1
|
Ghosh S, Alkawadri T, McGarvey LP, Hollywood MA, Thornbury KD, Sergeant GP. Role of voltage-gated Ca 2+ channels and Ano1 Ca 2+-activated Cl - channels in M2 muscarinic receptor-dependent contractions of murine airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2025; 328:L301-L312. [PMID: 39772966 DOI: 10.1152/ajplung.00188.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/13/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Cholinergic tone is elevated in obstructive lung conditions such as chronic obstructive pulmonary disease (COPD) and asthma, but the cellular mechanisms underlying cholinergic contractions of airway smooth muscle (ASM) are still unclear. Some studies report an important role for L-type Ca2+ channels (LTCC) and Ano1 Ca2+-activated Cl- channels (CACC) in these responses, but others dispute their importance. Cholinergic contractions of ASM involve activation of M3Rs, however, stimulation of M2Rs exerts a profound hypersensitization of these responses. Here, we show that M2R-dependent potentiation of cholinergic nerve-evoked contractions of ASM was reversed by the LTCC blocker nifedipine and the Ano1 CACC inhibitors Ani9 and CaCCinh-A01. Carbachol induced sustained contractions of ASM that were converted into oscillatory contractions when M3Rs were blocked with 4-DAMP. The 4-DAMP-resistant contractions were absent in preparations taken from M2R knockout (KO) mice. The remaining M2R-dependent responses, observed in wild-type (WT) mice, were abolished by nifedipine and Ani9. Inhibition of sarcoplasmic endoplasmic reticulum Ca2+ ATPases (SERCA) with thapsigargin increased the amplitude of contractions induced by electrical field stimulation (EFS) and these effects were also reversed by nifedipine and Ani9. Thapsigargin also potentiated contractions of ASM induced by the LTCC activator FPL64176. Therefore, contractions of ASM that involved Ca2+ influx via LTCC were enhanced by inhibition of SERCA. Immunocytochemistry experiments revealed prominent SERCA staining around the periphery of ASM cells. These data indicate that M2R-dependent contractions of ASM involve Ano1 CACC and LTCC by a mechanism involving inhibition of buffering of Ca2+ influx by SERCA.NEW & NOTEWORTHY The role of L-type Ca2+ channels and Ano1 Ca2+-activated Cl- channels in cholinergic contractions of airway smooth muscle is disputed. Here, we show that both channels are involved in M2 muscarinic receptor-dependent contractions of murine airway smooth muscle via inhibition of buffering of Ca2+ influx by sarcoplasmic endoplasmic reticulum Ca2+ ATPases.
Collapse
Affiliation(s)
- Srijit Ghosh
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Co. Louth, Ireland
| | - Tuleen Alkawadri
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Co. Louth, Ireland
| | - Lorcan P McGarvey
- School of Medicine, Dentistry, and Biomedical Sciences, Queen's University, Belfast, Northern Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Co. Louth, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Co. Louth, Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Co. Louth, Ireland
| |
Collapse
|
2
|
Wang KCW, James AL, Donovan GM, Noble PB. Prenatal Origins of Obstructive Airway Disease: Starting on the Wrong Trajectory? Compr Physiol 2024; 14:5729-5762. [PMID: 39699087 DOI: 10.1002/cphy.c230019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
From the results of well-performed population health studies, we now have excellent data demonstrating that deficits in adult lung function may be present early in life, possibly as a result of developmental disorders, incurring a lifelong risk of obstructive airway diseases such as asthma and chronic obstructive pulmonary disease. Suboptimal fetal development results in intrauterine growth restriction and low birth weight at term (an outcome distinct from preterm complications), which are associated with subsequent obstructive disease. Numerous prenatal exposures and disorders compromise fetal development and these are summarized herein. Various physiological, structural, and mechanical abnormalities may result from prenatal disruption, including changes to airway smooth muscle structure-function, goblet cell biology, airway stiffness, geometry of the bronchial tree, lung parenchymal structure and mechanics, respiratory skeletal muscle contraction, and pulmonary inflammation. The literature therefore supports the need for early life intervention to prevent or correct growth defects, which may include simple nutritional or antioxidant therapy. © 2024 American Physiological Society. Compr Physiol 14:5729-5762, 2024.
Collapse
Affiliation(s)
- Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
3
|
Piotrowska-Tomala KK, Szóstek-Mioduchowska AZ, Drzewiecka EM, Jonczyk AW, Wójtowicz A, Wrobel MH, Ferreira-Dias G, Skarzynski DJ. Prostaglandin pathways in equine myometrium regulations: endometrosis progression. Front Vet Sci 2024; 11:1479508. [PMID: 39735588 PMCID: PMC11671801 DOI: 10.3389/fvets.2024.1479508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/11/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction Prostaglandins (PG) are important regulators of the myometrial contractility in mammals. Endometrosis, a condition characterized by morphological changes in the equine endometrium, also affects endometrial secretory function. However, it remains unclear whether and how endometrosis affects myometrial function. Methods This study investigated: (i) mRNA transcription of genes encoding specific enzymes responsible for PG synthesis, such as prostaglandin-endoperoxide synthase (PTGS2), PGE2 synthase (PTGES), PGF2α synthase (PTGFS) and PG receptors: PGE2 receptors (PTGER1- 4), and PGF2α receptor (PTGFS) in equine myometrium and, (ii) the effects of PGE2 and PGF2α on myometrial contractile activity, during endometrosis in mares. The myometria used in experiments 1 and 2 were collected from mares in the mid-luteal (n = 23) and follicular (n = 20) phases of the estrous cycle, according to the histological classification of the endometrium (Kenney and Doig categories I, IIA, IIB, and III). Results In experiment 1, changes in mRNA transcription of PG synthase or PG receptors in the myometrium during the course of endometrosis were determined using qPCR. During the mid-luteal phase, myometrial mRNA transcription of PTGES increased in mares with endometrial category IIB compared to category I. However, myometrial mRNA transcription of PTGER1 decreased during the progression of endometrosis compared to category I. During the follicular phase, mRNA transcription of PTGER1 and PTGER2 increased in mares with endometrial categories III or IIA, respectively. In addition, mRNA transcription of PTGFS increased in mares with endometrium category IIA compared to category I. In experiment 2, the force of myometrial contractions was measured using an isometric concentration transducer. In the follicular phase, PGE2 decreased the force of contractions in mares with endometrial categories IIA, IIB, and III compared to the respective control groups. Prostaglandin F2α increased the force of myometrial contractions in mares with category IIA endometrium, whereas it decreased in category IIB compared to the respective control groups. Discussion We concluded that in the progression of endometrosis there are changes in the myometrial transcription of mRNA encoding PG synthases and receptors, particularly PTGER1 and PTGER2. Mares with endometrosis had abnormal myometrial contractile responses to PG. These findings suggest that myometrial function may be compromised during the progression of endometrosis.
Collapse
Affiliation(s)
- Katarzyna K. Piotrowska-Tomala
- Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Science, Olsztyn, Poland
| | - Anna Z. Szóstek-Mioduchowska
- Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Science, Olsztyn, Poland
| | - Ewa M. Drzewiecka
- Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Science, Olsztyn, Poland
- Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research Polish Academy of Science, Olsztyn, Poland
| | - Agnieszka W. Jonczyk
- Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Science, Olsztyn, Poland
| | - Anna Wójtowicz
- Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Science, Olsztyn, Poland
| | - Michał H. Wrobel
- Physiology and Toxicology, Institute of Animal Reproduction and Food Research Polish Academy of Science, Olsztyn, Poland
| | - Graca Ferreira-Dias
- CIISA- Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- AL4AnimalS-Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Dariusz J. Skarzynski
- Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Science, Olsztyn, Poland
| |
Collapse
|
4
|
Boelman MB, Hansen TVO, Smith MN, Hammer-Hansen S, Christensen AH, Diness BR. Aortic dissection in a young male with persistent ductus arteriosus and a novel variant in MYLK. Am J Med Genet A 2024; 194:e63458. [PMID: 37921548 DOI: 10.1002/ajmg.a.63458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Pathogenic variants in several genes involved in the function or regulation of smooth muscle cells (SMC) are known to predispose to congenital heart disease and thoracic aortic aneurysm and dissection (TAAD). Variants in MYLK are primarily known to predispose to TAAD, but a growing body of evidence points toward MYLK also playing an essential role in the regulation of SMC contraction outside the aorta. In this case report, we present a patient with co-occurrence of persistent ductus arteriosus (PDA) and thoracic aortic dissection. Genetic analyses revealed a novel splice acceptor variant (c.3986-1G > A) in MYLK, which segregated with disease in the family. RNA-analyses on fibroblasts showed that the variant induced skipping of exon 24, which resulted in an in-frame deletion of 101 amino acids. These findings suggest that MYLK-associated disease could include a broader phenotypic spectrum than isolated TAAD, including PDA and obstructive pulmonary disease. Genetic analyses could be considered in families with TAAD and PDA or obstructive pulmonary disease.
Collapse
Affiliation(s)
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Birgitte Rode Diness
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Shailesh H, Janahi IA. Role of Obesity in Inflammation and Remodeling of Asthmatic Airway. Life (Basel) 2022; 12:life12070948. [PMID: 35888038 PMCID: PMC9317357 DOI: 10.3390/life12070948] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 04/22/2023] Open
Abstract
Obesity is considered as an important risk factor for the onset of asthma and plays a key role in enhancing the disease's severity. Obese asthmatic individuals represent a distinct phenotype of asthma that is associated with additional symptoms, more severe exacerbation, decreased response to standard medication, and poor quality of life. Obesity impairs the function of the lung airway in asthmatic individuals, leading to increased inflammation and severe remodeling of the bronchus; however, the molecular events that trigger such changes are not completely understood. In this manuscript, we review the current findings from studies that focused on understanding the role of obesity in modulating the functions of airway cells, including lung immune cells, epithelial cells, smooth muscle cells, and fibroblasts, leading to airway inflammation and remodeling. Finally, the review sheds light on the current knowledge of different therapeutic approaches for treating obese asthmatic individuals. Given the fact that the prevalence of asthma and obesity has been increasing rapidly in recent years, it is necessary to understand the molecular mechanisms that play a role in the disease pathophysiology of obese asthmatic individuals for developing novel therapies.
Collapse
Affiliation(s)
| | - Ibrahim A. Janahi
- Department of Medical Education, Sidra Medicine, Doha 26999, Qatar;
- Department of Pediatric Medicine, Sidra Medicine, Doha 26999, Qatar
- Weill Cornell Medicine, Doha 24144, Qatar
- Correspondence: ; Tel.: +974-40032201
| |
Collapse
|
6
|
Ji X, Qiao Y, Zheng W, Jiang H, Yao W. Deoxynivalenol interferes with intestinal motility via injuring the contractility of enteric smooth muscle cells: A novel hazard to the gastrointestinal tract by environmental toxins. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112656. [PMID: 34411815 DOI: 10.1016/j.ecoenv.2021.112656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/30/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Deoxynivalenol (DON) is a prevalent Fusarium mycotoxin, occurs predominantly in the global environment, especially in cereals, animal feed and food commodities. The widespread contamination causes a serious risk to human and animal health. DON usually impairs weight gain, which is presumably from its capacity to reduce feed intake by interfering with intestinal motility. To clarify the role of smooth muscle cells (SMCs) contractility in intestinal motility and growth inhibition caused by DON, twelve weaned piglets were firstly divided into two groups to feed control or Fusarium mycotoxin-contaminated (MC) diet. Results showed that the final body weight, average daily gain and average daily feed intake were significantly reduced in piglets fed the MC diet. Exposure to the MC diet also significantly decreased the thickness of smooth muscle layer and SMCs contractile markers expression (myosin heavy chain 11, smooth muscle actin gamma 2, transgelin, calponin 1) in jejunum and ileum of piglets. Furthermore, oral DON supplementation (3 mg/kg body weight) to mice in six consecutive days could significantly inhibit the upper intestinal transit, impede normal defecation and downregulate SMCs contractile markers expression in small intestine. Finally, we generated a porcine enteric smooth muscle cell line (PISMC), and found that DON could depress its contractility by decreasing PISMC proliferation, migration and contractile markers expression. In conclusion, these findings in vivo and in vitro suggest that DON, as a common environmental toxin, can not only reduce proliferative and motile phenotype, but also decrease contractile apparatus components (contractile markers expression) in SMCs, which in turn influences SMCs contractility and then interferes with intestinal motility and growth performance.
