neuropeptides, belong to the superfamily of G protein-coupled receptors (GPCRs). A general model posits that GPCRs undergo two-step homologous desensitization: the active receptor is phosphorylated by kinases of the G protein-coupled receptor kinase (GRK) family, whereupon arrestin proteins specifically bind active phosphorylated receptors, shutting down G protein-mediated signaling, facilitating receptor internalization, and initiating distinct signaling pathways via arrestin-based scaffolding. Here, we review the mechanisms of GRK-dependent regulation of neurotransmitter receptors, focusing on the diverse modes of GRK-mediated phosphorylation of receptor subtypes. The immediate signaling consequences of GRK-mediated receptor phosphorylation, such as arrestin recruitment, desensitization, and internalization/resensitization, are equally diverse, depending not only on the receptor subtype but also on phosphorylation by GRKs of select receptor residues. We discuss the signaling outcome as well as the biological and behavioral consequences of the GRK-dependent phosphorylation of neurotransmitter receptors where known.
Collapse
Affiliation(s)
- Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 27232, USA;
| | | |
Collapse
|
9
|
Chen R, Ferris MJ, Wang S. Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder. Pharmacol Ther 2020; 213:107583. [PMID: 32473160 PMCID: PMC7434700 DOI: 10.1016/j.pharmthera.2020.107583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Dopamine D2 autoreceptors (D2ARs), located in somatodendritic and axon terminal compartments of dopamine (DA) neurons, function to provide a negative feedback regulatory control on DA neuron firing, DA synthesis, reuptake and release. Dysregulation of D2AR-mediated DA signaling is implicated in vulnerability to substance use disorder (SUD). Due to the extreme low abundance of D2ARs compared to postsynaptic D2 receptors (D2PRs) and the lack of experimental tools to differentiate the signaling of D2ARs from D2PRs, the regulation of D2ARs by drugs of abuse is poorly understood. The recent availability of conditional D2AR knockout mice and newly developed virus-mediated gene delivery approaches have provided means to specifically study the function of D2ARs at the molecular, cellular and behavioral levels. There is a growing revelation of novel mechanisms and new proteins that mediate D2AR activity, suggesting that D2ARs act cooperatively with an array of membrane and intracellular proteins to tightly control DA transmission. This review highlights D2AR-interacting partners including transporters, G-protein-coupled receptors, ion channels, intracellular signaling modulators, and protein kinases. The complexity of the D2AR interaction network illustrates the functional divergence of D2ARs. Pharmacological targeting of multiple D2AR-interacting partners may be more effective to restore disrupted DA homeostasis by drugs of abuse.
Collapse
Affiliation(s)
- Rong Chen
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America.
| | - Mark J Ferris
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| | - Shiyu Wang
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| |
Collapse
|
10
|
Forster L, Grätz L, Mönnich D, Bernhardt G, Pockes S. A Split Luciferase Complementation Assay for the Quantification of β-Arrestin2 Recruitment to Dopamine D 2-Like Receptors. Int J Mol Sci 2020; 21:ijms21176103. [PMID: 32847148 PMCID: PMC7503597 DOI: 10.3390/ijms21176103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Investigations on functional selectivity of GPCR ligands have become increasingly important to identify compounds with a potentially more beneficial side effect profile. In order to discriminate between individual signaling pathways, the determination of β-arrestin2 recruitment, in addition to G-protein activation, is of great value. In this study, we established a sensitive split luciferase-based assay with the ability to quantify β-arrestin2 recruitment to D2long and D3 receptors and measure time-resolved β-arrestin2 recruitment to the D2long receptor after agonist stimulation. We were able to characterize several standard (inverse) agonists as well as antagonists at the D2longR and D3R subtypes, whereas for the D4.4R, no β-arrestin2 recruitment was detected, confirming previous reports. Extensive radioligand binding studies and comparisons with the respective wild-type receptors confirm that the attachment of the Emerald luciferase fragment to the receptors does not affect the integrity of the receptor proteins. Studies on the involvement of GRK2/3 and PKC on the β-arrestin recruitment to the D2longR and D3R, as well as at the D1R using different kinase inhibitors, showed that the assay could also contribute to the elucidation of signaling mechanisms. Its broad applicability, which provides concentration-dependent and kinetic information on receptor/β-arrestin2 interactions, renders this homogeneous assay a valuable method for the identification of biased agonists.
Collapse
Affiliation(s)
- Lisa Forster
- Correspondence: (L.F.); (S.P.); Tel.: +49-941-943-4796 (L.F.); +49-941-943-4825 (S.P.)
| | | | | | | | - Steffen Pockes
- Correspondence: (L.F.); (S.P.); Tel.: +49-941-943-4796 (L.F.); +49-941-943-4825 (S.P.)
| |
Collapse
|
11
|
Kaya AI, Perry NA, Gurevich VV, Iverson TM. Phosphorylation barcode-dependent signal bias of the dopamine D1 receptor. Proc Natl Acad Sci U S A 2020; 117:14139-14149. [PMID: 32503917 PMCID: PMC7321966 DOI: 10.1073/pnas.1918736117] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Agonist-activated G protein-coupled receptors (GPCRs) must correctly select from hundreds of potential downstream signaling cascades and effectors. To accomplish this, GPCRs first bind to an intermediary signaling protein, such as G protein or arrestin. These intermediaries initiate signaling cascades that promote the activity of different effectors, including several protein kinases. The relative roles of G proteins versus arrestins in initiating and directing signaling is hotly debated, and it remains unclear how the correct final signaling pathway is chosen given the ready availability of protein partners. Here, we begin to deconvolute the process of signal bias from the dopamine D1 receptor (D1R) by exploring factors that promote the activation of ERK1/2 or Src, the kinases that lead to cell growth and proliferation. We found that ERK1/2 activation involves both arrestin and Gαs, while Src activation depends solely on arrestin. Interestingly, we found that the phosphorylation pattern influences both arrestin and Gαs coupling, suggesting an additional way the cells regulate G protein signaling. The phosphorylation sites in the D1R intracellular loop 3 are particularly important for directing the binding of G protein versus arrestin and for selecting between the activation of ERK1/2 and Src. Collectively, these studies correlate functional outcomes with a physical basis for signaling bias and provide fundamental information on how GPCR signaling is directed.
Collapse
Affiliation(s)
- Ali I Kaya
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Nicole A Perry
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | | | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232;
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
12
|
Zhang X, Min X, Zhu A, Kim KM. A novel molecular mechanism involved in the crosstalks between homologous and PKC-mediated heterologous regulatory pathway of dopamine D2 receptor. Biochem Pharmacol 2020; 174:113791. [DOI: 10.1016/j.bcp.2020.113791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/02/2020] [Indexed: 11/15/2022]
|
13
|
Echeverría E, Cabrera M, Burghi V, Sosa M, Ripoll S, Yaneff A, Monczor F, Davio C, Shayo C, Fernández N. The Regulator of G Protein Signaling Homologous Domain of G Protein-Coupled Receptor Kinase 2 Mediates Short-Term Desensitization of β3-Adrenergic Receptor. Front Pharmacol 2020; 11:113. [PMID: 32153413 PMCID: PMC7047201 DOI: 10.3389/fphar.2020.00113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/28/2020] [Indexed: 01/05/2023] Open
Abstract
G protein coupled receptor (GPCR) kinases (GRKs) are key regulators of GPCR signaling. Canonical mechanism of GPCR desensitization involves receptor phosphorylation by GRKs followed by arrestin recruitment and uncoupling from heterotrimeric G protein. Although β3-adrenergic receptor (β3AR) lacks phosphorylation sites by GRKs, agonist treatment proved to induce β3AR desensitization in many cell types. Here we show that GRK2 mediates short-term desensitization of β3AR by a phosphorylation independent mechanism but mediated by its domain homologous to the regulator of G protein signaling (RGS). HEK293T cells overexpressing human β3AR presented a short-term desensitization of cAMP response stimulated by the β3AR agonist, BRL37344, and not by forskolin. We found that β3AR desensitization was higher in cells co-transfected with GRK2. Similarly, overexpression of the RGS homology domain but not kinase domain of GRK2 increased β3AR desensitization. Consistently, stimulation of β3AR increased interaction between GRK2 and Gαs subunit. Furthermore, in rat cardiomyocytes endogenously expressing β3AR, transfection with dominant negative mutant of RH domain of GRK2 (GRK2/D110A) increased cAMP response to BRL37344 and inhibited receptor desensitization. We expect our study to be a starting point for more sophisticated characterization of the consequences of GRK2 mediated desensitization of the β3AR in heart function and disease.
