1
|
Arzhanova EL, Makusheva Y, Pershina EG, Medvedeva SS, Litvinova EA. Changes in the Phenotype and Metabolism of Peritoneal Macrophages in Mucin-2 Knockout Mice and Partial Restoration of Their Functions In Vitro After L-Fucose Treatment. Int J Mol Sci 2024; 26:13. [PMID: 39795876 PMCID: PMC11719744 DOI: 10.3390/ijms26010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
In the development of inflammatory bowel disease (IBD), peritoneal macrophages contribute to the resident intestinal macrophage pool. Previous studies have demonstrated that oral administration of L-fucose exerts an immunomodulatory effect and repolarizes the peritoneal macrophages in vivo in mice. In this study, we analyzed the phenotype and metabolic profile of the peritoneal macrophages from Muc2-/- mice, as well as the effect of L-fucose on the metabolic and morphological characteristics of these macrophages in vitro. The investigation utilized flow cytometry, quantitative PCR (qPCR), measurement of the intracellular ATP and Ca2+ concentrations, an analysis of mitochondrial respiration and membrane potential, and transmission electron microscopy (TEM) for ultrastructural evaluations. The Muc2-/- mice exhibited lower intracellular ATP and Ca2+ levels in their peritoneal macrophages, a higher percentage of stellate macrophages, and an increased oxygen consumption rate (OCR), combined with a higher percentage of mitochondria displaying an abnormal ultrastructure. Additionally, there was a five-fold increase in condensed mitochondria compared to their level in C57BL/6 mice. The number of CD209+ peritoneal macrophages was reduced three-fold, while the number of M1-like cells increased two-fold in the Muc2-/- mice. L-fucose treatment enhanced ATP production and reduced the expression of the Parp1, Mt-Nd2, and Mt-Nd6 genes, which may suggest a reduction in pro-inflammatory factor production and a shift in the differentiation of peritoneal macrophages towards the M2 phenotype.
Collapse
Affiliation(s)
- Elena L. Arzhanova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia; (E.L.A.); (E.G.P.)
- Scientific Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| | - Yulia Makusheva
- Physical Engineering Faculty, Novosibirsk State Technical University, 630073 Novosibirsk, Russia;
| | - Elena G. Pershina
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia; (E.L.A.); (E.G.P.)
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | | | - Ekaterina A. Litvinova
- Physical Engineering Faculty, Novosibirsk State Technical University, 630073 Novosibirsk, Russia;
| |
Collapse
|
2
|
Ntavaroukas P, Michail K, Tsiakalidou R, Stampouloglou E, Tsiggene K, Komiotis D, Georgiou N, Mavromoustakos T, Manta S, Aje D, Michael P, Campbell BJ, Papoutsopoulou S. A Novel Quinoline Inhibitor of the Canonical NF-κB Transcription Factor Pathway. BIOLOGY 2024; 13:910. [PMID: 39596865 PMCID: PMC11591978 DOI: 10.3390/biology13110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
The NF-κB family of transcription factors is a master regulator of cellular responses during inflammation, and its dysregulation has been linked to chronic inflammatory diseases, such as inflammatory bowel disease. It is therefore of vital importance to design and test new effective NF-κB inhibitors that have the potential to be utilized in clinical practice. In this study, we used a commercial transgenic HeLa cell line as an NF-κB activation reporter to test a novel quinoline molecule, Q3, as a potential inhibitor of the canonical NF-κB pathway. Q3 inhibited NF-κB-induced luciferase in concentrations as low as 5 μM and did not interfere with cell survival or induced cell death. A real-time PCR analysis revealed that Q3 could inhibit the TNF-induced transcription of the luciferase gene, as well as the TNF gene, a known downstream target gene. Immunocytochemistry studies revealed that Q3 moderately interferes with TNF-induced NF-κB nuclear translocation. Moreover, docking and molecular dynamics analyses confirmed that Q3 could potentially modulate transcriptional activity by inhibiting the interaction of NF-κB and DNA. Therefore, Q3 could be potentially developed for further in vivo studies as an NF-κB inhibitor.
Collapse
Affiliation(s)
- Panagiotis Ntavaroukas
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41335 Larissa, Greece; (P.N.); (K.M.); (R.T.); (E.S.); (K.T.); (D.K.); (S.M.)
| | - Konstantinos Michail
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41335 Larissa, Greece; (P.N.); (K.M.); (R.T.); (E.S.); (K.T.); (D.K.); (S.M.)
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 11571 Athens, Greece; (N.G.); (T.M.)
| | - Rafaela Tsiakalidou
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41335 Larissa, Greece; (P.N.); (K.M.); (R.T.); (E.S.); (K.T.); (D.K.); (S.M.)
| | - Eleni Stampouloglou
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41335 Larissa, Greece; (P.N.); (K.M.); (R.T.); (E.S.); (K.T.); (D.K.); (S.M.)
| | - Katerina Tsiggene
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41335 Larissa, Greece; (P.N.); (K.M.); (R.T.); (E.S.); (K.T.); (D.K.); (S.M.)
| | - Dimitrios Komiotis
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41335 Larissa, Greece; (P.N.); (K.M.); (R.T.); (E.S.); (K.T.); (D.K.); (S.M.)
| | - Nikitas Georgiou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 11571 Athens, Greece; (N.G.); (T.M.)
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 11571 Athens, Greece; (N.G.); (T.M.)
| | - Stella Manta
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41335 Larissa, Greece; (P.N.); (K.M.); (R.T.); (E.S.); (K.T.); (D.K.); (S.M.)
- Laboratory of Organic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Danielle Aje
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Department of Infection Biology & Microbiomes, Institute of Infection Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK; (D.A.); (P.M.)
| | - Panagiotis Michael
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Department of Infection Biology & Microbiomes, Institute of Infection Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK; (D.A.); (P.M.)
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Barry J. Campbell
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Department of Infection Biology & Microbiomes, Institute of Infection Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK; (D.A.); (P.M.)
| | - Stamatia Papoutsopoulou
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41335 Larissa, Greece; (P.N.); (K.M.); (R.T.); (E.S.); (K.T.); (D.K.); (S.M.)
| |
Collapse
|
3
|
Smythies LE, Belyaeva OV, Alexander KL, Bimczok D, Nick HJ, Serrano CA, Huff KR, Nearing M, Musgrove L, Poovey EH, Garth J, Russ K, Baig KRKK, Crossman DK, Peter S, Cannon JA, Elson CO, Kedishvili NY, Smith PD. Human intestinal stromal cells promote homeostasis in normal mucosa but inflammation in Crohn's disease in a retinoic acid-deficient manner. Mucosal Immunol 2024; 17:958-972. [PMID: 38945396 PMCID: PMC11530961 DOI: 10.1016/j.mucimm.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Intestinal stromal cells (SCs), which synthesize the extracellular matrix that gives the mucosa its structure, are newly appreciated to play a role in mucosal inflammation. Here, we show that human intestinal vimentin+CD90+smooth muscle actin- SCs synthesize retinoic acid (RA) at levels equivalent to intestinal epithelial cells, a function in the human intestine previously attributed exclusively to epithelial cells. Crohn's disease SCs (Crohn's SCs), however, synthesized markedly less RA than SCs from healthy intestine (normal SCs). We also show that microbe-stimulated Crohn's SCs, which are more inflammatory than stimulated normal SCs, induced less RA-regulated differentiation of mucosal dendritic cells (DCs) (circulating pre-DCs and monocyte-derived DCs), leading to the generation of more potent inflammatory interferon-γhi/interleukin-17hi T cells than normal SCs. Explaining these results, Crohn's SCs expressed more DHRS3, a retinaldehyde reductase that inhibits retinol conversion to retinal and, thus, synthesized less RA than normal SCs. These findings uncover a microbe-SC-DC crosstalk in which luminal microbes induce Crohn's disease SCs to initiate and perpetuate inflammation through impaired synthesis of RA.
Collapse
Affiliation(s)
- Lesley E Smythies
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Katie L Alexander
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Heidi J Nick
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Carolina A Serrano
- Department of Pediatric Gastroenterology and Nutrition, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Kayci R Huff
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marie Nearing
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lois Musgrove
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emily H Poovey
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jaleesa Garth
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kirk Russ
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kondal R K K Baig
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shajan Peter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jamie A Cannon
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charles O Elson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Phillip D Smith
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Meng EX, Verne GN, Zhou Q. Macrophages and Gut Barrier Function: Guardians of Gastrointestinal Health in Post-Inflammatory and Post-Infection Responses. Int J Mol Sci 2024; 25:9422. [PMID: 39273369 PMCID: PMC11395020 DOI: 10.3390/ijms25179422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The gut barrier is essential for protection against pathogens and maintaining homeostasis. Macrophages are key players in the immune system, are indispensable for intestinal health, and contribute to immune defense and repair mechanisms. Understanding the multifaceted roles of macrophages can provide critical insights into maintaining and restoring gastrointestinal (GI) health. This review explores the essential role of macrophages in maintaining the gut barrier function and their contribution to post-inflammatory and post-infectious responses in the gut. Macrophages significantly contribute to gut barrier integrity through epithelial repair, immune modulation, and interactions with gut microbiota. They demonstrate active plasticity by switching phenotypes to resolve inflammation, facilitate tissue repair, and regulate microbial populations following an infection or inflammation. In addition, tissue-resident (M2) and infiltration (M1) macrophages convert to each other in gut problems such as IBS and IBD via major signaling pathways mediated by NF-κB, JAK/STAT, PI3K/AKT, MAPK, Toll-like receptors, and specific microRNAs such as miR-155, miR-29, miR-146a, and miR-199, which may be good targets for new therapeutic approaches. Future research should focus on elucidating the detailed molecular mechanisms and developing personalized therapeutic approaches to fully harness the potential of macrophages to maintain and restore intestinal permeability and gut health.
Collapse
Affiliation(s)
| | - George Nicholas Verne
- College of Medicine, University of Tennessee, Memphis, TN 38103, USA
- Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN 38105, USA
| | - Qiqi Zhou
- College of Medicine, University of Tennessee, Memphis, TN 38103, USA
- Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN 38105, USA
| |
Collapse
|
5
|
Lv N, Wang L, Zeng M, Wang Y, Yu B, Zeng W, Jiang X, Suo Y. Saponins as therapeutic candidates for atherosclerosis. Phytother Res 2024; 38:1651-1680. [PMID: 38299680 DOI: 10.1002/ptr.8128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
Drug development for atherosclerosis, the underlying pathological state of ischemic cardiovascular diseases, has posed a longstanding challenge. Saponins, classified as steroid or triterpenoid glycosides, have shown promising therapeutic potential in the treatment of atherosclerosis. Through an exhaustive examination of scientific literature spanning from May 2013 to May 2023, we identified 82 references evaluating 37 types of saponins in terms of their prospective impacts on atherosclerosis. These studies suggest that saponins have the potential to ameliorate atherosclerosis by regulating lipid metabolism, inhibiting inflammation, suppressing apoptosis, reducing oxidative stress, and modulating smooth muscle cell proliferation and migration, as well as regulating gut microbiota, autophagy, endothelial senescence, and angiogenesis. Notably, ginsenosides exhibit significant potential and manifest essential pharmacological attributes, including lipid-lowering, anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects. This review provides a comprehensive examination of the pharmacological attributes of saponins in atherosclerosis, with particular emphasis on their role in the regulation of lipid metabolism regulation and anti-inflammatory effects. Thus, saponins may warrant further investigation as a potential therapy for atherosclerosis. However, due to various reasons such as low oral bioavailability, the clinical application of saponins in the treatment of atherosclerosis still needs further exploration.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yijing Wang
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou people's hospital, Ganzhou, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou people's hospital, Ganzhou, China
| |
Collapse
|
6
|
Ivraghi MS, Zamanian MY, Gupta R, Achmad H, Alsaab HO, Hjazi A, Romero‐Parra RM, Alwaily ER, Hussien BM, Hakimizadeh E. Neuroprotective effects of gemfibrozil in neurological disorders: Focus on inflammation and molecular mechanisms. CNS Neurosci Ther 2024; 30:e14473. [PMID: 37904726 PMCID: PMC10916451 DOI: 10.1111/cns.14473] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Gemfibrozil (Gem) is a drug that has been shown to activate PPAR-α, a nuclear receptor that plays a key role in regulating lipid metabolism. Gem is used to lower the levels of triglycerides and reduce the risk of coronary heart disease in patients. Experimental studies in vitro and in vivo have shown that Gem can prevent or slow the progression of neurological disorders (NDs), including cerebral ischemia (CI), Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Neuroinflammation is known to play a significant role in these disorders. METHOD The literature review for this study was conducted by searching Scopus, Science Direct, PubMed, and Google Scholar databases. RESULT The results of this study show that Gem has neuroprotective effects through several cellular and molecular mechanisms such as: (1) Gem has the ability to upregulate pro-survival factors (PGC-1α and TFAM), promoting the survival and function of mitochondria in the brain, (2) Gem strongly inhibits the activation of NF-κB, AP-1, and C/EBPβ in cytokine-stimulated astroglial cells, which are known to increase the expression of iNOS and the production of NO in response to proinflammatory cytokines, (3) Gem protects dopamine neurons in the MPTP mouse model of PD by increasing the expression of PPARα, which in turn stimulates the production of GDNF in astrocytes, (4) Gem reduces amyloid plaque pathology, reduces the activity of glial cells, and improves memory, (5) Gem increases myelin genes expression (MBP and CNPase) via PPAR-β, and (6) Gem increases hippocampal BDNF to counteract depression. CONCLUSION According to the study, Gem was investigated for its potential therapeutic effect in NDs. Further research is needed to fully understand the therapeutic potential of Gem in NDs.