Collapse
Affiliation(s)
- Xu Ji
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, PR China
| | - Yu Qiao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Weijiang Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China; Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
7
|
Garrido-Casado M, Asensio-Juárez G, Vicente-Manzanares M. Nonmuscle Myosin II Regulation Directs Its Multiple Roles in Cell Migration and Division. Annu Rev Cell Dev Biol 2021; 37:285-310. [PMID: 34314591 DOI: 10.1146/annurev-cellbio-042721-105528] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonmuscle myosin II (NMII) is a multimeric protein complex that generates most mechanical force in eukaryotic cells. NMII function is controlled at three main levels. The first level includes events that trigger conformational changes that extend the complex to enable its assembly into filaments. The second level controls the ATPase activity of the complex and its binding to microfilaments in extended NMII filaments. The third level includes events that modulate the stability and contractility of the filaments. They all work in concert to finely control force generation inside cells. NMII is a common endpoint of mechanochemical signaling pathways that control cellular responses to physical and chemical extracellular cues. Specific phosphorylations modulate NMII activation in a context-dependent manner. A few kinases control these phosphorylations in a spatially, temporally, and lineage-restricted fashion, enabling functional adaptability to the cellular microenvironment. Here, we review mechanisms that control NMII activity in the context of cell migration and division. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marina Garrido-Casado
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| | - Gloria Asensio-Juárez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| |
Collapse
|
8
|
LIMK2 is required for membrane cytoskeleton reorganization of contracting airway smooth muscle. J Genet Genomics 2021; 48:452-462. [PMID: 34353741 DOI: 10.1016/j.jgg.2021.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022]
Abstract
Airway smooth muscle (ASM) has developed a mechanical adaption mechanism by which it transduces force and responds to environmental forces, which is essential for periodic breathing. Cytoskeletal reorganization has been implicated in this process, but the regulatory mechanism remains to be determined. We here observe that ASM abundantly expresses cytoskeleton regulators Limk1 and Limk2, and their expression levels are further upregulated in chronic obstructive pulmonary disease (COPD) animals. By establishing mouse lines with deletions of Limk1 or Limk2, we analyse the length-sensitive contraction, F/G-actin dynamics, and F-actin pool of mutant ASM cells. As LIMK1 phosphorylation does not respond to the contractile stimulation, LIMK1-deficient ASM develops normal maximal force, while LIMK2 or LIMK1/LIMK2 deficient ASMs show approximately 30% inhibition. LIMK2 deletion causes a significant decrease in cofilin phosphorylation along with a reduced F/G-actin ratio. As LIMK2 functions independently of cross-bridge movement, this observation indicates that LIMK2 is necessary for F-actin dynamics and hence force transduction. Moreover, LIMK2-deficient ASMs display abolishes stretching-induced suppression of 5-hydroxytryptamine (5-HT) but not acetylcholine-evoks force, which is due to the differential contraction mechanisms adopted by the agonists. We propose that LIMK2-mediated cofilin phosphorylation is required for membrane cytoskeleton reorganization that is necessary for ASM mechanical adaption including the 5-HT-evoked length-sensitive effect.
Collapse
|
9
|
Li R, Li X, Hagood J, Zhu MS, Sun X. Myofibroblast contraction is essential for generating and regenerating the gas-exchange surface. J Clin Invest 2021; 130:2859-2871. [PMID: 32338642 DOI: 10.1172/jci132189] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/13/2020] [Indexed: 01/05/2023] Open
Abstract
A majority (~95%) of the gas-exchange surface area is generated through septa formation during alveologenesis. Disruption of this process leads to alveolar simplification and bronchopulmonary dysplasia (BPD), a prevalent disorder in premature infants. Although several models have been proposed, the mechanism of septa formation remains under debate. Here we show that inactivation of myosin light chain kinase (MLCK), a key factor required for myofibroblast contraction, disrupted septa formation, supporting the myofibroblast contraction model of alveologenesis. The alveoli simplification phenotype was accompanied by decreased yes-associated protein (YAP), a key effector in the Hippo mechanotransduction pathway. Expression of activated YAP in Mlck-mutant lungs led to partial reversal of alveolar simplification. In the adult, although Mlck inactivation did not lead to simplification, it prevented reseptation during compensatory regrowth in the pneumonectomy model. These findings revealed that myofibroblast reactivation and contraction are requisite steps toward regenerating the gas-exchange surface in diseases such as BPD and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Rongbo Li
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA
| | - Xiaoping Li
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA
| | - James Hagood
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA.,Division of Pulmonology, Department of Pediatrics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology.,Model Animal Research Center, and.,MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Xin Sun
- Department of Pediatrics, School of Medicine, UCSD, La Jolla, California, USA.,Division of Biological Sciences, UCSD, La Jolla, California, USA
| |
Collapse
|
10
|
Yao Y, Feng Q, Shen J. Myosin light chain kinase regulates intestinal permeability of mucosal homeostasis in Crohn's disease. Expert Rev Clin Immunol 2020; 16:1127-1141. [PMID: 33183108 DOI: 10.1080/1744666x.2021.1850269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Researchers have investigated the potential role of intestinal permeability in Crohn's disease pathogenesis. Intestinal permeability is usually mediated by cytoskeleton and intercellular junctions. The myosin light chain kinase (MLCK) is an enzyme that activates the myosin light chain to exert its function related to cytoskeleton contraction and tight junction regulation. The correlation between MLCK and Crohn's disease pathogenesis has been consistently proven. Areas covered: This study aims to expand the understanding of the regulation and function of MLCK in Crohn's disease. An extensive literature search in the MEDLINE database (via PubMed) has been performed up to Oct. 2020. The roles of MLCK in tight junction activation, intestinal permeability enhancement, and cell signal regulation are comprehensively discussed. Expert opinion: Targeting the MLCK-related pathways such as TNF-α in CD treatment has been put into clinical use. More accurate targeting such as MLCK and TNFR2 has been proposed to reduce side effects. MLCK may also have the potential to become biomarkers in fields like CD activity. With the application of cutting age research methods and tools, the MLCK research could be accelerated.
Collapse
Affiliation(s)
- Yiran Yao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center; Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University , Shanghai, China
| | - Qi Feng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center; Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University , Shanghai, China
| |
Collapse
|
11
|
Mihashi S, Ishida Y, Watanabe M. Accelerating effects of blebbistatin on relaxation process of cell membrane permeabilized trachea and taenia cecum from guinea pig. J Smooth Muscle Res 2020; 56:19-28. [PMID: 32350168 PMCID: PMC7184228 DOI: 10.1540/jsmr.56.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Blebbistatin, a potent inhibitor of myosin II, is known to suppress smooth muscle
contraction without affecting myosin light chain phosphorylation level. In order to
clarify the regulatory mechanisms of blebbistatin on phasic and tonic smooth muscles in
detail, we examined the effects of blebbistatin on relaxation process by Ca2+
removal after Ca2+-induced contraction of β-escin skinned (cell membrane
permeabilized) trachea and taenia cecum preparations from guinea pigs. Blebbistatin
significantly suppressed the force during relaxation both in skinned trachea and taenia
cecum. The data fitting analysis of the relaxation processes indicates that blebbistatin
accelerates slow (latch-like) bridge dissociation.
Collapse
Affiliation(s)
- Satoko Mihashi
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Yukisato Ishida
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Masaru Watanabe
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| |
Collapse
|
12
|
Young RE, Jones MK, Hines EA, Li R, Luo Y, Shi W, Verheyden JM, Sun X. Smooth Muscle Differentiation Is Essential for Airway Size, Tracheal Cartilage Segmentation, but Dispensable for Epithelial Branching. Dev Cell 2020; 53:73-85.e5. [PMID: 32142630 PMCID: PMC7540204 DOI: 10.1016/j.devcel.2020.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/10/2019] [Accepted: 01/31/2020] [Indexed: 01/11/2023]
Abstract
Airway smooth muscle is best known for its role as an airway constrictor in diseases such as asthma. However, its function in lung development is debated. A prevalent model, supported by in vitro data, posits that airway smooth muscle promotes lung branching through peristalsis and pushing intraluminal fluid to branching tips. Here, we test this model in vivo by inactivating Myocardin, which prevented airway smooth muscle differentiation. We found that Myocardin mutants show normal branching, despite the absence of peristalsis. In contrast, tracheal cartilage, vasculature, and neural innervation patterns were all disrupted. Furthermore, airway diameter is reduced in the mutant, counter to the expectation that the absence of smooth muscle constriction would lead to a more relaxed and thereby wider airway. These findings together demonstrate that during development, while airway smooth muscle is dispensable for epithelial branching, it is integral for building the tracheal architecture and promoting airway growth.
Collapse
Affiliation(s)
- Randee E Young
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA; Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mary-Kayt Jones
- Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elizabeth A Hines
- Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rongbo Li
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA
| | - Yongfeng Luo
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jamie M Verheyden
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA.
| | - Xin Sun
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA; Department of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
13
|
Li N, He Y, Yang G, Yu Q, Li M. Role of TRPC1 channels in pressure-mediated activation of airway remodeling. Respir Res 2019; 20:91. [PMID: 31092255 PMCID: PMC6518742 DOI: 10.1186/s12931-019-1050-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Bronchoconstriction and cough, a characteristic of the asthmatic response, leads to development of compressive stresses in the airway wall. We hypothesized that progressively pathological high mechanical stress could act on mechanosensitive cation channels, such as transient receptor potential channel 1 (TRPC1) and then contributes to airway remodeling. METHODS We imitate the pathological airway pressure in vitro using cyclic stretch at 10 and 15% elongation. Ca2+ imaging was applied to measure the activity of TRPC1 after bronchial epithelial cells exposed to cyclic stretch for 0, 0.5, 1, 1.5, 2, 2.5 h. To further clarify the function of channnel TRPC1 in the process of mechano-transduction in airway remodeling, the experiment in vivo was implemented. The TRPC1 siRNA and budesonide were applied separately to asthmatic models. The morphological changes were measured by HE and Massion method. The expression levels of TRPC1 were evaluated by real-time PCR, western blot and immunohistochemistry. The protein expression level of IL-13, TGF-β1 and MMP-9 in BALF were measured by ELISA. RESULTS The result showed that cyclic stretch for 15% elongation at 1.5 h could maximize the activity of TRPC1 channel. This influx in Ca2+ was blocked by TRPC1 siRNA. Higher TRPC1 expression was observed in the bronchial epithelial layer of ovalbumin induced asthmatic models. The knockdown of TRPC1 with TRPC1 siRNA was associated with a hampered airway remodeling process, such as decreased bronchial wall thickness and smooth muscle hypertrophy/hyperplasia, a decreased ECM deposition area and inflammation infiltration around airway wall. Meantime, expression of IL-13, TGF-β1 and MMP-9 in OVA+TRPC1 siRNA also showed reduced level. TRPC1 intervention treatment showed similar anti-remodeling therapeutic effect with budesonide. CONCLUSIONS These results demonstrate that most TRPC1 channels expressed in bronchial epithelial cells mediate the mechanotransduction mechanism. TRPC1 inducing abnormal Ca2+ signal mediates receptor-stimulated and mechanical stimulus-induced airway remodeling. The inhibition of TRPC1 channel could produce similar therapeutic effect as glucocortisteroid to curb the development of asthmatic airway remodeling.
Collapse
Affiliation(s)
- Na Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 People’s Republic of China
| | - Ye He
- Department of Geriatrics, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Science, Chengdu, Sichuan Province 610072 People’s Republic of China
| | - Gang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 People’s Republic of China
| | - Qian Yu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 People’s Republic of China
| | - Minchao Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 People’s Republic of China
| |
Collapse
|
14
|
Wang KCW, Chang AY, Pillow JJ, Suki B, Noble PB. Transition From Phasic to Tonic Contractility in Airway Smooth Muscle After Birth: An Experimental and Computational Modeling Study. ACTA ACUST UNITED AC 2019; 2. [PMID: 31001605 DOI: 10.1115/1.4042312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fetal airway smooth muscle (ASM) exhibits phasic contractile behavior, which transitions to a more sustained "tonic" contraction after birth. The timing and underlying mechanisms of ASM transition from a phasic to a tonic contractile phenotype are yet to be established. We characterized phasic ASM contraction in preterm (128 day gestation), term (~150 day gestation), 1-4 month, 1 yr, and adult sheep (5yr). Spontaneous phasic activity was measured in bronchial segments as amplitude, frequency, and intensity. The mechanism of phasic ASM contraction was investigated further with a computational model of ASM force development and lumen narrowing. The computational model comprised a two-dimensional cylindrical geometry of a network of contractile units and the activation of neighboring cells was dependent on the strength of coupling between cells. As expected, phasic contractions were most prominent in fetal airways and decreased with advancing age, to a level similar to the level in the 1-4 month lambs. Computational predictions demonstrated phasic contraction through the generation of a wave of activation events, the magnitude of which is determined by the number of active cells and the strength of cell-cell interactions. Decreases in phasic contraction with advancing age were simulated by reducing cell-cell coupling. Results show that phasic activity is suppressed rapidly after birth, then sustained at a lower intensity from the preweaning phase until adulthood in an ovine developmental model. Cell-cell coupling is proposed as a key determinant of phasic ASM contraction and if reduced could explain the observed maturational changes.