Collapse
Affiliation(s)
- Emiliana Echeverría
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maia Cabrera
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Valeria Burghi
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Máximo Sosa
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sonia Ripoll
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Agustín Yaneff
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Monczor
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Davio
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Shayo
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental (IByME), CONICET, Buenos Aires, Argentina
| | - Natalia Fernández
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
14
|
Sanchez-Soto M, Verma RK, Willette BKA, Gonye EC, Moore AM, Moritz AE, Boateng CA, Yano H, Free RB, Shi L, Sibley DR. A structural basis for how ligand binding site changes can allosterically regulate GPCR signaling and engender functional selectivity. Sci Signal 2020; 13:13/617/eaaw5885. [PMID: 32019899 DOI: 10.1126/scisignal.aaw5885] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Signaling bias is the propensity for some agonists to preferentially stimulate G protein-coupled receptor (GPCR) signaling through one intracellular pathway versus another. We previously identified a G protein-biased agonist of the D2 dopamine receptor (D2R) that results in impaired β-arrestin recruitment. This signaling bias was predicted to arise from unique interactions of the ligand with a hydrophobic pocket at the interface of the second extracellular loop and fifth transmembrane segment of the D2R. Here, we showed that residue Phe189 within this pocket (position 5.38 using Ballesteros-Weinstein numbering) functions as a microswitch for regulating receptor interactions with β-arrestin. This residue is relatively conserved among class A GPCRs, and analogous mutations within other GPCRs similarly impaired β-arrestin recruitment while maintaining G protein signaling. To investigate the mechanism of this signaling bias, we used an active-state structure of the β2-adrenergic receptor (β2R) to build β2R-WT and β2R-Y1995.38A models in complex with the full β2R agonist BI-167107 for molecular dynamics simulations. These analyses identified conformational rearrangements in β2R-Y1995.38A that propagated from the extracellular ligand binding site to the intracellular surface, resulting in a modified orientation of the second intracellular loop in β2R-Y1995.38A, which is predicted to affect its interactions with β-arrestin. Our findings provide a structural basis for how ligand binding site alterations can allosterically affect GPCR-transducer interactions and result in biased signaling.
Collapse
Affiliation(s)
- Marta Sanchez-Soto
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Ravi Kumar Verma
- Computational Chemistry and Molecular Biophysics Unit, NIDA, NIH, TRIAD Technology Center, 333 Cassell Drive, Room 1121, Baltimore, MD 21224, USA
| | - Blair K A Willette
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Elizabeth C Gonye
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Annah M Moore
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Amy E Moritz
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Comfort A Boateng
- Basic Pharmaceutical Sciences, High Point University, One University Parkway, High Point, NC 27268, USA
| | - Hideaki Yano
- Computational Chemistry and Molecular Biophysics Unit, NIDA, NIH, TRIAD Technology Center, 333 Cassell Drive, Room 1121, Baltimore, MD 21224, USA
| | - R Benjamin Free
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Unit, NIDA, NIH, TRIAD Technology Center, 333 Cassell Drive, Room 1121, Baltimore, MD 21224, USA.
| | - David R Sibley
- Molecular Neuropharmacology Section, NINDS, NIH, 35 Convent Drive, Room 3A201, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Echeverría E, Velez Rueda AJ, Cabrera M, Juritz E, Burghi V, Fabián L, Davio C, Lorenzano Menna P, Fernández NC. Identification of inhibitors of the RGS homology domain of GRK2 by docking-based virtual screening. Life Sci 2019; 239:116872. [DOI: 10.1016/j.lfs.2019.116872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/25/2023]
|
16
|
Xu W, Reith MEA, Liu-Chen LY, Kortagere S. Biased signaling agonist of dopamine D3 receptor induces receptor internalization independent of β-arrestin recruitment. Pharmacol Res 2019; 143:48-57. [PMID: 30844536 DOI: 10.1016/j.phrs.2019.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Agonist-induced internalization of G protein-coupled receptors (GPCRs) is a significant step in receptor kinetics and is known to be involved in receptor down-regulation. However, the dopamine D3 receptor (D3R) has been an exception wherein agonist induces D3Rs to undergo desensitization followed by pharmacological sequestration - which is defined as the sequestration of cell surface receptors into a more hydrophobic fraction within the plasma membrane without undergoing the process of receptor internalization. Pharmacological sequestration renders the receptor in an inactive state on the membrane. In our previous study we demonstrated that a novel class of D3R agonists exemplified by SK608 have biased signaling properties via the G-protein dependent pathway and do not induce D3R desensitization. In this study, using radioligand binding assay, immunoblot or immunocytochemistry methods, we observed that SK608 induced internalization of human D3R stably expressed in CHO, HEK and SH-SY5Y cells which are derived from neuroblastoma cells, suggesting that it is not a cell-type specific event. Further, we have evaluated the potential mechanism of D3R internalization induced by these biased signaling agonists. SK608-induced D3R internalization was time- and concentration-dependent. In comparison, dopamine induced D3R upregulation and pharmacological sequestration in the same assays. GRK2 and clathrin/dynamin I/II are the key molecular players in the SK608-induced D3R internalization process, while β-arrestin 1/2 and GRK-interacting protein 1(GIT1) are not involved. These results suggest that SK608-promoted D3R internalization is similar to the type II internalization observed among peptide binding GPCRs.
Collapse
Affiliation(s)
- Wei Xu
- Department of Microbiology and Immunology, Drexel University College of Medicine, PA 19129, United States
| | - Maarten E A Reith
- Department of Psychiatry, Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, United States
| | - Lee-Yuan Liu-Chen
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, PA 19129, United States; Department of Pharmacology and Physiology, Drexel University College of Medicine, PA 19102, United States.
| |
Collapse
|
17
|
A high-affinity peptide substrate for G protein-coupled receptor kinase 2 (GRK2). Amino Acids 2019; 51:973-976. [PMID: 31004228 DOI: 10.1007/s00726-019-02735-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/09/2019] [Indexed: 01/07/2023]
Abstract
We synthesized a previously identified β-tubulin-derived G protein-coupled receptor kinase 2 (GKR2) peptide (GR-11-1; DEMEFTEAESNMN) and its amino-terminal extension (GR-11-1-N; GEGMDEMEFTEAESNMN) and carboxyl-terminal extension (GR-11-1-C; DEMEFTEAESNMNDLVSEYQ) peptides with the aim of finding a high-affinity peptide substrate for GRK2. GR-11-1-C showed high affinity for GRK2, but very low affinity for GKR5. Its specificity and sensitivity for GKR2 were greater than those of GR-11-1 and GR-11-1-N. These findings should be useful in designing tools for probing GKR2-mediated intracellular signaling pathways, as well as GRK2-specific drugs.
Collapse
|
18
|
Zheng C, Tholen J, Gurevich VV. Critical role of the finger loop in arrestin binding to the receptors. PLoS One 2019; 14:e0213792. [PMID: 30875392 PMCID: PMC6420155 DOI: 10.1371/journal.pone.0213792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/28/2019] [Indexed: 12/18/2022] Open
Abstract
We tested the interactions with four different G protein-coupled receptors (GPCRs) of arrestin-3 mutants with substitutions in the four loops, three of which contact the receptor in the structure of the arrestin-1-rhodopsin complex. Point mutations in the loop at the distal tip of the N-domain (Glu157Ala), in the C-loop (Phe255Ala), back loop (Lys313Ala), and one of the mutations in the finger loop (Gly65Pro) had mild variable effects on receptor binding. In contrast, the deletion of Gly65 at the beginning of the finger loop reduced the binding to all GPCRs tested, with the binding to dopamine D2 receptor being affected most dramatically. Thus, the presence of a glycine at the beginning of the finger loop appears to be critical for the arrestin-receptor interaction.
Collapse
MESH Headings
- Amino Acid Sequence
- Arrestins/chemistry
- Arrestins/genetics
- Arrestins/metabolism
- HEK293 Cells
- Humans
- Point Mutation
- Protein Conformation
- Receptor, Muscarinic M2/chemistry
- Receptor, Muscarinic M2/genetics
- Receptor, Muscarinic M2/metabolism
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Dopamine D1/chemistry
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/chemistry
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Sequence Homology
Collapse
Affiliation(s)
- Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, United States of America
| | - Jonas Tholen
- University of Applied Sciences Emden/Leer, Emden, Germany
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, United States of America
| |
Collapse
|
19
|
Mototani Y, Okamura T, Goto M, Shimizu Y, Yanobu-Takanashi R, Ito A, Kawamura N, Yagisawa Y, Umeki D, Nariyama M, Suita K, Ohnuki Y, Shiozawa K, Sahara Y, Kozasa T, Saeki Y, Okumura S. Role of G protein-regulated inducer of neurite outgrowth 3 (GRIN3) in β-arrestin 2-Akt signaling and dopaminergic behaviors. Pflugers Arch 2018; 470:937-947. [PMID: 29500670 DOI: 10.1007/s00424-018-2124-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/21/2018] [Accepted: 02/14/2018] [Indexed: 12/11/2022]
Abstract
The G protein-regulated inducer of neurite growth (GRIN) family has three isoforms (GRIN1-3), which bind to the Gαi/o subfamily of G protein that mediate signal processing via G protein-coupled receptors (GPCRs). Here, we show that GRIN3 is involved in regulation of dopamine-dependent behaviors and is essential for activation of the dopamine receptors (DAR)-β-arrestin signaling cascade. Analysis of functional regions of GRIN3 showed that a di-cysteine motif (Cys751/752) is required for plasma membrane localization. GRIN3 was co-immunoprecipitated with GPCR kinases 2/6 and β-arrestins 1/2. Among GRINs, only GRIN3, which is highly expressed in striatum, strongly interacted with β-arrestin 2. We also generated GRIN3-knockout mice (GRIN3KO). GRIN3KO exhibited reduced locomotor activity and increased anxiety-like behavior in the elevated maze test, as well as a reduced locomoter response to dopamine stimulation. We also examined the phosphorylation of Akt at threonine 308 (phospho308-Akt), which is dephosphorylated via a β-arrestin 2-mediated pathway. Dephosphorylation of phospho308-Akt via the D2R-β-arrestin 2 signaling pathway was completely abolished in striatum of GRIN3KO. Our results suggest that GRIN3 has a role in recruitment and assembly of proteins involved in β-arrestin-dependent, G protein-independent signaling.
