1
|
Mateusiak Ł, Hakuno S, de Jonge-Muller ESM, Floru S, Sier CFM, Hawinkels LJAC, Hernot S. Fluorescent Nanobodies for enhanced guidance in digestive tumors and liver metastasis surgery. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2025; 51:109537. [PMID: 39753054 DOI: 10.1016/j.ejso.2024.109537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/04/2024] [Accepted: 12/05/2024] [Indexed: 03/17/2025]
Abstract
BACKGROUND Fluorescence molecular imaging, a potent and non-invasive technique, has become indispensable in medicine for visualizing molecular processes. In surgical oncology, it aids treatment by allowing visualization of tumor cells during fluorescence-guided surgery (FGS). Targeting the urokinase plasminogen activator receptor (uPAR), overexpressed during tissue remodeling and inflammation, holds promise for advancing FGS by specifically highlighting tumors. This study explores the extended use of Nanobody-based (Nb) anti-uPAR tracers, evaluating their receptor binding, ability to visualize and demarcate colorectal (CRC) and gastric cancer (GC), and detect localized (PC) and metastatic (PC-M) pancreatic carcinoma. METHODS First, the receptor structure interactions of Nb15, which binds specifically to the human homologue of uPAR, were characterized in vitro to deepen our understanding of these interactions. Subsequently, Nbs 15 and 13-where Nb13 targets the murine uPAR homologue-were labeled with the s775z fluorescent dye and validated in a randomized study in mice (n = 4 per group) using orthotopic human CRC, GC, and PC models, as well as a mouse PC-M model. RESULTS Nb15, which binds to the D1 domain of uPAR and competes with urokinase's binding fragment, showed rapid and specific tumor accumulation. It exhibited higher tumor-to-background ratios in CRC (3.35 ± 0.75) and PC (3.41 ± 0.46), and effectively differentiated tumors in GC (mean fluorescence intensity: 0.084 ± 0.017), as compared to control Nbs. Nb13 successfully identified primary tumors and liver metastases in PC-M models. CONCLUSION The tested fluorescently-labeled anti-uPAR Nbs show significant preclinical and clinical potential for improving surgical precision and patient outcomes, with Nb15 demonstrating promise for real-time surgical guidance.
Collapse
Affiliation(s)
- Łukasz Mateusiak
- Vrije Universiteit Brussel (VUB), Molecular Imaging and Therapy Research Group, MITH, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Sarah Hakuno
- Leiden University Medical Center (LUMC), Department of Gastroenterology and Hepatology, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Eveline S M de Jonge-Muller
- Leiden University Medical Center (LUMC), Department of Gastroenterology and Hepatology, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Sam Floru
- Vrije Universiteit Brussel (VUB), Molecular Imaging and Therapy Research Group, MITH, Laarbeeklaan 103, 1090, Brussels, Belgium
| | | | - Lukas J A C Hawinkels
- Leiden University Medical Center (LUMC), Department of Gastroenterology and Hepatology, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Sophie Hernot
- Vrije Universiteit Brussel (VUB), Molecular Imaging and Therapy Research Group, MITH, Laarbeeklaan 103, 1090, Brussels, Belgium
| |
Collapse
|
2
|
Serrat J, Torres-Valle M, De Marco Verissimo C, Siles-Lucas M, González-Miguel J. Binding and cleavage of pro-urokinase by a tegument extract of Fasciola hepatica newly excysted juveniles activate the host fibrinolytic system. Vet Res 2025; 56:20. [PMID: 39856784 PMCID: PMC11762853 DOI: 10.1186/s13567-025-01449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/26/2024] [Indexed: 01/27/2025] Open
Abstract
Plasmin, the final product of fibrinolysis, is a broad-spectrum serine protease that degrades extracellular matrix (ECM) components, a function exploited by multiple pathogens for dissemination purposes. The trematode Fasciola hepatica is the leading cause of fasciolosis, a major disease of livestock and an emerging zoonosis in humans. Infection success depends on the ability of F. hepatica newly excysted juveniles (FhNEJ) to penetrate the host intestinal wall, a process that remains incompletely understood. We have previously shown that FhNEJ are capable of binding plasminogen (PLG), the zymogen of plasmin, on their tegument surface, which leads to plasmin generation in the presence of host-derived PLG activators and subsequent degradation of laminin, a major component of the intestinal ECM. Here, we describe the interaction between a tegument extract of FhNEJ and the precursor of the urokinase-type PLG activator (pro-u-PA). We found that F. hepatica cathepsins B3, L3, enolase and glutathione S-transferase mediate this interaction, suggesting a multifactorial or moonlighting role for these proteins. Additionally, our results revealed that the tegument of FhNEJ contains a protease that is capable of cleaving and activating pro-u-PA into its catalytically active form, which positively impacts the capacity of the parasites to generate plasmin from the host PLG. Collectively, our findings indicate that FhNEJ interact with the host fibrinolytic system at multiple levels, reinforcing the potential of targeting this interaction as a strategy to prevent FhNEJ trans-intestinal migration and infection success.
Collapse
Affiliation(s)
- Judit Serrat
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - María Torres-Valle
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | | | - Mar Siles-Lucas
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Javier González-Miguel
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain.
| |
Collapse
|
3
|
Metrangolo V, Blomquist MH, Dutta A, Gårdsvoll H, Krigslund O, Nørregaard KS, Jürgensen HJ, Ploug M, Flick MJ, Behrendt N, Engelholm LH. Targeting uPAR with an antibody-drug conjugate suppresses tumor growth and reshapes the immune landscape in pancreatic cancer models. SCIENCE ADVANCES 2025; 11:eadq0513. [PMID: 39823326 PMCID: PMC11740940 DOI: 10.1126/sciadv.adq0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Antibody-drug conjugates (ADCs) hold promise to advance targeted therapy of pancreatic ductal adenocarcinoma (PDAC), where the desmoplastic tumor stroma challenges effective treatment. Here, we explored the urokinase plasminogen activator receptor (uPAR) as a candidate ADC target in PDAC, harnessing its massive tumoral and stromal expression in this stroma-dense tumor. We generated a site-specific ADC offering high-affinity, cross-species reactivity, and efficient internalization of the anti-uPAR monoclonal antibody, FL1, carrying a potent anthracycline derivative (PNU-158692). In vitro, FL1-PNU exhibited potent and specific cytotoxicity against uPAR-expressing PDAC cell lines, stromal and immune cells, and bystander killing of uPAR-negative cells. In vivo, the ADC induced remission or sustained tumor regression and extended survival in xenograft models. In syngeneic orthotopic models, the antitumor effect promoted immunomodulation by enhancing infiltrating immune effectors and decreasing immunosuppressive cells. This study lays grounds for further exploring FL1-PNU as a putative clinical ADC candidate, potentially providing a promising therapeutic avenue for PDAC as a monotherapy or in combinatorial regimens.
Collapse
Affiliation(s)
- Virginia Metrangolo
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | - Ananya Dutta
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Henrik Gårdsvoll
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
| | - Oliver Krigslund
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
| | | | | | - Michael Ploug
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Matthew J. Flick
- Department of Medicine and the UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Niels Behrendt
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, GK-2200 Copenhagen, Denmark
| | - Lars H. Engelholm
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
4
|
Ming X, Yang Z, Huang Y, Wang Z, Zhang Q, Lu C, Sun Y, Chen Y, Zhang L, Wu J, Shou H, Lu Z, Wang B. A chimeric peptide promotes immune surveillance of senescent cells in injury, fibrosis, tumorigenesis and aging. NATURE AGING 2025; 5:28-47. [PMID: 39623223 DOI: 10.1038/s43587-024-00750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/15/2024] [Indexed: 12/15/2024]
Abstract
The accumulation of senescent cells can lead to tissue degeneration, chronic inflammatory disease and age-related tumorigenesis. Interventions such as senolytics are currently limited by off-target toxicity, which could be circumvented by instead enhancing immune-mediated senescent cell clearance; however, immune surveillance of senescent cells is often impeded by immunosuppressive factors in the inflammatory microenvironment. Here, we employ a chimeric peptide as a 'matchmaker' to bind to the urokinase-type plasminogen activator receptor, a cell surface marker of senescent cells. This peptide modifies the cell surface with polyglutamic acid, promoting immune cell-mediated responses through glutamate recognition. By enhancing the recruitment of immune cells and directly coupling senescent cells and immune cells, we show that this chimeric peptide induces immune clearance of senescent cells and restores tissue homeostasis in conditions such as liver fibrosis, lung injury, cancer and natural aging in mice. This chimeric peptide introduces an immunological conversion strategy that rebalances the senescent immune microenvironment, offering a promising direction for aging immunotherapy.
Collapse
Affiliation(s)
- Xinliang Ming
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ze Yang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqiao Huang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiguo Wang
- Institute of Ageing Research, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qingyan Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Changchang Lu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yandi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanhao Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Zhang
- Center for Molecular Diagnosis and Precision Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jicheng Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Shou
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhimin Lu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, China.
- Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China.
| |
Collapse
|
5
|
Li H, Wang Z, Yu S, Chen S, Zhou Y, Qu Y, Xu P, Jiang L, Yuan C, Huang M. Albumin-based drug carrier targeting urokinase receptor for cancer therapy. Int J Pharm 2023; 634:122636. [PMID: 36696930 DOI: 10.1016/j.ijpharm.2023.122636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/31/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Urokinase plasminogen activator receptor (uPAR) is a key participant in extracellular proteolysis, tissue remodeling and cell motility. uPAR overexpresses in most solid tumors and several hematologic malignancies, but has low levels on normal tissues, thus is advocated as a molecular target for cancer therapy. One of the obstacles for the evaluation of uPAR targeting agents in preclinical study is the species specificity, where targeting agents for human uPAR usually not bind to murine uPAR. Here, we develop a targeting agent that binds to both murine and human uPAR. This targeting agent is genetically fused to human serum albumin, a commonly used drug carrier, and the final construct is named as uPAR targeting carrier (uPARTC). uPARTC binds specifically to uPAR-overexpressing 293T/huPAR and 293T/muPAR as demonstrated by flow cytometry. A cytotoxic compound, celastrol, is embedded into uPARTC non-covalently. The resulting macromolecular complex show effective proliferation inhibition on both murine and human uPAR overexpressing cells, and exhibit potent antitumor efficacy on hepatoma H22-bearing mice. This work demonstrates that uPARTC is a promising tumor targeting drug carrier, which address the species-specificity challenge of uPAR targeting agents and can be used to load other cytotoxic compounds.
Collapse
Affiliation(s)
- Hanlin Li
- College of Chemistry, Fuzhou University, Fujian 350108, China
| | - Zhiyou Wang
- College of Chemistry, Fuzhou University, Fujian 350108, China
| | - Shujuan Yu
- College of Chemistry, Fuzhou University, Fujian 350108, China
| | - Shanli Chen
- College of Chemistry, Fuzhou University, Fujian 350108, China
| | - Yang Zhou
- College of Chemistry, Fuzhou University, Fujian 350108, China
| | - Yuhan Qu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fujian 350108, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fujian 350108, China.
| |
Collapse
|
6
|
Zhou Y, Yu S, Chen D, Li H, Xu P, Yuan C, Jiang L, Huang M. Nafamostat Mesylate in Combination with the Mouse Amino-Terminal Fragment of Urokinase-Human Serum Albumin Improves the Treatment Outcome of Triple-Negative Breast Cancer Therapy. Mol Pharm 2023; 20:905-917. [PMID: 36463525 DOI: 10.1021/acs.molpharmaceut.2c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Triple-negative breast cancer (TNBC) is highly aggressive and causes a higher proportion of metastatic cases. However, therapies directed to specific molecular targets have rarely achieved clinically meaningful improvements in the outcome of TNBC therapy. A urokinase-type plasminogen activator (uPA), one of the best-validated biomarkers of breast cancer, is an extracellular proteolytic serine protease involved in many pathological and physiological processes, including tumor cell invasion and metastasis. Nafamostat mesylate (NM) is a synthetic compound that inhibits various serine proteases and has been used as a therapeutic agent for the treatment of TNBC. Nevertheless, NM has poor specificity for serine proteases and is easy be hydrolyzed; moreover, the inhibitory mechanism of TNBC therapy is unclear. In this study, we combine NM with a macromolecular drug delivery vehicle, mouse amino-terminal fragment of urokinase-human serum albumin (mATF-HSA), to form a complex (mATF-HSA:NM) using the dilution-incubation-purification method. mATF specifically targets uPAR overexpressed on the surface of TNBC cells; moreover, HSA prevents NM from being hydrolyzed by numerous serine proteases. mATF-HSA:NM showed stronger inhibitory effects on the proliferation and metastasis of TNBC in vitro and in vivo without significant cytotoxicity on normal cells and tissues. In addition, we demonstrated that NM mediates metastasis of TNBC cells through inhibition of uPA using a stable uPA knockdown cell line (MDA-MB231 shuPA). Overall, we have developed a macromolecular complex targeted to treat high uPAR-expressing tumor types, and mATF-HSA can potentially be used to load other types of drugs with tumor-targeting specificity for mouse tumor models and is a promising tool to study tumor biology in mouse tumor models.