Collapse
Affiliation(s)
- Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Amy Y Chang
- School of Human Sciences, The University of Western Australia, Crawley 6009, Western Australia, Australia
| | - J Jane Pillow
- School of Human Sciences, The University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley 6009, Western Australia, Australia
| |
Collapse
|
15
|
Chang AN, Gao N, Liu Z, Huang J, Nairn AC, Kamm KE, Stull JT. The dominant protein phosphatase PP1c isoform in smooth muscle cells, PP1cβ, is essential for smooth muscle contraction. J Biol Chem 2018; 293:16677-16686. [PMID: 30185619 PMCID: PMC6204911 DOI: 10.1074/jbc.ra118.003083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/30/2018] [Indexed: 12/29/2022] Open
Abstract
Contractile force development of smooth muscle is controlled by balanced kinase and phosphatase activities toward the myosin regulatory light chain (RLC). Numerous biochemical and pharmacological studies have investigated the specificity and regulatory activity of smooth muscle myosin light-chain phosphatase (MLCP) bound to myosin filaments and comprised of the regulatory myosin phosphatase target subunit 1 (MYPT1) and catalytic protein phosphatase 1cβ (PP1cβ) subunits. Recent physiological and biochemical evidence obtained with smooth muscle tissues from a conditional MYPT1 knockout suggests that a soluble, MYPT1-unbound form of PP1cβ may additionally contribute to myosin RLC dephosphorylation and relaxation of smooth muscle. Using a combination of isoelectric focusing and isoform-specific immunoblotting, we found here that more than 90% of the total PP1c in mouse smooth muscles is the β isoform. Moreover, conditional knockout of PP1cα or PP1cγ in adult smooth muscles did not result in an apparent phenotype in mice up to 6 months of age and did not affect smooth muscle contractions ex vivo In contrast, smooth muscle-specific conditional PP1cβ knockout decreased contractile force development in bladder, ileal, and aortic tissues and reduced mouse survival. Bladder smooth muscle tissue from WT mice was selectively permeabilized to remove soluble PP1cβ to measure contributions of total (α-toxin treatment) and myosin-bound (Triton X-100 treatment) phosphatase activities toward phosphorylated RLC in myofilaments. Triton X-100 reduced PP1cβ content by 60% and the rate of RLC dephosphorylation by 2-fold. These results are consistent with the selective dephosphorylation of RLC by both MYPT1-bound and -unbound PP1cβ forms in smooth muscle.
Collapse
Affiliation(s)
- Audrey N Chang
- From the Departments of Physiology and
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040 and
| | - Ning Gao
- From the Departments of Physiology and
| | | | | | - Angus C Nairn
- the Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508
| | | | | |
Collapse
|
16
|
Huang C, Zhang Z, Wang L, Liu J, Gong X, Zhang C. ML-7 attenuates airway inflammation and remodeling via inhibiting the secretion of Th2 cytokines in mice model of asthma. Mol Med Rep 2018; 17:6293-6300. [PMID: 29512725 PMCID: PMC5928606 DOI: 10.3892/mmr.2018.8683] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/01/2017] [Indexed: 01/05/2023] Open
Abstract
Previous studies have indicated that smooth muscle myosin light chain kinase (MLCK) has a prominent role in the regulation of smooth muscle contraction, which tends to be upregulated in asthma. In recent years, numerous studies have reported that MLCK is intimately connected with the immunoregulatory mechanism of T cells. The imbalance of T helper type 1 cells (Th1)/Th2 constitutes the immune-associated pathological basis of chronic asthma. Th2-associated cytokines, including interleukin-4, −5, −13, −25 and −33, are involved in airway inflammation, hyperresponsiveness and remodeling, which leads to a progressive decline in lung function. The purpose of the present study was to verify whether inhibition of bronchial MLCK attenuated the expression Th2-associated cytokines in asthmatic mice, including the above-mentioned ones. Female BALB/c mice were used to establish an ovalbumin (OVA)-induced model of asthma, of which one group was treated with the MLCK inhibitor (5-iodonaphthalene-1-sulfonyl) homopiperazine (ML-7). The inhibitor of MLCK, ML-7 attenuated airway inflammation and remodeling by reducing inflammatory cell infiltration and the secretion of Th2 cytokines in mice model of asthma, which may represent a promising therapeutic strategy for asthma.
Collapse
Affiliation(s)
- Chuanjun Huang
- Department of Respiratory Diseases, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, P.R. China
| | - Zewen Zhang
- Department of Medical Imaging and Nuclear Medicine, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Liuxin Wang
- Department of Respiratory Medicine, The First People's Hospital of Jining, Jining, Shandong 272011, P.R. China
| | - Ju Liu
- Department of Medical Research Center, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Xiaodan Gong
- Department of Respiratory Diseases, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Caiqing Zhang
- Department of Respiratory Diseases, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
17
|
Huang J, Gao N, Wang S, Milewicz DM, Kamm KE, Stull JT. Genetic approaches to identify pathological limitations in aortic smooth muscle contraction. PLoS One 2018; 13:e0193769. [PMID: 29494672 PMCID: PMC5833278 DOI: 10.1371/journal.pone.0193769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/18/2018] [Indexed: 02/02/2023] Open
Abstract
Aortic smooth muscle contains limiting amounts of myosin light chain kinase (MLCK) for myosin regulatory light chain (RLC) phosphorylation and contraction that predisposes to thoracic aortic disease in humans containing heterozygous loss-of-function mutations in MYLK. We tested the hypothesis that thoracic aortic smooth muscle contraction may also be susceptible to variations in the smooth muscle-specific isoform of the motor protein myosin where inactivation of one Myh11 allele or the presence of one Myh11 missense variant associated with an increased risk of human aortic disease may result in a reduced force development response. Additionally, other kinds of smooth muscles may be less sensitive to the effects of mutations in one smooth muscle myosin allele, similar to results obtained with Mylk. Force development responses were reduced in aortic tissue from a conditional knockout of smooth muscle myosin heavy chain in adult mice (Myh11+/- or Myh11-/-) with a greater reduction with homozygous vs heterozygous tissues. Similar reductions in force responses were obtained with tissues containing either a heterozygous or homozygous knockin mutation in smooth muscle myosin heavy chain (Myh11+/R247C or Myh11R247C/R247C mutations that cause human aortic disease) with no significant changes in RLC phosphorylation. Agonist-dependent force responses were not reduced significantly in urinary bladder, ileal, or tracheal tissues from Myh11+/- mice while only ileal tissue showed a reduced force response in Myh11R247C/R247C mice. Thus, heterozygous mutations in Myh11 associated with reduced myosin function result in compromised contractile function primarily in aortic smooth muscle.
Collapse
Affiliation(s)
- Jian Huang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX United States of America
| | - Ning Gao
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX United States of America
| | - Shanzhi Wang
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX United States of America
| | - Dianna M. Milewicz
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX United States of America
| | - Kristine E. Kamm
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX United States of America
| | - James T. Stull
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX United States of America
- * E-mail:
| |
Collapse
|
18
|
Komatsu S, Kitazawa T, Ikebe M. Visualization of stimulus-specific heterogeneous activation of individual vascular smooth muscle cells in aortic tissues. J Cell Physiol 2018; 233:434-446. [PMID: 28295256 PMCID: PMC5741290 DOI: 10.1002/jcp.25903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/09/2017] [Indexed: 11/11/2022]
Abstract
Intercellular communication among autonomic nerves, endothelial cells (ECs), and vascular smooth muscle cells (VSMCs) plays a central role in an uninterrupted regulation of blood flow through vascular contractile machinery. Impairment of this communication is linked to development of vascular diseases such as hypertension, cerebral/coronary vasospasms, aortic aneurism, and erectile dysfunction. Although the basic concept of the communication as a whole has been studied, the spatiotemporal correlation of ECs/VSMCs in tissues at the cellular level is unknown. Here, we show a unique VSMC response to ECs during contraction and relaxation of isolated aorta tissues through visualization of spatiotemporal activation patterns of smooth muscle myosin II. ECs in the intimal layer dictate the stimulus-specific heterogeneous activation pattern of myosin II in VSMCs within distinct medial layers. Myosin light chain (MLC) phosphorylation (active form of myosin II) gradually increases towards outer layers (approximately threefold higher MLC phosphorylation at the outermost layer than that of the innermost layer), presumably by release of an intercellular messenger, nitric oxide (NO). Our study also demonstrates that the MLC phosphorylation at the outermost layer in spontaneously hypertensive rats (SHR) during NO-induced relaxation is quite high and approximately 10-fold higher than that of its counterpart, the Wister-Kyoto rats (WKY), suggesting that the distinct pattern of myosin II activation within tissues is important for vascular protection against elevated blood pressure.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiology
- Biomarkers
- Cell Communication
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/physiology
- Fluorescent Antibody Technique
- Hypertension/metabolism
- Hypertension/physiopathology
- In Vitro Techniques
- Microscopy, Fluorescence
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Myosin Light Chains/metabolism
- Myosin Type II/metabolism
- Nitric Oxide/metabolism
- Phosphorylation
- Rats, Inbred SHR
- Rats, Inbred WKY
- Time Factors
- Vasoconstriction
- Vasodilation
Collapse
Affiliation(s)
- Satoshi Komatsu
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Toshio Kitazawa
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| |
Collapse
|
19
|
Gao N, Tsai MH, Chang AN, He W, Chen CP, Zhu M, Kamm KE, Stull JT. Physiological vs. pharmacological signalling to myosin phosphorylation in airway smooth muscle. J Physiol 2017; 595:6231-6247. [PMID: 28749013 PMCID: PMC5621497 DOI: 10.1113/jp274715] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/25/2017] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS Smooth muscle myosin regulatory light chain (RLC) is phosphorylated by Ca2+ /calmodulin-dependent myosin light chain kinase and dephosphorylated by myosin light chain phosphatase (MLCP). Tracheal smooth muscle contains significant amounts of myosin binding subunit 85 (MBS85), another myosin phosphatase targeting subunit (MYPT) family member, in addition to MLCP regulatory subunit MYPT1. Concentration/temporal responses to carbachol demonstrated similar sensitivities for bovine tracheal force development and phosphorylation of RLC, MYPT1, MBS85 and paxillin. Electrical field stimulation releases ACh from nerves to increase RLC phosphorylation but not MYPT1 or MBS85 phosphorylation. Thus, nerve-mediated muscarinic responses in signalling modules acting on RLC phosphorylation are different from pharmacological responses with bath added agonist. The conditional knockout of MYPT1 or the knock-in mutation T853A in mice had no effect on muscarinic force responses in isolated tracheal tissues. MLCP activity may arise from functionally shared roles between MYPT1 and MBS85, resulting in minimal effects of MYPT1 knockout on contraction. ABSTRACT Ca2+ /calmodulin activation of myosin light chain kinase (MLCK) initiates myosin regulatory light chain (RLC) phosphorylation for smooth muscle contraction with subsequent dephosphorylation for relaxation by myosin light chain phosphatase (MLCP) containing regulatory (MYPT1) and catalytic (PP1cδ) subunits. RLC phosphorylation-dependent force development is regulated by distinct signalling modules involving protein phosphorylations. We investigated responses to cholinergic agonist treatment vs. neurostimulation by electric field stimulation (EFS) in bovine tracheal smooth muscle. Concentration/temporal responses to carbachol demonstrated tight coupling between force development and RLC phosphorylation but sensitivity differences in MLCK, MYPT1 T853, MYPT1 T696, myosin binding subunit 85 (MBS85), paxillin and CPI-17 (PKC-potentiated protein phosphatase 1 inhibitor protein of 17 kDa) phosphorylations. EFS increased force and phosphorylation of RLC, CPI-17 and MLCK. In the presence of the cholinesterase inhibitor neostigmine, EFS led to an additional increase in phosphorylation of MYPT1 T853, MYPT1 T696, MBS85 and paxillin. Thus, there were distinct pharmacological vs. physiological responses in signalling modules acting on RLC phosphorylation and force responses, probably related to degenerate G protein signalling networks. Studies with genetically modified mice were performed. Expression of another MYPT1 family member, MBS85, was enriched in mouse, as well as bovine tracheal smooth muscle. Carbachol concentration/temporal-force responses were similar in trachea from MYPT1SM+/+ , MYPT1SM-/- and the knock-in mutant mice containing nonphosphorylatable MYPT1 T853A with no differences in RLC phosphorylation. Thus, MYPT1 T853 phosphorylation was not necessary for regulation of RLC phosphorylation in tonic airway smooth muscle. Furthermore, MLCP activity may arise from functionally shared roles between MYPT1 and MBS85, resulting in minimal effects of MYPT1 knockout on contraction.