Collapse
Affiliation(s)
| | - Mohammad Yasin Zamanian
- Neurophysiology Research CenterHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | - Reena Gupta
- Institute of Pharmaceutical Research, GLA UniversityMathuraIndia
| | - Harun Achmad
- Department of Pediatric Dentistry, Faculty of DentistryHasanuddin UniversityMakassarIndonesia
| | - Hashem O. Alsaab
- Pharmaceutics and Pharmaceutical TechnologyTaif UniversityTaifSaudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory SciencesCollege of Applied Medical Sciences, Prince Sattam bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | | | - Enas R. Alwaily
- Microbiology Research GroupCollege of Pharmacy, Al‐Ayen UniversityThi‐QarIraq
| | - Beneen M. Hussien
- Medical Laboratory Technology DepartmentCollege of Medical Technology, The Islamic UniversityNajafIraq
| | - Elham Hakimizadeh
- Physiology‐Pharmacology Research CenterResearch Institute of Basic Medical Sciences, Rafsanjan University of Medical SciencesRafsanjanIran
| |
Collapse
|
7
|
Ahmad I, Naqvi RA, Valverde A, Naqvi AR. LncRNA MALAT1/microRNA-30b axis regulates macrophage polarization and function. Front Immunol 2023; 14:1214810. [PMID: 37860007 PMCID: PMC10582718 DOI: 10.3389/fimmu.2023.1214810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Macrophages (Mφ) are long-lived myeloid cells that can polarize towards the proinflammatory M1 or proresolving M2 phenotype to control diverse biological processes such as inflammation, tissue damage, and regeneration. Noncoding RNA are a class of nonprotein-coding transcriptome with numerous interdependent biological roles; however, their functional interaction in the regulation of Mφ polarization and immune responses remain unclear. Here, we show antagonistic relationship between lncRNA (MALAT1) and microRNA (miR-30b) in shaping macrophage polarization and immune functions. MALAT1 expression displays a time-dependent induction during Mφ differentiation and, upon challenge with TLR4 agonist (E. coli LPS). MALAT1 knockdown promoted the expression of M2Mφ markers without affecting M1Mφ markers, suggesting that MALAT1 favors the M1 phenotype by suppressing M2 differentiation. Compared to the control, MALAT1 knockdown resulted in reduced antigen uptake and processing, bacterial phagocytosis, and bactericidal activity, strongly supporting its critical role in regulating innate immune functions in Mφ. Consistent with this, MALAT1 knockdown showed impaired cytokine secretion upon challenge with LPS. Importantly, MALAT1 exhibit an antagonistic expression pattern with all five members of the miR-30 family during M2 Mφ differentiation. Dual-luciferase assays validated a novel sequence on MALAT1 that interacts with miR-30b, a microRNA that promotes the M2 phenotype. Phagocytosis and antigen processing assays unequivocally demonstrated that MALAT1 and miR-30b are functionally antagonistic. Concurrent MALAT1 knockdown and miR-30b overexpression exhibited the most significant attenuation in both assays. In human subjects with periodontal disease and murine model of ligature-induced periodontitis, we observed higher levels of MALAT1, M1Mφ markers and downregulation of miR-30b expression in gingival tissues suggesting a pro-inflammatory function of MALAT1 in vivo. Overall, we unraveled the role of MALAT1 in Mφ polarization and delineated the underlying mechanism of its regulation by involving MALAT-1-driven miR-30b sequestration.
Collapse
Affiliation(s)
| | | | | | - Afsar R. Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Ahmad I, Naqvi RA, Valverde A, Naqvi AR. LncRNA MALAT1/microRNA-30b axis regulate macrophage polarization and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526668. [PMID: 36778373 PMCID: PMC9915644 DOI: 10.1101/2023.02.01.526668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Introduction Macrophages (Mφ) can polarize towards the proinflammatory M1 or proresolving M2 phenotype to control diverse biological processes such as inflammation, and tissue regeneration. Noncoding RNAs play critical roles in numerous biological pathways; however, their functional interaction in the regulation of Mφ polarization and immune responses remain unclear. Objectives To examine relationship between lncRNA (MALAT1) and microRNA (miR-30b) in shaping macrophage polarization and immune functions. Methods Expression of MALAT1 and miR-30b was examined in differentiating M1/M2 Mφ, human and murine inflamed gingival biopsies by RT-qPCR. MALAT1 and miR-30b direct interaction was examined by dual luciferase assays. Impact of MALAT1 knockdown and miR-30b overexpression was examined on macrophage polarization markers, bacterial phagocytosis, antigen uptake/processing and cytokine profiles. Results MALAT1 expression displays a time-dependent induction during Mφ differentiation and, upon challenge with TLR4 agonist ( E. coli LPS). Knockdown of MALAT1 enhanced the expression of M2Mφ markers without affecting the M1Mφ markers, suggesting that MALAT1 favors the M1 phenotype by suppressing M2 polarization. MALAT1 knockdown Mφ exhibit reduced antigen uptake and processing, bacterial phagocytosis, and bactericidal activity, strongly supporting its critical role in regulating innate immune functions. Consistent with this, MALAT1 knockdown showed impaired cytokine secretion upon challenge with LPS. Importantly, MALAT1 exhibit an antagonistic expression pattern with all five members of the miR-30 family during M2Mφ differentiation. Dual-luciferase assays validated a novel sequence on MALAT1 that interacts with miR-30b, a microRNA that promotes the M2 phenotype. Phagocytosis and antigen processing assays unequivocally demonstrated that MALAT1 and miR-30b are functionally antagonistic. In human subjects with periodontal disease and murine model of ligature-induced periodontitis, we observed higher levels of MALAT1, and downregulation of miR-30b that correlates with higher M1Mφ markers expression in gingival tissues suggesting a pro-inflammatory function of MALAT1. Conclusion MALAT1/miR-30b antagonistic interaction shapes Mφ polarization in vitro and in inflamed gingival biopsies.
Collapse
|
9
|
Talwar C, Singh V, Kommagani R. The Gut Microbiota: A Double Edge Sword in Endometriosis. Biol Reprod 2022; 107:881-901. [PMID: 35878972 PMCID: PMC9562115 DOI: 10.1093/biolre/ioac147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/14/2022] Open
Abstract
Endometriosis that afflicts 1 in 10 women of reproductive age is characterized by growth of endometrial tissue in the extra-uterine sites and encompasses metabolic-, immunologic- and endocrine-disruption. Importantly, several comorbidities are associated with endometriosis, especially autoimmune disorders such as inflammatory bowel disease. Primarily thought of as a condition arising from retrograde menstruation, emerging evidence uncovered a functional link between the gut microbiota and endometriosis. Specifically, recent findings revealed altered gut microbiota profiles in endometriosis and in turn this altered microbiota appears to be causal in the disease progression, implying a bi-directional crosstalk. In this review, we discuss the complex etiology and pathogenesis of endometriosis emphasizing on this recently recognized role of gut microbiome. We review the gut microbiome structure and functions and its complex network of interactions with the host for maintenance of homeostasis that is crucial for disease prevention. We highlight the underlying mechanisms on how some bacteria promotes disease progression and others protects against endometriosis. Further, we highlight the areas that require future emphases in the gut microbiome-endometriosis nexus and the potential microbiome-based therapies for amelioration of endometriosis.
Collapse
Affiliation(s)
- Chandni Talwar
- Department of Pathology and Immunology, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vertika Singh
- Department of Pathology and Immunology, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
Choden T, Cohen NA. The gut microbiome and the immune system. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The human body contains trillions of microbes which generally live in symbiosis with the host. The interaction of the gut microbiome with elements of the host immune system has far-reaching effects in the development of normal gut and systemic immune responses. Disturbances to this intricate relationship may be responsible for a multitude of gastrointestinal and systemic immune mediated diseases. This review describes the development of the gut microbiome and its interaction with host immune cells in both health and disease states.
Collapse
Affiliation(s)
- Tenzin Choden
- Section of Gastroenterology, Hepatology and Nutrition, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Nathaniel Aviv Cohen
- Section of Gastroenterology, Hepatology and Nutrition, University of Chicago Medicine, Chicago, IL 60637, USA; Inflammatory Bowel Disease Center, Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv 6423906, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
11
|
Arnold IC. Adapting to their new home: Eosinophils remodel the gut architecture. J Exp Med 2022; 219:e20220146. [PMID: 35315912 PMCID: PMC8943835 DOI: 10.1084/jem.20220146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this issue of JEM, Diny et al. (2022. J. Exp. Med.https://doi.org/10.1084/jem.20210970) identify the aryl hydrocarbon receptor (AHR) as a key orchestrator of eosinophil tissue adaptation in the small intestine, controlling their lifespan, degranulation, and tissue-remodeling activities.
Collapse
|
12
|
Kim YK, Hwang JH, Lee HT. Differential susceptibility to lipopolysaccharide affects the activation of toll-like-receptor 4 signaling in THP-1 cells and PMA-differentiated THP-1 cells. Innate Immun 2022; 28:122-129. [PMID: 35612375 PMCID: PMC9136465 DOI: 10.1177/17534259221100170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Monocytes and macrophages that originate from common myeloid progenitors perform various crucial roles in the innate immune system. Stimulation with LPS combined with TLR4 drives the production of pro-inflammatory cytokines through MAPKs and NF-κB pathway in different cells. However, the difference in LPS susceptibility between monocytes and macrophages is poorly understood. In this study, we found that pro-inflammatory cytokines-IL-1β, IL-6 and TNFα showed greater induction in phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells than in THP-1 cells. To determine the difference in cytokine expression, the surface proteins such as TLR4-related proteins and intracellular adaptor proteins were more preserved in PMA-differentiated THP-1 cells than in THP-1 cells. MyD88 is a key molecule responsible for the difference in LPS susceptibility. Moreover, MAPKs and NF-κB pathway-related molecules showed higher levels of phosphorylation in PMA-differentiated THP-1 cells than in THP-1 cells. Upon MyD88 depletion, there was no difference in the phosphorylation of MAPK pathway-related molecules. Therefore, these results demonstrate that the difference in LPS susceptibility between THP-1 cells and PMA-differentiated THP-1 cells occur as a result of gap between the activated MAPKs and NF-κB pathways via changes in the expression of LPS-related receptors and MyD88.