Collapse
Affiliation(s)
- Yang Zhou
- College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, P.R. China
| | - Shujuan Yu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, P.R. China
| | - Dan Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, P.R. China
| | - Hanlin Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, P.R. China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian350116, P.R. China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian350116, P.R. China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, P.R. China.,Fujian Key Lab Moratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian350116, P.R. China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, P.R. China
| |
Collapse
|
7
|
Baart VM, van Manen L, Bhairosingh SS, Vuijk FA, Iamele L, de Jonge H, Scotti C, Resnati M, Cordfunke RA, Kuppen PJK, Mazar AP, Burggraaf J, Vahrmeijer AL, Sier CFM. Side-by-Side Comparison of uPAR-Targeting Optical Imaging Antibodies and Antibody Fragments for Fluorescence-Guided Surgery of Solid Tumors. Mol Imaging Biol 2023; 25:122-132. [PMID: 34642899 PMCID: PMC9970952 DOI: 10.1007/s11307-021-01657-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/27/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Radical resection is paramount for curative oncological surgery. Fluorescence-guided surgery (FGS) aids in intraoperative identification of tumor-positive resection margins. This study aims to assess the feasibility of urokinase plasminogen activator receptor (uPAR) targeting antibody fragments for FGS in a direct comparison with their parent IgG in various relevant in vivo models. PROCEDURES Humanized anti-uPAR monoclonal antibody MNPR-101 (uIgG) was proteolytically digested into F(ab')2 and Fab fragments named uFab2 and uFab. Surface plasmon resonance (SPR) and cell assays were used to determine in vitro binding before and after fluorescent labeling with IRDye800CW. Mice bearing subcutaneous HT-29 human colonic cancer cells were imaged serially for up to 120 h after fluorescent tracer administration. Imaging characteristics and ex vivo organ biodistribution were further compared in orthotopic pancreatic ductal adenocarcinoma (BxPc-3-luc2), head-and-neck squamous cell carcinoma (OSC-19-luc2-GFP), and peritoneal carcinomatosis (HT29-luc2) models using the clinical Artemis fluorescence imaging system. RESULTS Unconjugated and conjugated uIgG, uFab2, and uFab specifically recognized uPAR in the nanomolar range as determined by SPR and cell assays. Subcutaneous tumors were clearly identifiable with tumor-to-background ratios (TBRs) > 2 after 72 h for uIgG-800F and 24 h for uFab2-800F and uFab-800F. For the latter two, mean fluorescence intensities (MFIs) dipped below predetermined threshold after 72 h and 36 h, respectively. Tumors were easily identified in the orthotopic models with uIgG-800F consistently having the highest MFIs and uFab2-800F and uFab-800F having similar values. In biodistribution studies, kidney and liver fluorescence approached tumor fluorescence after uIgG-800F administration and surpassed tumor fluorescence after uFab2-800F or uFab-800F administration, resulting in interference in the abdominal orthotopic mouse models. CONCLUSIONS In a side-by-side comparison, FGS with uPAR-targeting antibody fragments compared with the parent IgG resulted in earlier tumor visualization at the expense of peak fluorescence intensity.
Collapse
Affiliation(s)
- Victor M Baart
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| | - Labrinus van Manen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Floris A Vuijk
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Luisa Iamele
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Ardis Srl, Pavia, Italy
| | - Hugo de Jonge
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Ardis Srl, Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Ardis Srl, Pavia, Italy
| | - Massimo Resnati
- Age Related Diseases Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Robert A Cordfunke
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.,Centre for Human Drug Research, Leiden, The Netherlands
| | | | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.,Percuros BV, Leiden, The Netherlands
| |
Collapse
|
8
|
Yu S, Sui Y, Wang J, Li Y, Li H, Cao Y, Chen L, Jiang L, Yuan C, Huang M. Crystal structure and cellular functions of uPAR dimer. Nat Commun 2022; 13:1665. [PMID: 35351875 PMCID: PMC8964761 DOI: 10.1038/s41467-022-29344-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/25/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractReceptor dimerization of urokinase-type plasminogen activator receptor (uPAR) was previously identified at protein level and on cell surface. Recently, a dimeric form of mouse uPAR isoform 2 was proposed to induce kidney disease. Here, we report the crystal structure of human uPAR dimer at 2.96 Å. The structure reveals enormous conformational changes of the dimer compared to the monomeric structure: D1 of uPAR opens up into a large expanded ring that captures a β-hairpin loop of a neighboring uPAR to form an expanded β-sheet, leading to an elongated, highly intertwined dimeric uPAR. Based on the structure, we identify E49P as a mutation promoting dimer formation. The mutation increases receptor binding to the amino terminal fragment of its primary ligand uPA, induces the receptor to distribute to the basal membrane, promotes cell proliferation, and alters cell morphology via β1 integrin signaling. These results reveal the structural basis for uPAR dimerization, its effect on cellular functions, and provide a basis to further study this multifunctional receptor.
Collapse
|
9
|
Zhai BT, Tian H, Sun J, Zou JB, Zhang XF, Cheng JX, Shi YJ, Fan Y, Guo DY. Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer. J Transl Med 2022; 20:135. [PMID: 35303878 PMCID: PMC8932206 DOI: 10.1186/s12967-022-03329-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR) is an attractive target for the treatment of cancer, because it is expressed at low levels in healthy tissues but at high levels in malignant tumours. uPAR is closely related to the invasion and metastasis of malignant tumours, plays important roles in the degradation of extracellular matrix (ECM), tumour angiogenesis, cell proliferation and apoptosis, and is associated with the multidrug resistance (MDR) of tumour cells, which has important guiding significance for the judgement of tumor malignancy and prognosis. Several uPAR-targeted antitumour therapeutic agents have been developed to suppress tumour growth, metastatic processes and drug resistance. Here, we review the recent advances in the development of uPAR-targeted antitumor therapeutic strategies, including nanoplatforms carrying therapeutic agents, photodynamic therapy (PDT)/photothermal therapy (PTT) platforms, oncolytic virotherapy, gene therapy technologies, monoclonal antibody therapy and tumour immunotherapy, to promote the translation of these therapeutic agents to clinical applications.
Collapse
Affiliation(s)
- Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jun-Bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xiao-Fei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jiang-Xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Ya-Jun Shi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yu Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Dong-Yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
10
|
Metrangolo V, Ploug M, Engelholm LH. The Urokinase Receptor (uPAR) as a "Trojan Horse" in Targeted Cancer Therapy: Challenges and Opportunities. Cancers (Basel) 2021; 13:cancers13215376. [PMID: 34771541 PMCID: PMC8582577 DOI: 10.3390/cancers13215376] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Discovered more than three decades ago, the urokinase-type plasminogen activator receptor (uPAR) has now firmly established itself as a versatile molecular target holding promise for the treatment of aggressive malignancies. The copious abundance of uPAR in virtually all human cancerous tissues versus their healthy counterparts has fostered a gradual shift in the therapeutic landscape targeting this receptor from function inhibition to cytotoxic approaches to selectively eradicate the uPAR-expressing cells by delivering a targeted cytotoxic insult. Multiple avenues are being explored in a preclinical setting, including the more innovative immune- or stroma targeting therapies. This review discusses the current state of these strategies, their potentialities, and challenges, along with future directions in the field of uPAR targeting. Abstract One of the largest challenges to the implementation of precision oncology is identifying and validating selective tumor-driving targets to enhance the therapeutic efficacy while limiting off-target toxicity. In this context, the urokinase-type plasminogen activator receptor (uPAR) has progressively emerged as a promising therapeutic target in the management of aggressive malignancies. By focalizing the plasminogen activation cascade and subsequent extracellular proteolysis on the cell surface of migrating cells, uPAR endows malignant cells with a high proteolytic and migratory potential to dissolve the restraining extracellular matrix (ECM) barriers and metastasize to distant sites. uPAR is also assumed to choreograph multiple other neoplastic stages via a complex molecular interplay with distinct cancer-associated signaling pathways. Accordingly, high uPAR expression is observed in virtually all human cancers and is frequently associated with poor patient prognosis and survival. The promising therapeutic potential unveiled by the pleiotropic nature of this receptor has prompted the development of distinct targeted intervention strategies. The present review will focus on recently emerged cytotoxic approaches emphasizing the novel technologies and related limits hindering their application in the clinical setting. Finally, future research directions and emerging opportunities in the field of uPAR targeting are also discussed.
Collapse
Affiliation(s)
- Virginia Metrangolo
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Michael Ploug
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lars H. Engelholm
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-31-43-20-77
| |
Collapse
|
11
|
Elhussieny A, Nogami K, Sakai-Takemura F, Maruyama Y, Takemura N, Soliman WT, Takeda S, Miyagoe-Suzuki Y. Mesenchymal stem cells derived from human induced pluripotent stem cells improve the engraftment of myogenic cells by secreting urokinase-type plasminogen activator receptor (uPAR). Stem Cell Res Ther 2021; 12:532. [PMID: 34627382 PMCID: PMC8501581 DOI: 10.1186/s13287-021-02594-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is a severe X-linked recessive disease caused by mutations in the dystrophin gene. Transplantation of myogenic stem cells holds great promise for treating muscular dystrophies. However, poor engraftment of myogenic stem cells limits the therapeutic effects of cell therapy. Mesenchymal stem cells (MSCs) have been reported to secrete soluble factors necessary for skeletal muscle growth and regeneration. Methods We induced MSC-like cells (iMSCs) from induced pluripotent stem cells (iPSCs) and examined the effects of iMSCs on the proliferation and differentiation of human myogenic cells and on the engraftment of human myogenic cells in the tibialis anterior (TA) muscle of NSG-mdx4Cv mice, an immunodeficient dystrophin-deficient DMD model. We also examined the cytokines secreted by iMSCs and tested their effects on the engraftment of human myogenic cells. Results iMSCs promoted the proliferation and differentiation of human myogenic cells to the same extent as bone marrow-derived (BM)-MSCs in coculture experiments. In cell transplantation experiments, iMSCs significantly improved the engraftment of human myogenic cells injected into the TA muscle of NSG-mdx4Cv mice. Cytokine array analysis revealed that iMSCs produced insulin-like growth factor-binding protein 2 (IGFBP2), urokinase-type plasminogen activator receptor (uPAR), and brain-derived neurotrophic factor (BDNF) at higher levels than did BM-MSCs. We further found that uPAR stimulates the migration of human myogenic cells in vitro and promotes their engraftment into the TA muscles of immunodeficient NOD/Scid mice. Conclusions Our results indicate that iMSCs are a new tool to improve the engraftment of myogenic progenitors in dystrophic muscle. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02594-1.
Collapse
Affiliation(s)
- Ahmed Elhussieny
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Neurology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ken'ichiro Nogami
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Fusako Sakai-Takemura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Yusuke Maruyama
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Natsumi Takemura
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Wael Talaat Soliman
- Department of Neurology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Yuko Miyagoe-Suzuki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
12
|
Leth JM, Ploug M. Targeting the Urokinase-Type Plasminogen Activator Receptor (uPAR) in Human Diseases With a View to Non-invasive Imaging and Therapeutic Intervention. Front Cell Dev Biol 2021; 9:732015. [PMID: 34490277 PMCID: PMC8417595 DOI: 10.3389/fcell.2021.732015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
The interaction between the serine protease urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) focalizes plasminogen activation to cell surfaces, thereby regulating extravascular fibrinolysis, cell adhesion, and migration. uPAR belongs to the Ly6/uPAR (LU) gene superfamily and the high-affinity binding site for uPA is assembled by a dynamic association of its three consecutive LU domains. In most human solid cancers, uPAR is expressed at the invasive areas of the tumor-stromal microenvironment. High levels of uPAR in resected tumors or shed to the plasma of cancer patients are robustly associated with poor prognosis and increased risk of relapse and metastasis. Over the years, a plethora of different strategies to inhibit uPA and uPAR function have been designed and investigated in vitro and in vivo in mouse models, but so far none have been implemented in the clinics. In recent years, uPAR-targeting with the intent of cytotoxic eradication of uPAR-expressing cells have nonetheless gained increasing momentum. Another avenue that is currently being explored is non-invasive imaging with specific uPAR-targeted reporter-molecules containing positron emitting radionuclides or near-infrared (NIR) florescence probes with the overarching aim of being able to: (i) localize disease dissemination using positron emission tomography (PET) and (ii) assist fluorescence guided surgery using optical imaging. In this review, we will discuss these advancements with special emphasis on applications using a small 9-mer peptide antagonist that targets uPAR with high affinity.
Collapse
Affiliation(s)
- Julie Maja Leth
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Yuan C, Guo Z, Yu S, Jiang L, Huang M. Development of inhibitors for uPAR: blocking the interaction of uPAR with its partners. Drug Discov Today 2021; 26:1076-1085. [PMID: 33486111 DOI: 10.1016/j.drudis.2021.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 12/25/2022]
Abstract
Urokinase-type plasminogen activator receptor (uPAR) mediates a multitude of biological activities, has key roles in several clinical indications, including malignancies and inflammation, and, thus, has attracted intensive research over the past few decades. The pleiotropic functions of uPAR can be attributed to its interaction with an array of partners. Many inhibitors have been developed to intervene with the interaction of uPAR with these partners. Here, we review the development of these classes of uPAR inhibitor and their inhibitory mechanisms to promote the translation of these inhibitors to clinical applications.