Collapse
Affiliation(s)
- Ning Gao
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ming-Ho Tsai
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Present address: Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd, San Ming District, Kaohsiung, Taiwan
| | - Audrey N Chang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weiqi He
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China.,Present address: Cambridge-Suda (CAM-SU) Genomic Resource Center, Soochow University, Suzhou, China
| | - Cai-Ping Chen
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China.,Present address: Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, PR China
| | - Minsheng Zhu
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Kristine E Kamm
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James T Stull
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
20
|
Inflammatory mediators mediate airway smooth muscle contraction through a G protein-coupled receptor-transmembrane protein 16A-voltage-dependent Ca 2+ channel axis and contribute to bronchial hyperresponsiveness in asthma. J Allergy Clin Immunol 2017; 141:1259-1268.e11. [PMID: 28754608 DOI: 10.1016/j.jaci.2017.05.053] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/27/2017] [Accepted: 05/19/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Allergic inflammation has long been implicated in asthmatic hyperresponsiveness of airway smooth muscle (ASM), but its underlying mechanism remains incompletely understood. Serving as G protein-coupled receptor agonists, several inflammatory mediators can induce membrane depolarization, contract ASM, and augment cholinergic contractile response. We hypothesized that the signal cascade integrating on membrane depolarization by the mediators might involve asthmatic hyperresponsiveness. OBJECTIVE We sought to investigate the signaling transduction of inflammatory mediators in ASM contraction and assess its contribution in the genesis of hyperresponsiveness. METHODS We assessed the capacity of inflammatory mediators to induce depolarization currents by electrophysiological analysis. We analyzed the phenotypes of transmembrane protein 16A (TMEM16A) knockout mice, applied pharmacological reagents, and measured the Ca2+ signal during ASM contraction. To study the role of the depolarization signaling in asthmatic hyperresponsiveness, we measured the synergistic contraction by methacholine and inflammatory mediators both ex vivo and in an ovalbumin-induced mouse model. RESULTS Inflammatory mediators, such as 5-hydroxytryptamin, histamine, U46619, and leukotriene D4, are capable of inducing Ca2+-activated Cl- currents in ASM cells, and these currents are mediated by TMEM16A. A combination of multiple analysis revealed that a G protein-coupled receptor-TMEM16A-voltage-dependent Ca2+ channel signaling axis was required for ASM contraction induced by inflammatory mediators. Block of TMEM16A activity may significantly inhibit the synergistic contraction of acetylcholine and the mediators and hence reduces hypersensitivity. CONCLUSIONS A G protein-coupled receptor-TMEM16A-voltage-dependent Ca2+ channel axis contributes to inflammatory mediator-induced ASM contraction and synergistically activated TMEM16A by allergic inflammatory mediators with cholinergic stimuli.
Collapse
|
21
|
Baumann F, Bauer MS, Rees M, Alexandrovich A, Gautel M, Pippig DA, Gaub HE. Increasing evidence of mechanical force as a functional regulator in smooth muscle myosin light chain kinase. eLife 2017; 6:e26473. [PMID: 28696205 PMCID: PMC5505704 DOI: 10.7554/elife.26473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/20/2017] [Indexed: 11/18/2022] Open
Abstract
Mechanosensitive proteins are key players in cytoskeletal remodeling, muscle contraction, cell migration and differentiation processes. Smooth muscle myosin light chain kinase (smMLCK) is a member of a diverse group of serine/threonine kinases that feature cytoskeletal association. Its catalytic activity is triggered by a conformational change upon Ca2+/calmodulin (Ca2+/CaM) binding. Due to its significant homology with the force-activated titin kinase, smMLCK is suspected to be also regulatable by mechanical stress. In this study, a CaM-independent activation mechanism for smMLCK by mechanical release of the inhibitory elements is investigated via high throughput AFM single-molecule force spectroscopy. The characteristic pattern of transitions between different smMLCK states and their variations in the presence of different substrates and ligands are presented. Interaction between kinase domain and regulatory light chain (RLC) substrate is identified in the absence of CaM, indicating restored substrate-binding capability due to mechanically induced removal of the auto-inhibitory regulatory region.
Collapse
Affiliation(s)
- Fabian Baumann
- Chair for Applied Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Magnus Sebastian Bauer
- Chair for Applied Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany
- Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Rees
- Randall Division of Cell and Molecular Biophysics, King's College London BHF Centre of Research Excellence, London, United Kingdom
| | - Alexander Alexandrovich
- Randall Division of Cell and Molecular Biophysics, King's College London BHF Centre of Research Excellence, London, United Kingdom
| | - Mathias Gautel
- Randall Division of Cell and Molecular Biophysics, King's College London BHF Centre of Research Excellence, London, United Kingdom
| | - Diana Angela Pippig
- Chair for Applied Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hermann Eduard Gaub
- Chair for Applied Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
22
|
Wu T, Huang J, Moore PJ, Little MS, Walton WG, Fellner RC, Alexis NE, Peter Di Y, Redinbo MR, Tilley SL, Tarran R. Identification of BPIFA1/SPLUNC1 as an epithelium-derived smooth muscle relaxing factor. Nat Commun 2017; 8:14118. [PMID: 28165446 PMCID: PMC5303822 DOI: 10.1038/ncomms14118] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 11/30/2016] [Indexed: 01/02/2023] Open
Abstract
Asthma is a chronic airway disease characterized by inflammation, mucus hypersecretion and abnormal airway smooth muscle (ASM) contraction. Bacterial permeability family member A1, BPIFA1, is a secreted innate defence protein. Here we show that BPIFA1 levels are reduced in sputum samples from asthmatic patients and that BPIFA1 is secreted basolaterally from healthy, but not asthmatic human bronchial epithelial cultures (HBECs), where it suppresses ASM contractility by binding to and inhibiting the Ca2+ influx channel Orai1. We have localized this effect to a specific, C-terminal α-helical region of BPIFA1. Furthermore, tracheas from Bpifa1-/- mice are hypercontractile, and this phenotype is reversed by the addition of recombinant BPIFA1. Our data suggest that BPIFA1 deficiency in asthmatic airways promotes Orai1 hyperactivity, increased ASM contraction and airway hyperresponsiveness. Strategies that target Orai1 or the BPIFA1 deficiency in asthma may lead to novel therapies to treat this disease.
Collapse
Affiliation(s)
- Tongde Wu
- Cystic Fibrosis Center/Marsico Lung Institute, Marsico Hall, 125 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Julianne Huang
- Cystic Fibrosis Center/Marsico Lung Institute, Marsico Hall, 125 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA.,Department of Chemistry, Genome Science Building, 250 Bell Tower Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Patrick J Moore
- Cystic Fibrosis Center/Marsico Lung Institute, Marsico Hall, 125 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Michael S Little
- Department of Chemistry, Genome Science Building, 250 Bell Tower Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - William G Walton
- Department of Chemistry, Genome Science Building, 250 Bell Tower Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Robert C Fellner
- Cystic Fibrosis Center/Marsico Lung Institute, Marsico Hall, 125 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma, and Lung Biology, US EPA Human Studies Facility, 104 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Y Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, 331 Bridgeside Point Building, Pittsburgh, Pennsylvania 15260, USA
| | - Matthew R Redinbo
- Department of Chemistry, Genome Science Building, 250 Bell Tower Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Stephen L Tilley
- Cystic Fibrosis Center/Marsico Lung Institute, Marsico Hall, 125 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA.,Center for Environmental Medicine, Asthma, and Lung Biology, US EPA Human Studies Facility, 104 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Robert Tarran
- Cystic Fibrosis Center/Marsico Lung Institute, Marsico Hall, 125 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA.,Department of Cell Biology &Physiology, 5200 Medical Biomolecular Research Building, 111 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| |
Collapse
|
23
|
Abstract
A fundamental function of the intestinal epithelium is to act as a barrier that limits interactions between luminal contents such as the intestinal microbiota, the underlying immune system and the remainder of the body, while supporting vectorial transport of nutrients, water and waste products. Epithelial barrier function requires a contiguous layer of cells as well as the junctions that seal the paracellular space between epithelial cells. Compromised intestinal barrier function has been associated with a number of disease states, both intestinal and systemic. Unfortunately, most current clinical data are correlative, making it difficult to separate cause from effect in interpreting the importance of barrier loss. Some data from experimental animal models suggest that compromised epithelial integrity might have a pathogenic role in specific gastrointestinal diseases, but no FDA-approved agents that target the epithelial barrier are presently available. To develop such therapies, a deeper understanding of both disease pathogenesis and mechanisms of barrier regulation must be reached. Here, we review and discuss mechanisms of intestinal barrier loss and the role of intestinal epithelial barrier function in pathogenesis of both intestinal and systemic diseases. We conclude with a discussion of potential strategies to restore the epithelial barrier.
Collapse
Affiliation(s)
- Matthew A Odenwald
- Department of Pathology, The University of Chicago, 5841 South Maryland, Chicago, Illinois 60637, USA
| | - Jerrold R Turner
- Department of Pathology, The University of Chicago, 5841 South Maryland, Chicago, Illinois 60637, USA
- Departments of Pathology and Medicine (Gastroenterology), Brigham and Women's Hospital and Harvard Medical School, 20 Shattuck Street, Thorn 1428, Boston, Massachusetts 02115, USA
| |
Collapse
|
24
|
Milewicz DM, Trybus KM, Guo DC, Sweeney HL, Regalado E, Kamm K, Stull JT. Altered Smooth Muscle Cell Force Generation as a Driver of Thoracic Aortic Aneurysms and Dissections. Arterioscler Thromb Vasc Biol 2017; 37:26-34. [PMID: 27879251 PMCID: PMC5222685 DOI: 10.1161/atvbaha.116.303229] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/02/2016] [Indexed: 12/30/2022]
Abstract
The importance of maintaining contractile function in aortic smooth muscle cells (SMCs) is evident by the fact that heterozygous mutations in the major structural proteins or kinases controlling contraction lead to the formation of aneurysms of the ascending thoracic aorta that predispose to life-threatening aortic dissections. Force generation by SMC requires ATP-dependent cyclic interactions between filaments composed of SMC-specific isoforms of α-actin (encoded by ACTA2) and myosin heavy chain (MYH11). ACTA2 and MYH11 mutations are predicted or have been shown to disrupt this cyclic interaction predispose to thoracic aortic disease. Movement of the myosin motor domain is controlled by phosphorylation of the regulatory light chain on the myosin filament, and loss-of-function mutations in the dedicated kinase for this phosphorylation, myosin light chain kinase (MYLK) also predispose to thoracic aortic disease. Finally, a mutation in the cGMP-activated protein kinase (PRKG1) results in constitutive activation of the kinase in the absence of cGMP, thus driving SMC relaxation in part through increased dephosphorylation of the regulatory light chain and predisposes to thoracic aortic disease. Furthermore, SMCs cannot generate force without connections to the extracellular matrix through focal adhesions, and mutations in the major protein in the extracellular matrix, fibrillin-1, linking SMCs to the matrix also cause thoracic aortic disease in individuals with Marfan syndrome. Thus, disruption of the ability of the aortic SMC to generate force through the elastin-contractile units in response to pulsatile blood flow may be a primary driver for thoracic aortic aneurysms and dissections.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Aortic Dissection/genetics
- Aortic Dissection/metabolism
- Aortic Dissection/pathology
- Aortic Dissection/physiopathology
- Animals
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/physiopathology
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cyclic GMP-Dependent Protein Kinase Type I/genetics
- Cyclic GMP-Dependent Protein Kinase Type I/metabolism
- Dilatation, Pathologic
- Elastin/metabolism
- Genetic Markers
- Genetic Testing
- Heredity
- Humans
- Mechanotransduction, Cellular
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Mutation
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Myosin-Light-Chain Kinase/genetics
- Myosin-Light-Chain Kinase/metabolism
- Phenotype
- Pulsatile Flow
- Vasoconstriction/genetics
Collapse
Affiliation(s)
- Dianna M Milewicz
- From the Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (D.M.M., D.-c.G., E.R.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (K.M.T.); Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville (H.L.S.); and Department of Physiology, University of Texas Southwestern Medical Center, Dallas (K.K. J.T.S.).
| | - Kathleen M Trybus
- From the Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (D.M.M., D.-c.G., E.R.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (K.M.T.); Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville (H.L.S.); and Department of Physiology, University of Texas Southwestern Medical Center, Dallas (K.K. J.T.S.)
| | - Dong-Chuan Guo
- From the Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (D.M.M., D.-c.G., E.R.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (K.M.T.); Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville (H.L.S.); and Department of Physiology, University of Texas Southwestern Medical Center, Dallas (K.K. J.T.S.)
| | - H Lee Sweeney
- From the Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (D.M.M., D.-c.G., E.R.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (K.M.T.); Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville (H.L.S.); and Department of Physiology, University of Texas Southwestern Medical Center, Dallas (K.K. J.T.S.)
| | - Ellen Regalado
- From the Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (D.M.M., D.-c.G., E.R.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (K.M.T.); Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville (H.L.S.); and Department of Physiology, University of Texas Southwestern Medical Center, Dallas (K.K. J.T.S.)
| | - Kristine Kamm
- From the Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (D.M.M., D.-c.G., E.R.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (K.M.T.); Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville (H.L.S.); and Department of Physiology, University of Texas Southwestern Medical Center, Dallas (K.K. J.T.S.)
| | - James T Stull
- From the Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston (D.M.M., D.-c.G., E.R.); Department of Molecular Physiology and Biophysics, University of Vermont, Burlington (K.M.T.); Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville (H.L.S.); and Department of Physiology, University of Texas Southwestern Medical Center, Dallas (K.K. J.T.S.)
| |
Collapse
|
25
|
Deficiency of CPEB2-Confined Choline Acetyltransferase Expression in the Dorsal Motor Nucleus of Vagus Causes Hyperactivated Parasympathetic Signaling-Associated Bronchoconstriction. J Neurosci 2016; 36:12661-12676. [PMID: 27810937 DOI: 10.1523/jneurosci.0557-16.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 09/19/2016] [Accepted: 10/27/2016] [Indexed: 11/21/2022] Open
Abstract
Cytoplasmic polyadenylation element binding protein 2 (CPEB2) is an RNA-binding protein and translational regulator. To understand the physiological function of CPEB2, we generated CPEB2 knock-out (KO) mice and found that most died within 3 d after birth. CPEB2 is highly expressed in the brainstem, which controls vital functions, such as breathing. Whole-body plethysmography revealed that KO neonates had aberrant respiration with frequent apnea. Nevertheless, the morphology and function of the respiratory rhythm generator and diaphragm neuromuscular junctions appeared normal. We found that upregulated translation of choline acetyltransferase in the CPEB2 KO dorsal motor nucleus of vagus resulted in hyperactivation of parasympathetic signaling-induced bronchoconstriction, as evidenced by increased pulmonary acetylcholine and phosphorylated myosin light chain 2 in bronchial smooth muscles. Specific deletion of CPEB2 in cholinergic neurons sufficiently caused increased apnea in neonatal pups and airway hyper-reactivity in adult mice. Moreover, inhalation of an anticholinergic bronchodilator reduced apnea episodes in global and cholinergic CPEB2-KO mice. Together, the elevated airway constriction induced by cholinergic transmission in KO neonates may account for the respiratory defect and mortality. SIGNIFICANCE STATEMENT This study first generated and characterized cpeb2 gene-deficient mice. CPEB2-knock-out (KO) mice are born alive but most die within 3 d after birth showing no overt defects in anatomy. We found that the KO neonates showed severe apnea and altered respiratory pattern. Such respiratory defects could be recapitulated in mice with pan-neuron-specific or cholinergic neuron-specific ablation of the cpeb2 gene. Further investigation revealed that cholinergic transmission in the KO dorsal motor nucleus of vagus was overactivated because KO mice lack CPEB2-suppressed translation of the rate-limiting enzyme in the production of acetylcholine (i.e., choline acetyltransferase). Consequently, increased parasympathetic signaling leads to hyperactivated bronchoconstriction and abnormal respiration in the KO neonates.
