1
|
Li Y, Zhao Y, He Y, Liu F, Xia L, Liu K, Zhang M, Chen K. New targets and designed inhibitors of ASAP Arf-GAPs derived from structural characterization of the ASAP1/440-kD ankyrin-B interaction. J Biol Chem 2024; 300:107762. [PMID: 39265663 PMCID: PMC11490884 DOI: 10.1016/j.jbc.2024.107762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
ASAP1 and its paralog ASAP2 belong to a PI4,5P2-dependent Arf GTPase-activating protein (Arf-GAP) family capable of modulating membrane and cytoskeletal dynamics. ASAPs regulate cell adhesive structures such as invadosomes and focal adhesions during cell attachment and migration. Malfunctioning of ASAP1 has been implicated in the malignant phenotypes of various cancers. Here, we discovered that the SH3 domain of ASAP1 or ASAP2 specifically binds to a 12-residue, positively charged peptide fragment from the 440 kDa giant ankyrin-B, a neuronal axon specific scaffold protein. The high-resolution structure of the ASAP1-SH3 domain in complex with the gAnkB peptide revealed a noncanonical SH3-ligand binding mode with high affinity and specificity. Structural analysis of the complex readily uncovered a consensus ASAP1-SH3 binding motif, which allowed the discovery of a number of previously unknown binding partners of ASAP1-SH3 including Clasp1/Clasp2, ALS2, β-Pix, DAPK3, PHIP, and Limk1. Fittingly, these newly identified ASAP1 binding partners are primarily key modulators of the cytoskeletons. Finally, we designed a cell-penetrating, highly potent ASAP1 SH3 domain binding peptide with a Kd ∼7 nM as a tool for studying the roles of ASAPs in different cellular processes.
Collapse
Affiliation(s)
- Yubing Li
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China; Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yipeng Zhao
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yaojun He
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Fang Liu
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Lu Xia
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Kai Liu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Keyu Chen
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
2
|
Kushwaha S, Mallik B, Bisht A, Mushtaq Z, Pippadpally S, Chandra N, Das S, Ratnaparkhi G, Kumar V. dAsap regulates cellular protrusions via an Arf6-dependent actin regulatory pathway in S2R+ cells. FEBS Lett 2024; 598:1491-1505. [PMID: 38862211 DOI: 10.1002/1873-3468.14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
Membrane protrusions are fundamental to cellular functions like migration, adhesion, and communication and depend upon dynamic reorganization of the cytoskeleton. GAP-dependent GTP hydrolysis of Arf proteins regulates actin-dependent membrane remodeling. Here, we show that dAsap regulates membrane protrusions in S2R+ cells by a mechanism that critically relies on its ArfGAP domain and relocalization of actin regulators, SCAR, and Ena. While our data reinforce the preference of dAsap for Arf1 GTP hydrolysis in vitro, we demonstrate that induction of membrane protrusions in S2R+ cells depends on Arf6 inactivation. This study furthers our understanding of how dAsap-dependent GTP hydrolysis maintains a balance between active and inactive states of Arf6 to regulate cell shape.