Collapse
Affiliation(s)
- Young Kyu Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul-si, Republic of Korea
- Animal Model Research Group, Korea Institute of Toxicology, Jeollabuk-do, Republic of Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Korea Institute of Toxicology, Jeollabuk-do, Republic of Korea
| | - Hoon Taek Lee
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul-si, Republic of Korea
| |
Collapse
|
13
|
Tai SL, Mortha A. Macrophage control of Crohn's disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 367:29-64. [PMID: 35461659 DOI: 10.1016/bs.ircmb.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The intestinal tract is the body's largest mucosal surface and permanently exposed to microbial and environmental signals. Maintaining a healthy intestine requires the presence of sentinel grounds keeper cells, capable of controlling immunity and tissue homeostasis through specialized functions. Intestinal macrophages are such cells and important players in steady-state functions and during acute and chronic inflammation. Crohn's disease, a chronic inflammatory condition of the intestinal tract is proposed to be the consequence of an altered immune system through microbial and environmental stimulation. This hypothesis suggests an involvement of macrophages in the regulation of this pathology. Within this chapter, we will discuss intestinal macrophage development and highlight data suggesting their implication in chronic intestinal pathologies like Crohn's disease.
Collapse
Affiliation(s)
- Siu Ling Tai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Saldana-Morales FB, Kim DV, Tsai MT, Diehl GE. Healthy Intestinal Function Relies on Coordinated Enteric Nervous System, Immune System, and Epithelium Responses. Gut Microbes 2022; 13:1-14. [PMID: 33929291 PMCID: PMC8096330 DOI: 10.1080/19490976.2021.1916376] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During both health and disease, a coordinated response between the epithelium, immune system, and enteric nervous system is required for proper intestinal function. While each system responds to a number of common stimuli, their coordinated responses support digestion as well as responses and recovery following injury or pathogenic infections. In this review, we discuss how individual responses to common signals work together to support these critical functions.
Collapse
Affiliation(s)
- Fatima B. Saldana-Morales
- Graduate School of Biomedical Sciences, Baylor College of Medicine, HoustonTXUSA,Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NYUSA
| | - Dasom V. Kim
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NYUSA,Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Ming-Ting Tsai
- Graduate School of Biomedical Sciences, Baylor College of Medicine, HoustonTXUSA,Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NYUSA
| | - Gretchen E. Diehl
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NYUSA,Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, Cornell University, New York, NY, USA,CONTACT Gretchen E. Diehl Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY10021, USA. Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, Cornell University, New York, NY, USA
| |
Collapse
|
15
|
Buckley AM, Moura IB, Wilcox MH. The potential of microbiome replacement therapies for Clostridium difficile infection. Curr Opin Gastroenterol 2022; 38:1-6. [PMID: 34871192 DOI: 10.1097/mog.0000000000000800] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW There is a paradox when treating Clostridium difficile infection (CDI); treatment antibiotics reduce C. difficile colonization but cause further microbiota disruption and can lead to recurrent disease. The success of faecal microbiota transplants (FMT) in treating CDI has become a new research area in microbiome restorative therapies but are they a viable long-term treatment option? RECENT FINDINGS C. difficile displays metabolic flexibility to use different nutritional sources during CDI. Using microbiome therapies for the efficient restoration of bile homeostasis and to reduce the bioavailability of preferential nutrients will target the germination ability of C. difficile spores and the growth rate of vegetative cells. Several biotechnology companies have developed microbiome therapeutics for treating CDI, which are undergoing clinical trials. SUMMARY There is confidence in using restorative microbiome therapies for treating CDI after the demonstrated efficacy of FMT, where several biotechnology companies are aiming to supply what would be a 'first in class' treatment option. Efficient removal of C. difficile from the different intestinal biogeographies should be considered in future microbiome therapies. With the gut microbiota implicated in different diseases, more work is needed to assess the long-term consequences of microbiome therapies.
Collapse
Affiliation(s)
- Anthony M Buckley
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health
- Microbiome and Nutritional Science Group, School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds
| | - Ines B Moura
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health
| | - Mark H Wilcox
- Healthcare-Associated Infections Group, Leeds Institute of Medical Research, Faculty of Medicine and Health
- Microbiology, Leeds Teaching Hospital NHS Trust, Old Medical School, Leeds General Infirmary, Leeds, UK
| |
Collapse
|
16
|
Wang L, Zhang N, Han D, Su P, Chen B, Zhao W, Liu Y, Zhang H, Hu G, Yang Q. MTDH Promotes Intestinal Inflammation by Positively Regulating TLR Signalling. J Crohns Colitis 2021; 15:2103-2117. [PMID: 33987665 DOI: 10.1093/ecco-jcc/jjab086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Macrophages in the intestinal mucosa can rapidly engage Toll-like receptor [TLR]-mediated inflammatory responses to protect against pathogen invasion, but these same innate immune responses can also drive the induction of colitis. Our previous research revealed that metadherin [MTDH] is overexpressed in multiple cancers and plays vital roles in tumour progression. However, the role of MTDH in intestinal inflammation is largely unknown. In this study, we found the MTDH expression in colonic lamina propria [CLP] macrophages was positively correlated with inflammatory colitis severity. MTDH-/- mice were protected against the symptoms of dextran sodium sulphate [DSS]-induced colitis; however, adoptive transfer of MTDH wild-type [WT] monocytes partially restored the susceptibility of MTDH-/- mice to DSS-induced colitis. TLR stimulation was sufficient to induce the expression of MTDH, whereas the absence of MTDH was sufficient to suppress TLR-induced production of inflammatory cytokines by macrophages. From a mechanistic perspective, MTDH recruited TRAF6 to TAK1, leading to TRAF6-mediated TAK1 K63 ubiquitination and phosphorylation, ultimately facilitating TLR-induced NF-κB and MAPK signalling. Taken together, our results indicate that MTDH contributes to colitis development by promoting TLR-induced pro-inflammatory cytokine production in CLP macrophages and might represent a potential therapeutic approach for intestine inflammation intervention.
Collapse
Affiliation(s)
- Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Ning Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Peng Su
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Bing Chen
- Pathology Tissue Bank, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Ying Liu
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Hanwen Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Guohong Hu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai, China
| | - Qifeng Yang
- Pathology Tissue Bank, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China.,Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China.,Research Institute of Breast Cancer, Shandong University, Ji'nan, Shandong, China
| |
Collapse
|
17
|
Ghosh S, Pramanik S. Structural diversity, functional aspects and future therapeutic applications of human gut microbiome. Arch Microbiol 2021; 203:5281-5308. [PMID: 34405262 PMCID: PMC8370661 DOI: 10.1007/s00203-021-02516-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023]
Abstract
The research on human gut microbiome, regarded as the black box of the human body, is still at the stage of infancy as the functional properties of the complex gut microbiome have not yet been understood. Ongoing metagenomic studies have deciphered that the predominant microbial communities belong to eubacterial phyla Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, Cyanobacteria, Verrucomicrobia and archaebacterial phylum Euryarchaeota. The indigenous commensal microbial flora prevents opportunistic pathogenic infection and play undeniable roles in digestion, metabolite and signaling molecule production and controlling host's cellular health, immunity and neuropsychiatric behavior. Besides maintaining intestinal health via short-chain fatty acid (SCFA) production, gut microbes also aid in neuro-immuno-endocrine modulatory molecule production, immune cell differentiation and glucose and lipid metabolism. Interdependence of diet and intestinal microbial diversity suggests the effectiveness of pre- and pro-biotics in maintenance of gut and systemic health. Several companies worldwide have started potentially exploiting the microbial contribution to human health and have translated their use in disease management and therapeutic applications. The present review discusses the vast diversity of microorganisms playing intricate roles in human metabolism. The contribution of the intestinal microbiota to regulate systemic activities including gut-brain-immunity crosstalk has been focused. To the best of our knowledge, this review is the first of its kind to collate and discuss the companies worldwide translating the multi-therapeutic potential of human intestinal microbiota, based on the multi-omics studies, i.e. metagenomics and metabolomics, as ready solutions for several metabolic and systemic disorders.
Collapse
Affiliation(s)
- Soma Ghosh
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India.
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India
| |
Collapse
|
18
|
Berthold DL, Jones KDJ, Udalova IA. Regional specialization of macrophages along the gastrointestinal tract. Trends Immunol 2021; 42:795-806. [PMID: 34373208 DOI: 10.1016/j.it.2021.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
The tissue microenvironment is a major driver in imprinting tissue-specific macrophage functions in various mammalian tissues. As monocytes are recruited into the gastrointestinal (GI) tract at steady state and inflammation, they rapidly adopt a tissue-specific and distinct transcriptome. However, the GI tract varies significantly along its length, yet most studies of intestinal macrophages do not directly compare the phenotype and function of these macrophages in the small and large intestine, thus leading to disparities in data interpretations. This review highlights differences along the GI tract that are likely to influence macrophage function, with a specific focus on diet and microbiota. This analysis may fuel further investigation regarding the interplay between the intestinal immune system and GI tissue microenvironments, ideally providing unique therapeutic targets to modulate specific intestinal macrophage populations and/or functions.
Collapse
Affiliation(s)
| | - Kelsey D J Jones
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK; Gastroenterology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Irina A Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| |
Collapse
|
19
|
Maasfeh L, Härtlova A, Isaksson S, Sundin J, Mavroudis G, Savolainen O, Strid H, Öhman L, Magnusson MK. Impaired Luminal Control of Intestinal Macrophage Maturation in Patients With Ulcerative Colitis During Remission. Cell Mol Gastroenterol Hepatol 2021; 12:1415-1432. [PMID: 34126236 PMCID: PMC8479254 DOI: 10.1016/j.jcmgh.2021.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Intestinal macrophages adopt a hyporesponsive phenotype through education by local signals. Lack of proper macrophage maturation in patients with ulcerative colitis (UC) in remission may initiate gut inflammation. The aim, therefore, was to determine the effects of fecal luminal factors derived from healthy donors and UC patients in remission on macrophage phenotype and function. METHODS Fecal supernatants (FS) were extracted from fecal samples of healthy subjects and UC patients in remission. Monocytes were matured into macrophages in the presence of granulocyte-macrophage colony-stimulating factor without/with FS, stimulated with lipopolysaccharide, and macrophage phenotype and function were assessed. Fecal metabolomic profiles were analyzed by gas-chromatography/mass-spectrometry. RESULTS Fecal luminal factors derived from healthy donors were effective in down-regulating Toll-like receptor signaling, cytokine signaling, and antigen presentation in macrophages. Fecal luminal factors derived from UC patients in remission were less potent in inducing lipopolysaccharide hyporesponsiveness and modulating expression of genes involved in macrophage cytokine and Toll-like receptor signaling pathways. Although phagocytic and bactericidal abilities of macrophages were not affected by FS treatment, healthy FS-treated macrophages showed a greater ability to suppress cluster of differentiation 4+ T-cell activation and interferon γ secretion compared with UC remission FS-treated counterparts. Furthermore, metabolomic analysis showed differential fecal metabolite composition for healthy donors and UC patients in remission. CONCLUSIONS Our data indicate that UC patients in remission lack luminal signals able to condition macrophages toward a hyporesponsive and tolerogenic phenotype, which may contribute to their persistent vulnerability to relapse.