Collapse
|
26
|
Alcala DB, Haldeman BD, Brizendine RK, Krenc AK, Baker JE, Rock RS, Cremo CR. Myosin light chain kinase steady-state kinetics: comparison of smooth muscle myosin II and nonmuscle myosin IIB as substrates. Cell Biochem Funct 2016; 34:469-474. [PMID: 27528075 DOI: 10.1002/cbf.3209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 01/31/2023]
Abstract
Myosin light chain kinase (MLCK) phosphorylates S19 of the myosin regulatory light chain (RLC), which is required to activate myosin's ATPase activity and contraction. Smooth muscles are known to display plasticity in response to factors such as inflammation, developmental stage, or stress, which lead to differential expression of nonmuscle and smooth muscle isoforms. Here, we compare steady-state kinetics parameters for phosphorylation of different MLCK substrates: (1) nonmuscle RLC, (2) smooth muscle RLC, and heavy meromyosin subfragments of (3) nonmuscle myosin IIB, and (4) smooth muscle myosin II. We show that MLCK has a ~2-fold higher kcat for both smooth muscle myosin II substrates compared with nonmuscle myosin IIB substrates, whereas Km values were very similar. Myosin light chain kinase has a 1.6-fold and 1.5-fold higher specificity (kcat /Km ) for smooth versus nonmuscle-free RLC and heavy meromyosin, respectively, suggesting that differences in specificity are dictated by RLC sequences. Of the 10 non-identical RLC residues, we ruled out 7 as possible underlying causes of different MLCK kinetics. The remaining 3 residues were found to be surface exposed in the N-terminal half of the RLC, consistent with their importance in substrate recognition. These data are consistent with prior deletion/chimera studies and significantly add to understanding of MLCK myosin interactions. SIGNIFICANCE OF THE STUDY Phosphorylation of nonmuscle and smooth muscle myosin by myosin light chain kinase (MLCK) is required for activation of myosin's ATPase activity. In smooth muscles, nonmuscle myosin coexists with smooth muscle myosin, but the two myosins have very different chemo-mechanical properties relating to their ability to maintain force. Differences in specificity of MLCK for different myosin isoforms had not been previously investigated. We show that the MLCK prefers smooth muscle myosin by a significant factor. These data suggest that nonmuscle myosin is phosphorylated more slowly than smooth muscle myosin during a contraction cycle.
Collapse
Affiliation(s)
- Diego B Alcala
- Department of Pharmacology, University of Nevada Reno School of Medicine, Reno, Nevada, USA
| | - Brian D Haldeman
- Department of Pharmacology, University of Nevada Reno School of Medicine, Reno, Nevada, USA
| | - Richard K Brizendine
- Department of Pharmacology, University of Nevada Reno School of Medicine, Reno, Nevada, USA
| | - Agata K Krenc
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Josh E Baker
- Department of Pharmacology, University of Nevada Reno School of Medicine, Reno, Nevada, USA
| | - Ronald S Rock
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Christine R Cremo
- Department of Pharmacology, University of Nevada Reno School of Medicine, Reno, Nevada, USA.
| |
Collapse
|
27
|
Hong F, Brizendine RK, Carter MS, Alcala DB, Brown AE, Chattin AM, Haldeman BD, Walsh MP, Facemyer KC, Baker JE, Cremo CR. Diffusion of myosin light chain kinase on actin: A mechanism to enhance myosin phosphorylation rates in smooth muscle. ACTA ACUST UNITED AC 2016; 146:267-80. [PMID: 26415568 PMCID: PMC4586593 DOI: 10.1085/jgp.201511483] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Smooth muscle myosin (SMM) light chain kinase (MLCK) phosphorylates SMM, thereby activating the ATPase activity required for muscle contraction. The abundance of active MLCK, which is tightly associated with the contractile apparatus, is low relative to that of SMM. SMM phosphorylation is rapid despite the low ratio of MLCK to SMM, raising the question of how one MLCK rapidly phosphorylates many SMM molecules. We used total internal reflection fluorescence microscopy to monitor single molecules of streptavidin-coated quantum dot-labeled MLCK interacting with purified actin, actin bundles, and stress fibers of smooth muscle cells. Surprisingly, MLCK and the N-terminal 75 residues of MLCK (N75) moved on actin bundles and stress fibers of smooth muscle cell cytoskeletons by a random one-dimensional (1-D) diffusion mechanism. Although diffusion of proteins along microtubules and oligonucleotides has been observed previously, this is the first characterization to our knowledge of a protein diffusing in a sustained manner along actin. By measuring the frequency of motion, we found that MLCK motion is permitted only if acto-myosin and MLCK-myosin interactions are weak. From these data, diffusion coefficients, and other kinetic and geometric considerations relating to the contractile apparatus, we suggest that 1-D diffusion of MLCK along actin (a) ensures that diffusion is not rate limiting for phosphorylation, (b) allows MLCK to locate to areas in which myosin is not yet phosphorylated, and (c) allows MLCK to avoid getting "stuck" on myosins that have already been phosphorylated. Diffusion of MLCK along actin filaments may be an important mechanism for enhancing the rate of SMM phosphorylation in smooth muscle.
Collapse
Affiliation(s)
- Feng Hong
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Richard K Brizendine
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Michael S Carter
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Diego B Alcala
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Avery E Brown
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Amy M Chattin
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Brian D Haldeman
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Michael P Walsh
- Department of Biochemistry and Molecular Biology, University of Calgary Faculty of Medicine, Calgary, Alberta T2N 4N1, Canada
| | - Kevin C Facemyer
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Josh E Baker
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Christine R Cremo
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| |
Collapse
|
28
|
Zhang CH, Wang P, Liu DH, Chen CP, Zhao W, Chen X, Chen C, He WQ, Qiao YN, Tao T, Sun J, Peng YJ, Lu P, Zheng K, Craige SM, Lifshitz LM, Keaney JF, Fogarty KE, ZhuGe R, Zhu MS. The molecular basis of the genesis of basal tone in internal anal sphincter. Nat Commun 2016; 7:11358. [PMID: 27101932 PMCID: PMC4844698 DOI: 10.1038/ncomms11358] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/16/2016] [Indexed: 02/06/2023] Open
Abstract
Smooth muscle sphincters exhibit basal tone and control passage of contents through organs such as the gastrointestinal tract; loss of this tone leads to disorders such as faecal incontinence. However, the molecular mechanisms underlying this tone remain unknown. Here, we show that deletion of myosin light-chain kinases (MLCK) in the smooth muscle cells from internal anal sphincter (IAS-SMCs) abolishes basal tone, impairing defecation. Pharmacological regulation of ryanodine receptors (RyRs), L-type voltage-dependent Ca2+ channels (VDCCs) or TMEM16A Ca2+-activated Cl− channels significantly changes global cytosolic Ca2+ concentration ([Ca2+]i) and the tone. TMEM16A deletion in IAS-SMCs abolishes the effects of modulators for TMEM16A or VDCCs on a RyR-mediated rise in global [Ca2+]i and impairs the tone and defecation. Hence, MLCK activation in IAS-SMCs caused by a global rise in [Ca2+]i via a RyR-TMEM16A-VDCC signalling module sets the basal tone. Targeting this module may lead to new treatments for diseases like faecal incontinence. The molecular basis of the basal tone generated by internal anal sphincters (IAS) is largely unknown. Here, the authors show that the tone arises from a global rise in intracellular Ca2+ in smooth muscle cells via a Ryanodine receptor-TMEM16A-L-type Ca2+ channel-MLC kinase pathway, suggesting a potential therapy for IAS motility disorders.
Collapse
Affiliation(s)
- Cheng-Hai Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Pei Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Dong-Hai Liu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Cai-Ping Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Wei Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Xin Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Chen Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Wei-Qi He
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China.,CAM-SU Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Yan-Ning Qiao
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Tao Tao
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Jie Sun
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Ya-Jing Peng
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Ping Lu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Kaizhi Zheng
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Siobhan M Craige
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - John F Keaney
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Kevin E Fogarty
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China.,Innovation Center for Cardiovascular Disorders, Beijing 100029, China
| |
Collapse
|
29
|
Yu H, Chakravorty S, Song W, Ferenczi MA. Phosphorylation of the regulatory light chain of myosin in striated muscle: methodological perspectives. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:779-805. [PMID: 27084718 PMCID: PMC5101276 DOI: 10.1007/s00249-016-1128-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/10/2016] [Accepted: 03/23/2016] [Indexed: 12/18/2022]
Abstract
Phosphorylation of the regulatory light chain (RLC) of myosin modulates cellular functions such as muscle contraction, mitosis, and cytokinesis. Phosphorylation defects are implicated in a number of diseases. Here we focus on striated muscle where changes in RLC phosphorylation relate to diseases such as hypertrophic cardiomyopathy and muscular dystrophy, or age-related changes. RLC phosphorylation in smooth muscle and non-muscle cells are covered briefly where relevant. There is much scientific interest in controlling the phosphorylation levels of RLC in vivo and in vitro in order to understand its physiological function in striated muscles. A summary of available and emerging in vivo and in vitro methods is presented. The physiological role of RLC phosphorylation and novel pathways are discussed to highlight the differences between muscle types and to gain insights into disease processes.
Collapse
Affiliation(s)
- Haiyang Yu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Samya Chakravorty
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Weihua Song
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Michael A Ferenczi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore.
| |
Collapse
|
30
|
Exome sequencing in seven families and gene-based association studies indicate genetic heterogeneity and suggest possible candidates for fibromuscular dysplasia. J Hypertens 2016; 33:1802-10; discussion 1810. [PMID: 26147384 DOI: 10.1097/hjh.0000000000000625] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Fibromuscular dysplasia (FMD) is a nonatherosclerotic vascular disease leading to stenosis, aneurysm and dissection, mainly of renal arteries and carotids. FMD occurs predominantly in women with nearly four out of 1000 prevalence and cause hypertension, renal ischemia or stroke. The pathogenesis of FMD is unknown and a genetic origin is suspected given its demonstrated familial aggregation. METHOD We performed whole exome sequencing (WES) in 16 cases (seven families). Coding variants in 3971 genes were prioritized on frequency (minor allele frequency < 0.01) and in silico predicted functionality. RESULTS No gene harbours variants that are shared among all affected members of at least three families. Variants from 16 genes of vascular and connective tissue diseases are excluded as causative in these families. Genes with at least four variants in the 16 patients and vascular genes were followed-up using genotypes from 249 unrelated cases and 689 controls. Gene-based association analyses using SKAT-O shows nominal significant association with multifocal FMD (N = 164) for myosin light chain kinase (MYLK, P = 0.01) previously involved in thoracic aortic aneurysm, obscurin (OBSCN), a sarcomeric protein (P = 0.003), dynein cytoplasmic heavy chain 1 (DYNC2H1, P = 0.02) and RNF213 previously associated with Moyamoya disease (P = 0.01). CONCLUSION Our study indicates genetic heterogeneity and the unlikely existence of a major gene for FMD and excludes the role of several vascular genes in familial FMD. We also suggest four possible candidate genes for multifocal FMD, though these findings need further genetic and functional confirmation. More powerful WES and association studies [e.g. genome-wide association study (GWAS)] will better decipher the genetic basis of FMD.