Collapse
Affiliation(s)
- Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhanzhi Guo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Shujuan Yu
- College of Chemistry, Fuzhou University, Fujian, 350116, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fujian, 350116, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fujian, 350116, China.
| |
Collapse
|
14
|
Bum-Erdene K, Liu D, Xu D, Ghozayel MK, Meroueh SO. Design and Synthesis of Fragment Derivatives with a Unique Inhibition Mechanism of the uPAR·uPA Interaction. ACS Med Chem Lett 2021; 12:60-66. [PMID: 33488965 DOI: 10.1021/acsmedchemlett.0c00422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
There is substantial interest in the development of small molecules that inhibit the tight and highly challenging protein-protein interaction between the glycophosphatidylinositol (GPI)-anchored cell surface receptor uPAR and the serine protease uPA. While preparing derivatives of a fragment-like compound that previously emerged from a computational screen, we identified compound 5 (IPR-3242), which inhibited binding of uPA to uPAR with submicromolar IC50s. The high inhibition potency prompted us to carry out studies to rule out potential aggregation, lack of stability, reactivity, and nonspecific inhibition. We designed and prepared 16 derivatives to further explore the role of each substituent. Interestingly, the compounds only partially inhibited binding of a fluorescently labeled α-helical peptide that binds to uPAR at the uPAR·uPA interface. Collectively, the results suggest that the compounds bind to uPAR outside of the uPAR·uPA interface, trapping the receptor into a conformation that is not able to bind to uPA. Additional studies will have to be carried out to determine whether this unique inhibition mechanism can occur at the cell surface.
Collapse
Affiliation(s)
- Khuchtumur Bum-Erdene
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Degang Liu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - David Xu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Mona K. Ghozayel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Samy O. Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
15
|
Xu D, Bum-Erdene K, Leth JM, Ghozayel MK, Ploug M, Meroueh SO. Small-Molecule Inhibition of the uPAR ⋅ uPA Interaction by Conformational Selection. ChemMedChem 2020; 16:377-387. [PMID: 33107192 DOI: 10.1002/cmdc.202000558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/25/2020] [Indexed: 12/12/2022]
Abstract
The urokinase receptor (uPAR) is a cell surface receptor that binds to the serine protease urokinase-type plasminogen activator (uPA) with high affinity. This interaction is beneficial for extravascular fibrin clearance, but it has also been associated with a broad range of pathological conditions including cancer, atherosclerosis, and kidney disease. Here, starting with a small molecule that we previously discovered by virtual screening and cheminformatics analysis, we design and synthesize several derivatives that were tested for binding and inhibition of the uPAR ⋅ uPA interaction. To confirm the binding site and establish a binding mode of the compounds, we carried out biophysical studies using uPAR mutants, among them uPARH47C-N259C , a mutant previously developed to mimic the structure of uPA-bound uPAR. Remarkably, a substantial increase in potency is observed for inhibition of uPARH47C-N259C binding to uPA compared to wild-type uPAR, consistent with our use of the structure of uPAR in its uPA-bound state to design small-molecule uPAR ⋅ uPA antagonists. Combined with the biophysical studies, molecular docking followed by extensive explicit-solvent molecular dynamics simulations and MM-GBSA free energy calculations yielded the most favorable binding pose of the compound. Collectively, these results suggest that potent inhibition of uPAR binding to uPA with small molecules will likely only be achieved by developing small molecules that exhibit high-affinity to solution apo structures of uPAR, rather than uPA-bound structures of the receptor.
Collapse
Affiliation(s)
- David Xu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Khuchtumur Bum-Erdene
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Julie M Leth
- Finsen Laboratory, Rigshospitalet, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Mona K Ghozayel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Samy O Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
16
|
Karagyaur M, Rostovtseva A, Semina E, Klimovich P, Balabanyan V, Makarevich P, Popov V, Stambolsky D, Tkachuk V. A Bicistronic Plasmid Encoding Brain-Derived Neurotrophic Factor and Urokinase Plasminogen Activator Stimulates Peripheral Nerve Regeneration After Injury. J Pharmacol Exp Ther 2020; 372:248-255. [PMID: 31888957 DOI: 10.1124/jpet.119.261594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/17/2019] [Indexed: 03/08/2025] Open
Abstract
Timely nerve restoration is an important factor for the successful regeneration of tissues and organs. It is known that axon regeneration following nerve injury is a multifactorial process that depends on the local expression of neurotrophins, including brain-derived neurotrophic factor (BDNF). Along with the survival of neurons, the active reorganization of the extracellular matrix is an important step for the growth of axons to their targets. Urokinase serine protease is part of the plasminogen activator system, which provides the vectoriality of the process of fibrinolysis and matrix reorganization, facilitating the growth of nerves to their targets. Based on this and in view of the results of our previous studies, we suggest that a combined bicistronic plasmid encoding the complementary proteins BDNF and urokinase may be beneficial in nerve regeneration. The ability of this bicistronic plasmid to stimulate nerve restoration was confirmed by in vitro stimulation of Neuro2a neurite growth and in vivo nerve conductivity and histology studies. To our knowledge, this is the first article that demonstrates the effectiveness of a bicistronic plasmid containing the human genes BDNF and urokinase plasminogen activator in the regeneration of the injured peripheral nerve. The results obtained demonstrate that plasmid vectors encoding several complementary-active therapeutic proteins may serve as a basis for developing prospective treatments for a wide range of multicomponent neural system disorders, such as nerve trauma. SIGNIFICANCE STATEMENT: This study is the first to show the effectiveness of using a bicistronic plasmid encoding complementary-active human protein brain-derived neurotrophic factor and urokinase plasminogen activator in the regeneration of the crushed peripheral nerve in a murine model.
Collapse
Affiliation(s)
- Maxim Karagyaur
- Institute of Regenerative Medicine (M.K., P.M., V.T.) and Faculty of Medicine (M.K., A.R., E.S., V.B., P.M., V.P., V.T.), Lomonosov Moscow State University, Moscow, Russia; Laboratory of Molecular Endocrinology, National Cardiology Research Center, Ministry of Health of the Russian Federation, Moscow, Russia (E.S., P.K., V.T.); and Medical Research and Education Center, Moscow, Russia (D.S.)
| | - Alexandra Rostovtseva
- Institute of Regenerative Medicine (M.K., P.M., V.T.) and Faculty of Medicine (M.K., A.R., E.S., V.B., P.M., V.P., V.T.), Lomonosov Moscow State University, Moscow, Russia; Laboratory of Molecular Endocrinology, National Cardiology Research Center, Ministry of Health of the Russian Federation, Moscow, Russia (E.S., P.K., V.T.); and Medical Research and Education Center, Moscow, Russia (D.S.)
| | - Ekaterina Semina
- Institute of Regenerative Medicine (M.K., P.M., V.T.) and Faculty of Medicine (M.K., A.R., E.S., V.B., P.M., V.P., V.T.), Lomonosov Moscow State University, Moscow, Russia; Laboratory of Molecular Endocrinology, National Cardiology Research Center, Ministry of Health of the Russian Federation, Moscow, Russia (E.S., P.K., V.T.); and Medical Research and Education Center, Moscow, Russia (D.S.)
| | - Polina Klimovich
- Institute of Regenerative Medicine (M.K., P.M., V.T.) and Faculty of Medicine (M.K., A.R., E.S., V.B., P.M., V.P., V.T.), Lomonosov Moscow State University, Moscow, Russia; Laboratory of Molecular Endocrinology, National Cardiology Research Center, Ministry of Health of the Russian Federation, Moscow, Russia (E.S., P.K., V.T.); and Medical Research and Education Center, Moscow, Russia (D.S.)
| | - Vadim Balabanyan
- Institute of Regenerative Medicine (M.K., P.M., V.T.) and Faculty of Medicine (M.K., A.R., E.S., V.B., P.M., V.P., V.T.), Lomonosov Moscow State University, Moscow, Russia; Laboratory of Molecular Endocrinology, National Cardiology Research Center, Ministry of Health of the Russian Federation, Moscow, Russia (E.S., P.K., V.T.); and Medical Research and Education Center, Moscow, Russia (D.S.)
| | - Pavel Makarevich
- Institute of Regenerative Medicine (M.K., P.M., V.T.) and Faculty of Medicine (M.K., A.R., E.S., V.B., P.M., V.P., V.T.), Lomonosov Moscow State University, Moscow, Russia; Laboratory of Molecular Endocrinology, National Cardiology Research Center, Ministry of Health of the Russian Federation, Moscow, Russia (E.S., P.K., V.T.); and Medical Research and Education Center, Moscow, Russia (D.S.)
| | - Vladimir Popov
- Institute of Regenerative Medicine (M.K., P.M., V.T.) and Faculty of Medicine (M.K., A.R., E.S., V.B., P.M., V.P., V.T.), Lomonosov Moscow State University, Moscow, Russia; Laboratory of Molecular Endocrinology, National Cardiology Research Center, Ministry of Health of the Russian Federation, Moscow, Russia (E.S., P.K., V.T.); and Medical Research and Education Center, Moscow, Russia (D.S.)
| | - Dmitry Stambolsky
- Institute of Regenerative Medicine (M.K., P.M., V.T.) and Faculty of Medicine (M.K., A.R., E.S., V.B., P.M., V.P., V.T.), Lomonosov Moscow State University, Moscow, Russia; Laboratory of Molecular Endocrinology, National Cardiology Research Center, Ministry of Health of the Russian Federation, Moscow, Russia (E.S., P.K., V.T.); and Medical Research and Education Center, Moscow, Russia (D.S.)
| | - Vsevolod Tkachuk
- Institute of Regenerative Medicine (M.K., P.M., V.T.) and Faculty of Medicine (M.K., A.R., E.S., V.B., P.M., V.P., V.T.), Lomonosov Moscow State University, Moscow, Russia; Laboratory of Molecular Endocrinology, National Cardiology Research Center, Ministry of Health of the Russian Federation, Moscow, Russia (E.S., P.K., V.T.); and Medical Research and Education Center, Moscow, Russia (D.S.)
| |
Collapse
|
17
|
Jiang Y, Lin L, Chen S, Jiang L, Kriegbaum MC, Gårdsvoll H, Hansen LV, Li J, Ploug M, Yuan C, Huang M. Crystal Structures of Human C4.4A Reveal the Unique Association of Ly6/uPAR/α-neurotoxin Domain. Int J Biol Sci 2020; 16:981-993. [PMID: 32140067 PMCID: PMC7053344 DOI: 10.7150/ijbs.39919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/26/2019] [Indexed: 01/26/2023] Open
Abstract
Ly6/uPAR/α-neurotoxin domain (LU-domain) is characterized by the presence of 4-5 disulfide bonds and three flexible loops that extend from a core stacked by several conversed disulfide bonds (thus also named three-fingered protein domain). This highly structurally stable protein domain is typically a protein-binder at extracellular space. Most LU proteins contain only single LU-domain as represented by Ly6 proteins in immunology and α-neurotoxins in snake venom. For Ly6 proteins, many are expressed in specific cell lineages and in differentiation stages, and are used as markers. In this study, we report the crystal structures of the two LU-domains of human C4.4A alone and its complex with a Fab fragment of a monoclonal anti-C4.4A antibody. Interestingly, both structures showed that C4.4A forms a very compact globule with two LU-domain packed face to face. This is in contrast to the flexible nature of most LU-domain-containing proteins in mammals. The Fab combining site of C4.4A involves both LU-domains, and appears to be the binding site for AGR2, a reported ligand of C4.4A. This work reports the first structure that contain two LU-domains and provides insights on how LU-domains fold into a compact protein and interacts with ligands.
Collapse
Affiliation(s)
- Yunbin Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Lin
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Shanli Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Mette C Kriegbaum
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2220 Copenhagen N, Denmark
| | - Henrik Gårdsvoll
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2220 Copenhagen N, Denmark
| | - Line V Hansen
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2220 Copenhagen N, Denmark
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Mingdong Huang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
18
|
Wacker A, Bauder-Wüst U, Schäfer M, Schmidt J, Remde Y, Stadlbauer S, Eder M, Liolios C, Kopka K. Designing tracers for PET imaging of the urokinase-type plasminogen activator receptor from a cyclic uPA-derived peptide: first in vitro evaluations. J Labelled Comp Radiopharm 2019; 62:483-494. [PMID: 30970388 DOI: 10.1002/jlcr.3735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022]
Abstract
The treatment of cancer remains a major challenge, especially after tumour cell dissemination and metastases formation. Expression of the urokinase-type plasminogen activation system including urokinase (uPA) and its receptor (uPAR) has been associated with the complex process of cell migration, a tumour's invasive potential as well as a reduced overall and disease-free survival of patients with solid cancers and haematological disorders. A cyclic peptide cyclo[21,29][d-Cys21 ,Cys29 ]-uPA21-30 was designed from the growth factor-like domain (GFD) of urokinase whose binding to uPAR was found to inhibit tumour growth and spread of human ovarian cancer cells in mice. With the aim of visualising uPAR expression using PET imaging to attempt an estimate on the tumour's aggressiveness, the cyclic peptide was modified with an either C- or N-terminally attached variable spacer and chelator. The free ligands were evaluated for their binding affinities to the isolated human uPAR and labelled with 68 Ga and 177 Lu to assess their lipophilicities and stabilities in human serum. Although retaining the full binding potential displayed by cyclo[21,29][d-Cys21 ,Cys29 ]-uPA21-30 to its target was found to be a challenging task upon both C- and N-terminal modification, chelator-bearing ligands were identified that can serve as promising starting points in the development of uPAR-addressing PET tracers.