Collapse
Affiliation(s)
- Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Tadashi Okamura
- Division of Animal Model, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Motohito Goto
- Division of Animal Model, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Yukiko Shimizu
- Division of Animal Model, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Rieko Yanobu-Takanashi
- Division of Animal Model, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Aiko Ito
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.,Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Naoya Kawamura
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.,Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yuka Yagisawa
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.,Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Daisuke Umeki
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.,Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Megumi Nariyama
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.,Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Kouichi Shiozawa
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Yoshinori Sahara
- Department of Physiology, Iwate Medical University School of Dentistry, Morioka, 020-8505, Japan
| | - Tohru Kozasa
- Center for Drug Development, Yokohama University of Pharmacy, Yokohama, 245-0066, Japan
| | - Yasutake Saeki
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.
| |
Collapse
|
20
|
Topalidou I, Cooper K, Pereira L, Ailion M. Dopamine negatively modulates the NCA ion channels in C. elegans. PLoS Genet 2017; 13:e1007032. [PMID: 28968387 PMCID: PMC5638609 DOI: 10.1371/journal.pgen.1007032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 10/12/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023] Open
Abstract
The NALCN/NCA ion channel is a cation channel related to voltage-gated sodium and calcium channels. NALCN has been reported to be a sodium leak channel with a conserved role in establishing neuronal resting membrane potential, but its precise cellular role and regulation are unclear. The Caenorhabditis elegans orthologs of NALCN, NCA-1 and NCA-2, act in premotor interneurons to regulate motor circuit activity that sustains locomotion. Recently we found that NCA-1 and NCA-2 are activated by a signal transduction pathway acting downstream of the heterotrimeric G protein Gq and the small GTPase Rho. Through a forward genetic screen, here we identify the GPCR kinase GRK-2 as a new player affecting signaling through the Gq-Rho-NCA pathway. Using structure-function analysis, we find that the GPCR phosphorylation and membrane association domains of GRK-2 are required for its function. Genetic epistasis experiments suggest that GRK-2 acts on the D2-like dopamine receptor DOP-3 to inhibit Go signaling and positively modulate NCA-1 and NCA-2 activity. Through cell-specific rescuing experiments, we find that GRK-2 and DOP-3 act in premotor interneurons to modulate NCA channel function. Finally, we demonstrate that dopamine, through DOP-3, negatively regulates NCA activity. Thus, this study identifies a pathway by which dopamine modulates the activity of the NCA channels.
Collapse
Affiliation(s)
- Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail: (IT); (MA)
| | - Kirsten Cooper
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Laura Pereira
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail: (IT); (MA)
| |
Collapse
|
21
|
Abstract
Dendritic release of dopamine activates dopamine D2 autoreceptors, which are inhibitory G protein-coupled receptors (GPCRs), to decrease the excitability of dopamine neurons. This study used tagged D2 receptors to identify the localization and distribution of these receptors in living midbrain dopamine neurons. GFP-tagged D2 receptors were found to be unevenly clustered on the soma and dendrites of dopamine neurons within the substantia nigra pars compacta (SNc). Physiological signaling and desensitization of the tagged receptors were not different from wild type receptors. Unexpectedly, upon desensitization the tagged D2 receptors were not internalized. When tagged D2 receptors were expressed in locus coeruleus neurons, a desensitizing protocol induced significant internalization. Likewise, when tagged µ-opioid receptors were expressed in dopamine neurons they too were internalized. The distribution and lack of agonist-induced internalization of D2 receptors on dopamine neurons indicate a purposefully regulated localization of these receptors.
Collapse
|
22
|
Han CC, Ma Y, Li Y, Wang Y, Wei W. Regulatory effects of GRK2 on GPCRs and non-GPCRs and possible use as a drug target (Review). Int J Mol Med 2016; 38:987-94. [DOI: 10.3892/ijmm.2016.2720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/22/2016] [Indexed: 11/06/2022] Open
|
23
|
GRK2 Constitutively Governs Peripheral Delta Opioid Receptor Activity. Cell Rep 2016; 16:2686-2698. [PMID: 27568556 DOI: 10.1016/j.celrep.2016.07.084] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/24/2016] [Accepted: 07/27/2016] [Indexed: 01/07/2023] Open
Abstract
Opioids remain the standard for analgesic care; however, adverse effects of systemic treatments contraindicate long-term administration. While most clinical opioids target mu opioid receptors (MOR), those that target the delta class (DOR) also demonstrate analgesic efficacy. Furthermore, peripherally restrictive opioids represent an attractive direction for analgesia. However, opioid receptors including DOR are analgesically incompetent in the absence of inflammation. Here, we report that G protein-coupled receptor kinase 2 (GRK2) naively associates with plasma membrane DOR in peripheral sensory neurons to inhibit analgesic agonist efficacy. This interaction prevents optimal Gβ subunit association with the receptor, thereby reducing DOR activity. Importantly, bradykinin stimulates GRK2 movement away from DOR and onto Raf kinase inhibitory protein (RKIP). protein kinase C (PKC)-dependent RKIP phosphorylation induces GRK2 sequestration, restoring DOR functionality in sensory neurons. Together, these results expand the known function of GRK2, identifying a non-internalizing role to maintain peripheral DOR in an analgesically incompetent state.
Collapse
|
24
|
Characterization of the interaction between the dopamine D4 receptor, KLHL12 and β-arrestins. Cell Signal 2016; 28:1001-14. [DOI: 10.1016/j.cellsig.2016.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 01/11/2023]
|
25
|
Schmieg N, Rocchi C, Romeo S, Maggio R, Millan MJ, Mannoury la Cour C. Dysbindin-1 modifies signaling and cellular localization of recombinant, human D₃ and D₂ receptors. J Neurochem 2016; 136:1037-51. [PMID: 26685100 DOI: 10.1111/jnc.13501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 01/20/2023]
Abstract
Dystrobrevin binding protein-1 (dysbindin-1), a candidate gene for schizophrenia, modulates cognition, synaptic plasticity and frontocortical circuitry and interacts with glutamatergic and dopaminergic transmission. Loss of dysbindin-1 modifies cellular trafficking of dopamine (DA) D2 receptors to increase cell surface expression, but its influence upon signaling has never been characterized. Further, the effects of dysbindin-1 upon closely related D3 receptors remain unexplored. Hence, we examined the impact of dysbindin-1 (isoform A) co-expression on the localization and coupling of human D2L and D3 receptors stably expressed in Chinese hamster ovary or SH-SY5Y cells lacking endogenous dysbindin-1. Dysbindin-1 co-transfection decreased cell surface expression of both D3 and D2L receptors. Further, while their affinity for DA was unchanged, dysbindin-1 reduced the magnitude and potency of DA-induced adenylate cylase recruitment/cAMP production. Dysbindin-1 also blunted the amplitude of DA-induced phosphorylation of ERK1/2 and Akt at both D2L and D3 receptors without, in contrast to cAMP, affecting the potency of DA. Interference with calveolin/clathrin-mediated processes of internalization prevented the modification by dysbindin-1 of ERK1/2 and adenylyl cyclase stimulation at D2L and D3 receptors. Finally, underpinning the specificity of the influence of dysbindin-1 on D2L and D3 receptors, dysbindin-1 did not modify recruitment of adenylyl cyclase by D1 receptors. These observations demonstrate that dysbindin-1 influences cell surface expression of D3 in addition to D2L receptors, and that it modulates activation of their signaling pathways. Accordingly, both a deficiency and an excess of dysbindin-1 may be disruptive for dopaminergic transmission, supporting its link to schizophrenia and other CNS disorders. Dysbindin-1, a candidate gene for schizophrenia, alters D2 receptors cell surface expression. We demonstrate that dysbindin-1 expression also influences cell surface levels of D3 receptors. Further, Dysbindin-1 reduces DA-induced adenylate cylase recruitment/cAMP production and modifies major signaling pathways (Akt and extracellular signal-regulated kinases1/2 (ERK1/2)) of both D2 and D3 receptors. Dysbindin-1 modulates thus D2 and D3 receptor signaling, supporting a link to schizophrenia.