Collapse
Affiliation(s)
- Lujain Maasfeh
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anetta Härtlova
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Wallenberg Centre for Molecular and Translational Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Stefan Isaksson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Sundin
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Internal Medicine and Clinical Nutrition, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Otto Savolainen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Hans Strid
- Department of Internal Medicine, Södra Älvsborg Hospital, Borås, Sweden
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria K. Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Correspondence Address correspondence to: Maria K. Magnusson, PhD, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Box 435, 405 30 Gothenburg, Sweden. fax: (46) 31-786 6210
| |
Collapse
|
20
|
The CD200 Regulates Inflammation in Mice Independently of TNF-α Production. Int J Mol Sci 2021; 22:ijms22105358. [PMID: 34069671 PMCID: PMC8161250 DOI: 10.3390/ijms22105358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammatory bowel disease is characterized by the infiltration of immune cells and chronic inflammation. The immune inhibitory receptor, CD200R, is involved in the downregulation of the activation of immune cells to prevent excessive inflammation. We aimed to define the role of CD200R ligand-CD200 in the experimental model of intestinal inflammation in conventionally-reared mice. Mice were given a dextran sodium sulfate solution in drinking water. Bodyweight loss was monitored daily and the disease activity index was calculated, and a histological evaluation of the colon was performed. TNF-α production was measured in the culture of small fragments of the distal colon or bone marrow-derived macrophages (BMDMs) cocultured with CD200+ cells. We found that Cd200-/- mice displayed diminished severity of colitis when compared to WT mice. Inflammation significantly diminished CD200 expression in WT mice, particularly on vascular endothelial cells and immune cells. The co-culture of BMDMs with CD200+ cells inhibited TNF-α secretion. In vivo, acute colitis induced by DSS significantly increased TNF-α secretion in colon tissue in comparison to untreated controls. However, Cd200-/- mice secreted a similar level of TNF-α to WT mice in vivo. CD200 regulates the severity of DSS-induced colitis in conventionally-reared mice. The presence of CD200+ cells decreases TNF-α production by macrophages in vitro. However, during DDS-induced intestinal inflammation secretion of TNF-α is independent of CD200 expression.
Collapse
|
21
|
Nagu P, Parashar A, Behl T, Mehta V. Gut Microbiota Composition and Epigenetic Molecular Changes Connected to the Pathogenesis of Alzheimer's Disease. J Mol Neurosci 2021; 71:1436-1455. [PMID: 33829390 DOI: 10.1007/s12031-021-01829-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, and its pathogenesis is not fully known. Although there are several hypotheses, such as neuroinflammation, tau hyperphosphorylation, amyloid-β plaques, neurofibrillary tangles, and oxidative stress, none of them completely explain the origin and progression of AD. Emerging evidence suggests that gut microbiota and epigenetics can directly influence the pathogenesis of AD via their effects on multiple pathways, including neuroinflammation, oxidative stress, and amyloid protein. Various gut microbes such as Actinobacteria, Bacteroidetes, E. coli, Firmicutes, Proteobacteria, Tenericutes, and Verrucomicrobia are known to play a crucial role in the pathogenesis of AD. These microbes and their metabolites modulate various physiological processes that contribute to AD pathogenesis, such as neuroinflammation and other inflammatory processes, amyloid deposition, cytokine storm syndrome, altered BDNF and NMDA signaling, impairing neurodevelopmental processes. Likewise, epigenetic markers associated with AD mainly include histone modifications and DNA methylation, which are under the direct control of a variety of enzymes, such as acetylases and methylases. The activity of these enzymes is dependent upon the metabolites generated by the host's gut microbiome, suggesting the significance of epigenetics in AD pathogenesis. It is interesting to know that both gut microbiota and epigenetics are dynamic processes and show a high degree of variation according to diet, stressors, and environmental factors. The bidirectional relation between the gut microbiota and epigenetics suggests that they might work in synchrony to modulate AD representation, its pathogenesis, and progression. They both also provide numerous targets for early diagnostic biomarkers and for the development of AD therapeutics. This review discusses the gut microbiota and epigenetics connection in the pathogenesis of AD and aims to highlight vast opportunities for diagnosis and therapeutics of AD.
Collapse
Affiliation(s)
- Priyanka Nagu
- Department of Pharmaceutics, Govt. College of Pharmacy, Rohru, Himachal Pradesh, India.,Department of Pharmacy, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu, Rajasthan, India
| | - Arun Parashar
- Faculty of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vineet Mehta
- Department of Pharmacology, Govt. College of Pharmacy, Rohru, Himachal Pradesh, India.
| |
Collapse
|
22
|
Bsat M, Mehta H, Rubio M, Sarfati M. The Conversion of Human Tissue-Like Inflammatory Monocytes Into Macrophages. Curr Protoc 2021; 1:e74. [PMID: 33705607 DOI: 10.1002/cpz1.74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Classical circulating LyC6high murine monocytes differentiate progressively from inflammatory tissue monocytes to mature macrophages (Mϕ) after entry into gut mucosa. This protocol provides a two-step in vitro culture method that replicates the human monocyte maturation cascade. First, purified circulating CD14+ CD16- monocytes exposed to granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon gamma (IFNγ), and interleukin 23 (IL-23) differentiate into tissue-like inflammatory monocytes. Next, addition of transforming growth factor beta (TGFβ) plus interleukin 10 (IL-10) promotes their maturation into tissue-like Mϕ. Methods to sort these cells after culture are also provided. The fine-tuning of this system might open therapeutic avenues for chronic inflammatory disorders. © 2021 Wiley Periodicals LLC Basic Protocol 1: Isolation of human monocytes from peripheral blood Basic Protocol 2: First step culture for generation of inflammatory monocyte-like cells Basic Protocol 3: Second step culture for differentiation of inflammatory monocyte-like cells into macrophages Alternate Protocol: Sorting and culturing of inflammatory monocyte-like cells.
Collapse
Affiliation(s)
- Marwa Bsat
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - Heena Mehta
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - Manuel Rubio
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - Marika Sarfati
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| |
Collapse
|
23
|
Caioni G, Viscido A, d’Angelo M, Panella G, Castelli V, Merola C, Frieri G, Latella G, Cimini A, Benedetti E. Inflammatory Bowel Disease: New Insights into the Interplay between Environmental Factors and PPARγ. Int J Mol Sci 2021; 22:985. [PMID: 33498177 PMCID: PMC7863964 DOI: 10.3390/ijms22030985] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
The pathophysiological processes of inflammatory bowel diseases (IBDs), i.e., Crohn's disease (CD) and ulcerative colitis (UC), are still not completely understood. The exact etiology remains unknown, but it is well established that the pathogenesis of the inflammatory lesions is due to a dysregulation of the gut immune system resulting in over-production of pro-inflammatory cytokines. Increasing evidence underlines the involvement of both environmental and genetic factors. Regarding the environment, the microbiota seems to play a crucial role. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that exert pleiotropic effects on glucose homeostasis, lipid metabolism, inflammatory/immune processes, cell proliferation, and fibrosis. Furthermore, PPARs modulate interactions with several environmental factors, including microbiota. A significantly impaired PPARγ expression was observed in UC patients' colonic epithelial cells, suggesting that the disruption of PPARγ signaling may represent a critical step of the IBD pathogenesis. This paper will focus on the role of PPARγ in the interaction between environmental factors and IBD, and it will analyze the most suitable in vitro and in vivo models available to better study these relationships.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Angelo Viscido
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Gloria Panella
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy;
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy;
| | - Giuseppe Frieri
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| |
Collapse
|
24
|
Rawling M, Leclercq E, Foey A, Castex M, Merrifield D. A novel dietary multi-strain yeast fraction modulates intestinal toll-like-receptor signalling and mucosal responses of rainbow trout (Oncorhynchus mykiss). PLoS One 2021; 16:e0245021. [PMID: 33434201 PMCID: PMC7802930 DOI: 10.1371/journal.pone.0245021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022] Open
Abstract
This study was conducted to evaluate the mucosal immune responses of rainbow trout when supplementing an experimental formulated feed with multi-strain yeast fraction product (Saccharomyces cerevisiae and Cyberlindnera jardinii). In total, 360 fish (initial BW 23.1 ± 0.2 g) were randomly allotted into three dietary treatments in an 8-week feeding trial. The dietary treatments included basal diet (control) and control + 1.5 g/kg multi-strain yeast fraction product (MsYF) fed continuously and pulsed every two weeks between control and MsYF diet. No negative effects on growth performance of feeding the MsYF supplemented diet were observed. SGR and FCR averaged 2.30 ± 0.03%/day and 1.03 ± 0.03, respectively, across experimental groups. Muscularis thickness in the anterior intestine after 8 weeks of feeding was significantly elevated by 44.3% in fish fed the MsYF continuously, and by 14.4% in fish fed the MsYF pulsed (P < 0.02). Significant elevations in goblet cell density in the anterior and posterior (>50% increase) intestine were observed after 8 weeks of feeding the MsYF supplemented diet (P< 0.03). In contrast, lamina propria width was significantly lower in fish fed the experimental diets (>10% reduction). The gene expression analysis of the intestine revealed significant elevations in expression of tlr2, il1r1, irak4, and tollip2 after 4 weeks of feeding the MsYF. Significant elevations in effector cytokines tnfα, il10 and tgfβ were observed after 4 weeks of feeding the MsYF regime. After 8 weeks significant elevations in the gene expression levels of il1β, ifnγ, and il12 were observed in fish fed the MsYF. Likewise, the expression of the transcription factor gata3 was significantly elevated (P<0.01). Supplementation of the multi-strain yeast fraction product positively modulates the intestinal mucosal response of rainbow trout through interaction with toll-like receptor two signalling pathway and potential for increased capacity of delivery of antigens to the underlying mucosal associated lymphoid tissue.
Collapse
Affiliation(s)
- Mark Rawling
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | | | - Andrew Foey
- School of Biomedical Sciences, University of Plymouth, Plymouth, United Kingdom
| | | | - Daniel Merrifield
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
25
|
Robust microbe immune recognition in the intestinal mucosa. Genes Immun 2021; 22:268-275. [PMID: 33958733 PMCID: PMC8497264 DOI: 10.1038/s41435-021-00131-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 02/01/2023]
Abstract
The mammalian mucosal immune system acts as a multitasking mediator between bodily function and a vast diversity of microbial colonists. Depending on host-microbial interaction type, mucosal immune responses have distinct functions. Immunity to pathogen infection functions to limit tissue damage, clear or contain primary infection, and prevent or lower the severity of a secondary infection by conferring specific long-term adaptive immunity. Responses to nonpathogenic commensal or mutualistic microbes instead function to tolerate continuous colonization. Mucosal innate immune and epithelial cells employ a limited repertoire of innate receptors to program the adaptive immune response accordingly. Pathogen versus nonpathogen immune discrimination appears to be very robust, as most individuals successfully maintain life-long mutualism with their nonpathogenic microbiota, while mounting immune defense to pathogenic microbe infection specifically. However, the process is imperfect, which can have immunopathological consequences, but may also be exploited medically. Normally innocuous intestinal commensals in some individuals may drive serious inflammatory autoimmunity, whereas harmless vaccines can be used to fool the immune system into mounting a protective anti-pathogen immune response. In this article, we review the current knowledge on mucosal intestinal bacterial immune recognition focusing on TH17 responses and identify commonalities between intestinal pathobiont and vaccine-induced TH17 responses.