Collapse
Affiliation(s)
- Anja Wacker
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Ulrike Bauder-Wüst
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schäfer
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jana Schmidt
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yvonne Remde
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sven Stadlbauer
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Eder
- Department of Radiopharmaca Development, German Cancer Consortium (DKTK), Clinic of Nuclear Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Christos Liolios
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klaus Kopka
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
19
|
Liu M, Lin L, Høyer-Hansen G, Ploug M, Li H, Jiang L, Yuan C, Li J, Huang M. Crystal structure of the unoccupied murine urokinase-type plasminogen activator receptor (uPAR) reveals a tightly packed DII-DIII unit. FEBS Lett 2019; 593:1236-1247. [PMID: 31044429 DOI: 10.1002/1873-3468.13397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/07/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is a cell surface receptor that is capable of binding to a range of extracellular proteins and triggering a series of proteolytic and signaling events. Previous structural studies of uPAR with its ligands uPA and vitronectin revealed that its three domains (DI, DII, and DIII) form a large hydrophobic cavity to accommodate uPA. In the present study, the structure of unoccupied murine uPAR (muPAR) is determined. The structure of DII and DIII of muPAR is well defined and forms a compact globular unit, while DI could not be traced. Molecular dynamic simulations further confirm the rigid binding interface between DII and DIII. This study shows overall structural flexibility of uPAR in the absence of uPA.
Collapse
Affiliation(s)
- Min Liu
- College of Biological Science and Engineering, Fuzhou University, China.,College of Life Science, Fujian Normal University, Fuzhou, China
| | - Lin Lin
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gunilla Høyer-Hansen
- Biotechnology Research Innovation Centre (BRIC), University of Copenhagen, Denmark.,Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Michael Ploug
- Biotechnology Research Innovation Centre (BRIC), University of Copenhagen, Denmark.,Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Hanlin Li
- College of Chemistry, Fuzhou University, China
| | | | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, China
| | | |
Collapse
|
20
|
Wei C, Li J, Adair BD, Zhu K, Cai J, Merchant M, Samelko B, Liao Z, Koh KH, Tardi NJ, Dande RR, Liu S, Ma J, Dibartolo S, Hägele S, Peev V, Hayek SS, Cimbaluk DJ, Tracy M, Klein J, Sever S, Shattil SJ, Arnaout MA, Reiser J. uPAR isoform 2 forms a dimer and induces severe kidney disease in mice. J Clin Invest 2019; 129:1946-1959. [PMID: 30730305 DOI: 10.1172/jci124793] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/05/2019] [Indexed: 12/12/2022] Open
Abstract
Soluble urokinase plasminogen activator receptor (suPAR) is an immune-derived circulating signaling molecule that has been implicated in chronic kidney disease, such as focal segmental glomerulosclerosis (FSGS). Typically, native uPAR (isoform 1) translates to a 3-domain protein capable of binding and activating integrins, yet the function of additional isoforms generated by alternative splicing is unknown. Here, we characterized mouse uPAR isoform 2 (msuPAR2), encoding domain I and nearly one-half of domain II, as a dimer in solution, as revealed by 3D electron microscopy structural analysis. In vivo, msuPAR2 transgenic mice exhibited signs of severe renal disease characteristic of FSGS with proteinuria, loss of kidney function, and glomerulosclerosis. Sequencing of the glomerular RNAs from msuPAR2-Tg mice revealed a differentially expressed gene signature that includes upregulation of the suPAR receptor Itgb3, encoding β3 integrin. Crossing msuPAR2-transgenic mice with 3 different integrin β3 deficiency models rescued msuPAR2-mediated kidney function. Further analyses indicated a central role for β3 integrin and c-Src in msuPAR2 signaling and in human FSGS kidney biopsies. Administration of Src inhibitors reduced proteinuria in msuPAR2-transgenic mice. In conclusion, msuPAR2 may play an important role in certain forms of scarring kidney disease.
Collapse
Affiliation(s)
- Changli Wei
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Jing Li
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Brian D Adair
- Harvard Medical School, Division of Nephrology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Ke Zhu
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Jian Cai
- University of Louisville, Louisville, Kentucky, USA
| | | | - Beata Samelko
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Zhongji Liao
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Kwi Hye Koh
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Nicholas J Tardi
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ranadheer R Dande
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Shuangxin Liu
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Jianchao Ma
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Salvatore Dibartolo
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Stefan Hägele
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Vasil Peev
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Salim S Hayek
- University of Michigan Frankel Cardiovascular Center, Ann Arbor, Michigan, USA
| | - David J Cimbaluk
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Melissa Tracy
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Jon Klein
- University of Louisville, Louisville, Kentucky, USA
| | - Sanja Sever
- Harvard Medical School, Division of Nephrology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | | | - M Amin Arnaout
- Harvard Medical School, Division of Nephrology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
21
|
Leth JM, Mertens HDT, Leth-Espensen KZ, Jørgensen TJD, Ploug M. Did evolution create a flexible ligand-binding cavity in the urokinase receptor through deletion of a plesiotypic disulfide bond? J Biol Chem 2019; 294:7403-7418. [PMID: 30894413 DOI: 10.1074/jbc.ra119.007847] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/10/2019] [Indexed: 11/06/2022] Open
Abstract
The urokinase receptor (uPAR) is a founding member of a small protein family with multiple Ly6/uPAR (LU) domains. The motif defining these LU domains contains five plesiotypic disulfide bonds stabilizing its prototypical three-fingered fold having three protruding loops. Notwithstanding the detailed knowledge on structure-function relationships in uPAR, one puzzling enigma remains unexplored. Why does the first LU domain in uPAR (DI) lack one of its consensus disulfide bonds, when the absence of this particular disulfide bond impairs the correct folding of other single LU domain-containing proteins? Here, using a variety of contemporary biophysical methods, we found that reintroducing the two missing half-cystines in uPAR DI caused the spontaneous formation of the corresponding consensus 7-8 LU domain disulfide bond. Importantly, constraints due to this cross-link impaired (i) the binding of uPAR to its primary ligand urokinase and (ii) the flexible interdomain assembly of the three LU domains in uPAR. We conclude that the evolutionary deletion of this particular disulfide bond in uPAR DI may have enabled the assembly of a high-affinity urokinase-binding cavity involving all three LU domains in uPAR. Of note, an analogous neofunctionalization occurred in snake venom α-neurotoxins upon loss of another pair of the plesiotypic LU domain half-cystines. In summary, elimination of the 7-8 consensus disulfide bond in the first LU domain of uPAR did have significant functional and structural consequences.
Collapse
Affiliation(s)
- Julie M Leth
- From the Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark.,the Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Haydyn D T Mertens
- the European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany, and
| | - Katrine Zinck Leth-Espensen
- From the Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark.,the Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark.,the Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5320 Odense M, Denmark
| | - Thomas J D Jørgensen
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5320 Odense M, Denmark
| | - Michael Ploug
- From the Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark, .,the Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
22
|
Chana-Muñoz A, Jendroszek A, Sønnichsen M, Wang T, Ploug M, Jensen JK, Andreasen PA, Bendixen C, Panitz F. Origin and diversification of the plasminogen activation system among chordates. BMC Evol Biol 2019; 19:27. [PMID: 30654737 PMCID: PMC6337849 DOI: 10.1186/s12862-019-1353-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 01/02/2019] [Indexed: 01/01/2023] Open
Abstract
Background The plasminogen (PLG) activation system is composed by a series of serine proteases, inhibitors and several binding proteins, which together control the temporal and spatial generation of the active serine protease plasmin. As this proteolytic system plays a central role in human physiology and pathophysiology it has been extensively studied in mammals. The serine proteases of this system are believed to originate from an ancestral gene by gene duplications followed by domain gains and deletions. However, the identification of ancestral forms in primitive chordates supporting these theories remains elusive. In addition, evolutionary studies of the non-proteolytic members of this system are scarce. Results Our phylogenetic analyses place lamprey PLG at the root of the vertebrate PLG-group, while lamprey PLG-related growth factors represent the ancestral forms of the jawed-vertebrate orthologues. Furthermore, we find that the earliest putative orthologue of the PLG activator group is the hyaluronan binding protein 2 (HABP2) gene found in lampreys. The prime plasminogen activators (tissue- and urokinase-type plasminogen activator, tPA and uPA) first occur in cartilaginous fish and phylogenetic analyses confirm that all orthologues identified compose monophyletic groups to their mammalian counterparts. Cartilaginous fishes exhibit the most ancient vitronectin of all vertebrates, while plasminogen activator inhibitor 1 (PAI-1) appears for the first time in cartilaginous fishes and is conserved in the rest of jawed vertebrate clades. PAI-2 appears for the first time in the common ancestor of reptiles and mammals, and represents the latest appearing plasminogen activator inhibitor. Finally, we noted that the urokinase-type plasminogen activator receptor (uPAR)—and three-LU domain containing genes in general—occurred later in evolution and was first detectable after coelacanths. Conclusions This study identifies several primitive orthologues of the mammalian plasminogen activation system. These ancestral forms provide clues to the origin and diversification of this enzyme system. Further, the discovery of several members—hitherto unknown in mammals—provide new perspectives on the evolution of this important enzyme system. Electronic supplementary material The online version of this article (10.1186/s12862-019-1353-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrés Chana-Muñoz
- Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| | - Agnieszka Jendroszek
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark.,Present address: Interdisciplinary Nanoscience Center - INANO-MBG, Aarhus University, 8000, Aarhus, Denmark
| | - Malene Sønnichsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark.,Present address: Interdisciplinary Nanoscience Center - INANO-MBG, Aarhus University, 8000, Aarhus, Denmark
| | - Tobias Wang
- Institute for Bioscience Zoophysiology, Aarhus University, 8000, Aarhus, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Jan K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Christian Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| | - Frank Panitz
- Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark.
| |
Collapse
|
23
|
Structure of the lipoprotein lipase-GPIHBP1 complex that mediates plasma triglyceride hydrolysis. Proc Natl Acad Sci U S A 2018; 116:1723-1732. [PMID: 30559189 PMCID: PMC6358717 DOI: 10.1073/pnas.1817984116] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lipoprotein lipase (LPL) is responsible for the intravascular processing of triglyceride-rich lipoproteins. The LPL within capillaries is bound to GPIHBP1, an endothelial cell protein with a three-fingered LU domain and an N-terminal intrinsically disordered acidic domain. Loss-of-function mutations in LPL or GPIHBP1 cause severe hypertriglyceridemia (chylomicronemia), but structures for LPL and GPIHBP1 have remained elusive. Inspired by our recent discovery that GPIHBP1's acidic domain preserves LPL structure and activity, we crystallized an LPL-GPIHBP1 complex and solved its structure. GPIHBP1's LU domain binds to LPL's C-terminal domain, largely by hydrophobic interactions. Analysis of electrostatic surfaces revealed that LPL contains a large basic patch spanning its N- and C-terminal domains. GPIHBP1's acidic domain was not defined in the electron density map but was positioned to interact with LPL's large basic patch, providing a likely explanation for how GPIHBP1 stabilizes LPL. The LPL-GPIHBP1 structure provides insights into mutations causing chylomicronemia.
Collapse
|
24
|
Molecular cloning and structural modelling of gamma-phospholipase A2 inhibitors from Bothrops atrox and Micrurus lemniscatus snakes. Int J Biol Macromol 2017; 103:525-532. [DOI: 10.1016/j.ijbiomac.2017.05.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/03/2017] [Accepted: 05/15/2017] [Indexed: 11/20/2022]
|
25
|
Skovgaard D, Persson M, Kjaer A. Urokinase Plasminogen Activator Receptor–PET with 68 Ga-NOTA-AE105. PET Clin 2017; 12:311-319. [DOI: 10.1016/j.cpet.2017.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Magnussen SN, Hadler-Olsen E, Costea DE, Berg E, Jacobsen CC, Mortensen B, Salo T, Martinez-Zubiaurre I, Winberg JO, Uhlin-Hansen L, Svineng G. Cleavage of the urokinase receptor (uPAR) on oral cancer cells: regulation by transforming growth factor - β1 (TGF-β1) and potential effects on migration and invasion. BMC Cancer 2017; 17:350. [PMID: 28526008 PMCID: PMC5438506 DOI: 10.1186/s12885-017-3349-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Urokinase plasminogen activator (uPA) receptor (uPAR) is up-regulated at the invasive tumour front of human oral squamous cell carcinoma (OSCC), indicating a role for uPAR in tumour progression. We previously observed elevated expression of uPAR at the tumour-stroma interface in a mouse model for OSCC, which was associated with increased proteolytic activity. The tumour microenvironment regulated uPAR expression, as well as its glycosylation and cleavage. Both full-length- and cleaved uPAR (uPAR (II-III)) are involved in highly regulated processes such as cell signalling, proliferation, migration, stem cell mobilization and invasion. The aim of the current study was to analyse tumour associated factors and their effect on uPAR cleavage, and the potential implications for cell proliferation, migration and invasion. METHODS Mouse uPAR was stably overexpressed in the mouse OSCC cell line AT84. The ratio of full-length versus cleaved uPAR as analysed by Western blotting and its regulation was assessed by addition of different protease inhibitors and transforming growth factor - β1 (TGF-β1). The role of uPAR cleavage in cell proliferation and migration was analysed using real-time cell analysis and invasion was assessed using the myoma invasion model. RESULTS We found that when uPAR was overexpressed a proportion of the receptor was cleaved, thus the cells presented both full-length uPAR and uPAR (II-III). Cleavage was mainly performed by serine proteases and urokinase plasminogen activator (uPA) in particular. When the OSCC cells were stimulated with TGF-β1, the production of the uPA inhibitor PAI-1 was increased, resulting in a reduction of uPAR cleavage. By inhibiting cleavage of uPAR, cell migration was reduced, and by inhibiting uPA activity, invasion was reduced. We could also show that medium containing soluble uPAR (suPAR), and cleaved soluble uPAR (suPAR (II-III)), induced migration in OSCC cells with low endogenous levels of uPAR. CONCLUSIONS These results show that soluble factors in the tumour microenvironment, such as TGF-β1, PAI-1 and uPA, can influence the ratio of full length and uPAR (II-III) and thereby potentially effect cell migration and invasion. Resolving how uPAR cleavage is controlled is therefore vital for understanding how OSCC progresses and potentially provides new targets for therapy.