Collapse
Affiliation(s)
- Shikha Kushwaha
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Bhagaban Mallik
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Anjali Bisht
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Zeeshan Mushtaq
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Srikanth Pippadpally
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Nitika Chandra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Subhradip Das
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Pune, India
| | - Girish Ratnaparkhi
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Pune, India
| | - Vimlesh Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| |
Collapse
|
3
|
Kang H, Kang T, Jackson L, Murphy A, Nitta T. Evidence for Involvement of ADP-Ribosylation Factor 6 in Intracellular Trafficking and Release of Murine Leukemia Virus Gag. Cells 2024; 13:270. [PMID: 38334661 PMCID: PMC10854678 DOI: 10.3390/cells13030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
Murine leukemia viruses (MuLVs) are simple retroviruses that cause several diseases in mice. Retroviruses encode three basic genes: gag, pol, and env. Gag is translated as a polyprotein and moves to assembly sites where viral particles are shaped by cleavage of poly-Gag. Viral release depends on the intracellular trafficking of viral proteins, which is determined by both viral and cellular factors. ADP-ribosylation factor 6 (Arf6) is a small GTPase that regulates vesicular trafficking and recycling of different types of cargo in cells. Arf6 also activates phospholipase D (PLD) and phosphatidylinositol-4-phosphate 5-kinase (PIP5K) and produces phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). We investigated how Arf6 affected MuLV release with a constitutively active form of Arf6, Arf6Q67L. Expression of Arf6Q67L impaired Gag release by accumulating Gag at PI(4,5)P2-enriched compartments in the cytoplasm. Treatment of the inhibitors for PLD and PIP5K impaired or recovered MuLV Gag release in the cells expressing GFP (control) and Arf6Q67L, implying that regulation of PI(4,5)P2 through PLD and PIP5K affected MuLV release. Interference with the phosphoinositide 3-kinases, mammalian target of rapamycin (mTOR) pathway, and vacuolar-type ATPase activities showed further impairment of Gag release from the cells expressing Arf6Q67L. In contrast, mTOR inhibition increased Gag release in the control cells. The proteasome inhibitors reduced viral release in the cells regardless of Arf6Q67L expression. These data outline the differences in MuLV release under the controlled and overactivated Arf6 conditions and provide new insight into pathways for MuLV release.
Collapse
Affiliation(s)
- Hyokyun Kang
- Department of Biology, Savannah State University, Savannah, GA 31404, USA; (H.K.); (T.K.); (L.J.); (A.M.)
| | - Taekwon Kang
- Department of Biology, Savannah State University, Savannah, GA 31404, USA; (H.K.); (T.K.); (L.J.); (A.M.)
| | - Lauryn Jackson
- Department of Biology, Savannah State University, Savannah, GA 31404, USA; (H.K.); (T.K.); (L.J.); (A.M.)
| | - Amaiya Murphy
- Department of Biology, Savannah State University, Savannah, GA 31404, USA; (H.K.); (T.K.); (L.J.); (A.M.)
| | - Takayuki Nitta
- Department of Biology, Savannah State University, Savannah, GA 31404, USA; (H.K.); (T.K.); (L.J.); (A.M.)
- Department of Molecular Biology and Biochemistry, Cancer Research Institute, University of California, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Richards JR, Shin D, Pryor R, Sorensen LK, Sun Z, So WM, Park G, Wolff R, Truong A, McMahon M, Grossmann AH, Harbour JW, Zhu W, Odelberg SJ, Yoo JH. Activation of NFAT by HGF and IGF-1 via ARF6 and its effector ASAP1 promotes uveal melanoma metastasis. Oncogene 2023; 42:2629-2640. [PMID: 37500798 PMCID: PMC11008337 DOI: 10.1038/s41388-023-02792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Preventing or effectively treating metastatic uveal melanoma (UM) is critical because it occurs in about half of patients and confers a very poor prognosis. There is emerging evidence that hepatocyte growth factor (HGF) and insulin-like growth factor 1 (IGF-1) promote metastasis and contribute to the striking metastatic hepatotropism observed in UM metastasis. However, the molecular mechanisms by which HGF and IGF-1 promote UM liver metastasis have not been elucidated. ASAP1, which acts as an effector for the small GTPase ARF6, is highly expressed in the subset of uveal melanomas most likely to metastasize. Here, we found that HGF and IGF-1 hyperactivate ARF6, leading to its interaction with ASAP1, which then acts as an effector to induce nuclear localization and transcriptional activity of NFAT1. Inhibition of any component of this pathway impairs cellular invasiveness. Additionally, knocking down ASAP1 or inhibiting NFAT signaling reduces metastasis in a xenograft mouse model of UM. The discovery of this signaling pathway represents not only an advancement in our understanding of the biology of uveal melanoma metastasis but also identifies a novel pathway that could be targeted to treat or prevent metastatic uveal melanoma.