Collapse
Affiliation(s)
- Nathalie Schmieg
- PIT-Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, Croissy-sur-Seine, France
| | - Cristina Rocchi
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, L'Aquila, Italy
| | - Stefania Romeo
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, L'Aquila, Italy
| | - Roberto Maggio
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, L'Aquila, Italy
| | - Mark J Millan
- PIT-Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, Croissy-sur-Seine, France
| | - Clotilde Mannoury la Cour
- PIT-Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, Croissy-sur-Seine, France
| |
Collapse
|
26
|
Castro B, Sánchez P, Miranda MT, Torres JM, Ortega E. Identification of dopamine- and serotonin-related genes modulated by bisphenol A in the prefrontal cortex of male rats. CHEMOSPHERE 2015; 139:235-239. [PMID: 26141625 DOI: 10.1016/j.chemosphere.2015.06.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/18/2015] [Accepted: 06/21/2015] [Indexed: 06/04/2023]
Abstract
There is concern that exposure of embryos and/or infants to bisphenol A (BPA) may lead to neurological and behavioral disorders with unknown prefrontal cortex (PFC) involvement. Critical PFC functions are modulated by dopamine (DA) and serotonin (5-HT) systems, whose alterations have been associated with psychopathologies that may appear in youth and/or adulthood. This study aims to determine in the PFC of male rats exposed to a low dose of BPA (10μgkg(-1)d(-1)) from gestational day 12 (GD12) to postnatal day 21 (PND21): (i) DA- and 5-HT-related genes modulated by BPA at the juvenile stage (PND21); (ii) reversible and irreversible transcriptional effects; (iii) long-term consequences (effects in adult rats, PND90). In juvenile rats, BPA altered significantly the transcription of 12 out of the 84 genes analyzed using PCR-array techniques. Interestingly, transcript levels of the neurotrophic factor Gdnf were decrease by BPA in both juvenile and adult rats. At adulthood, disruptions in genes encoding rate-limiting enzymes for DA and 5-HT synthesis emerged. Overall, the results indicate that early-life exposure to BPA has consequences on DA and 5-HT systems in both juvenile- and adult-life stages. Additionally, we reveal molecular targets that could provide the foundation for future BPA neurotoxicity studies.
Collapse
Affiliation(s)
- Beatriz Castro
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Pilar Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, Granada, Spain
| | - María T Miranda
- Department of Biostatistics, Faculty of Medicine, University of Granada, Granada, Spain
| | - Jesús M Torres
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neurosciences, University of Granada, Granada, Spain.
| | - Esperanza Ortega
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neurosciences, University of Granada, Granada, Spain.
| |
Collapse
|
27
|
Brust TF, Conley JM, Watts VJ. Gα(i/o)-coupled receptor-mediated sensitization of adenylyl cyclase: 40 years later. Eur J Pharmacol 2015; 763:223-32. [PMID: 25981304 DOI: 10.1016/j.ejphar.2015.05.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/02/2015] [Accepted: 05/11/2015] [Indexed: 12/20/2022]
Abstract
Heterologous sensitization of adenylyl cyclase (also referred to as superactivation, sensitization, or supersensitization of adenylyl cyclase) is a cellular adaptive response first described 40 years ago in the laboratory of Dr. Marshall Nirenberg. This apparently paradoxical cellular response occurs following persistent activation of Gαi/o-coupled receptors and causes marked enhancement in the activity of adenylyl cyclases, thereby increasing cAMP production. Since our last review in 2005, significant progress in the field has led to a better understanding of the relevance of, and the cellular biochemical processes that occur during the development and expression of heterologous sensitization. In this review we will discuss the recent advancements in the field and the mechanistic hypotheses on heterologous sensitization.
Collapse
Affiliation(s)
- Tarsis F Brust
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jason M Conley
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
28
|
Elucidation of G-protein and β-arrestin functional selectivity at the dopamine D2 receptor. Proc Natl Acad Sci U S A 2015; 112:7097-102. [PMID: 25964346 DOI: 10.1073/pnas.1502742112] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The neuromodulator dopamine signals through the dopamine D2 receptor (D2R) to modulate central nervous system functions through diverse signal transduction pathways. D2R is a prominent target for drug treatments in disorders where dopamine function is aberrant, such as schizophrenia. D2R signals through distinct G-protein and β-arrestin pathways, and drugs that are functionally selective for these pathways could have improved therapeutic potential. How D2R signals through the two pathways is still not well defined, and efforts to elucidate these pathways have been hampered by the lack of adequate tools for assessing the contribution of each pathway independently. To address this, Evolutionary Trace was used to produce D2R mutants with strongly biased signal transduction for either the G-protein or β-arrestin interactions. These mutants were used to resolve the role of G proteins and β-arrestins in D2R signaling assays. The results show that D2R interactions with the two downstream effectors are dissociable and that G-protein signaling accounts for D2R canonical MAP kinase signaling cascade activation, whereas β-arrestin only activates elements of this cascade under certain conditions. Nevertheless, when expressed in mice in GABAergic medium spiny neurons of the striatum, the β-arrestin-biased D2R caused a significant potentiation of amphetamine-induced locomotion, whereas the G protein-biased D2R had minimal effects. The mutant receptors generated here provide a molecular tool set that should enable a better definition of the individual roles of G-protein and β-arrestin signaling pathways in D2R pharmacology, neurobiology, and associated pathologies.
Collapse
|
29
|
Trafficking of β-Adrenergic Receptors: Implications in Intracellular Receptor Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:151-88. [PMID: 26055058 DOI: 10.1016/bs.pmbts.2015.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
β-Adrenergic receptors (βARs), prototypical G-protein-coupled receptors, play a pivotal role in regulating neuronal and cardiovascular responses to catecholamines during stress. Agonist-induced receptor endocytosis is traditionally considered as a primary mechanism to turn off the receptor signaling (or receptor desensitization). However, recent progress suggests that intracellular trafficking of βAR presents a mean to translocate receptor signaling machinery to intracellular organelles/compartments while terminating the signaling at the cell surface. Moreover, the apparent multidimensionality of ligand efficacy in space and time in a cell has forecasted exciting pathophysiological implications, which are just beginning to be explored. As we begin to understand how these pathways impact downstream cellular programs, this will have significant implications for a number of pathophysiological conditions in heart and other systems, that in turn open up new therapeutic opportunities.
Collapse
|
30
|
Li L, Homan KT, Vishnivetskiy SA, Manglik A, Tesmer JJG, Gurevich VV, Gurevich EV. G Protein-coupled Receptor Kinases of the GRK4 Protein Subfamily Phosphorylate Inactive G Protein-coupled Receptors (GPCRs). J Biol Chem 2015; 290:10775-10790. [PMID: 25770216 PMCID: PMC4409243 DOI: 10.1074/jbc.m115.644773] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/04/2015] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in homologous desensitization of GPCRs. It is widely assumed that most GRKs selectively phosphorylate only active GPCRs. Here, we show that although this seems to be the case for the GRK2/3 subfamily, GRK5/6 effectively phosphorylate inactive forms of several GPCRs, including β2-adrenergic and M2 muscarinic receptors, which are commonly used as representative models for GPCRs. Agonist-independent GPCR phosphorylation cannot be explained by constitutive activity of the receptor or membrane association of the GRK, suggesting that it is an inherent ability of GRK5/6. Importantly, phosphorylation of the inactive β2-adrenergic receptor enhanced its interactions with arrestins. Arrestin-3 was able to discriminate between phosphorylation of the same receptor by GRK2 and GRK5, demonstrating preference for the latter. Arrestin recruitment to inactive phosphorylated GPCRs suggests that not only agonist activation but also the complement of GRKs in the cell regulate formation of the arrestin-receptor complex and thereby G protein-independent signaling.
Collapse
Affiliation(s)
- Lingyong Li
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Kristoff T Homan
- the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, and
| | | | - Aashish Manglik
- the Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - John J G Tesmer
- the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, and
| | - Vsevolod V Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Eugenia V Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232,
| |
Collapse
|
31
|
Clayton CC, Donthamsetti P, Lambert NA, Javitch JA, Neve KA. Mutation of three residues in the third intracellular loop of the dopamine D2 receptor creates an internalization-defective receptor. J Biol Chem 2014; 289:33663-75. [PMID: 25336643 DOI: 10.1074/jbc.m114.605378] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Arrestins mediate desensitization and internalization of G protein-coupled receptors and also direct receptor signaling toward heterotrimeric G protein-independent signaling pathways. We previously identified a four-residue segment (residues 212-215) of the dopamine D2 receptor that is necessary for arrestin binding in an in vitro heterologous expression system but that also impairs receptor expression. We now describe the characterization of additional mutations at that arrestin binding site in the third intracellular loop. Mutating two (residues 214 and 215) or three (residues 213-215) of the four residues to alanine partially decreased agonist-induced recruitment of arrestin3 without altering activation of a G protein. Arrestin-dependent receptor internalization, which requires arrestin binding to β2-adaptin (the β2 subunit of the clathrin-associated adaptor protein AP2) and clathrin, was disproportionately affected by the three-residue mutation, with no agonist-induced internalization observed even in the presence of overexpressed arrestin or G protein-coupled receptor kinase 2. The disjunction between arrestin recruitment and internalization could not be explained by alterations in the time course of the receptor-arrestin interaction, the recruitment of G protein-coupled receptor kinase 2, or the receptor-induced interaction between arrestin and β2-adaptin, suggesting that the mutation impairs a property of the internalization complex that has not yet been identified.