Collapse
Affiliation(s)
- Synnove Norvoll Magnussen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway.
| | - Elin Hadler-Olsen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway.,Diagnostic Clinic - Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Daniela Elena Costea
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Eli Berg
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Cristiane Cavalcanti Jacobsen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Bente Mortensen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Tuula Salo
- Cancer and Translational Research Medicine Unit, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oral and Maxillofacial diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital Helsinki, Helsinki, Finland.,Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, SP-13414-903, Brazil
| | - Inigo Martinez-Zubiaurre
- Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Jan-Olof Winberg
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Lars Uhlin-Hansen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway.,Diagnostic Clinic - Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Gunbjorg Svineng
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| |
Collapse
|
27
|
Improved positron emission tomography imaging of glioblastoma cancer using novel 68Ga-labeled peptides targeting the urokinase-type plasminogen activator receptor (uPAR). Amino Acids 2017; 49:1089-1100. [PMID: 28316028 DOI: 10.1007/s00726-017-2407-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 02/28/2017] [Indexed: 10/19/2022]
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is overexpressed in several cancers including glioblastoma (GBM) and is an established biomarker for metastatic potential. The uPAR-targeting peptide AE105-NH2 (Ac-Asp-Cha-Phe-(D)Ser-(D)Arg-Tyr-Leu-Trp-Ser-CONH2) is a promising candidate for non-invasive positron emission tomography (PET) imaging of uPAR. Despite the optimal physical properties of 68Ga for peptide-based PET imaging, low tumor uptakes have previously been reported using 68Ga-labeled AE105-NH2-based tracers. In an attempt to optimize the tumor uptake, we developed three novel tracers with alkane (AOC) and polyethylene glycol (PEG) spacers inserted between AE105-NH2 and the radio metal chelator 2-(4,7-bis(carboxymethyl)-1,4,7-triazonan-1-yl)pentanedioic acid (NODAGA). The resulting tracers NODAGA-AOC-AE105-NH2, NODAGA-PEG3-AE105-NH2 and NODAGA-PEG8-AE105-NH2 were compared to the non-spacer version, NODAGA-AE105-NH2. Following radiolabeling with 68Ga, we evaluated the in vitro and in vivo performance in mice bearing subcutaneous tumors derived from the uPAR-expressing human GBM cell line U87MG. In vivo PET/CT imaging showed that introduction of PEG spacers more than doubled the in vivo tumor uptake after 1 h compared with the non-spacer version: 68Ga-NODAGA-PEG3-AE105-NH2 (2.08 ± 0.37%ID/g) and 68Ga-NODAGA-PEG8-AE105-NH2 (2.01 ± 0.22%ID/g) vs. 68Ga-NODAGA-AE105-NH2 (0.70 ± 0.40%ID/g), p < 0.05. In addition, 68Ga-NODAGA-PEG8-AE105-NH2 showed significantly higher (p < 0.05) tumor-to-background contrast (3.68 ± 0.23) than the other tracers. The specific tumor-targeting property of 68Ga-NODAGA-PEG8-AE105-NH2 was established by effectively blocking the tumor uptake with co-injection of unlabeled AE105-NH2 (1 h: unblocked 2.01 ± 0.22%ID/g vs. blocked 1.24 ± 0.09%ID/g, p < 0.05). Ex vivo biodistribution confirmed the improved tumor uptakes of the PEG-modified tracers. 68Ga-NODAGA-PEG8-AE105-NH2 is thus a promising candidate for human translation for PET imaging of GBM.
Collapse
|
28
|
Liu D, Xu D, Liu M, Knabe WE, Yuan C, Zhou D, Huang M, Meroueh SO. Small Molecules Engage Hot Spots through Cooperative Binding To Inhibit a Tight Protein-Protein Interaction. Biochemistry 2017; 56:1768-1784. [PMID: 28186725 DOI: 10.1021/acs.biochem.6b01039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-protein interactions drive every aspect of cell signaling, yet only a few small-molecule inhibitors of these interactions exist. Despite our ability to identify critical residues known as hot spots, little is known about how to effectively engage them to disrupt protein-protein interactions. Here, we take advantage of the ease of preparation and stability of pyrrolinone 1, a small-molecule inhibitor of the tight interaction between the urokinase receptor (uPAR) and its binding partner, the urokinase-type plasminogen activator uPA, to synthesize more than 40 derivatives and explore their effect on the protein-protein interaction. We report the crystal structure of uPAR bound to previously discovered pyrazole 3 and to pyrrolinone 12. While both 3 and 12 bind to uPAR and compete with a fluorescently labeled peptide probe, only 12 and its derivatives inhibit the full uPAR·uPA interaction. Compounds 3 and 12 mimic and engage different hot-spot residues on uPA and uPAR, respectively. Interestingly, 12 is involved in a π-cation interaction with Arg-53, which is not considered a hot spot. Explicit-solvent molecular dynamics simulations reveal that 3 and 12 exhibit dramatically different correlations of motion with residues on uPAR. Free energy calculations for the wild-type and mutant uPAR bound to uPA or 12 show that Arg-53 interacts with uPA or with 12 in a highly cooperative manner, thereby altering the contributions of hot spots to uPAR binding. The direct engagement of peripheral residues not considered hot spots through π-cation or salt-bridge interactions could provide new opportunities for enhanced small-molecule engagement of hot spots to disrupt challenging protein-protein interactions.
Collapse
Affiliation(s)
- Degang Liu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| | - David Xu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States.,Department of BioHealth Informatics, Indiana University School of Informatics and Computing , Indianapolis, Indiana 46202, United States
| | - Min Liu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science , Gulou District, Fuzhou, Fujian 3500002, China
| | - William Eric Knabe
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| | - Cai Yuan
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science , Gulou District, Fuzhou, Fujian 3500002, China
| | - Donghui Zhou
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| | - Mingdong Huang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science , Gulou District, Fuzhou, Fujian 3500002, China
| | - Samy O Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine , Indianapolis, Indiana 46202, United States
| |
Collapse
|
29
|
Zhou X, Xu M, Huang H, Mazar A, Iqbal Z, Yuan C, Huang M. An ELISA method detecting the active form of suPAR. Talanta 2016; 160:205-210. [DOI: 10.1016/j.talanta.2016.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/22/2016] [Accepted: 07/02/2016] [Indexed: 10/21/2022]
|
30
|
Mysling S, Kristensen KK, Larsson M, Beigneux AP, Gårdsvoll H, Fong LG, Bensadouen A, Jørgensen TJ, Young SG, Ploug M. The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain. eLife 2016; 5:e12095. [PMID: 26725083 PMCID: PMC4755760 DOI: 10.7554/elife.12095] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/02/2016] [Indexed: 12/19/2022] Open
Abstract
GPIHBP1 is a glycolipid-anchored membrane protein of capillary endothelial cells that binds lipoprotein lipase (LPL) within the interstitial space and shuttles it to the capillary lumen. The LPL•GPIHBP1 complex is responsible for margination of triglyceride-rich lipoproteins along capillaries and their lipolytic processing. The current work conceptualizes a model for the GPIHBP1•LPL interaction based on biophysical measurements with hydrogen-deuterium exchange/mass spectrometry, surface plasmon resonance, and zero-length cross-linking. According to this model, GPIHBP1 comprises two functionally distinct domains: (1) an intrinsically disordered acidic N-terminal domain; and (2) a folded C-terminal domain that tethers GPIHBP1 to the cell membrane by glycosylphosphatidylinositol. We demonstrate that these domains serve different roles in regulating the kinetics of LPL binding. Importantly, the acidic domain stabilizes LPL catalytic activity by mitigating the global unfolding of LPL's catalytic domain. This study provides a conceptual framework for understanding intravascular lipolysis and GPIHBP1 and LPL mutations causing familial chylomicronemia. DOI:http://dx.doi.org/10.7554/eLife.12095.001 Fat is an important part of our diet. The intestines absorb fats and package them into particles called lipoproteins. After reaching the bloodstream, the fat molecules (lipids) in the lipoproteins are broken down by an enzyme called lipoprotein lipase (LPL), which is located along the surface of small blood vessels. This releases nutrients that can be used by vital tissues – mainly the heart, skeletal muscle, and adipose tissues. LPL is produced by muscle and adipose tissue, but it is quickly swept up by a protein called GPIHBP1 and shuttled to its site of action inside the blood vessels. Mutations that alter the structure of LPL or GPIHBP1 can prevent the breakdown of lipids, resulting in high levels of lipids in the blood. This can lead to inflammation in the pancreas and also increases the risk of heart attacks and strokes. Many earlier studies have examined the properties of LPL, but our understanding of GPIHBP1 has been limited, mainly because it has been difficult to purify GPIHBP1 for analysis. Using genetically altered insect cells, Mysling et al. were able to purify two different forms of GPIHBP1 – a full-length version and a shorter version that lacked a small section at the end of the molecule known as the acidic domain. This revealed that the opposite end of the molecule – called the carboxyl-terminal domain – is primarily responsible for binding LPL and anchoring it inside blood vessels. Once LPL is bound to GPIHBP1, the acidic domain of GPIHBP1 helps to stabilize LPL. If GPIHBP1’s acidic domain is missing then LPL is more susceptible to losing its structure, rendering it incapable of breaking down the lipids in the blood. Mysling et al. describe a new model for how LPL and GPIHBP1 interact that explains how specific mutations in the genes that encode these proteins interfere with the delivery of LPL to small blood vessels. In the future, this could help researchers to develop new strategies to treat people with high levels of lipids in their blood. DOI:http://dx.doi.org/10.7554/eLife.12095.002
Collapse
Affiliation(s)
- Simon Mysling
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Kristian Kølby Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Larsson
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Anne P Beigneux
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Henrik Gårdsvoll
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - André Bensadouen
- Division of Nutritional Science, Cornell University, Ithaca, United States
| | - Thomas Jd Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States.,Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Kasten BB, Ma X, Cheng K, Bu L, Slocumb WS, Hayes TR, Trabue S, Cheng Z, Benny PD. Isothiocyanate-Functionalized Bifunctional Chelates and fac-[M(I)(CO)3](+) (M = Re, (99m)Tc) Complexes for Targeting uPAR in Prostate Cancer. Bioconjug Chem 2015; 27:130-42. [PMID: 26603218 DOI: 10.1021/acs.bioconjchem.5b00531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Developing new strategies to rapidly incorporate the fac-[M(I)(CO)3](+) (M = Re, (99m)Tc) core into biological targeting vectors in radiopharmaceuticals continues to expand as molecules become more complex and as efforts to minimize nonspecific binding increase. This work examines a novel isothiocyanate-functionalized bifunctional chelate based on 2,2'-dipicolylamine (DPA) specifically designed for complexing the fac-[M(I)(CO)3](+) core. Two strategies (postlabeling and prelabeling) were explored using the isothiocyanate-functionalized DPA to determine the effectiveness of assembly on the overall yield and purity of the complex with amine containing biomolecules. A model amino acid (lysine) examined (1) amine conjugation of isothiocyanate-functionalized DPA followed by complexation with fac-[M(I)(CO)3](+) (postlabeling) and (2) complexation of fac-[M(I)(CO)3](+) with isothiocyanate-functionalized DPA followed by amine conjugation (prelabeling). Conducted with stable Re and radioactive (99m)Tc analogs, both strategies formed the product in good to excellent yields under macroscopic and radiotracer concentrations. A synthetic peptide (AE105) which targets an emerging biomarker in CaP prognosis, urokinase-type plasminogen activator receptor (uPAR), was also explored using the isothiocyanate-functionalized DPA strategy. In vitro PC-3 (uPAR+) cell uptake assays with the (99m)Tc-labeled peptide (8a) showed 4.2 ± 0.5% uptake at 4 h. In a murine model bearing PC-3 tumor xenografts, in vivo biodistribution of 8a led to favorable tumor uptake (3.7 ± 0.7% ID/g) at 4 h p.i. with relatively low accumulation (<2% ID/g) in normal organs not associated with normal peptide excretion. These results illustrate the promise of the isothiocyanate-functionalized approach for labeling amine containing biological targeting vectors with fac-[M(I)(CO)3](+).