Collapse
Affiliation(s)
- Jackson R Richards
- Department of Oncological Sciences, School of Medicine, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Donghan Shin
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
| | - Rob Pryor
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
| | - Lise K Sorensen
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
| | - Zhonglou Sun
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
| | - Won Mi So
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Garam Park
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Roger Wolff
- Department of Pathology, University of Utah, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Amanda Truong
- Department of Oncological Sciences, School of Medicine, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Martin McMahon
- Department of Oncological Sciences, School of Medicine, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
- Department of Dermatology, University of Utah, 30 N 1900 E, Salt Lake City, UT, 84132, USA
| | - Allie H Grossmann
- Department of Pathology, University of Utah, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
- ARUP Laboratories, University of Utah, 500 Chipeta Way, Salt Lake City, UT, 84112, USA
| | - J William Harbour
- Department of Ophthalmology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Weiquan Zhu
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah, 30 North 1900 East, Salt Lake City, UT, 84132, USA
| | - Shannon J Odelberg
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, USA.
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah, 30 North 1900 East, Salt Lake City, UT, 84132, USA.
- Department of Neurobiology, University of Utah, 20 South 2030 East, Salt Lake City, UT, 84112, USA.
| | - Jae Hyuk Yoo
- Department of Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
5
|
Pfanzagl B. The ICAM-1 ligand HRV-A89 is internalized independently of clathrin-mediated endocytosis and its capsid reaches late endosomes. Virology 2023; 583:45-51. [PMID: 37148647 DOI: 10.1016/j.virol.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
The human rhinovirus (HRV) A2 is endocytosed by clathrin-mediated endocytosis (CME) bound to the classical LDL receptor and releases its RNA during its transport to late endosomes. Here it is shown that - presumably due to an effect on virus recycling - a low concentration of the CME inhibitor chlorpromazine present during virus internalization (30 min) did not reduce HRV-A2 infection, but strongly inhibited short-time (5 min) endocytosis of HRV-A2. Chlorpromazine had no effect on the colocalization of the ICAM-1 ligand HRV-A89 with early endosomes, excluding CME as the main endocytosis pathway of this virus. As published for HRV-A2 and HRV-A14, HRV-A89 partially colocalized with lysosome-associated membrane protein 2 and the microtubule inhibitor nocodazole did not reduce virus infection when present only during virus internalization. Together with previous work these data suggest that there are no principal differences between endocytosis pathways of ICAM-1-binding rhinoviruses in different cell types.
Collapse
Affiliation(s)
- Beatrix Pfanzagl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria.
| |
Collapse
|
6
|
Ogen-Shtern N, Chang C, Saad H, Mazkereth N, Patel C, Shenkman M, Lederkremer GZ. COP I and II dependent trafficking controls ER-associated degradation in mammalian cells. iScience 2023; 26:106232. [PMID: 36876137 PMCID: PMC9982306 DOI: 10.1016/j.isci.2023.106232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/09/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Misfolded proteins and components of the endoplasmic reticulum (ER) quality control and ER associated degradation (ERAD) machineries concentrate in mammalian cells in the pericentriolar ER-derived quality control compartment (ERQC), suggesting it as a staging ground for ERAD. By tracking the chaperone calreticulin and an ERAD substrate, we have now determined that the trafficking to the ERQC is reversible and recycling back to the ER is slower than the movement in the ER periphery. The dynamics suggest vesicular trafficking rather than diffusion. Indeed, using dominant negative mutants of ARF1 and Sar1 or the drugs Brefeldin A and H89, we observed that COPI inhibition causes accumulation in the ERQC and increases ERAD, whereas COPII inhibition has the opposite effect. Our results suggest that targeting of misfolded proteins to ERAD involves COPII-dependent transport to the ERQC and that they can be retrieved to the peripheral ER in a COPI-dependent manner.