Collapse
|
31
|
Gao N, Chang AN, He W, Chen CP, Qiao YN, Zhu M, Kamm KE, Stull JT. Physiological signalling to myosin phosphatase targeting subunit-1 phosphorylation in ileal smooth muscle. J Physiol 2016; 594:3209-25. [PMID: 26847850 DOI: 10.1113/jp271703] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/21/2016] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS The extent of myosin regulatory light chain phosphorylation (RLC) necessary for smooth muscle contraction depends on the respective activities of Ca(2+) /calmodulin-dependent myosin light chain kinase and myosin light chain phosphatase (MLCP), which contains a regulatory subunit MYPT1 bound to the phosphatase catalytic subunit and myosin. MYPT1 showed significant constitutive T696 and T853 phosphorylation, which is predicted to inhibit MLCP activity in isolated ileal smooth muscle tissues, with additional phosphorylation upon pharmacological treatment with the muscarinic agonist carbachol. Electrical field stimulation (EFS), which releases ACh from nerves, increased force and RLC phosphorylation but not MYPT1 T696 or T853 phosphorylation. The conditional knockout of MYPT1 or the knockin mutation T853A in mice had no effect on the frequency-maximal force responses to EFS in isolated ileal tissues. Physiological RLC phosphorylation and force development in ileal smooth muscle depend on myosin light chain kinase and MLCP activities without changes in constitutive MYPT1 phosphorylation. ABSTRACT Smooth muscle contraction initiated by myosin regulatory light chain (RLC) phosphorylation is dependent on the relative activities of Ca(2+) /calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP). We have investigated the physiological role of the MLCP regulatory subunit MYPT1 in ileal smooth muscle in adult mice with (1) smooth muscle-specific deletion of MYPT1; (2) non-phosphorylatable MYPT1 containing a T853A knockin mutation; and (3) measurements of force and protein phosphorylation responses to cholinergic neurostimulation initiated by electric field stimulation. Isolated MYPT1-deficient tissues from MYPT1(SM-/-) mice contracted and relaxed rapidly with moderate differences in sustained responses to KCl and carbachol treatments and washouts, respectively. Similarly, measurements of regulatory proteins responsible for RLC phosphorylation during contractions also revealed moderate changes. There were no differences in contractile or RLC phosphorylation responses to carbachol between tissues from normal mice vs. MYPT1 T853A knockin mice. Quantitatively, there was substantial MYPT1 T696 and T853 phosphorylation in wild-type tissues under resting conditions, predicting a high extent of MLCP phosphatase inhibition. Reduced PP1cδ activity in MYPT1-deficient tissues may be similar to attenuated MLCP activity in wild-type tissues resulting from constitutively phosphorylated MYPT1. Electric field stimulation increased RLC phosphorylation and force development in tissues from wild-type mice without an increase in MYPT1 phosphorylation. Thus, physiological RLC phosphorylation and force development in ileal smooth muscle appear to be dependent on MLCK and MLCP activities without changes in constitutive MYPT1 phosphorylation.
Collapse
Affiliation(s)
- Ning Gao
- Department of Physiology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Audrey N Chang
- Department of Physiology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Weiqi He
- Model Animal Research Centre and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China.,Current address: Cambridge-Suda (CAM-SU) Genomic Resource Centre, Soochow University, Suzhou, China
| | - Cai-Ping Chen
- Model Animal Research Centre and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Yan-Ning Qiao
- Model Animal Research Centre and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Minsheng Zhu
- Model Animal Research Centre and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Kristine E Kamm
- Department of Physiology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - James T Stull
- Department of Physiology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| |
Collapse
|
32
|
Wang T, Wang R, Cleary RA, Gannon OJ, Tang DD. Recruitment of β-catenin to N-cadherin is necessary for smooth muscle contraction. J Biol Chem 2015; 290:8913-24. [PMID: 25713069 DOI: 10.1074/jbc.m114.621003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 01/26/2023] Open
Abstract
β-Catenin is a key component that connects transmembrane cadherin with the actin cytoskeleton at the cell-cell interface. However, the role of the β-catenin/cadherin interaction in smooth muscle has not been well characterized. Here stimulation with acetylcholine promoted the recruitment of β-catenin to N-cadherin in smooth muscle cells/tissues. Knockdown of β-catenin by lentivirus-mediated shRNA attenuated smooth muscle contraction. Nevertheless, myosin light chain phosphorylation at Ser-19 and actin polymerization in response to contractile activation were not reduced by β-catenin knockdown. In addition, the expression of the β-catenin armadillo domain disrupted the recruitment of β-catenin to N-cadherin. Force development, but not myosin light chain phosphorylation and actin polymerization, was reduced by the expression of the β-catenin armadillo domain. Furthermore, actin polymerization and microtubules have been implicated in intracellular trafficking. In this study, the treatment with the inhibitor latrunculin A diminished the interaction of β-catenin with N-cadherin in smooth muscle. In contrast, the exposure of smooth muscle to the microtubule depolymerizer nocodazole did not affect the protein-protein interaction. Together, these findings suggest that smooth muscle contraction is mediated by the recruitment of β-catenin to N-cadherin, which may facilitate intercellular mechanotransduction. The association of β-catenin with N-cadherin is regulated by actin polymerization during contractile activation.
Collapse
Affiliation(s)
- Tao Wang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Ruping Wang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Rachel A Cleary
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Olivia J Gannon
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Dale D Tang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| |
Collapse
|
33
|
Abstract
Signaling pathways regulate contraction of striated (skeletal and cardiac) and smooth muscle. Although these are similar, there are striking differences in the pathways that can be attributed to the distinct functional roles of the different muscle types. Muscles contract in response to depolarization, activation of G-protein-coupled receptors and other stimuli. The actomyosin fibers responsible for contraction require an increase in the cytosolic levels of calcium, which signaling pathways induce by promoting influx from extracellular sources or release from intracellular stores. Rises in cytosolic calcium stimulate numerous downstream calcium-dependent signaling pathways, which can also regulate contraction. Alterations to the signaling pathways that initiate and sustain contraction and relaxation occur as a consequence of exercise and pathophysiological conditions.
Collapse
Affiliation(s)
- Ivana Y Kuo
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520
| | - Barbara E Ehrlich
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520 Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
34
|
Chen CP, Chen X, Qiao YN, Wang P, He WQ, Zhang CH, Zhao W, Gao YQ, Chen C, Tao T, Sun J, Wang Y, Gao N, Kamm KE, Stull JT, Zhu MS. In vivo roles for myosin phosphatase targeting subunit-1 phosphorylation sites T694 and T852 in bladder smooth muscle contraction. J Physiol 2014; 593:681-700. [PMID: 25433069 DOI: 10.1113/jphysiol.2014.283853] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/18/2014] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Force production and maintenance in smooth muscle is largely controlled by myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. MYPT1 is the regulatory subunit of MLCP that biochemically inhibits MLCP activity via T694 or T852 phosphorylation in vitro. Here we separately investigated the contribution of these two phosphorylation sites in bladder smooth muscles by establishing two single point mutation mouse lines, T694A and T852A, and found that phosphorylation of MYPT1 T694, but not T852, mediates force maintenance via inhibition of MLCP activity and enhancement of RLC phosphorylation in vivo. Our findings reveal the role of MYPT1 T694/T852 phosphorylation in vivo in regulation of smooth muscle contraction. ABSTRACT Force production and maintenance in smooth muscle is largely controlled by different signalling modules that fine tune myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. To investigate the regulation of MLCP activity in vivo, we analysed the role of two phosphorylation sites on MYPT1 (regulatory subunit of MLCP) that biochemically inhibit MLCP activity in vitro. MYPT1 is constitutively phosphorylated at T694 by unidentified kinases in vivo, whereas the T852 site is phosphorylated by RhoA-associated protein kinase (ROCK). We established two mouse lines with alanine substitution of T694 or T852. Isolated bladder smooth muscle from T852A mice displayed no significant changes in RLC phosphorylation or force responses, but force was inhibited with a ROCK inhibitor. In contrast, smooth muscles containing the T694A mutation showed a significant reduction of force along with reduced RLC phosphorylation. The contractile responses of T694A mutant smooth muscle were also independent of ROCK activation. Thus, phosphorylation of MYPT1 T694, but not T852, is a primary mechanism contributing to inhibition of MLCP activity and enhancement of RLC phosphorylation in vivo. The constitutive phosphorylation of MYPT1 T694 may provide a mechanism for regulating force maintenance of smooth muscle.
Collapse
Affiliation(s)
- Cai-Ping Chen
- Model Animal Research Center and MOE Key Laboratory of Animal Models of Disease, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang L, Paré PD, Seow CY. The importance of complete tissue homogenization for accurate stoichiometric measurement of myosin light chain phosphorylation in airway smooth muscle. Can J Physiol Pharmacol 2014; 93:155-62. [PMID: 25494914 DOI: 10.1139/cjpp-2014-0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The standard method for measuring the phosphorylation of the regulatory myosin light chain (MLC20) in smooth muscle is extraction of the light chain using a urea extraction buffer, urea-glycerol gel electrophoresis of the soluble portion of the extract (supernatant) and Western blot analysis. The undissolved portion of the tissue during extraction (the pellet) is usually discarded. Because the pellet contains a finite amount of MLC20, omission of the pellet could result in inaccurate measurement of MLC20 phosphorylation. In this study we compared the level of tracheal smooth muscle MLC20 phosphorylation in the supernatant alone, with that in the complete tissue homogenate (supernatant and pellet) using the standard method. The supernatant fraction showed the well-known double bands representing phosphorylated and un-phosphorylated MLC20. The dissolved pellet fraction showed varying amounts of un-phosphorylated and phosphorylated MLC20. There was a small but statistically significant overestimation of the percent MLC20 phosphorylation if the pellet was not taken into consideration. The overestimation was 7% ± 2% (mean ± SEM) (p < 0.05) in unstimulated muscle and 2% ± 1% (p < 0.05) in acetylcholine (10(-6) mol/L) stimulated muscle. This finding suggests that for accurate estimation of the stoichiometry of MLC20 phosphorylation it is necessary to consider the contribution from the pellet portion of the muscle tissue homogenate.
Collapse
Affiliation(s)
- Lu Wang
- a Respiratory Division, Department of Medicine, Vancouver, BC V5Z 1M9, Canada
| | | | | |
Collapse
|
36
|
Pascoe CD, Swyngedouw NE, Seow CY, Paré PD. Gene expression in asthmatic airway smooth muscle: a mixed bag. Can J Physiol Pharmacol 2014; 93:137-43. [PMID: 25587873 DOI: 10.1139/cjpp-2014-0390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has long been known that airway smooth muscle (ASM) contraction contributes significantly to the reversible airflow obstruction that defines asthma. It has also been postulated that phenotypic changes in ASM contribute to the airway hyper-responsiveness (AHR) that is a characteristic feature of asthma. Although there is agreement that the mass of ASM surrounding the airways is significantly increased in asthmatic compared with non-asthmatic airways, it is still uncertain whether there are quantitative or qualitative changes in the level of expression of the genes and proteins involved in the canonical contractile pathway in ASM that could account for AHR. This review will summarize past attempts at quantifying gene expression changes in the ASM of asthmatic lungs as well as non-asthmatic ASM cells stimulated with various inflammatory cytokines. The lack of consistent findings in asthmatic samples coupled with the relative concordance of results from stimulated ASM cells suggests that changes to the contractility of ASM tissues in asthma may be dependent on the presence of an inflammatory environment surrounding the ASM layer. Removal of the ASM from this environment could explain why hypercontractility is rarely seen ex vivo.
Collapse
Affiliation(s)
- Christopher D Pascoe
- a Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | | | | | | |
Collapse
|
37
|
Chen C, Tao T, Wen C, He WQ, Qiao YN, Gao YQ, Chen X, Wang P, Chen CP, Zhao W, Chen HQ, Ye AP, Peng YJ, Zhu MS. Myosin light chain kinase (MLCK) regulates cell migration in a myosin regulatory light chain phosphorylation-independent mechanism. J Biol Chem 2014; 289:28478-88. [PMID: 25122766 DOI: 10.1074/jbc.m114.567446] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Myosin light chain kinase (MLCK) has long been implicated in the myosin phosphorylation and force generation required for cell migration. Here, we surprisingly found that the deletion of MLCK resulted in fast cell migration, enhanced protrusion formation, and no alteration of myosin light chain phosphorylation. The mutant cells showed reduced membrane tether force and fewer membrane F-actin filaments. This phenotype was rescued by either kinase-dead MLCK or five-DFRXXL motif, a MLCK fragment with potent F-actin-binding activity. Pull-down and co-immunoprecipitation assays showed that the absence of MLCK led to attenuated formation of transmembrane complexes, including myosin II, integrins and fibronectin. We suggest that MLCK is not required for myosin phosphorylation in a migrating cell. A critical role of MLCK in cell migration involves regulating the cell membrane tension and protrusion necessary for migration, thereby stabilizing the membrane skeleton through F-actin-binding activity. This finding sheds light on a novel regulatory mechanism of protrusion during cell migration.