Collapse
|
26
|
Zhao Q, Duck LW, Huang F, Alexander KL, Maynard CL, Mannon PJ, Elson CO. CD4 + T cell activation and concomitant mTOR metabolic inhibition can ablate microbiota-specific memory cells and prevent colitis. Sci Immunol 2020; 5:5/54/eabc6373. [PMID: 33310866 DOI: 10.1126/sciimmunol.abc6373] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/09/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Microbiota-reactive CD4+ T memory (TM) cells are generated during intestinal infections and inflammation, and can revert to pathogenic CD4+ T effector (TE) cells, resulting in chronicity of inflammatory bowel disease (IBD). Unlike TE cells, TM cells have a low rate of metabolism unless they are activated by reencountering cognate antigen. Here, we show that the combination of cell activation and metabolic checkpoint inhibition (CAMCI), by targeting key metabolic regulators mTORC and AMPK, resulted in cell death and anergy, but enhanced the induction of the regulatory subset. Parenteral application of this treatment with a synthetic peptide containing multiple flagellin T cell epitopes (MEP1) and metabolic inhibition successfully prevented the development of CD4+ T cell-driven colitis. Microbiota-specific CD4+ T cells, especially the pathogenic TE subsets, were decreased 10-fold in the intestinal lamina propria. Furthermore, using the CAMCI strategy, we were able to prevent antigen-specific TM cell formation upon initial antigen encounter, and ablate existing TM cells upon reactivation in mice, leading to an altered transcriptome in the remaining CD4+ T cells after ablation. Microbiota flagellin-specific CD4+ T cells from patients with Crohn's disease were ablated in a similar manner after CAMCI in vitro, with half of the antigen-specific T cells undergoing cell death. These results indicate that parenteral activation of microbiota-specific CD4+ T cells with concomitant metabolic inhibition is an effective way to ablate pathogenic CD4+ TM cells and to induce T regulatory (Treg) cells that provide antigen-specific and bystander suppression, supporting a potential immunotherapy to prevent or ameliorate IBD.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lennard W Duck
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fengyuan Huang
- Department of Genetics, Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katie L Alexander
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Craig L Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Peter J Mannon
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Charles O Elson
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
27
|
MicroRNA-216a Promotes Endothelial Inflammation by Smad7/I κB α Pathway in Atherosclerosis. DISEASE MARKERS 2020; 2020:8864322. [PMID: 33282009 PMCID: PMC7688351 DOI: 10.1155/2020/8864322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 01/23/2023]
Abstract
Background The endothelium is the first line of defence against harmful microenvironment risks, and microRNAs (miRNAs) involved in vascular inflammation may be promising therapeutic targets to modulate atherosclerosis progression. In this study, we aimed to investigate the mechanism by which microRNA-216a (miR-216a) modulated inflammation activation of endothelial cells. Methods. A replicative senescence model of human umbilical vein endothelial cells (HUVECs) was established, and population-doubling levels (PDLs) were defined during passages. PDL8 HUVECs were transfected with miR-216a mimics/inhibitor or small interfering RNA (siRNA) of SMAD family member 7 (Smad7). Real-time PCR and Western blot assays were performed to detect the regulatory role of miR-216a on Smad7 and NF-κB inhibitor alpha (IκBα) expression. The effect of miR-216a on adhesive capability of HUVECs to THP-1 cells was examined. MiR-216a and Smad7 expression in vivo were measured using human carotid atherosclerotic plaques of the patients who underwent carotid endarterectomy (n = 41). Results Luciferase assays showed that Smad7 was a direct target of miR-216a. Smad7 mRNA expression, negatively correlated with miR-216a during endothelial aging, was downregulated in senescent PDL44 cells, compared with young PDL8 HUVECs. MiR-216a markedly increased endothelial inflammation and adhesive capability to monocytes in PDL8 cells by promoting the phosphorylation and degradation of IκBα and then activating NF-κB signalling pathway. The effect of miR-216a on endothelial cells was consistent with that blocked Smad7 by siRNAs. When inhibiting endogenous miR-216a, the Smad7/IκBα expression was rescued, which led to decreased endothelial inflammation and monocytes recruitment. In human carotid atherosclerotic plaques, Smad7 level was remarkably decreased in high miR-216a group compared with low miR-216a group. Moreover, miR-216a was negatively correlated with Smad7 and IκBα levels and positively correlated with interleukin 1 beta (IL1β) expression in vivo. Conclusion In summary, our findings suggest a new mechanism of vascular endothelial inflammation involving Smad7/IκBα signalling pathway in atherosclerosis.
Collapse
|
28
|
Viola MF, Boeckxstaens G. Intestinal resident macrophages: Multitaskers of the gut. Neurogastroenterol Motil 2020; 32:e13843. [PMID: 32222060 PMCID: PMC7757264 DOI: 10.1111/nmo.13843] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Intestinal resident macrophages play a crucial role in homeostasis and have been implicated in numerous gastrointestinal diseases. While historically believed to be largely of hematopoietic origin, recent advances in fate-mapping technology have unveiled the existence of long-lived, self-maintaining populations located in specific niches throughout the gut wall. Furthermore, the advent of single-cell technology has enabled an unprecedented characterization of the functional specialization of tissue-resident macrophages throughout the gastrointestinal tract. PURPOSE The purpose of this review was to provide a panorama on intestinal resident macrophages, with particular focus to the recent advances in the field. Here, we discuss the functions and phenotype of intestinal resident macrophages and, where possible, the functional specialization of these cells in response to the niche they occupy. Furthermore, we will discuss their role in gastrointestinal diseases.
Collapse
Affiliation(s)
- Maria Francesca Viola
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA)Laboratory for Neuro Immune InteractionTranslational Research in GastroIntestinal Disorders (TARGID)KU LeuvenLeuvenBelgium
| | - Guy Boeckxstaens
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA)Laboratory for Neuro Immune InteractionTranslational Research in GastroIntestinal Disorders (TARGID)KU LeuvenLeuvenBelgium
| |
Collapse
|
29
|
Bsat M, Chapuy L, Rubio M, Sarfati M. A two-step human culture system replicates intestinal monocyte maturation cascade: Conversion of tissue-like inflammatory monocytes into macrophages. Eur J Immunol 2020; 50:1676-1690. [PMID: 32557554 DOI: 10.1002/eji.202048555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/05/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
Monocyte maturation program into macrophages (MΦ) is well defined in murine gut under homeostatic or inflammatory conditions. Obviously, in vivo tracking of monocytes in inflamed tissues remains difficult in humans. Furthermore, in vitro models fall short in generating the surrogates of transient extravasated tissue inflammatory monocytes. Here, we aimed to unravel environmental cues that replicated the human monocyte "waterfall" process in vitro by first, generating tissue-like inflammatory monocytes, which were then shifted toward MΦ. Purified CD14+ CD16- monocytes, cultured with granulocyte-macrophage colony-stimulating factor (GM-CSF), IFN-γ and IL23, differentiated into CD14+ CD163- cells that displayed a monocyte-like morphology. In vitro generated inflammatory CD14+ CD163- (inflammatory monocyte-like cells) cells promoted IL-1β-dependent memory Th17 and Th17/Th1 responses, like the CD14+ CD163- mo-like cells that accumulate in inflamed colon of Crohn's disease patients. Next, in vitro generated inflammatory monocyte-like cells converted to functional CD163+ MΦ following exposure to TGF-β and IL10. Gene set enrichment analysis further revealed a shared molecular signature between converted CD163+ MΦ and MΦ detected in various inflamed nonlymphoid and lymphoid diseased tissues. Our findings propose a two-step in vitro culture that recapitulates human monocyte maturation cascade in inflamed tissue. Manipulation of this process might open therapeutic avenues for chronic inflammatory disorders.
Collapse
Affiliation(s)
- Marwa Bsat
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Laurence Chapuy
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Manuel Rubio
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Marika Sarfati
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| |
Collapse
|
30
|
Caër C, Wick MJ. Human Intestinal Mononuclear Phagocytes in Health and Inflammatory Bowel Disease. Front Immunol 2020; 11:410. [PMID: 32256490 PMCID: PMC7093381 DOI: 10.3389/fimmu.2020.00410] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a complex immune-mediated disease of the gastrointestinal tract that increases morbidity and negatively influences the quality of life. Intestinal mononuclear phagocytes (MNPs) have a crucial role in maintaining epithelial barrier integrity while controlling pathogen invasion by activating an appropriate immune response. However, in genetically predisposed individuals, uncontrolled immune activation to intestinal flora is thought to underlie the chronic mucosal inflammation that can ultimately result in IBD. Thus, MNPs are involved in fine-tuning mucosal immune system responsiveness and have a critical role in maintaining homeostasis or, potentially, the emergence of IBD. MNPs include monocytes, macrophages and dendritic cells, which are functionally diverse but highly complementary. Despite their crucial role in maintaining intestinal homeostasis, specific functions of human MNP subsets are poorly understood, especially during diseases such as IBD. Here we review the current understanding of MNP ontogeny, as well as the recently identified human intestinal MNP subsets, and discuss their role in health and IBD.
Collapse
Affiliation(s)
- Charles Caër
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mary Jo Wick
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
31
|
Gross-Vered M, Shmuel-Galia L, Zarmi B, Humphries F, Thaiss C, Salame TM, David E, Chappell-Maor L, Fitzgerald KA, Shai Y, Jung S. TLR2 Dimerization Blockade Allows Generation of Homeostatic Intestinal Macrophages under Acute Colitis Challenge. THE JOURNAL OF IMMUNOLOGY 2020; 204:707-717. [PMID: 31882517 DOI: 10.4049/jimmunol.1900470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/16/2019] [Indexed: 11/19/2022]
Abstract
Recruited blood monocytes contribute to the establishment, perpetuation, and resolution of tissue inflammation. Specifically, in the inflamed intestine, monocyte ablation was shown to ameliorate colitis scores in preclinical animal models. However, the majority of intestinal macrophages that seed the healthy gut are also monocyte derived. Monocyte ablation aimed to curb inflammation would therefore likely interfere with intestinal homeostasis. In this study, we used a TLR2 trans-membrane peptide that blocks TLR2 dimerization that is critical for TLR2/1 and TLR2/6 heterodimer signaling to blunt inflammation in a murine colitis model. We show that although the TLR2 peptide treatment ameliorated colitis, it allowed recruited monocytes to give rise to macrophages that lack the detrimental proinflammatory gene signature and reduced potentially damaging neutrophil infiltrates. Finally, we demonstrate TLR blocking activity of the peptide on in vitro cultured human monocyte-derived macrophages. Collectively, we provide a significantly improved anti-inflammatory TLR2 peptide and critical insights in its mechanism of action toward future potential use in the clinic.
Collapse
Affiliation(s)
- Mor Gross-Vered
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liraz Shmuel-Galia
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Batya Zarmi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Fiachra Humphries
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Christoph Thaiss
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tomer-Meir Salame
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Katherine A Fitzgerald
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Yechiel Shai
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
32
|
Effect of chemical modulation of toll-like receptor 4 in an animal model of ulcerative colitis. Eur J Clin Pharmacol 2020; 76:409-418. [PMID: 31982922 DOI: 10.1007/s00228-019-02799-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE The partial ineffectiveness and side effects of inflammatory bowel disease (IBD) current therapies drive basic research to look for new therapeutic target in order to develop new drug lead. Considering the pivotal role played by toll-like receptors (TLRs) in gut inflammation, we evaluate here the therapeutic effect of the synthetic glycolipid TLR4 antagonist FP7. METHODS The anti-inflammatory effect of FP7, active as TLR4 antagonist, was evaluated on peripheral blood mononuclear cells (PBMCs) and lamina propria mononuclear cells (LPMCs) isolated from IBD patients, and in a mouse model of ulcerative colitis. RESULTS FP7 strongly reduced the inflammatory responses induced by lipopolysaccharide (LPS) in vitro, due to its capacity to compete with LPS for the binding of TLR4/MD-2 receptor complex thus inhibiting both the MyD88- and TRIF-dependent inflammatory pathways. Colitic mice treated with FP7 exhibit reduced colonic inflammation and decreased levels of pro-inflammatory cytokines. CONCLUSIONS This study suggests that TLR4 chemical modulation can be an effective therapeutic approach to IBD. The selectivity of FP7 on TLR4 makes this molecule a promising drug lead for new small molecules-based treatments.
Collapse
|
33
|
Salameh M, Burney Z, Mhaimeed N, Laswi I, Yousri NA, Bendriss G, Zakaria D. The role of gut microbiota in atopic asthma and allergy, implications in the understanding of disease pathogenesis. Scand J Immunol 2020; 91:e12855. [PMID: 31793015 DOI: 10.1111/sji.12855] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/10/2019] [Accepted: 11/24/2019] [Indexed: 12/20/2022]
Abstract
Asthma is a clinical syndrome characterized by chronic airway inflammation. There is mounting evidence on the role of microbiota in the development of asthma. This review focuses on the role of microbiota in maintaining the integrity of the epithelia and their role in regulating the immune response. The review compiles data from multiple studies on the role of microbiota in the innate immune response and the development and differentiation of CD4+ T cells, a major component of the adaptive arm of the immune response. As a result of dysbiosis, invariant natural killer T cells may induce T helper 2 cell differentiation and immunoglobulin E isotype switching through the release of interleukin-4 and interleukin-13. Furthermore, degradation of immunoglobulin A antibodies, increased circulating mast cells and basophils, and inflammation are among other mechanisms by which dysbiosis can induce or exacerbate asthma. After explaining the underlying mechanisms, the review derives conclusions from studies that investigate dysbiosis in infancy and the development of asthma later in life. The review also includes studies that investigate asthmatic mothers and the development of asthma in children and the role of dysbiosis in that regard. Finally, the review explains the statistical relationship between eczema and asthma through multiple studies that investigate the role of dysbiosis in both atopic states. This review provides insight into the role of dysbiosis in asthma, and an understanding that is required to establish clinical trials which aim to modulate the gut microbiota as a means of preventing and treating asthma.