Collapse
Affiliation(s)
| | - Xiaowei Ma
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University , Xi'an, Shaanxi 710032, China.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Bio-X Program and Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California 94305, United States
| | - Kai Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Bio-X Program and Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California 94305, United States
| | - Lihong Bu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Bio-X Program and Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California 94305, United States
| | | | | | - Steven Trabue
- United States Department of Agriculture, National Soil Tilth Laboratory , Ames, Iowa 50011, United States
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Bio-X Program and Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California 94305, United States
| | | |
Collapse
|
32
|
Hirata K, Tamaki N. uPAR as a Glioma Imaging Target. J Nucl Med 2015; 57:169-70. [PMID: 26429953 DOI: 10.2967/jnumed.115.166231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 11/16/2022] Open
Affiliation(s)
- Kenji Hirata
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nagara Tamaki
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
33
|
Persson M, Nedergaard MK, Brandt-Larsen M, Skovgaard D, Jørgensen JT, Michaelsen SR, Madsen J, Lassen U, Poulsen HS, Kjaer A. Urokinase-Type Plasminogen Activator Receptor as a Potential PET Biomarker in Glioblastoma. J Nucl Med 2015; 57:272-8. [PMID: 26429955 DOI: 10.2967/jnumed.115.161703] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/26/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Glioblastoma is one of the most malignant types of human cancer, and the prognosis is poor. The development and validation of novel molecular imaging biomarkers has the potential to improve tumor detection, grading, risk stratification, and treatment monitoring of gliomas. The aim of this study was to explore the potential of PET imaging of the urokinase-type plasminogen activator receptor (uPAR) in glioblastoma. METHODS The uPAR messenger RNA expression of tumors from 19 glioblastoma patients was analyzed, and a cell culture derived from one of these patients was used to establish an orthotopic xenograft model of glioblastoma. Tumor growth was monitored using bioluminescence imaging. Five to six weeks after inoculation, all mice were scanned with small-animal PET/CT using two new uPAR PET ligands ((64)Cu-NOTA-AE105 and (68)Ga-NOTA-AE105) and, for comparison, O-(2-(18)F-fluoroethyl)-l-tyrosine ((18)F-FET). One MRI scan was obtained for each mouse to confirm tumor location. The uPAR specificity of (64)Cu-NOTA-AE105 was confirmed by alignment of hematoxylin- and eosin-stained and uPAR immunohistochemistry-stained slides of the brain with the activity distribution as determined using autoradiography. RESULTS uPAR expression was found in all 19 glioblastoma patient tumors, and high expression of uPAR correlated with decreased overall survival (P = 0.04). Radiolabeling of NOTA-AE105 with (64)Cu and (68)Ga was straightforward, resulting in a specific activity of approximately 20 GBq/μmol and a radiochemical purity of more than 98% for (64)Cu-NOTA-AE105 and more than 97% for (68)Ga-NOTA-AE105. High image contrast resulting in clear tumor delineation was found for both (68)Ga-NOTA-AE105 and (64)Cu-NOTA-AE105. Absolute uptake in tumor was higher for (18)F-FET (3.5 ± 0.8 percentage injected dose [%ID]/g) than for (64)Cu-NOTA-AE105 (1.2 ± 0.4 %ID/g) or (68)Ga-NOTA-AE105 (0.4 ± 0.1 %ID/g). A similar pattern was observed in background brain tissue, where uptake was 1.9 ± 0.1 %ID/g for (18)F-fluorothymidine, compared with 0.05 ± 0.01 %ID/g for (68)Ga-NOTA-AE105 and 0.11 ± 0.02 %ID/g for (64)Cu-NOTA-AE105. The result was a significantly higher tumor-to-background ratio for both (68)Ga-NOTA-AE105 (7.6 ± 2.1, P < 0.05) and (64)Cu-NOTA-AE105 (10.6 ± 2.3, P < 0.01) than for (18)F-FET PET (1.8 ± 0.3). Autoradiography of brain slides confirmed that the accumulation of (64)Cu-NOTA-AE105 corresponded well with uPAR-positive cancer cells. CONCLUSION On the basis of our translational study, uPAR PET may be a highly promising imaging biomarker for glioblastoma. Further clinical exploration of uPAR PET in glioblastoma is therefore justified.
Collapse
Affiliation(s)
- Morten Persson
- Department of Clinical Physiology, Nuclear Medicine, and PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Mette K Nedergaard
- Department of Clinical Physiology, Nuclear Medicine, and PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark Department of Radiation Biology, Finsen Center, Rigshospitalet, Copenhagen, Denmark; and
| | - Malene Brandt-Larsen
- Department of Clinical Physiology, Nuclear Medicine, and PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Dorthe Skovgaard
- Department of Clinical Physiology, Nuclear Medicine, and PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Jesper T Jørgensen
- Department of Clinical Physiology, Nuclear Medicine, and PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Signe R Michaelsen
- Department of Radiation Biology, Finsen Center, Rigshospitalet, Copenhagen, Denmark; and
| | - Jacob Madsen
- Department of Clinical Physiology, Nuclear Medicine, and PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Lassen
- Department of Oncology, Finsen Center, Rigshospitalet, Copenhagen, Denmark
| | - Hans S Poulsen
- Department of Radiation Biology, Finsen Center, Rigshospitalet, Copenhagen, Denmark; and
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine, and PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Zhao B, Gandhi S, Yuan C, Luo Z, Li R, Gårdsvoll H, de Lorenzi V, Sidenius N, Huang M, Ploug M. Mapping the topographic epitope landscape on the urokinase plasminogen activator receptor (uPAR) by surface plasmon resonance and X-ray crystallography. Data Brief 2015; 5:107-13. [PMID: 26504891 PMCID: PMC4576398 DOI: 10.1016/j.dib.2015.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/14/2015] [Accepted: 08/25/2015] [Indexed: 01/06/2023] Open
Abstract
The urokinase-type plasminogen activator receptor (uPAR or CD87) is a glycolipid-anchored membrane protein often expressed in the microenvironment of invasive solid cancers and high levels are generally associated with poor patient prognosis (Kriegbaum et al., 2011 [1]). uPAR is organized as a dynamic modular protein structure composed of three homologous Ly6/uPAR domains (LU).This internally flexible protein structure of uPAR enables an allosteric regulation of the interactions with its two principal ligands: the serine protease urokinase-type plasminogen activator (uPA) and the provisional matrix protein vitronectin (Vn) (Mertens et al., 2012; Gårdsvoll et al., 2011; Madsen et al., 2007 [2–4]). The data presented here relates to the non-covalent trapping of one of these biologically relevant uPAR-conformations by a novel class of monoclonal antibodies (Zhao et al., 2015 [5]) and to the general mapping of the topographic epitope landscape on uPAR. The methods required to achieve these data include: (1) recombinant expression and purification of a uPAR-hybrid protein trapped in the desired conformation [patent; WO 2013/020898 A12013]; (2) developing monoclonal antibodies with unique specificities using this protein as antigen; (3) mapping the functional epitope on uPAR for these mAbs by surface plasmon resonance with a complete library of purified single-site uPAR mutants (Zhao et al., 2015; Gårdsvoll et al., 2006 [5,6]); and finally (4) solving the three-dimensional structures for one of these mAbs by X-ray crystallography alone and in complex with uPAR [deposited in the PDB database as 4QTH and 4QTI, respectively].
Collapse
Affiliation(s)
- Baoyu Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China ; Danish-Chinese Centre for Proteases and Cancer
| | - Sonu Gandhi
- FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Cai Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China ; Danish-Chinese Centre for Proteases and Cancer
| | - Zhipu Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China ; Danish-Chinese Centre for Proteases and Cancer
| | - Rui Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China ; Biotech Research and Innovation Centre (BRIC), Copenhagen Biocenter, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Henrik Gårdsvoll
- Finsen Laboratory, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark ; Biotech Research and Innovation Centre (BRIC), Copenhagen Biocenter, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark ; Danish-Chinese Centre for Proteases and Cancer
| | | | - Nicolai Sidenius
- FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Mingdong Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China ; Danish-Chinese Centre for Proteases and Cancer
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark ; Biotech Research and Innovation Centre (BRIC), Copenhagen Biocenter, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark ; Danish-Chinese Centre for Proteases and Cancer
| |
Collapse
|
35
|
A drug carrier targeting murine uPAR for photodynamic therapy and tumor imaging. Acta Biomater 2015; 23:116-126. [PMID: 26004218 DOI: 10.1016/j.actbio.2015.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/12/2015] [Accepted: 05/17/2015] [Indexed: 12/20/2022]
Abstract
Photodynamic therapy (PDT) has been used as an effective therapeutical modality for tumors. In PDT, a photosensitizer was used to capture the light of specific wavelength, leading to the generation of reactive oxygen species and cytotoxicity surrounding the photosensitizer. Modifications of photosensitizers to enhance tumor specificity are common approaches to increase the efficacy and reduce the side effects of PDT. Previously, we developed a human serum albumin (HSA)-based drug carrier fused with the human amino-terminal fragment (hATF), which binds to a tumor surface marker (urokinase receptor, uPAR). However, hATF-HSA binds to murine uPAR much weaker (79-fold) than to human uPAR, and is not optimal for applications on murine tumor models. In this study, we developed a murine version of the drug carrier (mATF-HSA). A photosensitizer (mono-substituted β-carboxy phthalocyanine zinc, CPZ) was loaded into this carrier, giving a rather stable macromolecule (mATF-HSA:CPZ) that was shown to bind to murine uPAR in vitro. In addition, we evaluated both the photodynamic therapy efficacy and tumor retention capability of the macromolecule (at a dose of 0.05mg CPZ/kg mouse body weight) on murine hepatoma-22 (H22) tumor bearing mouse model. mATF-HSA:CPZ showed more accumulation in tumors compared to its human counterpart (hATF-HSA:CPZ) measured by quantitative fluorescence molecular tomography (FMT). Besides, mATF-HSA:CPZ exhibited a higher tumor killing efficacy than hATF-HSA:CPZ. Together, the macromolecule mATF-HSA is a promising tumor-specific drug carrier on murine tumor models and is an useful tool to study tumor biology on murine tumor models.
Collapse
|
36
|
Liu D, Zhou D, Wang B, Knabe WE, Meroueh SO. A new class of orthosteric uPAR·uPA small-molecule antagonists are allosteric inhibitors of the uPAR·vitronectin interaction. ACS Chem Biol 2015; 10:1521-34. [PMID: 25671694 DOI: 10.1021/cb500832q] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The urokinase receptor (uPAR) is a GPI-anchored cell surface receptor that is at the center of an intricate network of protein-protein interactions. Its immediate binding partners are the serine proteinase urokinase (uPA), and vitronectin (VTN), a component of the extracellular matrix. uPA and VTN bind at distinct sites on uPAR to promote extracellular matrix degradation and integrin signaling, respectively. Here, we report the discovery of a new class of pyrrolone small-molecule inhibitors of the tight ∼1 nM uPAR·uPA protein-protein interaction. These compounds were designed to bind to the uPA pocket on uPAR. The highest affinity compound, namely 7, displaced a fluorescently labeled α-helical peptide (AE147-FAM) with an inhibition constant Ki of 0.7 μM and inhibited the tight uPAR·uPAATF interaction with an IC50 of 18 μM. Biophysical studies with surface plasmon resonance showed that VTN binding is highly dependent on uPA. This cooperative binding was confirmed as 7, which binds at the uPAR·uPA interface, also inhibited the distal VTN·uPAR interaction. In cell culture, 7 blocked the uPAR·uPA interaction in uPAR-expressing human embryonic kidney (HEK-293) cells and impaired cell adhesion to VTN, a process that is mediated by integrins. As a result, 7 inhibited integrin signaling in MDA-MB-231 cancer cells as evidenced by a decrease in focal adhesion kinase (FAK) phosphorylation and Rac1 GTPase activation. Consistent with these results, 7 blocked breast MDA-MB-231 cancer cell invasion with IC50 values similar to those observed in ELISA and surface plasmon resonance competition studies. Explicit-solvent molecular dynamics simulations show that the cooperativity between uPA and VTN is attributed to stabilization of uPAR motion by uPA. In addition, free energy calculations revealed that uPA stabilizes the VTNSMB·uPAR interaction through more favorable electrostatics and entropy. Disruption of the uPAR·VTNSMB interaction by 7 is consistent with the cooperative binding to uPAR by uPA and VTN. Interestingly, the VTNSMB·uPAR interaction was less favorable in the VTNSMB·uPAR·7 complex suggesting potential cooperativity between 7 and VTN. Compound 7 provides an excellent starting point for the development of more potent derivatives to explore uPAR biology.
Collapse
Affiliation(s)
| | | | - Bo Wang
- Department
of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202, United States
| | | | - Samy O. Meroueh
- Department
of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202, United States
| |
Collapse
|
37
|
Thurison T, Almholt K, Gårdsvoll H, Ploug M, Høyer-Hansen G, Lund IK. Urokinase receptor cleavage correlates with tumor volume in a transgenic mouse model of breast cancer. Mol Carcinog 2015; 55:717-31. [DOI: 10.1002/mc.22316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/11/2015] [Accepted: 02/21/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Tine Thurison
- The Finsen Laboratory; Copenhagen University Hospital; Copenhagen Denmark
- Biotech Research & Innovation Centre (BRIC); University of Copenhagen; Copenhagen Denmark
| | - Kasper Almholt
- The Finsen Laboratory; Copenhagen University Hospital; Copenhagen Denmark
- Global Research; Novo Nordisk A/S; Måløv Denmark
| | - Henrik Gårdsvoll
- The Finsen Laboratory; Copenhagen University Hospital; Copenhagen Denmark
- Biotech Research & Innovation Centre (BRIC); University of Copenhagen; Copenhagen Denmark
| | - Michael Ploug
- The Finsen Laboratory; Copenhagen University Hospital; Copenhagen Denmark
- Biotech Research & Innovation Centre (BRIC); University of Copenhagen; Copenhagen Denmark
| | - Gunilla Høyer-Hansen
- The Finsen Laboratory; Copenhagen University Hospital; Copenhagen Denmark
- Biotech Research & Innovation Centre (BRIC); University of Copenhagen; Copenhagen Denmark
| | - Ida K. Lund
- The Finsen Laboratory; Copenhagen University Hospital; Copenhagen Denmark
- Biotech Research & Innovation Centre (BRIC); University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
38
|
Dupont DM, Thuesen CK, Bøtkjær KA, Behrens MA, Dam K, Sørensen HP, Pedersen JS, Ploug M, Jensen JK, Andreasen PA. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites. PLoS One 2015; 10:e0119207. [PMID: 25793507 PMCID: PMC4368798 DOI: 10.1371/journal.pone.0119207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/11/2015] [Indexed: 11/28/2022] Open
Abstract
Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126) with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12) binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site.