Collapse
Affiliation(s)
- Chen Chen
- From the Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, P.R. China
| | - Tao Tao
- From the Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, P.R. China
| | - Cheng Wen
- School of Electronics Engineering and Computer Science, Key Laboratory for the Physics & Chemistry of Nanodevices of Ministry of Education, Peking University, Beijing 100871, P.R. China, and
| | - Wei-Qi He
- From the Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, P.R. China
| | - Yan-Ning Qiao
- From the Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, P.R. China
| | - Yun-Qian Gao
- From the Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, P.R. China
| | - Xin Chen
- From the Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, P.R. China
| | - Pei Wang
- From the Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, P.R. China
| | - Cai-Ping Chen
- From the Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, P.R. China
| | - Wei Zhao
- From the Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, P.R. China
| | - Hua-Qun Chen
- School of Life Science, Nanjing Normal University, Nanjing 210009, P.R. China
| | - An-Pei Ye
- School of Electronics Engineering and Computer Science, Key Laboratory for the Physics & Chemistry of Nanodevices of Ministry of Education, Peking University, Beijing 100871, P.R. China, and
| | - Ya-Jing Peng
- From the Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, P.R. China,
| | - Min-Sheng Zhu
- From the Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing 210061, P.R. China, School of Life Science, Nanjing Normal University, Nanjing 210009, P.R. China
| |
Collapse
|
38
|
Chen ZH, Wang PL, Shen HH. Asthma research in China: a five-year review. Respirology 2014; 18 Suppl 3:10-9. [PMID: 24188199 DOI: 10.1111/resp.12196] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/25/2013] [Accepted: 09/07/2013] [Indexed: 12/30/2022]
Abstract
Asthma is one of the most common chronic diseases worldwide with increasing morbidity. China has the largest asthmatic population and is one of the countries with the highest asthma mortality. Fortunately, asthma research in China, both clinical and scientific, has developed markedly over the past few years. This has resulted in significant increases in our understanding of Chinese asthma prevalence, risk factors, control status, pathogenesis, and new prevention or treatment strategies. In this review, the major achievements of asthma research in China from 2008 to 2012 are summarized.
Collapse
Affiliation(s)
- Zhi-Hua Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | | | | |
Collapse
|
39
|
Qiao YN, He WQ, Chen CP, Zhang CH, Zhao W, Wang P, Zhang L, Wu YZ, Yang X, Peng YJ, Gao JM, Kamm KE, Stull JT, Zhu MS. Myosin phosphatase target subunit 1 (MYPT1) regulates the contraction and relaxation of vascular smooth muscle and maintains blood pressure. J Biol Chem 2014; 289:22512-23. [PMID: 24951589 DOI: 10.1074/jbc.m113.525444] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Myosin light chain phosphatase with its regulatory subunit, myosin phosphatase target subunit 1 (MYPT1) modulates Ca(2+)-dependent phosphorylation of myosin light chain by myosin light chain kinase, which is essential for smooth muscle contraction. The role of MYPT1 in vascular smooth muscle was investigated in adult MYPT1 smooth muscle specific knock-out mice. MYPT1 deletion enhanced phosphorylation of myosin regulatory light chain and contractile force in isolated mesenteric arteries treated with KCl and various vascular agonists. The contractile responses of arteries from knock-out mice to norepinephrine were inhibited by Rho-associated kinase (ROCK) and protein kinase C inhibitors and were associated with inhibition of phosphorylation of the myosin light chain phosphatase inhibitor CPI-17. Additionally, stimulation of the NO/cGMP/protein kinase G (PKG) signaling pathway still resulted in relaxation of MYPT1-deficient mesenteric arteries, indicating phosphorylation of MYPT1 by PKG is not a major contributor to the relaxation response. Thus, MYPT1 enhances myosin light chain phosphatase activity sufficient for blood pressure maintenance. Rho-associated kinase phosphorylation of CPI-17 plays a significant role in enhancing vascular contractile responses, whereas phosphorylation of MYPT1 in the NO/cGMP/PKG signaling module is not necessary for relaxation.
Collapse
Affiliation(s)
- Yan-Ning Qiao
- From the Key Laboratory of MOE for Modern Teaching Technology, Shaanxi Normal University, Xi'an 710062, China, Model Animal Research Center and MOE Key Laboratory of Animal Models of Disease, Nanjing University, Nanjing 210061, China
| | - Wei-Qi He
- Model Animal Research Center and MOE Key Laboratory of Animal Models of Disease, Nanjing University, Nanjing 210061, China
| | - Cai-Ping Chen
- Model Animal Research Center and MOE Key Laboratory of Animal Models of Disease, Nanjing University, Nanjing 210061, China
| | - Cheng-Hai Zhang
- Model Animal Research Center and MOE Key Laboratory of Animal Models of Disease, Nanjing University, Nanjing 210061, China
| | - Wei Zhao
- Model Animal Research Center and MOE Key Laboratory of Animal Models of Disease, Nanjing University, Nanjing 210061, China
| | - Pei Wang
- Model Animal Research Center and MOE Key Laboratory of Animal Models of Disease, Nanjing University, Nanjing 210061, China
| | - Lin Zhang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, Wenzhou 325035, China
| | - Yan-Ze Wu
- From the Key Laboratory of MOE for Modern Teaching Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, China, and
| | - Ya-Jing Peng
- Model Animal Research Center and MOE Key Laboratory of Animal Models of Disease, Nanjing University, Nanjing 210061, China
| | - Ji-Min Gao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, Wenzhou 325035, China
| | - Kristine E Kamm
- the Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9040
| | - James T Stull
- the Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9040
| | - Min-Sheng Zhu
- Model Animal Research Center and MOE Key Laboratory of Animal Models of Disease, Nanjing University, Nanjing 210061, China, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, Wenzhou 325035, China,
| |
Collapse
|
40
|
Molecular and cellular basis of the regulation of lymphatic contractility and lymphatic absorption. Int J Biochem Cell Biol 2014; 53:134-40. [PMID: 24836907 DOI: 10.1016/j.biocel.2014.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 04/22/2014] [Accepted: 05/05/2014] [Indexed: 11/23/2022]
Abstract
Lymphatic absorption is a highly regulated process driven by both an extrinsic mechanism (external force) and an intrinsic mechanism (lymphatic vessel contractility). The lymphatic muscle is a specialized smooth muscle with unique mechanical properties. To understand the molecular mechanism and relative contribution of smooth muscle contraction in lymphatic absorption, we analyzed mice with a smooth muscle-specific deletion of Mylk, a critical gene for smooth muscle contraction. Interestingly, the knockout mice were significantly resistant to anesthesia reagents. Upon injection in the feet with FITC-dextran, the mutant mice displayed a 2-fold delay of the absorption peak in the peripheral circulation. Examining the ear lymphatic vessels of the mutant mice revealed a reduction in the amount of fluid in the lumens of the lymphangions, suggesting an impairment of lymph formation. The Mylk-deficient lymphatic muscle exhibited a significant reduction of peristalsis and of myosin light chain phosphorylation in response to depolarization. We thus concluded that MLCK and myosin light chain phosphorylation are required for lymphatic vessel contraction. Lymphatic contractility is not an exclusive requirement for lymphatic absorption, and external force appears to be necessary for absorption.
Collapse
|
41
|
Tsai MH, Chang AN, Huang J, He W, Sweeney HL, Zhu M, Kamm KE, Stull JT. Constitutive phosphorylation of myosin phosphatase targeting subunit-1 in smooth muscle. J Physiol 2014; 592:3031-51. [PMID: 24835173 DOI: 10.1113/jphysiol.2014.273011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Smooth muscle contraction initiated by myosin regulatory light chain (RLC) phosphorylation is dependent on the relative activities of Ca(2+)-calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP). We have investigated the physiological role of the MLCP regulatory subunit MYPT1 in bladder smooth muscle containing a smooth muscle-specific deletion of MYPT1 in adult mice. Deep-sequencing analyses of mRNA and immunoblotting revealed that MYPT1 depletion reduced the amount of PP1cδ with no compensatory changes in expression of other MYPT1 family members. Phosphatase activity towards phosphorylated smooth muscle heavy meromyosin was proportional to the amount of PP1cδ in total homogenates from wild-type or MYPT1-deficient tissues. Isolated MYPT1-deficient tissues from MYPT1(SM-/-) mice contracted with moderate differences in response to KCl and carbachol treatments, and relaxed rapidly with comparable rates after carbachol removal and only 1.5-fold slower after KCl removal. Measurements of phosphorylated proteins in the RLC signalling and actin polymerization modules during contractions revealed moderate changes. Using a novel procedure to quantify total phosphorylation of MYPT1 at Thr696 and Thr853, we found substantial phosphorylation in wild-type tissues under resting conditions, predicting attenuation of MLCP activity. Reduced PP1cδ activity in MYPT1-deficient tissues may be similar to the attenuated MLCP activity in wild-type tissues resulting from constitutively phosphorylated MYPT1. Constitutive phosphorylation of MYPT1 Thr696 and Thr853 may thus represent a physiological mechanism acting in concert with agonist-induced MYPT1 phosphorylation to inhibit MLCP activity. In summary, MYPT1 deficiency may not cause significant derangement of smooth muscle contractility because the effective MLCP activity is not changed.
Collapse
Affiliation(s)
- Ming-Ho Tsai
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Audrey N Chang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jian Huang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Weiqi He
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - H Lee Sweeney
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Minsheng Zhu
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Kristine E Kamm
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - James T Stull
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
42
|
Balhara J, Redhu NS, Shan L, Gounni AS. IgE regulates the expression of smMLCK in human airway smooth muscle cells. PLoS One 2014; 9:e93946. [PMID: 24722483 PMCID: PMC3983085 DOI: 10.1371/journal.pone.0093946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 03/11/2014] [Indexed: 12/30/2022] Open
Abstract
Previous studies have shown that enhanced accumulation of contractile proteins such as smooth muscle myosin light chain kinase (smMLCK) plays a major role in human airway smooth muscle cells (HASM) cell hypercontractility and hypertrophy. Furthermore, serum IgE levels play an important role in smooth muscle hyperreactivity. However, the effect of IgE on smMLCK expression has not been investigated. In this study, we demonstrate that IgE increases the expression of smMLCK at mRNA and protein levels. This effect was inhibited significantly with neutralizing abs directed against FcεRI but not with anti-FcεRII/CD23. Furthermore, Syk knock down and pharmacological inhibition of mitogen activated protein kinases (MAPK) (ERK1/2, p38, and JNK) and phosphatidylinositol 3-kinase (PI3K) significantly diminished the IgE-mediated upregulation of smMLCK expression in HASM cells. Taken together, our data suggest a role of IgE in regulating smMLCK in HASM cells. Therefore, targeting the FcεRI activation on HASM cells may offer a novel approach in controlling the bronchomotor tone in allergic asthma.
Collapse
Affiliation(s)
- Jyoti Balhara
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
| | - Naresh Singh Redhu
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
| | - Lianyu Shan
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
| | - Abdelilah S. Gounni
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba
- * E-mail:
| |
Collapse
|
43
|
He WQ, Stull JT, Zhu MS. Reply: To PMID 23499953. Gastroenterology 2013; 145:1495. [PMID: 24409499 DOI: 10.1053/j.gastro.2013.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
44
|
A role for WNT1-inducible signaling protein-1 in airway remodeling in a rat asthma model. Int Immunopharmacol 2013; 17:350-7. [PMID: 23845395 DOI: 10.1016/j.intimp.2013.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 12/22/2022]
Abstract
Over-expression of WISP1 has been described in multi-organ fibrosis and tissue remodeling. Moreover, it has recently been found that polymorphism of WISP1 gene is related with the change of lung function in asthmatic subjects. Therefore, we hypothesized that WISP1 might be closely linked to occurrence and development of asthmatic airway remodeling. Aim of this study was to examine the roles of WISP1 in an asthmatic model with airway remodeling and assess the specific effects of WISP1 on human lung fibroblast in vitro. Animal models were developed by challenged with ovalbumin. The levels of WISP1 expression in animal models were assessed by real-time PCR and immunohistochemistry. To examine the specific effects of WISP1 on airway remodeling, WISP1 was depleted by neutralizing α-WISP1 antibodies in vivo. Moreover, human lung fibroblast (HFL-1) was challenged with WISP1 in the presence and absence of SH-5 in vitro. Our study showed that OVA exposure increased the levels of WISP1 expression in a rat asthma model. WISP1 depletion could partially inhibit OVA-induced airway remodeling. In vitro, WISP1-treated HFL-1 cells presented abnormal proliferation and over-expression of Col1a1 and Fn1. However, WISP1-induced collagen release from HFL-1 cells could be attenuated by pretreatment with an Akt inhibitor. Moreover, the levels of p-Akt and p-GSK-3β in WISP1-treated HFL-1 cells were also significantly elevated. In summary, WISP1 might initiate and perpetuate the pathological remodeling of asthma by inducing fibroblast proliferation and ECM deposition. The specific effects of WISP1 were likely due to activation of pulmonary Akt/GSK-3β signaling.