Collapse
Affiliation(s)
- Mohammad Salameh
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Zain Burney
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Nada Mhaimeed
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Ibrahim Laswi
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Noha A Yousri
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Ghizlane Bendriss
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Dalia Zakaria
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Doha, Qatar
| |
Collapse
|
34
|
Kloc M, Uosef A, Elshawwaf M, Abdelshafy AAA, Elsaid KMK, Kubiak JZ, Ghobrial RM. The Macrophages and Intestinal Symbiosis. Results Probl Cell Differ 2020; 69:605-616. [PMID: 33263889 DOI: 10.1007/978-3-030-51849-3_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The human intestinal tract is inhabited by trillions of microorganisms and houses the largest pool of macrophages in the human body. Being a part of the innate immune system, the macrophages, the professional phagocytes, vigorously respond to the microbial and dietary antigens present in the intestine. Because such a robust immune response poses the danger to the survival of the non-harmful and beneficial gut microbiota, the macrophages developed mechanisms of recognition and hyposensitivity toward the non-harmful/beneficial inhabitants of the gut. We will discuss the evolution and identity of some of these mechanisms in the following chapter.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA. .,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA. .,Department of Genetics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA.
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Mahmoud Elshawwaf
- The Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Ahmed Adel Abbas Abdelshafy
- The Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.,Department of General Surgery, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Kamal Mamdoh Kamal Elsaid
- The Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.,Department of General Surgery, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Jacek Z Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warszawa, Poland.,Faculty of Medicine, Cell Cycle Group, Institute of Genetics and Development of Rennes, (IGDR) UnivRennes, CNRS, UMR 6290, Rennes, France
| | - Rafik Mark Ghobrial
- The Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
35
|
Schmidt F, Dahlke K, Batra A, Keye J, Wu H, Friedrich M, Glauben R, Ring C, Loh G, Schaubeck M, Hackl H, Trajanoski Z, Schumann M, Kühl AA, Blaut M, Siegmund B. Microbial Colonization in Adulthood Shapes the Intestinal Macrophage Compartment. J Crohns Colitis 2019; 13:1173-1185. [PMID: 30938416 DOI: 10.1093/ecco-jcc/jjz036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Contact with distinct microbiota early in life has been shown to educate the mucosal immune system, hence providing protection against immune-mediated diseases. However, the impact of early versus late colonization with regard to the development of the intestinal macrophage compartment has not been studied so far. METHODS Germ-free mice were colonized with specific-pathogen-free [SPF] microbiota at the age of 5 weeks. The ileal and colonic macrophage compartment were analysed by immunohistochemistry, flow cytometry, and RNA sequencing 1 and 5 weeks after colonization and in age-matched SPF mice, which had had contact with microbiota since birth. To evaluate the functional differences, dextran sulfate sodium [DSS]-induced colitis was induced, and barrier function analyses were undertaken. RESULTS Germ-free mice were characterized by an atrophied intestinal wall and a profoundly reduced number of ileal macrophages. Strikingly, morphological restoration of the intestine occurred within the first week after colonization. In contrast, ileal macrophages required 5 weeks for complete restoration, whereas colonic macrophages were numerically unaffected. However, following DSS exposure, the presence of microbiota was a prerequisite for colonic macrophage infiltration. One week after colonization, mild colonic inflammation was observed, paralleled by a reduced inflammatory response after DSS treatment, in comparison with SPF mice. This attenuated inflammation was paralleled by a lack of TNFα production of LPS-stimulated colonic macrophages from SPF and colonized mice, suggesting desensitization of colonized mice by the colonization itself. CONCLUSIONS This study provides the first data indicating that after colonization of adult mice, the numeric, phenotypic, and functional restoration of the macrophage compartment requires the presence of intestinal microbiota and is time dependent.
Collapse
Affiliation(s)
- Franziska Schmidt
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Katja Dahlke
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Arvind Batra
- Neuroimmunology, Max-Planck-Institute of Neurobiology, Planegg-Martinsried, Germany
| | - Jacqueline Keye
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Hao Wu
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Marie Friedrich
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Rainer Glauben
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christiane Ring
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Gunnar Loh
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Monika Schaubeck
- Neuroimmunology, Max-Planck-Institute of Neurobiology, Planegg-Martinsried, Germany
| | - Hubert Hackl
- Biocenter, Division of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Biocenter, Division of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Schumann
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anja A Kühl
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Britta Siegmund
- Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
36
|
Papoutsopoulou S, Burkitt MD, Bergey F, England H, Hough R, Schmidt L, Spiller DG, White MHR, Paszek P, Jackson DA, Martins Dos Santos VAP, Sellge G, Pritchard DM, Campbell BJ, Müller W, Probert CS. Macrophage-Specific NF-κB Activation Dynamics Can Segregate Inflammatory Bowel Disease Patients. Front Immunol 2019; 10:2168. [PMID: 31572379 PMCID: PMC6749845 DOI: 10.3389/fimmu.2019.02168] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/28/2019] [Indexed: 01/14/2023] Open
Abstract
The heterogeneous nature of inflammatory bowel disease (IBD) presents challenges, particularly when choosing therapy. Activation of the NF-κB transcription factor is a highly regulated, dynamic event in IBD pathogenesis. Using a lentivirus approach, NF-κB-regulated luciferase was expressed in patient macrophages, isolated from frozen peripheral blood mononuclear cell samples. Following activation, samples could be segregated into three clusters based on the NF-κB-regulated luciferase response. The ulcerative colitis (UC) samples appeared only in the hypo-responsive Cluster 1, and in Cluster 2. Conversely, Crohn's disease (CD) patients appeared in all Clusters with their percentage being higher in the hyper-responsive Cluster 3. A positive correlation was seen between NF-κB-induced luciferase activity and the concentrations of cytokines released into medium from stimulated macrophages, but not with serum or biopsy cytokine levels. Confocal imaging of lentivirally-expressed p65 activation revealed that a higher proportion of macrophages from CD patients responded to endotoxin lipid A compared to controls. In contrast, cells from UC patients exhibited a shorter duration of NF-κB p65 subunit nuclear localization compared to healthy controls, and CD donors. Analysis of macrophage cytokine responses and patient metadata revealed a strong correlation between CD patients who smoked and hyper-activation of p65. These in vitro dynamic assays of NF-κB activation in blood-derived macrophages have the potential to segregate IBD patients into groups with different phenotypes and may therefore help determine response to therapy.
Collapse
Affiliation(s)
- Stamatia Papoutsopoulou
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Michael D Burkitt
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | | | - Hazel England
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Rachael Hough
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lorraine Schmidt
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - David G Spiller
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Michael H R White
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Pawel Paszek
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Dean A Jackson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Vitor A P Martins Dos Santos
- LifeGlimmer GmbH, Berlin, Germany.,Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands
| | | | - D Mark Pritchard
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Barry J Campbell
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Werner Müller
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Chris S Probert
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
37
|
Martin JC, Chang C, Boschetti G, Ungaro R, Giri M, Grout JA, Gettler K, Chuang LS, Nayar S, Greenstein AJ, Dubinsky M, Walker L, Leader A, Fine JS, Whitehurst CE, Mbow ML, Kugathasan S, Denson LA, Hyams JS, Friedman JR, Desai PT, Ko HM, Laface I, Akturk G, Schadt EE, Salmon H, Gnjatic S, Rahman AH, Merad M, Cho JH, Kenigsberg E. Single-Cell Analysis of Crohn's Disease Lesions Identifies a Pathogenic Cellular Module Associated with Resistance to Anti-TNF Therapy. Cell 2019; 178:1493-1508.e20. [PMID: 31474370 PMCID: PMC7060942 DOI: 10.1016/j.cell.2019.08.008] [Citation(s) in RCA: 545] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/06/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
Clinical benefits of cytokine blockade in ileal Crohn's disease (iCD) are limited to a subset of patients. Here, we applied single-cell technologies to iCD lesions to address whether cellular heterogeneity contributes to treatment resistance. We found that a subset of patients expressed a unique cellular module in inflamed tissues that consisted of IgG plasma cells, inflammatory mononuclear phagocytes, activated T cells, and stromal cells, which we named the GIMATS module. Analysis of ligand-receptor interaction pairs identified a distinct network connectivity that likely drives the GIMATS module. Strikingly, the GIMATS module was also present in a subset of patients in four independent iCD cohorts (n = 441), and its presence at diagnosis correlated with failure to achieve durable corticosteroid-free remission upon anti-TNF therapy. These results emphasize the limitations of current diagnostic assays and the potential for single-cell mapping tools to identify novel biomarkers of treatment response and tailored therapeutic opportunities.
Collapse
Affiliation(s)
- Jerome C Martin
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christie Chang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gilles Boschetti
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ryan Ungaro
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Mamta Giri
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John A Grout
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kyle Gettler
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ling-Shiang Chuang
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shikha Nayar
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander J Greenstein
- Department of Colorectal Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marla Dubinsky
- Department of Pediatrics, Susan and Leonard Feinstein IBD Clinical Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura Walker
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew Leader
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jay S Fine
- Boehringer Ingelheim Pharmaceuticals, Immunology and Respiratory Diseases Research, Ridgefield, CT 06877, USA
| | - Charles E Whitehurst
- Boehringer Ingelheim Pharmaceuticals, Immunology and Respiratory Diseases Research, Ridgefield, CT 06877, USA
| | - M Lamine Mbow
- Boehringer Ingelheim Pharmaceuticals, Immunology and Respiratory Diseases Research, Ridgefield, CT 06877, USA
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lee A Denson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey S Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children's Medical Center, Hartford, CT, USA
| | | | | | - Huaibin M Ko
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ilaria Laface
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Guray Akturk
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric E Schadt
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Helene Salmon
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Hematology Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adeeb H Rahman
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Judy H Cho
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ephraim Kenigsberg
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
38
|
Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol 2019; 16:531-543. [PMID: 31312042 DOI: 10.1038/s41575-019-0172-4] [Citation(s) in RCA: 561] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
Macrophages are the gatekeepers of intestinal immune homeostasis as they discriminate between innocuous antigens and potential pathogens to maintain oral tolerance. However, in individuals with a genetic and environmental predisposition, regulation of intestinal immunity is impaired, leading to chronic relapsing immune activation and pathologies of the gastrointestinal tract, such as IBD. As evidence suggests a causal link between defects in the resolution of intestinal inflammation and altered monocyte-macrophage differentiation in patients with IBD, macrophages have been considered as a novel potential target to develop new treatment approaches. This Review discusses the molecular and cellular mechanisms involved in the differentiation and function of intestinal macrophages in homeostasis and inflammation, and their role in resolving the inflammatory process. Understanding the molecular pathways involved in the specification of intestinal macrophages might lead to a new class of targets that promote remission in patients with IBD.
Collapse
Affiliation(s)
- Yi Rang Na
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University Medical College, Seoul, South Korea
| | - Michelle Stakenborg
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University Medical College, Seoul, South Korea.