Collapse
Affiliation(s)
- Cecilea C Clayton
- the Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Prashant Donthamsetti
- the Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, New York, New York 10032, the Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, and
| | - Nevin A Lambert
- the Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912
| | - Jonathan A Javitch
- the Departments of Psychiatry and Pharmacology, Columbia University College of Physicians and Surgeons, New York, New York 10032, the Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032, and
| | - Kim A Neve
- the Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, From the Research Service, Department of Veterans Affairs Medical Center, Portland, Oregon 97239,
| |
Collapse
|
32
|
Selective deletion of GRK2 alters psychostimulant-induced behaviors and dopamine neurotransmission. Neuropsychopharmacology 2014; 39:2450-62. [PMID: 24776686 PMCID: PMC4138757 DOI: 10.1038/npp.2014.97] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/15/2014] [Accepted: 04/15/2014] [Indexed: 01/11/2023]
Abstract
GRK2 is a G protein-coupled receptor kinase (GRK) that is broadly expressed and is known to regulate diverse types of receptors. GRK2 null animals exhibit embryonic lethality due to a severe developmental heart defect, which has precluded the study of this kinase in the adult brain. To elucidate the specific role of GRK2 in the brain dopamine (DA) system, we used a conditional gene knockout approach to selectively delete GRK2 in DA D1 receptor (D1R)-, DA D2 receptor (D2R)-, adenosine 2A receptor (A2AR)-, or DA transporter (DAT)-expressing neurons. Here we show that select GRK2-deficient mice display hyperactivity, hyposensitivity, or hypersensitivity to the psychomotor effects of cocaine, altered striatal signaling, and DA release and uptake. Mice with GRK2 deficiency in D2R-expressing neurons also exhibited increased D2 autoreceptor activity. These findings reveal a cell-type-specific role for GRK2 in the regulation of normal motor behavior, sensitivity to psychostimulants, dopamine neurotransmission, and D2 autoreceptor function.
Collapse
|
33
|
Gimenez LE, Vishnivetskiy SA, Gurevich VV. Targeting individual GPCRs with redesigned nonvisual arrestins. Handb Exp Pharmacol 2014; 219:153-70. [PMID: 24292829 DOI: 10.1007/978-3-642-41199-1_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Numerous human diseases are caused by excessive signaling of mutant G protein-coupled receptors (GPCRs) or receptors that are overstimulated due to upstream signaling imbalances. The feasibility of functional compensation by arrestins with enhanced ability to quench receptor signaling was recently tested in the visual system. The results showed that even in this extremely demanding situation of rods that have no ability to phosphorylate rhodopsin, enhanced arrestin improved rod morphology, light sensitivity, survival, and accelerated photoresponse recovery. Structurally distinct enhanced mutants of arrestins that bind phosphorylated and non-phosphorylated active GPCRs with much higher affinity than parental wild-type (WT) proteins have been constructed. These "super-arrestins" are likely to have the power to dampen the signaling by hyperactive GPCRs. However, most cells express 5-20 GPCR subtypes, only one of which would be overactive, while nonvisual arrestins are remarkably promiscuous, binding hundreds of different GPCRs. Thus, to be therapeutically useful, enhanced versions of nonvisual arrestins must be made fairly specific for particular receptors. Recent identification of very few arrestin residues as key receptor discriminators paves the way to the construction of receptor subtype-specific nonvisual arrestins.
Collapse
Affiliation(s)
- Luis E Gimenez
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Nashville, TN, 37232, USA,
| | | | | |
Collapse
|
34
|
Seeman P. Are dopamine D2 receptors out of control in psychosis? Prog Neuropsychopharmacol Biol Psychiatry 2013; 46:146-52. [PMID: 23880595 DOI: 10.1016/j.pnpbp.2013.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/08/2013] [Accepted: 07/08/2013] [Indexed: 01/11/2023]
Abstract
It is known that schizophrenia patients are behaviorally supersensitive to dopamine-like drugs (amphetamine, methylphenidate). There is evidence for an increased release of dopamine, a slight increase of dopamine D2 receptors and an increase of dopamine D2High receptors in schizophrenia, all possibly explaining the clinical supersensitivity to dopamine. The elevation in apparent D2High receptors in vivo in schizophrenia matches the elevation in D2High receptors in many animal models of psychosis. The increased amounts of D2High receptors in psychotic-like behavior in animals may result from a loss of control of D2 by various factors. These factors include the rate of phosphorylation and desensitization of D2 receptors by kinases, the attachment of arrestin to D2 receptors, internalization of D2 receptors, the rate of receptor de-phosphorylation, formation of D2 receptor dimers, and GTP regulation by various GTPases. While at present there are no statistically significant associations of any of these controlling factors and their genes with schizophrenia, investigation of D2High receptors in schizophrenia will require a new radioligand in order to selectively label D2High receptors in vivo in patients. Finally, haloperidol reduces the number of D2High receptors that are elevated by amphetamine, indicating that this therapeutic effect may occur clinically.
Collapse
Affiliation(s)
- Philip Seeman
- Department of Pharmacology, University of Toronto, 260 Heath Street, West, unit 605, Toronto, Ontario M5P 3L6, Canada; Department of Psychiatry, University of Toronto, 260 Heath Street, West, unit 605, Toronto, Ontario, M5P 3L6, Canada.
| |
Collapse
|
35
|
Celver J, Sharma M, Thanawala V, Christopher Octeau J, Kovoor A. Arrestin-dependent but G-protein coupled receptor kinase-independent uncoupling of D2-dopamine receptors. J Neurochem 2013; 127:57-65. [PMID: 23815307 DOI: 10.1111/jnc.12359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 11/30/2022]
Abstract
We reconstituted D2 like dopamine receptor (D2R) and the delta opioid receptor (DOR) coupling to G-protein gated inwardly rectifying potassium channels (K(ir)3) and directly compared the effects of co-expression of G-protein coupled receptor kinase (GRK) and arrestin on agonist-dependent desensitization of the receptor response. We found, as described previously, that co-expression of a GRK and an arrestin synergistically increased the rate of agonist-dependent desensitization of DOR. In contrast, only arrestin expression was required to produce desensitization of D2R responses. Furthermore, arrestin-dependent GRK-independent desensitization of D2R-K(ir)3 coupling could be transferred to DOR by substituting the third cytoplasmic loop of DOR with that of D2R. The arrestin-dependent GRK-independent desensitization of D2R desensitization was inhibited by staurosporine treatment, and blocked by alanine substitution of putative protein kinase C phosphorylation sites in the third cytoplasmic loop of D2R. Finally, the D2R construct in which putative protein kinase C phosphorylation sites were mutated did not undergo significant agonist-dependent desensitization even after GRK co-expression, suggesting that GRK phosphorylation of D2R does not play an important role in uncoupling of the receptor.
Collapse
Affiliation(s)
- Jeremy Celver
- Department of Biomedical and Pharmacological Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | | | | | | | | |
Collapse
|
36
|
Bergman J, Roof RA, Furman CA, Conroy JL, Mello NK, Sibley DR, Skolnick P. Modification of cocaine self-administration by buspirone (buspar®): potential involvement of D3 and D4 dopamine receptors. Int J Neuropsychopharmacol 2013; 16:445-58. [PMID: 22827916 PMCID: PMC5100812 DOI: 10.1017/s1461145712000661] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Converging lines of evidence indicate that elevations in synaptic dopamine levels play a pivotal role in the reinforcing effects of cocaine, which are associated with its abuse liability. This evidence has led to the exploration of dopamine receptor blockers as pharmacotherapy for cocaine addiction. While neither D1 nor D2 receptor antagonists have proven effective, medications acting at two other potential targets, D3 and D4 receptors, have yet to be explored for this indication in the clinic. Buspirone, a 5-HT1A partial agonist approved for the treatment of anxiety, has been reported to also bind with high affinity to D3 and D4 receptors. In view of this biochemical profile, the present research was conducted to examine both the functional effects of buspirone on these receptors and, in non-human primates, its ability to modify the reinforcing effects of i.v. cocaine in a behaviourally selective manner. Radioligand binding studies confirmed that buspirone binds with high affinity to recombinant human D3 and D4 receptors (∼98 and ∼29 nm respectively). Live cell functional assays also revealed that buspirone, and its metabolites, function as antagonists at both D3 and D4 receptors. In behavioural studies, doses of buspirone that had inconsistent effects on food-maintained responding (0.1 or 0.3 mg/kg i.m.) produced a marked downward shift in the dose-effect function for cocaine-maintained behaviour, reflecting substantial decreases in self-administration of one or more unit doses of i.v. cocaine in each subject. These results support the further evaluation of buspirone as a candidate medication for the management of cocaine addiction.