Collapse
Affiliation(s)
- Navit Ogen-Shtern
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chieh Chang
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haddas Saad
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Niv Mazkereth
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chaitanya Patel
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Marina Shenkman
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gerardo Z Lederkremer
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
7
|
Luciano AK, Korobkina E, Lyons SP, Haley JA, Fluharty S, Jung SM, Kettenbach AN, Guertin DA. Proximity labeling of endogenous RICTOR identifies mTOR Complex 2 regulation by ADP ribosylation factor ARF1. J Biol Chem 2022; 298:102379. [PMID: 35973513 PMCID: PMC9513271 DOI: 10.1016/j.jbc.2022.102379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 01/08/2023] Open
Abstract
Mechanistic target of rapamycin (mTOR) complex 2 (mTORC2) regulates metabolism, cell proliferation, and cell survival. mTORC2 activity is stimulated by growth factors, and it phosphorylates the hydrophobic motif site of the AGC kinases AKT, SGK, and PKC. However, the proteins that interact with mTORC2 to control its activity and localization remain poorly defined. To identify mTORC2-interacting proteins in living cells, we tagged endogenous RICTOR, an essential mTORC2 subunit, with the modified BirA biotin ligase BioID2 and performed live-cell proximity labeling. We identified 215 RICTOR-proximal proteins, including proteins with known mTORC2 pathway interactions, and 135 proteins (63%) not previously linked to mTORC2 signaling, including nuclear and cytoplasmic proteins. Our imaging and cell fractionation experiments suggest nearly 30% of RICTOR is in the nucleus, hinting at potential nuclear functions. We also identified 29 interactors containing RICTOR-dependent, insulin-stimulated phosphorylation sites, thus providing insight into mTORC2-dependent insulin signaling dynamics. Finally, we identify the endogenous ADP ribosylation factor 1 (ARF1) GTPase as an mTORC2-interacting protein. Through gain-of-function and loss-of-function studies, we provide functional evidence that ARF1 may negatively regulate mTORC2. In summary, we present a new method of studying endogenous mTORC2, a resource of RICTOR/mTORC2 protein interactions in living cells, and a potential mechanism of mTORC2 regulation by the ARF1 GTPase.
Collapse
Affiliation(s)
- Amelia K Luciano
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Ekaterina Korobkina
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Scott P Lyons
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - John A Haley
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Shelagh Fluharty
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605.
| |
Collapse
|
8
|
Gasilina A, Yoon HY, Jian X, Luo R, Randazzo PA. A lysine-rich cluster in the N-BAR domain of ARF GTPase-activating protein ASAP1 is necessary for binding and bundling actin filaments. J Biol Chem 2022; 298:101700. [PMID: 35143843 PMCID: PMC8902617 DOI: 10.1016/j.jbc.2022.101700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/05/2022] Open
Abstract
Actin filament maintenance is critical for both normal cell homeostasis and events associated with malignant transformation. The ADP-ribosylation factor GTPase-activating protein ASAP1 regulates the dynamics of filamentous actin-based structures, including stress fibers, focal adhesions, and circular dorsal ruffles. Here, we have examined the molecular basis for ASAP1 association with actin. Using a combination of structural modeling, mutagenesis, and in vitro and cell-based assays, we identify a putative-binding interface between the N-Bin-Amphiphysin-Rvs (BAR) domain of ASAP1 and actin filaments. We found that neutralization of charges and charge reversal at positions 75, 76, and 79 of ASAP1 reduced the binding of ASAP1 BAR-pleckstrin homology tandem to actin filaments and abrogated actin bundle formation in vitro. In addition, overexpression of actin-binding defective ASAP1 BAR-pleckstrin homology [K75, K76, K79] mutants prevented cellular actin remodeling in U2OS cells. Exogenous expression of [K75E, K76E, K79E] mutant of full-length ASAP1 did not rescue the reduction of cellular actin fibers consequent to knockdown of endogenous ASAP1. Taken together, our results support the hypothesis that the lysine-rich cluster in the N-BAR domain of ASAP1 is important for regulating actin filament organization.