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.
| |
Collapse
|
39
|
Fink MY, Maloney J, Keselman A, Li E, Menegas S, Staniorski C, Singer SM. Proliferation of Resident Macrophages Is Dispensable for Protection during Giardia duodenalis Infections. Immunohorizons 2019; 3:412-421. [PMID: 31455692 PMCID: PMC7033283 DOI: 10.4049/immunohorizons.1900041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/06/2019] [Indexed: 12/28/2022] Open
Abstract
Infection with the intestinal parasite Giardia duodenalis is one of the most common causes of diarrheal disease in the world. Previous work has demonstrated that the cells and mechanisms of the adaptive immune system are critical for clearance of this parasite. However, the innate system has not been as well studied in the context of Giardia infection. We have previously demonstrated that Giardia infection leads to the accumulation of a population of CD11b+, F4/80+, ARG1+, and NOS2+ macrophages in the small intestinal lamina propria. In this report, we sought to identify the accumulation mechanism of duodenal macrophages during Giardia infection and to determine if these cells were essential to the induction of protective Giardia immunity. We show that F4/80+, CD11b+, CD11cint, CX3CR1+, MHC class II+, Ly6C−, ARG1+, and NOS2+ macrophages accumulate in the small intestine during infections in mice. Consistent with this resident macrophage phenotype, macrophage accumulation does not require CCR2, and the macrophages incorporate EdU, indicating in situ proliferation rather than the recruitment of monocytes. Depletion of macrophages using anti-CSF1R did not impact parasite clearance nor development of regulatory T cell or Th17 cellular responses, suggesting that these macrophages are dispensable for protective Giardia immunity.
Collapse
Affiliation(s)
- Marc Y Fink
- Department of Biology, Georgetown University, Washington, DC 20057
| | - Jenny Maloney
- Department of Biology, Georgetown University, Washington, DC 20057
| | | | - Erqiu Li
- Department of Biology, Georgetown University, Washington, DC 20057
| | - Samantha Menegas
- Department of Biology, Georgetown University, Washington, DC 20057
| | | | - Steven M Singer
- Department of Biology, Georgetown University, Washington, DC 20057
| |
Collapse
|
40
|
Smith DG, Martinelli R, Besra GS, Illarionov PA, Szatmari I, Brazda P, Allen MA, Xu W, Wang X, Nagy L, Dowell RD, Rook GAW, Rosa Brunet L, Lowry CA. Identification and characterization of a novel anti-inflammatory lipid isolated from Mycobacterium vaccae, a soil-derived bacterium with immunoregulatory and stress resilience properties. Psychopharmacology (Berl) 2019; 236:1653-1670. [PMID: 31119329 PMCID: PMC6626661 DOI: 10.1007/s00213-019-05253-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/22/2019] [Indexed: 12/14/2022]
Abstract
RATIONALE Mycobacterium vaccae (NCTC 11659) is an environmental saprophytic bacterium with anti-inflammatory, immunoregulatory, and stress resilience properties. Previous studies have shown that whole, heat-killed preparations of M. vaccae prevent allergic airway inflammation in a murine model of allergic asthma. Recent studies also demonstrate that immunization with M. vaccae prevents stress-induced exaggeration of proinflammatory cytokine secretion from mesenteric lymph node cells stimulated ex vivo, prevents stress-induced exaggeration of chemically induced colitis in a model of inflammatory bowel disease, and prevents stress-induced anxiety-like defensive behavioral responses. Furthermore, immunization with M. vaccae induces anti-inflammatory responses in the brain and prevents stress-induced exaggeration of microglial priming. However, the molecular mechanisms underlying anti-inflammatory effects of M. vaccae are not known. OBJECTIVES Our objective was to identify and characterize novel anti-inflammatory molecules from M. vaccae NCTC 11659. METHODS We have purified and identified a unique anti-inflammatory triglyceride, 1,2,3-tri [Z-10-hexadecenoyl] glycerol, from M. vaccae and evaluated its effects in freshly isolated murine peritoneal macrophages. RESULTS The free fatty acid form of 1,2,3-tri [Z-10-hexadecenoyl] glycerol, 10(Z)-hexadecenoic acid, decreased lipopolysaccharide-stimulated secretion of the proinflammatory cytokine IL-6 ex vivo. Meanwhile, next-generation RNA sequencing revealed that pretreatment with 10(Z)-hexadecenoic acid upregulated genes associated with peroxisome proliferator-activated receptor alpha (PPARα) signaling in lipopolysaccharide-stimulated macrophages, in association with a broad transcriptional repression of inflammatory markers. We confirmed using luciferase-based transfection assays that 10(Z)-hexadecenoic acid activated PPARα signaling, but not PPARγ, PPARδ, or retinoic acid receptor (RAR) α signaling. The effects of 10(Z)-hexadecenoic acid on lipopolysaccharide-stimulated secretion of IL-6 were prevented by PPARα antagonists and absent in PPARα-deficient mice. CONCLUSION Future studies should evaluate the effects of 10(Z)-hexadecenoic acid on stress-induced exaggeration of peripheral inflammatory signaling, central neuroinflammatory signaling, and anxiety- and fear-related defensive behavioral responses.
Collapse
Affiliation(s)
- David G Smith
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA.
- Department of Pathology, Anatomy, and Cellular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Roberta Martinelli
- Centre for Clinical Microbiology, Department of Infection, UCL (University College London), London, WC1E 6BT, UK
- Merck Research Laboratories, MSD, Kenilworth, NJ, USA
| | - Gurdyal S Besra
- School of Bioscience, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Petr A Illarionov
- School of Bioscience, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Istvan Szatmari
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér, 1, Debrecen, 4032, Hungary
| | - Peter Brazda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér, 1, Debrecen, 4032, Hungary
| | - Mary A Allen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Wenqing Xu
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Xiang Wang
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - László Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér, 1, Debrecen, 4032, Hungary
- MTA-DE "Lendület" Immunogenomics Research Group, University of Debrecen, Egyetem tér, 1, Debrecen, 4012, Hungary
- Department of Medicine, Johns Hopkins University, Johns Hopkins All Children's Hospital, Saint Petersburg, FL, 33701, USA
| | - Robin D Dowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Graham A W Rook
- Centre for Clinical Microbiology, Department of Infection, UCL (University College London), London, WC1E 6BT, UK
| | - Laura Rosa Brunet
- Centre for Clinical Microbiology, Department of Infection, UCL (University College London), London, WC1E 6BT, UK
| | - Christopher A Lowry
- Department of Integrative Physiology, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, 80309, USA.
- inVIVO Planetary Health, of the Worldwide Universities Network (WUN), West New York, NJ, 07093, USA.
| |
Collapse
|
41
|
Deutschmann C, Roggenbuck D, Schierack P. The loss of tolerance to CHI3L1 – A putative role in inflammatory bowel disease? Clin Immunol 2019; 199:12-17. [DOI: 10.1016/j.clim.2018.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Benner M, Ferwerda G, Joosten I, van der Molen RG. How uterine microbiota might be responsible for a receptive, fertile endometrium. Hum Reprod Update 2019; 24:393-415. [PMID: 29668899 DOI: 10.1093/humupd/dmy012] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/27/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fertility depends on a receptive state of the endometrium, influenced by hormonal and anatomical adaptations, as well as the immune system. Local and systemic immunity is greatly influenced by microbiota. Recent discoveries of 16S rRNA in the endometrium and the ability to detect low-biomass microbiota fueled the notion that the uterus may be indeed a non-sterile compartment. To date, the concept of the 'sterile womb' focuses on in utero effects of microbiota on offspring and neonatal immunity. However, little awareness has been raised regarding the importance of uterine microbiota for endometrial physiology in reproductive health; manifested in fertility and placentation. OBJECTIVE AND RATIONALE Commensal colonization of the uterus has been widely discussed in the literature. The objective of this review is to outline the possible importance of this uterine colonization for a healthy, fertile uterus. We present the available evidence regarding uterine microbiota, focusing on recent findings based on 16S rRNA, and depict the possible importance of uterine colonization for a receptive endometrium. We highlight a possible role of uterine microbiota for host immunity and tissue adaptation, as well as conferring protection against pathogens. Based on knowledge of the interaction of the mucosal immune cells of the gut with the local microbiome, we want to investigate the potential implications of commensal colonization for uterine health. SEARCH METHODS PubMed and Google Scholar were searched for articles in English indexed from 1 January 2008 to 1 March 2018 for '16S rRNA', 'uterus' and related search terms to assess available evidence on uterine microbiome analysis. A manual search of the references within the resulting articles was performed. To investigate possible functional contributions of uterine microbiota to health, studies on microbiota of other body sites were additionally assessed. OUTCOMES Challenging the view of a sterile uterus is in its infancy and, to date, no conclusions on a 'core uterine microbiome' can be drawn. Nevertheless, evidence for certain microbiota and/or associated compounds in the uterus accumulates. The presence of microbiota or their constituent molecules, such as polysaccharide A of the Bacteroides fragilis capsule, go together with healthy physiological function. Lessons learned from the gut microbiome suggest that the microbiota of the uterus may potentially modulate immune cell subsets needed for implantation and have implications for tissue morphology. Microbiota can also be crucial in protection against uterine infections by defending their niche and competing with pathogens. Our review highlights the need for well-designed studies on a 'baseline' microbial state of the uterus representing the optimal starting point for implantation and subsequent placenta formation. WIDER IMPLICATIONS The complex interplay of processes and cells involved in healthy pregnancy is still poorly understood. The correct receptive endometrial state, including the local immune environment, is crucial not only for fertility but also placenta formation since initiation of placentation highly depends on interaction with immune cells. Implantation failure, recurrent pregnancy loss, and other pathologies of endometrium and placenta, such as pre-eclampsia, represent an increasing societal burden. More robust studies are needed to investigate uterine colonization. Based on current data, future research needs to include the uterine microbiome as a relevant factor in order to understand the players needed for healthy pregnancy.
Collapse
Affiliation(s)
- Marilen Benner
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, Internal mail 469, 6500 HB Nijmegen, The Netherlands
| | - Gerben Ferwerda
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, Internal mail 469, 6500 HB Nijmegen, The Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, Internal mail 469, 6500 HB Nijmegen, The Netherlands
| | - Renate G van der Molen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Geert Grooteplein 10, PO Box 9101, Internal mail 469, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
43
|
Bain CC, Schridde A. Origin, Differentiation, and Function of Intestinal Macrophages. Front Immunol 2018; 9:2733. [PMID: 30538701 PMCID: PMC6277706 DOI: 10.3389/fimmu.2018.02733] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
Macrophages are increasingly recognized as essential players in the maintenance of intestinal homeostasis and as key sentinels of the intestinal immune system. However, somewhat paradoxically, they are also implicated in chronic pathologies of the gastrointestinal tract, such as inflammatory bowel disease (IBD) and are therefore considered potential targets for novel therapies. In this review, we will discuss recent advances in our understanding of intestinal macrophage heterogeneity, their ontogeny and the potential factors that regulate their origin. We will describe how the local environment of the intestine imprints the phenotypic and functional identity of the macrophage compartment, and how this changes during intestinal inflammation and infection. Finally, we highlight key outstanding questions that should be the focus of future research.
Collapse
Affiliation(s)
- Calum C Bain
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Anika Schridde
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
44
|
Robertson CL, Mendoza RG, Jariwala N, Dozmorov M, Mukhopadhyay ND, Subler MA, Windle JJ, Lai Z, Fisher PB, Ghosh S, Sarkar D. Astrocyte Elevated Gene-1 Regulates Macrophage Activation in Hepatocellular Carcinogenesis. Cancer Res 2018; 78:6436-6446. [PMID: 30181179 PMCID: PMC6239947 DOI: 10.1158/0008-5472.can-18-0659] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/25/2018] [Accepted: 08/28/2018] [Indexed: 01/22/2023]
Abstract
Chronic inflammation is a known hallmark of cancer and is central to the onset and progression of hepatocellular carcinoma (HCC). Hepatic macrophages play a critical role in the inflammatory process leading to HCC. The oncogene Astrocyte elevated gene-1 (AEG-1) regulates NFκB activation, and germline knockout of AEG-1 in mice (AEG-1-/-) results in resistance to inflammation and experimental HCC. In this study, we developed conditional hepatocyte- and myeloid cell-specific AEG-1-/- mice (AEG-1ΔHEP and AEG-1ΔMAC, respectively) and induced HCC by treatment with N-nitrosodiethylamine (DEN) and phenobarbital (PB). AEG-1ΔHEP mice exhibited a significant reduction in disease severity compared with control littermates, while AEG-1ΔMAC mice were profoundly resistant. In vitro, AEG-1-/- hepatocytes exhibited increased sensitivity to stress and senescence. Notably, AEG-1-/- macrophages were resistant to either M1 or M2 differentiation with significant inhibition in migration, endothelial adhesion, and efferocytosis activity, indicating that AEG-1 ablation renders macrophages functionally anergic. These results unravel a central role of AEG-1 in regulating macrophage activation and indicate that AEG-1 is required in both tumor cells and tumor microenvironment to stimulate hepatocarcinogenesis.Significance: These findings distinguish a novel role of macrophage-derived oncogene AEG-1 from hepatocellular AEG-1 in promoting inflammation and driving tumorigenesis. Cancer Res; 78(22); 6436-46. ©2018 AACR.