Collapse
Affiliation(s)
- Jack Bergman
- Harvard Medical School-McLean Hospital, Alcohol and Drug Abuse Research Center, Belmont, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Nimitvilai S, McElvain MA, Brodie MS. Reversal of dopamine D2 agonist-induced inhibition of ventral tegmental area neurons by Gq-linked neurotransmitters is dependent on protein kinase C, G protein-coupled receptor kinase, and dynamin. J Pharmacol Exp Ther 2013; 344:253-63. [PMID: 23019137 PMCID: PMC3533415 DOI: 10.1124/jpet.112.199844] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/25/2012] [Indexed: 01/20/2023] Open
Abstract
Dopaminergic neurons of the ventral tegmental area are important components of brain pathways related to addiction. Prolonged exposure of these neurons to moderate concentrations of dopamine (DA) decreases their sensitivity to inhibition by DA, a process called DA-inhibition reversal (DIR). DIR is mediated by phospholipase C and conventional subtype of protein kinase C (cPKC) through concurrent stimulation of D2 and D1-like DA receptors, or by D2 stimulation concurrent with activation of 5-HT(2) or neurotensin receptors. In the present study, we further characterized this phenomenon by use of extracellular recordings in brain slices to examine whether DIR is linked to G protein-coupled receptor kinase-2 (GRK2) or dynamin by assessing DIR in the presence of antagonists of these enzymes. DIR was blocked by β-ARK1 inhibitor, which inhibits GRK2, and by dynasore, which blocks dynamin. Reversal of inhibition by D2 agonist quinpirole was produced by serotonin (50 µM) and by neurotensin (5-10 nM). Serotonin-induced or neurotensin-induced reversal was blocked by β-ARK1 inhibitor, dynasore, or cPKC antagonist 5,6,7,13-tetrahydro-13-methyl-5-oxo-12H-indolo[2,3-a]pyrrolo[3,4c]carbazole-12-propanenitrile (Gö6976). This further characterization of DIR indicates that cPKC, GRK2, and dynamin play important roles in the desensitization of D2 receptors. As drugs of abuse produce persistent increases in DA concentration in the ventral tegmental area, reduction of D2 receptor sensitivity as a result of drug abuse may be a critical factor in the processes of addiction.
Collapse
Affiliation(s)
- Sudarat Nimitvilai
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612-7342, USA
| | | | | |
Collapse
|
38
|
Gurevich VV, Gurevich EV. Synthetic biology with surgical precision: targeted reengineering of signaling proteins. Cell Signal 2012; 24:1899-1908. [PMID: 22664341 PMCID: PMC3404258 DOI: 10.1016/j.cellsig.2012.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/14/2012] [Indexed: 01/14/2023]
Abstract
The complexity of living systems exceeds everything else studied by natural sciences. Sophisticated networks of intimately intertwined signaling pathways coordinate cellular functions. Clear understanding how the integration of multiple inputs produces coherent behavior is one of the major challenges of cell biology. Integration via perfectly timed highly regulated protein-protein interactions and precise targeting of the "output" proteins to particular substrates is emerging as a common theme of signaling regulation. This often involves specialized scaffolding proteins, whose key function is to ensure that correct partners come together in an appropriate place at the right time. Defective or faulty signaling underlies many congenital and acquired human disorders. Several pioneering studies showed that ectopic expression of existing proteins or their elements can restore functions destroyed by mutations or normalize the signaling pushed out of balance by disease and/or current small molecule-based therapy. Several recent studies show that proteins with new functional modalities can be generated by mixing and matching existing domains, or via functional recalibration and fine-tuning of existing proteins by precisely targeted mutations. Using arrestins as an example, we describe how manipulation of individual functions yields signaling-biased proteins. Creative protein redesign generates novel tools valuable for unraveling the intricacies of cell biology. Engineered proteins with specific functional changes also have huge therapeutic potential in disorders associated with inherited or acquired signaling errors.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | | |
Collapse
|
39
|
Gimenez LE, Vishnivetskiy SA, Baameur F, Gurevich VV. Manipulation of very few receptor discriminator residues greatly enhances receptor specificity of non-visual arrestins. J Biol Chem 2012; 287:29495-29505. [PMID: 22787152 PMCID: PMC3436164 DOI: 10.1074/jbc.m112.366674] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/09/2012] [Indexed: 01/14/2023] Open
Abstract
Based on the identification of residues that determine receptor selectivity of arrestins and the analysis of the evolution in the arrestin family, we introduced 10 mutations of "receptor discriminator" residues in arrestin-3. The recruitment of these mutants to M2 muscarinic (M2R), D1 (D1R) and D2 (D2R) dopamine, and β(2)-adrenergic receptors (β(2)AR) was assessed using bioluminescence resonance energy transfer-based assays in cells. Seven of 10 mutations differentially affected arrestin-3 binding to individual receptors. D260K and Q262P reduced the binding to β(2)AR, much more than to other receptors. The combination D260K/Q262P virtually eliminated β(2)AR binding while preserving the interactions with M2R, D1R, and D2R. Conversely, Y239T enhanced arrestin-3 binding to β(2)AR and reduced the binding to M2R, D1R, and D2R, whereas Q256Y selectively reduced recruitment to D2R. The Y239T/Q256Y combination virtually eliminated the binding to D2R and reduced the binding to β(2)AR and M2R, yielding a mutant with high selectivity for D1R. Eleven of 12 mutations significantly changed the binding to light-activated phosphorhodopsin. Thus, manipulation of key residues on the receptor-binding surface modifies receptor preference, enabling the construction of non-visual arrestins specific for particular receptor subtypes. These findings pave the way to the construction of signaling-biased arrestins targeting the receptor of choice for research or therapeutic purposes.
Collapse
Affiliation(s)
- Luis E. Gimenez
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | | | - Faiza Baameur
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
40
|
Schubert KO, Föcking M, Prehn JHM, Cotter DR. Hypothesis review: are clathrin-mediated endocytosis and clathrin-dependent membrane and protein trafficking core pathophysiological processes in schizophrenia and bipolar disorder? Mol Psychiatry 2012; 17:669-81. [PMID: 21986877 DOI: 10.1038/mp.2011.123] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Clathrin-mediated endocytosis (CME) is the best-characterized mechanism governing cellular membrane and protein trafficking. In this hypothesis review, we integrate recent evidence implicating CME and related cellular trafficking mechanisms in the pathophysiology of psychotic disorders such as schizophrenia and bipolar disorder. The evidence includes proteomic and genomic findings implicating proteins and genes of the clathrin interactome. Additionally, several important candidate genes for schizophrenia, such as dysbindin, are involved in processes closely linked to CME and membrane trafficking. We discuss that key aspects of psychosis neuropathology such as synaptic dysfunction, white matter changes and aberrant neurodevelopment are all influenced by clathrin-dependent processes, and that other cellular trafficking mechanisms previously linked to psychoses interact with the clathrin interactome in important ways. Furthermore, many antipsychotic drugs have been shown to affect clathrin-interacting proteins. We propose that the targeted pharmacological manipulation of the clathrin interactome may offer fruitful opportunities for novel treatments of schizophrenia.
Collapse
Affiliation(s)
- K O Schubert
- Department of Psychiatry, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Republic of Ireland
| | | | | | | |
Collapse
|
41
|
Wei Z, Hurtt R, Ciccarelli M, Koch WJ, Doria C. Growth inhibition of human hepatocellular carcinoma cells by overexpression of G-protein-coupled receptor kinase 2. J Cell Physiol 2012; 227:2371-7. [PMID: 21826651 DOI: 10.1002/jcp.22972] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest forms of human liver cancer and does not respond well to conventional therapies. Novel effective treatments are urgently in need. G-protein-coupled kinase 2 (GRK2) is unique serine/threonine kinase that involves in many signaling pathways and regulates various essential cellular processes. Altered levels of GRK2 have been linked with several human diseases including cancer. In this study, we investigated a novel approach for HCC treatment by inducing overexpression of GRK2 in human HCC cells. We found that overexpression of GRK2 through recombinant adenovirus transduction inhibits the growth of human HCC cells. BrdU incorporation assay showed that the growth inhibition caused by elevated GRK2 level was due to reduced cell proliferation but not apoptosis. To examine the anti-proliferative function of increased GRK2 level, we performed cell cycle analysis using propidium iodide staining. We found that the proliferation suppression was associated with G2/M phase cell cycle arrest by the wild-type GRK2 but not its kinase-dead K220R mutant. Furthermore, increased levels of wild-type GRK2 induced upregulation of phosphor-Ser(15) p53 and cyclin B1 in a dose-dependent manner. Our data indicate that the anti-proliferative function of elevated GRK2 is associated with delayed cell cycle progression and is GRK2 kinase activity-dependent. Enforced expression of GRK2 in human HCC by molecular delivery may offer a potential therapeutic approach for the treatment of human liver cancer.