Collapse
Affiliation(s)
- Anjelika Gasilina
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Hye-Young Yoon
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ruibai Luo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
9
|
Schreiber C, Gruber A, Roßwag S, Saraswati S, Harkins S, Thiele W, Foroushani ZH, Munding N, Schmaus A, Rothley M, Dimmler A, Tanaka M, Garvalov BK, Sleeman JP. Loss of ASAP1 in the MMTV-PyMT model of luminal breast cancer activates AKT, accelerates tumorigenesis, and promotes metastasis. Cancer Lett 2022; 533:215600. [PMID: 35181478 DOI: 10.1016/j.canlet.2022.215600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/31/2022]
Abstract
ASAP1 is a multi-domain adaptor protein that regulates cytoskeletal dynamics, receptor recycling and intracellular vesicle trafficking. Its expression is associated with poor prognosis in a variety of cancers, and can promote cell migration, invasion and metastasis. Although amplification and expression of ASAP1 has been associated with poor survival in breast cancer, we found that in the autochthonous MMTV-PyMT model of luminal breast cancer, ablation of ASAP1 resulted in an earlier onset of tumor initiation and increased metastasis. This was due to tumor cell-intrinsic effects of ASAP1 deletion, as ASAP1 deficiency in tumor, but not in stromal cells was sufficient to replicate the enhanced tumorigenicity and metastasis observed in the ASAP1-null MMTV-PyMT mice. Loss of ASAP1 in MMTV-PyMT mice had no effect on proliferation, apoptosis, angiogenesis or immune cell infiltration, but enhanced mammary gland hyperplasia and tumor cell invasion, indicating that ASAP1 can accelerate tumor initiation and promote dissemination. Mechanistically, these effects were associated with a potent activation of AKT. Importantly, lower ASAP1 levels correlated with poor prognosis and enhanced AKT activation in human ER+/luminal breast tumors, validating our findings in the MMTV-PyMT mouse model for this subtype of breast cancer. Taken together, our findings reveal that ASAP1 can have distinct functions in different tumor types and demonstrate a tumor suppressive activity for ASAP1 in luminal breast cancer.
Collapse
Affiliation(s)
- Caroline Schreiber
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Annette Gruber
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Sven Roßwag
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Supriya Saraswati
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Shannon Harkins
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Wilko Thiele
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany; Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT) Campus North, D-76344 Karlsruhe, Germany
| | - Zahra Hajian Foroushani
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Natalie Munding
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Anja Schmaus
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany; Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT) Campus North, D-76344 Karlsruhe, Germany
| | - Melanie Rothley
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany; Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT) Campus North, D-76344 Karlsruhe, Germany
| | - Arno Dimmler
- Vincentius-Diakonissen-Kliniken, 76135, Karlsruhe, Germany
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany; Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501, Kyoto, Japan
| | - Boyan K Garvalov
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
| | - Jonathan P Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany; Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT) Campus North, D-76344 Karlsruhe, Germany.
| |
Collapse
|
10
|
Chen PW, Gasilina A, Yadav MP, Randazzo PA. Control of cell signaling by Arf GTPases and their regulators: Focus on links to cancer and other GTPase families. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119171. [PMID: 34774605 DOI: 10.1016/j.bbamcr.2021.119171] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/23/2021] [Accepted: 11/04/2021] [Indexed: 12/31/2022]
Abstract
The ADP-ribosylation factors (Arfs) comprise a family of regulatory GTP binding proteins. The Arfs regulate membrane trafficking and cytoskeleton remodeling, processes critical for eukaryotes and which have been the focus of most studies on Arfs. A more limited literature describes a role in signaling and in integrating several signaling pathways to bring about specific cell behaviors. Here, we will highlight work describing function of Arf1, Arf6 and several effectors and regulators of Arfs in signaling.