Collapse
|
45
|
Gao N, Huang J, He W, Zhu M, Kamm KE, Stull JT. Signaling through myosin light chain kinase in smooth muscles. J Biol Chem 2013; 288:7596-7605. [PMID: 23362260 DOI: 10.1074/jbc.m112.427112] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) phosphorylates smooth muscle myosin regulatory light chain (RLC) to initiate contraction. We used a tamoxifen-activated, smooth muscle-specific inactivation of MLCK expression in adult mice to determine whether MLCK was differentially limiting in distinct smooth muscles. A 50% decrease in MLCK in urinary bladder smooth muscle had no effect on RLC phosphorylation or on contractile responses, whereas an 80% decrease resulted in only a 20% decrease in RLC phosphorylation and contractile responses to the muscarinic agonist carbachol. Phosphorylation of the myosin light chain phosphatase regulatory subunit MYPT1 at Thr-696 and Thr-853 and the inhibitor protein CPI-17 were also stimulated with carbachol. These results are consistent with the previous findings that activation of a small fraction of MLCK by limiting amounts of free Ca(2+)/calmodulin combined with myosin light chain phosphatase inhibition is sufficient for robust RLC phosphorylation and contractile responses in bladder smooth muscle. In contrast, a 50% decrease in MLCK in aortic smooth muscle resulted in 40% inhibition of RLC phosphorylation and aorta contractile responses, whereas a 90% decrease profoundly inhibited both responses. Thus, MLCK content is limiting for contraction in aortic smooth muscle. Phosphorylation of CPI-17 and MYPT1 at Thr-696 and Thr-853 were also stimulated with phenylephrine but significantly less than in bladder tissue. These results indicate differential contributions of MLCK to signaling. Limiting MLCK activity combined with modest Ca(2+) sensitization responses provide insights into how haploinsufficiency of MLCK may result in contractile dysfunction in vivo, leading to dissections of human thoracic aorta.
Collapse
Affiliation(s)
- Ning Gao
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Jian Huang
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Weiqi He
- Model Animal Research Center and Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 210061 Nanjing, China
| | - Minsheng Zhu
- Model Animal Research Center and Ministry of Education Key Laboratory of Model Animal for Disease Study, Nanjing University, 210061 Nanjing, China
| | - Kristine E Kamm
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - James T Stull
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390.
| |
Collapse
|
46
|
Zhang CH, Li Y, Zhao W, Lifshitz LM, Li H, Harfe BD, Zhu MS, ZhuGe R. The transmembrane protein 16A Ca(2+)-activated Cl- channel in airway smooth muscle contributes to airway hyperresponsiveness. Am J Respir Crit Care Med 2012; 187:374-81. [PMID: 23239156 DOI: 10.1164/rccm.201207-1303oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Asthma is a chronic inflammatory disorder with a characteristic of airway hyperresponsiveness (AHR). Ca(2+)-activated Cl(-) [Cl((Ca))] channels are inferred to be involved in AHR, yet their molecular nature and the cell type they act within to mediate this response remain unknown. OBJECTIVES Transmembrane protein 16A (TMEM16A) and TMEM16B are Cl((Ca)) channels, and activation of Cl((Ca)) channels in airway smooth muscle (ASM) contributes to agonist-induced airway contraction. We hypothesized that Tmem16a and/or Tmem16b encode Cl((Ca)) channels in ASM and mediate AHR. METHODS We assessed the expression of the TMEM16 family, and the effects of niflumic acid and benzbromarone on AHR and airway contraction, in an ovalbumin-sensitized mouse model of chronic asthma. We also cloned TMEM16A from ASM and examined the Cl(-) currents it produced in HEK293 cells. We further studied the impacts of TMEM16A deletion on Ca(2+) agonist-induced cell shortening, and on Cl((Ca)) currents activated by Ca(2+) sparks (localized, short-lived Ca(2+) transients due to the opening of ryanodine receptors) in mouse ASM cells. MEASUREMENTS AND MAIN RESULTS TMEM16A, but not TMEM16B, is expressed in ASM cells and its expression in these cells is up-regulated in ovalbumin-sensitized mice. Niflumic acid and benzbromarone prevent AHR and contraction evoked by methacholine in ovalbumin-sensitized mice. TMEM16A produces Cl((Ca)) currents with kinetics similar to native Cl((Ca)) currents. TMEM16A deletion renders Ca(2+) sparks unable to activate Cl((Ca)) currents, and weakens caffeine- and methacholine-induced cell shortening. CONCLUSIONS Tmem16a encodes Cl((Ca)) channels in ASM and contributes to Ca(2+) agonist-induced contraction. In addition, up-regulation of TMEM16A and its augmented activation contribute to AHR in an ovalbumin-sensitized mouse model of chronic asthma. TMEM16A may represent a potential therapeutic target for asthma.
Collapse
Affiliation(s)
- Cheng-Hai Zhang
- Model Animal Research Center, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Colson BA, Gruber SJ, Thomas DD. Structural dynamics of muscle protein phosphorylation. J Muscle Res Cell Motil 2012; 33:419-29. [PMID: 22930331 DOI: 10.1007/s10974-012-9317-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/07/2012] [Indexed: 02/03/2023]
Abstract
We have used site-directed spectroscopic probes to detect structural changes, motions, and interactions due to phosphorylation of proteins involved in the regulation of muscle contraction and relaxation. Protein crystal structures provide static snapshots that provide clues to the conformations that are sampled dynamically by proteins in the cellular environment. Our site-directed spectroscopic experiments, combined with computational simulations, extend these studies into functional assemblies in solution, and reveal details of protein regions that are too dynamic or disordered for crystallographic approaches. Here, we discuss phosphorylation-mediated structural transitions in the smooth muscle myosin regulatory light chain, the striated muscle accessory protein myosin binding protein-C, and the cardiac membrane Ca(2+) pump modulator phospholamban. In each of these systems, phosphorylation near the N terminus of the regulatory protein relieves an inhibitory interaction between the phosphoprotein and its regulatory target. Several additional unifying themes emerge from our studies: (a) The effect of phosphorylation is not to change the affinity of the phosphoprotein for its regulated binding partner, but to change the structure of the bound complex without dissociation. (b) Phosphorylation induces transitions between order and dynamic disorder. (c) Structural states are only loosely coupled to phosphorylation; i.e., complete phosphorylation induces dramatic functional effects with only a partial shift in the equilibrium between ordered and disordered structural states. These studies, which offer atomic-resolution insight into the structural and functional dynamics of these phosphoproteins, were inspired in part by the ground-breaking work in this field by Michael and Kate Barany.
Collapse
Affiliation(s)
- Brett A Colson
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
48
|
Tsai MH, Kamm KE, Stull JT. Signalling to contractile proteins by muscarinic and purinergic pathways in neurally stimulated bladder smooth muscle. J Physiol 2012; 590:5107-21. [PMID: 22890701 DOI: 10.1113/jphysiol.2012.235424] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Urinary bladder smooth muscle contraction is triggered by parasympathetic nerves, which release ATP and acetylcholine (ACh) that bind to purinergic and muscarinic receptors, respectively. Neuronal signalling may thus elicit myosin regulatory light chain (RLC) phosphorylation and contraction through the combined, but distinct contributions of these receptors. Both receptors mediate Ca2+ influx whereas muscarinic receptors may also recruit Ca2+-sensitization mechanisms. Using transgenic mice expressing calmodulin sensor myosin light chain kinase (MLCK) in smooth muscles, the effects of suramin/α,β-methylene ATP (α,β-meATP) (purinergic inhibition) or atropine (muscarinic inhibition) on neurally stimulated elevation of [Ca2+]i, MLCK activation, force and phosphorylation of RLC, myosin light chain phosphatase (MLCP) targeting subunit MYPT1 and MLCP inhibitor protein CPI-17 were examined. Electric field stimulation (EFS) increased [Ca2+]i, MLCK activation and concomitant force in a frequency-dependent manner. The dependence of force on [Ca2+]i and MLCK activation decreased with time suggesting increased Ca2+ sensitization in the late contractile phase. RLC and CPI-17 phosphorylation increased upon stimulation with maximal responses at 20 Hz; both responses were attenuated by atropine, but only RLC phosphorylation was inhibited by suramin/α,β-meATP. Antagonism of purinergic receptors suppressed maximal MLCK activation to a greater extent in the early contractile phase than in the late contractile phase; atropine had the opposite effect. A frequency- and time-dependent increase in MLCK phosphorylation explained the desensitization of MLCK to Ca2+, since MLCK activation declined more rapidly than [Ca2+]i. EFS elicited little or no effect on MYPT1 Thr696 or 850 phosphorylation. Thus, purinergic Ca2+ signals provide the initial activation of MLCK with muscarinic receptors supporting sustained responses. Activation of muscarinic receptors recruits CPI-17, but not MYPT1-mediated Ca2+ sensitization. Furthermore, nerve-released ACh also initiates signalling cascades leading to phosphorylation-dependent desensitization of MLCK.
Collapse
Affiliation(s)
- Ming-Ho Tsai
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9040, USA
| | | | | |
Collapse
|
49
|
Zhu GJ, Wang F, Chen C, Xu L, Zhang WC, Fan C, Peng YJ, Chen J, He WQ, Guo SY, Zuo J, Gao X, Zhu MS. Myosin light-chain kinase is necessary for membrane homeostasis in cochlear inner hair cells. PLoS One 2012; 7:e34894. [PMID: 22485190 PMCID: PMC3317649 DOI: 10.1371/journal.pone.0034894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 03/08/2012] [Indexed: 12/04/2022] Open
Abstract
The structural homeostasis of the cochlear hair cell membrane is critical for all aspects of sensory transduction, but the regulation of its maintenance is not well understood. In this report, we analyzed the cochlear hair cells of mice with specific deletion of myosin light chain kinase (MLCK) in inner hair cells. MLCK-deficient mice showed impaired hearing, with a 5- to 14-dB rise in the auditory brainstem response (ABR) thresholds to clicks and tones of different frequencies and a significant decrease in the amplitude of the ABR waves. The mutant inner hair cells produced several ball-like structures around the hair bundles in vivo, indicating impaired membrane stability. Inner hair cells isolated from the knockout mice consistently displayed less resistance to hypoosmotic solution and less membrane F-actin. Myosin light-chain phosphorylation was also reduced in the mutated inner hair cells. Our results suggest that MLCK is necessary for maintaining the membrane stability of inner hair cells.
Collapse
MESH Headings
- Actin Cytoskeleton/metabolism
- Actins/metabolism
- Animals
- Cell Membrane/enzymology
- Cell Membrane/metabolism
- Epithelium/enzymology
- Epithelium/metabolism
- Evoked Potentials, Auditory, Brain Stem
- Gene Expression
- Hair Cells, Auditory, Inner/enzymology
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/ultrastructure
- Homeostasis
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Myosin Light Chains/metabolism
- Myosin VIIa
- Myosin-Light-Chain Kinase/deficiency
- Myosin-Light-Chain Kinase/genetics
- Myosin-Light-Chain Kinase/physiology
- Myosins/metabolism
- Organ of Corti/cytology
- Osmotic Pressure
- Phosphorylation
- Protein Processing, Post-Translational
- Sequence Deletion
- Sodium-Potassium-Exchanging ATPase/genetics
- Sodium-Potassium-Exchanging ATPase/metabolism
Collapse
Affiliation(s)
- Guang-Jie Zhu
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Fang Wang
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Chen Chen
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Lin Xu
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Wen-Cheng Zhang
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
- Zhejiang Provincial Key Lab for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, University Park, Wenzhou, China
| | - Chi Fan
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Ya-Jing Peng
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Jie Chen
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Wei-Qi He
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Shi-Ying Guo
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Xia Gao
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
- * E-mail: (XG); (M-SZ)
| | - Min-Sheng Zhu
- MOE Key Laboratory for Model Animal and Diseases Studies, Nanjing Drum Tower Hospital and Model Animal Research Center of Nanjing University, Nanjing, China
- Zhejiang Provincial Key Lab for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, University Park, Wenzhou, China
- * E-mail: (XG); (M-SZ)
| |
Collapse
|
50
|
Hong F, Haldeman BD, Jackson D, Carter M, Baker JE, Cremo CR. Biochemistry of smooth muscle myosin light chain kinase. Arch Biochem Biophys 2011. [PMID: 21565153 DOI: 10.1016/j.abb.2011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The smooth muscle isoform of myosin light chain kinase (MLCK) is a Ca(2+)-calmodulin-activated kinase that is found in many tissues. It is particularly important for regulating smooth muscle contraction by phosphorylation of myosin. This review summarizes selected aspects of recent biochemical work on MLCK that pertains to its function in smooth muscle. In general, the focus of the review is on new findings, unresolved issues, and areas with the potential for high physiological significance that need further study. The review includes a concise summary of the structure, substrates, and enzyme activity, followed by a discussion of the factors that may limit the effective activity of MLCK in the muscle. The interactions of each of the many domains of MLCK with the proteins of the contractile apparatus, and the multi-domain interactions of MLCK that may control its behaviors in the cell are summarized. Finally, new in vitro approaches to studying the mechanism of phosphorylation of myosin are introduced.
Collapse
Affiliation(s)
- Feng Hong
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, 89557, USA
| | | | | | | | | | | |
Collapse
|