Collapse
Affiliation(s)
- Zhengyu Wei
- Division of Transplantation, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | |
Collapse
|
42
|
Moulédous L, Froment C, Dauvillier S, Burlet-Schiltz O, Zajac JM, Mollereau C. GRK2 protein-mediated transphosphorylation contributes to loss of function of μ-opioid receptors induced by neuropeptide FF (NPFF2) receptors. J Biol Chem 2012; 287:12736-49. [PMID: 22375000 PMCID: PMC3339982 DOI: 10.1074/jbc.m111.314617] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/13/2012] [Indexed: 01/25/2023] Open
Abstract
Neuropeptide FF (NPFF) interacts with specific receptors to modulate opioid functions in the central nervous system. On dissociated neurons and neuroblastoma cells (SH-SY5Y) transfected with NPFF receptors, NPFF acts as a functional antagonist of μ-opioid (MOP) receptors by attenuating the opioid-induced inhibition of calcium conductance. In the SH-SY5Y model, MOP and NPFF(2) receptors have been shown to heteromerize. To understand the molecular mechanism involved in the anti-opioid activity of NPFF, we have investigated the phosphorylation status of the MOP receptor using phospho-specific antibody and mass spectrometry. Similarly to direct opioid receptor stimulation, activation of the NPFF(2) receptor by [D-Tyr-1-(NMe)Phe-3]NPFF (1DMe), an analog of NPFF, induced the phosphorylation of Ser-377 of the human MOP receptor. This heterologous phosphorylation was unaffected by inhibition of second messenger-dependent kinases and, contrarily to homologous phosphorylation, was prevented by inactivation of G(i/o) proteins by pertussis toxin. Using siRNA knockdown we could demonstrate that 1DMe-induced Ser-377 cross-phosphorylation and MOP receptor loss of function were mediated by the G protein receptor kinase GRK2. In addition, mass spectrometric analysis revealed that the phosphorylation pattern of MOP receptors was qualitatively similar after treatment with the MOP agonist Tyr-D-Ala-Gly (NMe)-Phe-Gly-ol (DAMGO) or after treatment with the NPFF agonist 1DMe, but the level of multiple phosphorylation was more intense after DAMGO. Finally, NPFF(2) receptor activation was sufficient to recruit β-arrestin2 to the MOP receptor but not to induce its internalization. These data show that NPFF-induced heterologous desensitization of MOP receptor signaling is mediated by GRK2 and could involve transphosphorylation within the heteromeric receptor complex.
Collapse
Affiliation(s)
- Lionel Moulédous
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Carine Froment
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Stéphanie Dauvillier
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Odile Burlet-Schiltz
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Jean-Marie Zajac
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Catherine Mollereau
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| |
Collapse
|
43
|
Gimenez LE, Kook S, Vishnivetskiy SA, Ahmed MR, Gurevich EV, Gurevich VV. Role of receptor-attached phosphates in binding of visual and non-visual arrestins to G protein-coupled receptors. J Biol Chem 2012; 287:9028-9040. [PMID: 22275358 PMCID: PMC3308753 DOI: 10.1074/jbc.m111.311803] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 01/20/2012] [Indexed: 01/07/2023] Open
Abstract
Arrestins are a small family of proteins that regulate G protein-coupled receptors (GPCRs). Arrestins specifically bind to phosphorylated active receptors, terminating G protein coupling, targeting receptors to endocytic vesicles, and initiating G protein-independent signaling. The interaction of rhodopsin-attached phosphates with Lys-14 and Lys-15 in β-strand I was shown to disrupt the interaction of α-helix I, β-strand I, and the C-tail of visual arrestin-1, facilitating its transition into an active receptor-binding state. Here we tested the role of conserved lysines in homologous positions of non-visual arrestins by generating K2A mutants in which both lysines were replaced with alanines. K2A mutations in arrestin-1, -2, and -3 significantly reduced their binding to active phosphorhodopsin in vitro. The interaction of arrestins with several GPCRs in intact cells was monitored by a bioluminescence resonance energy transfer (BRET)-based assay. BRET data confirmed the role of Lys-14 and Lys-15 in arrestin-1 binding to non-cognate receptors. However, this was not the case for non-visual arrestins in which the K2A mutations had little effect on net BRET(max) values for the M2 muscarinic acetylcholine (M2R), β(2)-adrenergic (β(2)AR), or D2 dopamine receptors. Moreover, a phosphorylation-deficient mutant of M2R interacted with wild type non-visual arrestins normally, whereas phosphorylation-deficient β(2)AR mutants bound arrestins at 20-50% of the level of wild type β(2)AR. Thus, the contribution of receptor-attached phosphates to arrestin binding varies depending on the receptor-arrestin pair. Although arrestin-1 always depends on receptor phosphorylation, its role in the recruitment of arrestin-2 and -3 is much greater in the case of β(2)AR than M2R and D2 dopamine receptor.
Collapse
Affiliation(s)
- Luis E. Gimenez
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Seunghyi Kook
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | | | - M. Rafiuddin Ahmed
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Eugenia V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
44
|
Peverelli E, Mantovani G, Vitali E, Elli FM, Olgiati L, Ferrero S, Laws ER, Della Mina P, Villa A, Beck-Peccoz P, Spada A, Lania AG. Filamin-A is essential for dopamine d2 receptor expression and signaling in tumorous lactotrophs. J Clin Endocrinol Metab 2012; 97:967-77. [PMID: 22259062 DOI: 10.1210/jc.2011-2902] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CONTEXT Dopamine agonists (DA) are the first choice treatment of prolactinomas. However, a subset of patients is resistant to DA, due to undefined dopamine D2 receptor (D2R) alterations. Recently, D2R was found to associate with filamin-A (FLNA), a widely expressed cytoskeleton protein with scaffolding properties, in melanoma and neuronal cells. OBJECTIVE The aim of the study was to investigate the role of FLNA in D2R expression and signaling in human tumorous lactotrophs and rat MMQ and GH3 cells. DESIGN We analyzed FLNA expression in a series of prolactinomas by immunohistochemistry and Western blotting. We performed FLNA silencing or transfection experiments in cultured cells from DA-sensitive or -resistant prolactinomas and in MMQ and GH3 cells, followed by analysis of D2R expression and signaling. RESULTS We demonstrated reduced FLNA and D2R expression in DA-resistant tumors. The crucial role of FLNA on D2R was demonstrated by experiments showing that: 1) FLNA silencing in DA-sensitive prolactinomas resulted in 60% reduction of D2R expression and abrogation of DA-induced inhibition of prolactin release and antiproliferative signals, these results being replicated in MMQ cells that endogenously express FLNA and D2R; and 2) FLNA overexpression in DA-resistant prolactinomas restored D2R expression and prolactin responsiveness to DA, whereas this manipulation was ineffective in GH3 cells that express FLNA but not D2R. No alteration in FLNA promoter methylation was detected, ruling out the occurrence of epigenetic FLNA silencing in DA-resistant prolactinomas. CONCLUSIONS These data indicate that FLNA is crucial for D2R expression and signaling in lactotrophs, suggesting that the impaired response to DA may be related to the reduction of FLNA expression in DA-resistant prolactinomas.
Collapse
Affiliation(s)
- Erika Peverelli
- Endocrinology Unit, Department of Medical Sciences, Fondazione Instituto di Ricovero e Cura a Carattere Scientifico Ca' Granda-Padiglione Granelli, University of Milan, Via Francesco Sforza, 35, 20122 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Evron T, Daigle TL, Caron MG. GRK2: multiple roles beyond G protein-coupled receptor desensitization. Trends Pharmacol Sci 2012; 33:154-64. [PMID: 22277298 DOI: 10.1016/j.tips.2011.12.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 01/08/2023]
Abstract
G protein-coupled receptor kinases (GRKs) regulate numerous G protein-coupled receptors (GPCRs) by phosphorylating the intracellular domain of the active receptor, resulting in receptor desensitization and internalization. GRKs also regulate GPCR trafficking in a phosphorylation-independent manner via direct protein-protein interactions. Emerging evidence suggests that GRK2, the most widely studied member of this family of kinases, modulates multiple cellular responses in various physiological contexts by either phosphorylating non-receptor substrates or interacting directly with signaling molecules. In this review, we discuss traditional and newly discovered roles of GRK2 in receptor internalization and signaling as well as its impact on non-receptor substrates. We also discuss novel exciting roles of GRK2 in the regulation of dopamine receptor signaling and in the activation and trafficking of the atypical GPCR, Smoothened (Smo).
Collapse
Affiliation(s)
- Tama Evron
- Department of Cell Biology, Medicine and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
46
|
Vishnivetskiy SA, Gimenez LE, Francis DJ, Hanson SM, Hubbell WL, Klug CS, Gurevich VV. Few residues within an extensive binding interface drive receptor interaction and determine the specificity of arrestin proteins. J Biol Chem 2011; 286:24288-99. [PMID: 21471193 PMCID: PMC3129209 DOI: 10.1074/jbc.m110.213835] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/25/2011] [Indexed: 01/25/2023] Open
Abstract
Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to β2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements.