Collapse
Affiliation(s)
- Daniel M. Dupont
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Aarhus, Denmark
- * E-mail:
| | - Cathrine K. Thuesen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Aarhus, Denmark
| | - Kenneth A. Bøtkjær
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Aarhus, Denmark
| | - Manja A. Behrens
- iNANO Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Aarhus, Denmark
- Department of Chemistry, Lund University, Lund, Sweden
| | - Karen Dam
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Hans P. Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Aarhus, Denmark
| | - Jan S. Pedersen
- iNANO Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Michael Ploug
- Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Aarhus, Denmark
- Finsen Laboratory, Rigshospitalet and Biotech Research & Innovation Centre, Copenhagen, Denmark
| | - Jan K. Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Aarhus, Denmark
| | - Peter A. Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Aarhus, Denmark
| |
Collapse
|
39
|
Stabilizing a Flexible Interdomain Hinge Region Harboring the SMB Binding Site Drives uPAR into Its Closed Conformation. J Mol Biol 2015; 427:1389-1403. [DOI: 10.1016/j.jmb.2015.01.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/02/2015] [Accepted: 01/27/2015] [Indexed: 01/04/2023]
|
40
|
Beigneux AP, Fong LG, Bensadoun A, Davies BSJ, Oberer M, Gårdsvoll H, Ploug M, Young SG. GPIHBP1 missense mutations often cause multimerization of GPIHBP1 and thereby prevent lipoprotein lipase binding. Circ Res 2014; 116:624-32. [PMID: 25387803 DOI: 10.1161/circresaha.116.305085] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
RATIONALE GPIHBP1, a GPI-anchored protein of capillary endothelial cells, binds lipoprotein lipase (LPL) in the subendothelial spaces and shuttles it to the capillary lumen. GPIHBP1 missense mutations that interfere with LPL binding cause familial chylomicronemia. OBJECTIVE We sought to understand mechanisms by which GPIHBP1 mutations prevent LPL binding and lead to chylomicronemia. METHODS AND RESULTS We expressed mutant forms of GPIHBP1 in Chinese hamster ovary cells, rat and human endothelial cells, and Drosophila S2 cells. In each expression system, mutation of cysteines in GPIHBP1's Ly6 domain (including mutants identified in patients with chylomicronemia) led to the formation of disulfide-linked dimers and multimers. GPIHBP1 dimerization/multimerization was not unique to cysteine mutations; mutations in other amino acid residues, including several associated with chylomicronemia, also led to protein dimerization/multimerization. The loss of GPIHBP1 monomers is relevant to the pathogenesis of chylomicronemia because only GPIHBP1 monomers-and not dimers or multimers-are capable of binding LPL. One GPIHBP1 mutant, GPIHBP1-W109S, had distinctive properties. GPIHBP1-W109S lacked the ability to bind LPL but had a reduced propensity for forming dimers or multimers, suggesting that W109 might play a more direct role in binding LPL. In support of that idea, replacing W109 with any of 8 other amino acids abolished LPL binding-and often did so without promoting the formation of dimers and multimers. CONCLUSIONS Many amino acid substitutions in GPIHBP1's Ly6 domain that abolish LPL binding lead to protein dimerization/multimerization. Dimerization/multimerization is relevant to disease pathogenesis, given that only GPIHBP1 monomers are capable of binding LPL.
Collapse
Affiliation(s)
- Anne P Beigneux
- From the Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (A.P.B., L.G.F., S.G.Y.); Division of Nutritional Science, Cornell University, Ithaca, NY (A.B.); Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City (B.S.J.D.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (M.O.); Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark (H.G., M.P.); and Molecular Biology Institute (S.G.Y.), Department of Human Genetics, David Geffen School of Medicine (S.G.Y.), University of California at Los Angeles.
| | - Loren G Fong
- From the Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (A.P.B., L.G.F., S.G.Y.); Division of Nutritional Science, Cornell University, Ithaca, NY (A.B.); Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City (B.S.J.D.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (M.O.); Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark (H.G., M.P.); and Molecular Biology Institute (S.G.Y.), Department of Human Genetics, David Geffen School of Medicine (S.G.Y.), University of California at Los Angeles
| | - André Bensadoun
- From the Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (A.P.B., L.G.F., S.G.Y.); Division of Nutritional Science, Cornell University, Ithaca, NY (A.B.); Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City (B.S.J.D.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (M.O.); Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark (H.G., M.P.); and Molecular Biology Institute (S.G.Y.), Department of Human Genetics, David Geffen School of Medicine (S.G.Y.), University of California at Los Angeles
| | - Brandon S J Davies
- From the Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (A.P.B., L.G.F., S.G.Y.); Division of Nutritional Science, Cornell University, Ithaca, NY (A.B.); Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City (B.S.J.D.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (M.O.); Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark (H.G., M.P.); and Molecular Biology Institute (S.G.Y.), Department of Human Genetics, David Geffen School of Medicine (S.G.Y.), University of California at Los Angeles
| | - Monika Oberer
- From the Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (A.P.B., L.G.F., S.G.Y.); Division of Nutritional Science, Cornell University, Ithaca, NY (A.B.); Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City (B.S.J.D.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (M.O.); Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark (H.G., M.P.); and Molecular Biology Institute (S.G.Y.), Department of Human Genetics, David Geffen School of Medicine (S.G.Y.), University of California at Los Angeles
| | - Henrik Gårdsvoll
- From the Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (A.P.B., L.G.F., S.G.Y.); Division of Nutritional Science, Cornell University, Ithaca, NY (A.B.); Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City (B.S.J.D.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (M.O.); Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark (H.G., M.P.); and Molecular Biology Institute (S.G.Y.), Department of Human Genetics, David Geffen School of Medicine (S.G.Y.), University of California at Los Angeles
| | - Michael Ploug
- From the Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (A.P.B., L.G.F., S.G.Y.); Division of Nutritional Science, Cornell University, Ithaca, NY (A.B.); Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City (B.S.J.D.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (M.O.); Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark (H.G., M.P.); and Molecular Biology Institute (S.G.Y.), Department of Human Genetics, David Geffen School of Medicine (S.G.Y.), University of California at Los Angeles
| | - Stephen G Young
- From the Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles (A.P.B., L.G.F., S.G.Y.); Division of Nutritional Science, Cornell University, Ithaca, NY (A.B.); Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City (B.S.J.D.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (M.O.); Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark (H.G., M.P.); and Molecular Biology Institute (S.G.Y.), Department of Human Genetics, David Geffen School of Medicine (S.G.Y.), University of California at Los Angeles
| |
Collapse
|
41
|
Zinc phthalocyanine conjugated with the amino-terminal fragment of urokinase for tumor-targeting photodynamic therapy. Acta Biomater 2014; 10:4257-68. [PMID: 24969665 DOI: 10.1016/j.actbio.2014.06.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy (PDT) has attracted much interest for the treatment of cancer due to the increased incidence of multidrug resistance and systemic toxicity in conventional chemotherapy. Phthalocyanine (Pc) is one of main classes of photosensitizers for PDT and possesses optimal photophysical and photochemical properties. A higher specificity can ideally be achieved when Pcs are targeted towards tumor-specific receptors, which may also facilitate specific drug delivery. Herein, we develop a simple and unique strategy to prepare a hydrophilic tumor-targeting photosensitizer ATF-ZnPc by covalently coupling zinc phthalocyanine (ZnPc) to the amino-terminal fragment (ATF) of urokinase-type plasminogen activator (uPA), a fragment responsible for uPA receptor (uPAR, a biomarker overexpressed in cancer cells), through the carboxyl groups of ATF. We demonstrate the high efficacy of this tumor-targeting PDT agent for the inhibition of tumor growth both in vitro and in vivo. Our in vivo optical imaging results using H22 tumor-bearing mice show clearly the selective accumulation of ATF-ZnPc in tumor region, thereby revealing the great potential of ATF-ZnPc for clinical applications such as cancer detection and guidance of tumor resection in addition to photodynamic treatment.
Collapse
|
42
|
Magnussen S, Hadler-Olsen E, Latysheva N, Pirila E, Steigen SE, Hanes R, Salo T, Winberg JO, Uhlin-Hansen L, Svineng G. Tumour microenvironments induce expression of urokinase plasminogen activator receptor (uPAR) and concomitant activation of gelatinolytic enzymes. PLoS One 2014; 9:e105929. [PMID: 25157856 PMCID: PMC4144900 DOI: 10.1371/journal.pone.0105929] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/25/2014] [Indexed: 11/19/2022] Open
Abstract
Background The urokinase plasminogen activator receptor (uPAR) is associated with poor prognosis in oral squamous cell carcinoma (OSCC), and increased expression of uPAR is often found at the invasive tumour front. The aim of the current study was to elucidate the role of uPAR in invasion and metastasis of OSCC, and the effects of various tumour microenvironments in these processes. Furthermore, we wanted to study whether the cells’ expression level of uPAR affected the activity of gelatinolytic enzymes. Methods The Plaur gene was both overexpressed and knocked-down in the murine OSCC cell line AT84. Tongue and skin tumours were established in syngeneic mice, and cells were also studied in an ex vivo leiomyoma invasion model. Soluble factors derived from leiomyoma tissue, as well as purified extracellular matrix (ECM) proteins, were assessed for their ability to affect uPAR expression, glycosylation and cleavage. Activity of gelatinolytic enzymes in the tissues were assessed by in situ zymography. Results We found that increased levels of uPAR did not induce tumour invasion or metastasis. However, cells expressing low endogenous levels of uPAR in vitro up-regulated uPAR expression both in tongue, skin and leiomyoma tissue. Various ECM proteins had no effect on uPAR expression, while soluble factors originating from the leiomyoma tissue increased both the expression and glycosylation of uPAR, and possibly also affected the proteolytic processing of uPAR. Tumours with high levels of uPAR, as well as cells invading leiomyoma tissue with up-regulated uPAR expression, all displayed enhanced activity of gelatinolytic enzymes. Conclusions Although high levels of uPAR are not sufficient to induce invasion and metastasis, the activity of gelatinolytic enzymes was increased. Furthermore, several tumour microenvironments have the capacity to induce up-regulation of uPAR expression, and soluble factors in the tumour microenvironment may have an important role in the regulation of posttranslational modification of uPAR.
Collapse
Affiliation(s)
- Synnøve Magnussen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| | - Elin Hadler-Olsen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Nadezhda Latysheva
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Emma Pirila
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Sonja E. Steigen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
- Diagnostic Clinic - Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Robert Hanes
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Tuula Salo
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, and Medical Research Center, Oulu University Hospital, Oulu, Finland
- Institute of Dentistry, University of Helsinki, Helsinki, Finland
| | - Jan-Olof Winberg
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Lars Uhlin-Hansen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
- Diagnostic Clinic - Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Gunbjørg Svineng
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
43
|
Persson M, Juhl K, Rasmussen P, Brandt-Larsen M, Madsen J, Ploug M, Kjaer A. uPAR targeted radionuclide therapy with (177)Lu-DOTA-AE105 inhibits dissemination of metastatic prostate cancer. Mol Pharm 2014; 11:2796-806. [PMID: 24955765 DOI: 10.1021/mp500177c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is implicated in cancer invasion and metastatic development in prostate cancer and provides therefore an attractive molecular target for both imaging and therapy. In this study, we provide the first in vivo data on an antimetastatic effect of uPAR radionuclide targeted therapy in such lesions and show the potential of uPAR positron emission tomography (PET) imaging for identifying small foci of metastatic cells in a mouse model of disseminating human prostate cancer. Two radiolabeled ligands were generated in high purity and specific activity: a uPAR-targeting probe ((177)Lu-DOTA-AE105) and a nonbinding control ((177)Lu-DOTA-AE105mut). Both uPAR flow cytometry and ELISA confirmed high expression levels of the target uPAR in PC-3M-LUC2.luc cells, and cell binding studies using (177)Lu-DOTA-AE105 resulted in a specific binding with an IC50 value of 100 nM in a competitive binding experiment. In vivo, uPAR targeted radionuclide therapy significantly reduced the number of metastatic lesions in the disseminated metastatic prostate cancer model, when compared to vehicle and nontargeted (177)Lu groups (p < 0.05) using bioluminescence imaging. Moreover, we found a significantly longer metastatic-free survival, with 65% of all mice without any disseminated metastatic lesions present at 65 days after first treatment dose (p = 0.047). In contrast, only 30% of all mice in the combined control groups treated with (177)Lu-DOTA-AE105mut or vehicle were without metastatic lesions. No treatment-induced toxicity was observed during the study as evaluated by observing animal weight and H&E staining of kidney tissue (dose-limiting organ). Finally, uPAR PET imaging using (64)Cu-DOTA-AE105 detected all small, disseminated metastatic foci when compared with bioluminescence imaging in a cohort of animals during the treatment study. In conclusion, uPAR targeted radiotherapy resulted in a significant reduction in the number of metastatic lesions in a human metastatic prostate cancer model. Furthermore, we have provided the first evidence of the potential for identification of small metastatic lesions using uPAR PET imaging in disseminated prostate cancer, illustrating the promising strategy of uPAR theranostics in prostate cancer.