Collapse
Affiliation(s)
- Chadia L Robertson
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Rachel G Mendoza
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Nidhi Jariwala
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Nitai D Mukhopadhyay
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
- VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
- VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
45
|
Cytomegalovirus promotes intestinal macrophage-mediated mucosal inflammation through induction of Smad7. Mucosal Immunol 2018; 11:1694-1704. [PMID: 30076393 PMCID: PMC7405939 DOI: 10.1038/s41385-018-0041-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/16/2018] [Accepted: 04/22/2018] [Indexed: 02/07/2023]
Abstract
Intestinal macrophages in healthy human mucosa are profoundly down-regulated for inflammatory responses (inflammation anergy) due to stromal TGF-β inactivation of NF-κB. Paradoxically, in cytomegalovirus (CMV) intestinal inflammatory disease, one of the most common manifestations of opportunistic CMV infection, intestinal macrophages mediate severe mucosal inflammation. Here we investigated the mechanism whereby CMV infection promotes macrophage-mediated mucosal inflammation. CMV infected primary intestinal macrophages but did not replicate in the cells or reverse established inflammation anergy. However, CMV infection of precursor blood monocytes, the source of human intestinal macrophages in adults, prevented stromal TGF-β-induced differentiation of monocytes into inflammation anergic macrophages. Mechanistically, CMV up-regulated monocyte expression of the TGF-β antagonist Smad7, blocking the ability of stromal TGF-β to inactivate NF-κB, thereby enabling MyD88 and NF-κB-dependent cytokine production. Smad7 expression also was markedly elevated in mucosal tissue from subjects with CMV colitis and declined after antiviral ganciclovir therapy. Confirming these findings, transfection of Smad7 antisense oligonucleotide into CMV-infected monocytes restored monocyte susceptibility to stromal TGF-β-induced inflammation anergy. Thus, CMV-infected monocytes that recruit to the mucosa, not resident macrophages, are the source of inflammatory macrophages in CMV mucosal disease and implicate Smad7 as a key regulator of, and potential therapeutic target for, CMV mucosal disease.
Collapse
|
46
|
Bordignon V, Cavallo I, D'Agosto G, Trento E, Pontone M, Abril E, Di Domenico EG, Ensoli F. Nucleic Acid Sensing Perturbation: How Aberrant Recognition of Self-Nucleic Acids May Contribute to Autoimmune and Autoinflammatory Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 344:117-137. [PMID: 30798986 DOI: 10.1016/bs.ircmb.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bacteria and mammalian cells have developed sophisticated sensing mechanisms to detect and eliminate foreign genetic material or to restrict its expression and replication. Progress has been made in the understanding of these mechanisms, which keep foreign or unwanted nucleic acids in check. The complex of mechanisms involved in RNA and DNA sensing is part of a system which is now appreciated as "immune sensing of nucleic acids" or better "nucleic acid immunity." Nucleic acids, which are critical components for inheriting genetic information in all species, including pathogens, are key structures recognized by the innate immune system. However, while nucleic acid recognition is required for host defense against pathogens, there is a potential risk of self-nucleic acids recognition. In fact, besides its essential contribution to antiviral or microbial defense and restriction of endogenous retro elements, deregulation of nucleic acid immunity can also lead to human diseases due to erroneous detection and response to self-nucleic acids, causing sterile inflammation and autoimmunity. In this review we will discuss the roles of nucleic acid receptors in guarding against pathogen invasion, and how the microbial environment could interfere or influence immune sensing in discriminating between self and non-self and how this may contribute to autoimmunity or inflammatory diseases.
Collapse
Affiliation(s)
- Valentina Bordignon
- Clinical Pathology and Microbiology, San Gallicano Dermatological Institute IRCCS, Rome, Italy.
| | - Ilaria Cavallo
- Clinical Pathology and Microbiology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Giovanna D'Agosto
- Clinical Pathology and Microbiology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Elisabetta Trento
- Clinical Pathology and Microbiology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Martina Pontone
- Clinical Pathology and Microbiology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Elva Abril
- Clinical Pathology and Microbiology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Enea Gino Di Domenico
- Clinical Pathology and Microbiology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| |
Collapse
|
47
|
Human intestinal pro-inflammatory CD11c highCCR2 +CX3CR1 + macrophages, but not their tolerogenic CD11c -CCR2 -CX3CR1 - counterparts, are expanded in inflammatory bowel disease. Mucosal Immunol 2018; 11:1114-1126. [PMID: 29743615 DOI: 10.1038/s41385-018-0030-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 02/07/2023]
Abstract
Although macrophages (Mϕ) maintain intestinal immune homoeostasis, there is not much available information about their subset composition, phenotype and function in the human setting. Human intestinal Mϕ (CD45+HLA-DR+CD14+CD64+) can be divided into subsets based on the expression of CD11c, CCR2 and CX3CR1. Monocyte-like cells can be identified as CD11chighCCR2+CX3CR1+ cells, a phenotype also shared by circulating CD14+ monocytes. On the contrary, their Mϕ-like tissue-resident counterparts display a CD11c-CCR2-CX3CR1- phenotype. CD11chigh monocyte-like cells produced IL-1β, both in resting conditions and after LPS stimulation, while CD11c- Mϕ-like cells produced IL-10. CD11chigh pro-inflammatory monocyte-like cells, but not the others, were increased in the inflamed colon from patients with inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. Tolerogenic IL-10-producing CD11c- Mϕ-like cells were generated from monocytes following mucosal conditioning. Finally, the colonic mucosa recruited circulating CD14+ monocytes in a CCR2-dependent manner, being such capacity expanded in IBD. Mϕ subsets represent, therefore, transition stages from newly arrived pro-inflammatory monocyte-like cells (CD11chighCCR2+CX3CR1+) into tolerogenic tissue-resident (CD11c-CCR2-CX3CR1-) Mϕ-like cells as reflected by the mucosal capacity to recruit circulating monocytes and induce CD11c- Mϕ. The process is nevertheless dysregulated in IBD, where there is an increased migration and accumulation of pro-inflammatory CD11chigh monocyte-like cells.
Collapse
|
48
|
Franko J, McCall JL, Barnett JB. Evaluating Macrophages in Immunotoxicity Testing. Methods Mol Biol 2018; 1803:255-296. [PMID: 29882145 DOI: 10.1007/978-1-4939-8549-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Macrophages are a heterogeneous group of cells that have a multitude of functions depending on their differentiation state. While classically known for their phagocytic and antigen presentation abilities, it is now evident that these cells fulfill homeostatic functions beyond the elimination of invading pathogens. In addition, macrophages have also been implicated in the downregulation of inflammatory responses following pathogen removal, tissue remodeling, repair, and angiogenesis. Alterations in macrophage differentiation and/or activity due to xenobiotic exposure can have grave consequences on organismal homeostasis, potentially contributing to disease due to immunosuppression or chronic inflammatory responses, depending upon the pathways affected. In this chapter, we provide an overview of the macrophages subtypes, their origin and a general discussion of several different assays used to assess their functional status.
Collapse
Affiliation(s)
- Jennifer Franko
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jamie L McCall
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - John B Barnett
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.
| |
Collapse
|
49
|
Lee W, Kim M, Lee SH, Jung HG, Oh JW. Prophylactic efficacy of orally administered Bacillus poly-γ-glutamic acid, a non-LPS TLR4 ligand, against norovirus infection in mice. Sci Rep 2018; 8:8667. [PMID: 29875467 PMCID: PMC5989232 DOI: 10.1038/s41598-018-26935-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/17/2018] [Indexed: 12/22/2022] Open
Abstract
Poly-gamma-glutamic acid (γ-PGA), an extracellular biopolymer produced by Bacillus sp., is a non-canonical toll-like receptor 4 (TLR4) agonist. Here we show its antiviral efficacy against noroviruses. γ-PGA with a molecular mass of 2,000-kDa limited murine norovirus (MNV) replication in the macrophage cell line RAW264.7 by inducing interferon (IFN)-β and conferred resistance to viral infection-induced cell death. Additionally, γ-PGA interfered with viral entry into cells. The potent antiviral state mounted by γ-PGA was not attributed to the upregulation of TLR4 or TLR3, a sensor known to recognize norovirus RNA. γ-PGA sensing by TLR4 required the two TLR4-associated accessory factors MD2 and CD14. In ex vivo cultures of mouse ileum, γ-PGA selectively increased the expression of IFN-β in villi. In contrast, IFN-β induction was negligible in the ileal Peyer’s patches (PPs) where its expression was primarily induced by the replication of MNV. Oral administration of γ-PGA, which increased serum IFN-β levels without inducing proinflammatory cytokines, reduced MNV loads in the ileum with PPs and mesenteric lymph nodes in mice. Our results disclose a γ-PGA-mediated non-conventional TLR4 signaling in the ileum, highlighting the potential use of γ-PGA as a prophylactic antiviral agent against noroviruses.
Collapse
Affiliation(s)
- Wooseong Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Minwoo Kim
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Seung-Hoon Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Hae-Gwang Jung
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Jong-Won Oh
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
50
|
Yang S, Mi X, Chen Y, Feng C, Hou Z, Hui R, Zhang W. MicroRNA-216a induces endothelial senescence and inflammation via Smad3/IκBα pathway. J Cell Mol Med 2018. [PMID: 29512862 PMCID: PMC5908109 DOI: 10.1111/jcmm.13567] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Vascular endothelial senescence contributes to atherosclerosis and coronary artery disease (CAD), but the mechanisms are yet to be clarified. We identified that microRNA‐216a (miR‐216a) significantly increased in senescent endothelial cells. The replicative senescence model of human umbilical vein endothelial cells (HUVECs) was established to explore the role of miR‐216a in endothelial ageing and dysfunction. Luciferase assay indicated that Smad3 was a direct target of miR‐216a. Stable expression of miR‐216a induced a premature senescence‐like phenotype in HUVECs with an impairment in proliferation and migration and led to an increased adhesion to monocytes by inhibiting Smad3 expression and thereafter modulating the degradation of NF‐κB inhibitor alpha (IκBα) and activation of adhesion molecules. Conversely, inhibition of endogenous miR‐216a in senescent HUVECs rescued Smad3 and IκBα expression and inhibited monocytes attachment. Plasma miR‐216a was significantly higher in old CAD patients (>50 years) and associated with increased 31% risk for CAD (odds ratio 1.31, 95% confidence interval 1.03‐1.66; P = .03) compared with the matched healthy controls (>50 years). Taken together, our data suggested that miR‐216a promotes endothelial senescence and inflammation as an endogenous inhibitor of Smad3/IκBα pathway, which might serve as a novel target for ageing‐related atherosclerotic diseases.
Collapse
Affiliation(s)
- Shujun Yang
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Xicheng District, Beijing, China
| | - Xuenan Mi
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Xicheng District, Beijing, China
| | - Yu Chen
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Xicheng District, Beijing, China
| | - Congrui Feng
- Beijing Institute for Brain Disorders Center for Brain Disorders Research, Capital Medical University, Beijing, China
| | - Zhihui Hou
- Department of Radiology, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College& Chinese Academy of Medical Sciences, Xicheng District, Beijing, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Xicheng District, Beijing, China
| | - Weili Zhang
- State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Xicheng District, Beijing, China.,Beijing Institute for Brain Disorders Center for Brain Disorders Research, Capital Medical University, Beijing, China
| |
Collapse
|