Collapse
Affiliation(s)
| | - Luis E. Gimenez
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Derek J. Francis
- the Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - Susan M. Hanson
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Wayne L. Hubbell
- the Jules Stein Eye Institute and Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Candice S. Klug
- the Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
47
|
Fernandez N, Gottardo FL, Alonso MN, Monczor F, Shayo C, Davio C. Roles of phosphorylation-dependent and -independent mechanisms in the regulation of histamine H2 receptor by G protein-coupled receptor kinase 2. J Biol Chem 2011; 286:28697-28706. [PMID: 21705320 DOI: 10.1074/jbc.m111.269613] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
It is widely assumed that G protein-coupled receptor kinase 2 (GRK2)-mediated specific inhibition of G protein-coupled receptors (GPCRs) response involves GRK-mediated receptor phosphorylation followed by β-arrestin binding and subsequent uncoupling from the heterotrimeric G protein. It has recently become evident that GRK2-mediated GPCRs regulation also involves phosphorylation-independent mechanisms. In the present study we investigated whether the histamine H2 receptor (H2R), a Gα(s)-coupled GPCR known to be desensitized by GRK2, needs to be phosphorylated for its desensitization and/or internalization and resensitization. For this purpose we evaluated the effect of the phosphorylating-deficient GRK2K220R mutant on H2R signaling in U937, COS7, and HEK293T cells. We found that although this mutant functioned as dominant negative concerning receptor internalization and resensitization, it desensitized H2R signaling in the same degree as the GRK2 wild type. To identify the domains responsible for the kinase-independent receptor desensitization, we co-transfected the receptor with constructions encoding the GRK2 RGS-homology domain (RH) and the RH or the kinase domain fused to the pleckstrin-homology domain. Results demonstrated that the RH domain of GRK2 was sufficient to desensitize the H2R. Moreover, disruption of RGS functions by the use of GRK2D110A/K220R double mutant, although coimmunoprecipitating with the H2R, reversed GRK2K220R-mediated H2R desensitization. Overall, these results indicate that GRK2 induces desensitization of H2R through a phosphorylation-independent and RGS-dependent mechanism and extends the GRK2 RH domain-mediated regulation of GPCRs beyond Gα(q)-coupled receptors. On the other hand, GRK2 kinase activity proved to be necessary for receptor internalization and the resulting resensitization.
Collapse
Affiliation(s)
- Natalia Fernandez
- Laboratorio de Farmacología de Receptores, Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina,; Consejo Nacional de Investigaciones Científicas y Técnicas, 1033 Buenos Aires, Argentina.
| | - Federico L Gottardo
- Laboratorio de Farmacología de Receptores, Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | - Maria N Alonso
- Consejo Nacional de Investigaciones Científicas y Técnicas, 1033 Buenos Aires, Argentina; Laboratorio de Farmacología y Patología Molecular, Instituto de Biología y Medicina Experimental, 1426 Buenos Aires, Argentina, and
| | - Federico Monczor
- Laboratorio de Farmacología de Receptores, Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina,; Consejo Nacional de Investigaciones Científicas y Técnicas, 1033 Buenos Aires, Argentina
| | - Carina Shayo
- Consejo Nacional de Investigaciones Científicas y Técnicas, 1033 Buenos Aires, Argentina; Laboratorio de Farmacología y Patología Molecular, Instituto de Biología y Medicina Experimental, 1426 Buenos Aires, Argentina, and
| | - Carlos Davio
- Laboratorio de Farmacología de Receptores, Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina,; Consejo Nacional de Investigaciones Científicas y Técnicas, 1033 Buenos Aires, Argentina
| |
Collapse
|
48
|
Krawczyk M, Sharma R, Mason X, DeBacker J, Jones AA, Dumont ÉC. A switch in the neuromodulatory effects of dopamine in the oval bed nucleus of the stria terminalis associated with cocaine self-administration in rats. J Neurosci 2011; 31:8928-35. [PMID: 21677176 PMCID: PMC4011826 DOI: 10.1523/jneurosci.0377-11.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 04/28/2011] [Accepted: 04/29/2011] [Indexed: 01/24/2023] Open
Abstract
Chronic exposure to drugs of abuse alters brain reward circuits and produces functional changes in the dopamine (DA) system. However, it is not known whether these changes are directly related to drug-driven behaviors or whether they simply are adaptive responses to long-term drug exposure. Here, we combined the rat model of cocaine self-administration with brain slice electrophysiology to identify drug-use related alterations in the neuromodulatory effects of DA in the oval bed nucleus of the stria terminalis (ovBST), a robust DA terminal field. Long-Evans rats self-administered cocaine intravenously (0.75 mg/kg/injection) for an average of 15 d, on reward-lean or -rich schedules of reinforcement. Brain slice recordings conducted 20 h after the last self-administration session revealed a reversal of the neuromodulatory effect of DA on GABA(A)-IPSCs. Specifically, the effect of DA switched from a D2-mediated decrease in drug-naive rats to a D1-receptor-mediated increase in GABA(A)-IPSC in cocaine self-administering rats. Furthermore, the switch in DA modulation of GABA(A)-IPSC remained after a 30 d withdrawal period. In contrast, this switch was not observed after the acquisition phase of cocaine self-administration, when rats received cocaine passively, or in rats maintaining sucrose self-administration. Therefore, our study reveals a reversal in the effects of DA on inhibitory transmission, from reduction to enhancement, in the ovBST of cocaine self-administering rats. This change was unique to voluntary intake of cocaine and maintained after a withdrawal period, suggesting a mechanism underlying the maintenance of cocaine self-administration and perhaps craving during drug-free periods.
Collapse
Affiliation(s)
- Michal Krawczyk
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Robyn Sharma
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Xenos Mason
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Julian DeBacker
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Andrea A. Jones
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Éric C. Dumont
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
49
|
Thibault D, Albert PR, Pineyro G, Trudeau LÉ. Neurotensin triggers dopamine D2 receptor desensitization through a protein kinase C and beta-arrestin1-dependent mechanism. J Biol Chem 2011; 286:9174-84. [PMID: 21233215 PMCID: PMC3059057 DOI: 10.1074/jbc.m110.166454] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 01/12/2011] [Indexed: 11/06/2022] Open
Abstract
The peptide neurotensin (NT) is known to exert a potent excitatory effect on the dopaminergic system by inhibiting D2 dopamine (DA) receptor (D2R) function. This regulation is dependent on activation of PKC, a well known effector of the type 1 NT receptor (NTR1). Because PKC phosphorylation of the D2R has recently been shown to induce its internalization, we hypothesized that NT acts to reduce D2R function through heterologous desensitization of the D2R. In the present study, we first used HEK-293 cells to demonstrate that NT induces PKC-dependent D2R internalization. Furthermore, internalization displayed faster kinetics in cells expressing the D2R short isoform, known to act as an autoreceptor in DA neurons, than in cells expressing the long isoform, known to act as a postsynaptic D2R. In patch clamp experiments on cultured DA neurons, overexpression of a mutant D2S lacking three key PKC phosphorylation sites abrogated the ability of NT to reduce D2R-mediated cell firing inhibition. Short interfering RNA-mediated inhibition of β-arrestin1 and dynamin2, proteins important for receptor desensitization, reduced agonist-induced desensitization of D2R function, but only the inhibition of β-arrestin1 reduced the effect of NT on D2R function. Taken together, our data suggest that NT acutely regulates D2 autoreceptor function and DA neuron excitability through PKC-mediated phosphorylation of the D2R, leading to heterologous receptor desensitization.
Collapse
Affiliation(s)
- Dominic Thibault
- From the Department of Pharmacology
- Department of Physiology
- the Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Québec H3C 3J7, Canada
| | - Paul R. Albert
- the Ottawa Hospital Research Institute, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Graciela Pineyro
- From the Department of Pharmacology
- Department of Psychiatry, Faculty of Medicine, and
- the Centre de Recherche du Centre Hospitalier Universitaire Sainte Justine, Université de Montréal, Quebec H3T 1C5, Canada, and
| | - Louis-Éric Trudeau
- From the Department of Pharmacology
- Department of Physiology
- Department of Psychiatry, Faculty of Medicine, and
- the Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
50
|
Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011; 63:182-217. [PMID: 21303898 DOI: 10.1124/pr.110.002642] [Citation(s) in RCA: 1894] [Impact Index Per Article: 135.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled dopamine receptors (D1, D2, D3, D4, and D5) mediate all of the physiological functions of the catecholaminergic neurotransmitter dopamine, ranging from voluntary movement and reward to hormonal regulation and hypertension. Pharmacological agents targeting dopaminergic neurotransmission have been clinically used in the management of several neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, bipolar disorder, Huntington's disease, attention deficit hyperactivity disorder (ADHD(1)), and Tourette's syndrome. Numerous advances have occurred in understanding the general structural, biochemical, and functional properties of dopamine receptors that have led to the development of multiple pharmacologically active compounds that directly target dopamine receptors, such as antiparkinson drugs and antipsychotics. Recent progress in understanding the complex biology of dopamine receptor-related signal transduction mechanisms has revealed that, in addition to their primary action on cAMP-mediated signaling, dopamine receptors can act through diverse signaling mechanisms that involve alternative G protein coupling or through G protein-independent mechanisms via interactions with ion channels or proteins that are characteristically implicated in receptor desensitization, such as β-arrestins. One of the future directions in managing dopamine-related pathologic conditions may involve a transition from the approaches that directly affect receptor function to a precise targeting of postreceptor intracellular signaling modalities either directly or through ligand-biased signaling pharmacology. In this comprehensive review, we discuss dopamine receptor classification, their basic structural and genetic organization, their distribution and functions in the brain and the periphery, and their regulation and signal transduction mechanisms. In addition, we discuss the abnormalities of dopamine receptor expression, function, and signaling that are documented in human disorders and the current pharmacology and emerging trends in the development of novel therapeutic agents that act at dopamine receptors and/or on related signaling events.
Collapse
Affiliation(s)
- Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval–Centre de Recherche de l'Université Laval Robert-Giffard, Québec-City, Québec, Canada
| | | |
Collapse
|