Collapse
|
44
|
Cathelin D, Placier S, Ploug M, Verpont MC, Vandermeersch S, Luque Y, Hertig A, Rondeau E, Mesnard L. Administration of recombinant soluble urokinase receptor per se is not sufficient to induce podocyte alterations and proteinuria in mice. J Am Soc Nephrol 2014; 25:1662-8. [PMID: 24790179 DOI: 10.1681/asn.2013040425] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Circulating levels of soluble forms of urokinase-type plasminogen activator receptor (suPAR) are generally elevated in sera from children and adults with FSGS compared with levels in healthy persons or those with other types of kidney disease. In mice lacking the gene encoding uPAR, forced increases in suPAR concentration result in FSGS-like glomerular lesions and proteinuria. However, whether overexpression of suPAR, per se, contributes to the pathogenesis of FSGS in humans remains controversial. We conducted an independent set of animal experiments in which two different and well characterized forms of recombinant suPAR produced by eukaryotic cells were administered over the short or long term to wild-type (WT) mice. In accordance with the previous study, the delivered suPARs are deposited in the glomeruli. However, such deposition of either form of suPAR in the kidney did not result in increased glomerular proteinuria or altered podocyte architecture. Our findings suggest that glomerular deposits of suPAR caused by elevated plasma levels are not sufficient to engender albuminuria.
Collapse
Affiliation(s)
- Dominique Cathelin
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1155 - "Rare and common kidney diseases, matrix remodeling and tissue repair," Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S 1155 - "Rare and common kidney diseases, matrix remodelling and tissue repair," and
| | - Sandrine Placier
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1155 - "Rare and common kidney diseases, matrix remodeling and tissue repair," Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S 1155 - "Rare and common kidney diseases, matrix remodelling and tissue repair," and
| | - Michael Ploug
- Finsen Laboratory and Bric, Rigshospitalet, Copenhagen, Denmark
| | - Marie-Christine Verpont
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1155 - "Rare and common kidney diseases, matrix remodeling and tissue repair," Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S 1155 - "Rare and common kidney diseases, matrix remodelling and tissue repair," and
| | - Sophie Vandermeersch
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1155 - "Rare and common kidney diseases, matrix remodeling and tissue repair," Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S 1155 - "Rare and common kidney diseases, matrix remodelling and tissue repair," and
| | - Yosu Luque
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1155 - "Rare and common kidney diseases, matrix remodeling and tissue repair," Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S 1155 - "Rare and common kidney diseases, matrix remodelling and tissue repair," and Assistance Publique-Hôpitaux de Paris, Nephrological Emergencies and Renal Transplantation, Tenon Hospital, Paris, France; and
| | - Alexandre Hertig
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1155 - "Rare and common kidney diseases, matrix remodeling and tissue repair," Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S 1155 - "Rare and common kidney diseases, matrix remodelling and tissue repair," and Assistance Publique-Hôpitaux de Paris, Nephrological Emergencies and Renal Transplantation, Tenon Hospital, Paris, France; and
| | - Eric Rondeau
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1155 - "Rare and common kidney diseases, matrix remodeling and tissue repair," Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S 1155 - "Rare and common kidney diseases, matrix remodelling and tissue repair," and Assistance Publique-Hôpitaux de Paris, Nephrological Emergencies and Renal Transplantation, Tenon Hospital, Paris, France; and
| | - Laurent Mesnard
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1155 - "Rare and common kidney diseases, matrix remodeling and tissue repair," Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S 1155 - "Rare and common kidney diseases, matrix remodelling and tissue repair," and Assistance Publique-Hôpitaux de Paris, Nephrological Emergencies and Renal Transplantation, Tenon Hospital, Paris, France; and
| |
Collapse
|
45
|
Li R, Zheng K, Hu P, Chen Z, Zhou S, Chen J, Yuan C, Chen S, Zheng W, Ma E, Zhang F, Xue J, Chen X, Huang M. A novel tumor targeting drug carrier for optical imaging and therapy. Theranostics 2014; 4:642-59. [PMID: 24723985 PMCID: PMC3982134 DOI: 10.7150/thno.8527] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/05/2014] [Indexed: 12/20/2022] Open
Abstract
Human serum albumin (HSA), a naturally abundant protein in blood plasma and tissue fluids, has an extraordinary ligand-binding capacity and is advocated as a drug carrier to facilitate drug delivery. To render it tumor targeting specificity, we generated a recombinant HSA fused with the amino-terminal fragment (ATF) of urokinase, allowing the fusion protein to bind to urokinase receptor (uPAR), which is shown to have a high expression level in many tumors, but not in normal tissues. To test the efficacy of this bifunctional protein (ATF-HSA), a hydrophobic photosensitizer (mono-substituted β-carboxy phthalocyanine zinc, CPZ) was chosen as a cytotoxic agent. A dilution-incubation-purification (DIP) strategy was developed to load the ATF-HSA with this CPZ, forming a 1:1 molecular complex (ATF-HSA:CPZ). We demonstrated that CPZ was indeed embedded inside ATF-HSA at the fatty acid binding site 1 (FA1) of HSA, giving a hydrodynamic radius of 7.5 nm, close to HSA's (6.5 nm). ATF-HSA:CPZ showed high stability and remarkable optical and photophysical properties in aqueous solution. In addition, the molecular complex ATF-HSA:CPZ can bind to recombinant uPAR in vitro and uPAR on tumor cell surfaces, and was efficient in photodynamic killing of tumor cells. The tumor-killing potency of this molecular complex was further demonstrated in a tumor-bearing mouse model at a dose of 0.080 μmol / kg, or 0.050 mg CPZ / kg of mouse body weight. Using fluorescent molecular tomography (FMT), ATF-HSA:CPZ was shown to accumulate specifically in tumors, and importantly, such tumor retention was higher than that of HSA:CPZ. Together, these results indicate that ATF-HSA:CPZ is not only an efficient tumor-specific cytotoxic agent, but also an useful tumor-specific imaging probe. This bifunctional protein ATF-HSA can also be used as a drug carrier for other types of cytotoxic or imaging agents to render them specificity for uPAR-expressing tumors.
Collapse
|
46
|
Yang L, Sajja HK, Cao Z, Qian W, Bender L, Marcus AI, Lipowska M, Wood WC, Wang YA. uPAR-targeted optical imaging contrasts as theranostic agents for tumor margin detection. Am J Cancer Res 2013; 4:106-18. [PMID: 24396518 PMCID: PMC3881230 DOI: 10.7150/thno.7409] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/15/2013] [Indexed: 12/31/2022] Open
Abstract
Complete removal of tumors by surgery is the most important prognostic factor for cancer patients with the early stage cancers. The ability to identify invasive tumor edges of the primary tumor, locally invaded small tumor lesions, and drug resistant residual tumors following neoadjuvant therapy during surgery should significantly reduce the incidence of local tumor recurrence and improve survival of cancer patients. In this study, we report that urokinase plasminogen activator (uPA) and its receptor (uPAR) are the ligand/cell surface target pair for the development of targeted optical imaging probes for enhancing imaging contrasts in the tumor border. Recombinant peptides of the amino terminal fragment (ATF) of the receptor binding domain of uPA were labeled with near infrared fluorescence (NIR) dye molecules either as peptide-imaging or peptide-conjugated nanoparticle imaging probes. Systemic delivery of the uPAR-targeted imaging probes in mice bearing orthotopic human breast or pancreatic tumor xenografts or mouse mammary tumors led to the accumulation of the probes in the tumor and stromal cells, resulting in strong signals for optical imaging of tumors and identification of tumor margins. Histological analysis showed that a high level of uPAR-targeted nanoparticles was present in the tumor edge or active tumor stroma immediately adjacent to the tumor cells. Furthermore, following targeted therapy using uPAR-targeted theranostic nanoparticles, residual tumors were detectable by optical imaging through the imaging contrasts produced by NIR-dye-labeled theranostic nanoparticles in drug resistant tumor cells. Therefore, results of our study support the potential of the development of uPAR-targeted imaging and theranostic agents for image-guided surgery.
Collapse
|
47
|
Li D, Liu S, Shan H, Conti P, Li Z. Urokinase plasminogen activator receptor (uPAR) targeted nuclear imaging and radionuclide therapy. Am J Cancer Res 2013; 3:507-15. [PMID: 23843898 PMCID: PMC3706694 DOI: 10.7150/thno.5557] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/17/2012] [Indexed: 11/05/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR) is a glycosylphosphatidylinositol (GPI)-anchored protein. Besides regulating proteolysis, uPAR could also activate many intracellular signaling pathways that promote cell motility, invasion, proliferation, and survival through cooperating with transmembrane receptors. uPAR is overexpressed across a variety of tumors and is associated with cancer invasion and metastasis. In order to meet the demand for a rapid development and potential clinical application of anti-cancer therapy based on uPA/uPAR system, it is desirable to develop non-invasive imaging methods to visualize and quantify uPAR expression in vivo. In this review, we will discuss recent advances in the development of uPAR-targeted nuclear imaging and radionuclide therapy agents. The successful development of molecular imaging probes to visualize uPAR expression in vivo would not only assist preclinical researches on uPAR function, but also eventually impact patient management.
Collapse
|
48
|
O'Halloran TV, Ahn R, Hankins P, Swindell E, Mazar AP. The many spaces of uPAR: delivery of theranostic agents and nanobins to multiple tumor compartments through a single target. Am J Cancer Res 2013; 3:496-506. [PMID: 23843897 PMCID: PMC3706693 DOI: 10.7150/thno.4953] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 02/18/2013] [Indexed: 12/22/2022] Open
Abstract
The urokinase plasminogen activator (uPA) system is a proteolytic system comprised of uPA, a cell surface receptor for uPA (uPAR), and an inhibitor of uPA (PAI-1) and is implicated in many aspects of tumor growth and metastasis. The uPA system has been identified in nearly all solid tumors examined to date as well as several hematological malignancies. In adults, transient expression of the uPA system is observed during wound healing and inflammatory processes while only limited expression is identified in healthy, quiescent tissue. Members of the uPA system are expressed not only on cancer cells but also on tumor-associated stromal cells. These factors make the uPA system an ideal therapeutic target for cancer therapies. To date most therapeutics targeted at the uPA system have been inhibitors of either the uPA-uPAR interaction or uPA proteolysis but have not shown robust anti-tumor activity. There is now mounting evidence that uPAR participates in a complex signaling network central to its role in cancer progression, which provides a basis for the hypothesis that uPAR may be a marker for cancer stem cells. Several new uPAR-directed therapies have recently been developed based on this new information. A monoclonal antibody has been developed that disrupts the interactions of uPAR with signaling partners and is poised to enter the clinic. In addition, nanoscale drug delivery vehicles targeted to the uPA system using monoclonal antibodies, without disrupting the normal functioning of the system, are also in development. This review will highlight some of these new discoveries and the new uPA system-based therapeutic approaches that have arisen from them.
Collapse
|
49
|
Ploug M. Structure-driven design of radionuclide tracers for non-invasive imaging of uPAR and targeted radiotherapy. The tale of a synthetic peptide antagonist. Theranostics 2013; 3:467-76. [PMID: 23843894 PMCID: PMC3706690 DOI: 10.7150/thno.3791] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Research performed during the last two decades has provided a wealth of information to highlight the role of the urokinase-type plasminogen activator receptor (uPAR) in the progression and dissemination of invasive and metastatic cancer. In parallel, our perception of the structure-function relationships in uPAR has been refined to such a level that a rational design of uPAR function as well as compounds specifically targeting defined functions of uPAR are now realistic options. This knowledge opens new avenues for developing therapeutic intervention regimens targeting uPAR as well as for monitoring the effects of such treatments by non-invasive imaging using e.g. positron emission tomography. This mini-review will focus on recent advancements in translational research devoted to non-invasive targeting of uPAR, with a view to molecular imaging of its expression in live individuals as well as specific eradication of these cells by targeted radiotherapy.
Collapse
|
50
|
Persson M, Kjaer A. Urokinase-type plasminogen activator receptor (uPAR) as a promising new imaging target: potential clinical applications. Clin Physiol Funct Imaging 2013; 33:329-37. [PMID: 23701192 PMCID: PMC3799014 DOI: 10.1111/cpf.12037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/04/2013] [Indexed: 01/15/2023]
Abstract
Urokinase-type plasminogen activator receptor (uPAR) has been shown to be of special importance during cancer invasion and metastasis. However, currently, tissue samples are needed for measurement of uPAR expression limiting the potential as a clinical routine. Therefore, non-invasive methods are needed. In line with this, uPAR has recently been identified as a very promising imaging target candidate. uPAR consists of three domains attached to the cell membrane via a glycosylphosphatidylinositol (GPI) anchor and binds it natural ligand uPA with high affinity to localize plasminogen activation at the cell surface. Due to the importance of uPAR in cancer invasion and metastasis, a number of high-affinity ligands have been identified during the last decades. These ligands have recently been used as starting point for the development of a number of ligands for imaging of uPAR using various imaging modalities such as optical imaging, magnetic resonance imaging, single photon emission computer tomography (SPECT) and positron emission topography (PET). In this review, we will discuss recent advances in the development of uPAR-targeted imaging ligands according to imaging modality. In addition, we will discuss the potential future clinical application for uPAR imaging as a new imaging biomarker.
Collapse
Affiliation(s)
- Morten Persson
- Department of Clinical Physiology, Nuclear Medicine and PET, Center for Diagnostic Investigations, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|