Collapse
Affiliation(s)
- Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA, United States of America
| | - Anjelika Gasilina
- National Heart, Lung and Blood Institute, NIH, Bethesda, MD, United States of America(1); Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD, United States of America
| | - Mukesh P Yadav
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD, United States of America
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD, United States of America.
| |
Collapse
|
11
|
Unconventional p97/VCP-Mediated Endoplasmic Reticulum-to-Endosome Trafficking of a Retroviral Protein. J Virol 2021; 95:e0053121. [PMID: 33952644 DOI: 10.1128/jvi.00531-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) encodes a Rem precursor protein that specifies both regulatory and accessory functions. Rem is cleaved at the endoplasmic reticulum (ER) membrane into a functional N-terminal signal peptide (SP) and the C terminus (Rem-CT). Rem-CT lacks a membrane-spanning domain and a known ER retention signal, and yet it was not detectably secreted into cell supernatants. Inhibition of intracellular trafficking by the drug brefeldin A (BFA), which interferes with the ER-to-Golgi secretory pathway, resulted in dramatically reduced intracellular Rem-CT levels that were not rescued by proteasomal or lysosomal inhibitors. A Rem mutant lacking glycosylation was cleaved into SP and Rem-CT but was insensitive to BFA, suggesting that unglycosylated Rem-CT does not reach this BFA-dependent compartment. Treatment with endoglycosidase H indicated that Rem-CT does not traffic through the Golgi apparatus. Analysis of wild-type Rem-CT and its glycosylation mutant by confocal microscopy revealed that both were primarily localized to the ER lumen. A small fraction of wild-type Rem-CT, but not the unglycosylated mutant, was colocalized with Rab5-positive (Rab5+) early endosomes. The expression of a dominant-negative (DN) form of ADP ribosylation factor 1 (Arf1) (containing a mutation of threonine to asparagine at position 31 [T31N]) mimicked the effects of BFA by reducing Rem-CT levels and increased Rem-CT association with early and late endosomes. Inhibition of the AAA ATPase p97/VCP rescued Rem-CT in the presence of BFA or DN Arf1 and prevented localization to Rab5+ endosomes. Thus, Rem-CT uses an unconventional p97-mediated scheme for trafficking to early endosomes. IMPORTANCE Mouse mammary tumor virus is a complex retrovirus that encodes a regulatory/accessory protein, Rem. Rem is a precursor protein that is processed at the endoplasmic reticulum (ER) membrane by signal peptidase. The N-terminal SP uses the p97/VCP ATPase to elude ER-associated degradation to traffic to the nucleus and serve a human immunodeficiency virus Rev-like function. In contrast, the function of the C-terminal glycosylated cleavage product (Rem-CT) is unknown. Since localization is critical for protein function, we used mutants, inhibitors, and confocal microscopy to localize Rem-CT. Surprisingly, Rem-CT, which lacks a transmembrane domain or an ER retention signal, was detected primarily within the ER and required glycosylation and the p97 ATPase for early endosome trafficking without passage through the Golgi apparatus. Thus, Rem-CT uses a novel intracellular trafficking pathway, potentially impacting host antiviral immunity.
Collapse
|
12
|
De Niz M, Caldelari R, Kaiser G, Zuber B, Heo WD, Heussler VT, Agop-Nersesian C. Hijacking of the host cell Golgi by Plasmodium berghei liver stage parasites. J Cell Sci 2021; 134:jcs252213. [PMID: 34013963 PMCID: PMC8186485 DOI: 10.1242/jcs.252213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 04/12/2021] [Indexed: 12/28/2022] Open
Abstract
The intracellular lifestyle represents a challenge for the rapidly proliferating liver stage Plasmodium parasite. In order to scavenge host resources, Plasmodium has evolved the ability to target and manipulate host cell organelles. Using dynamic fluorescence-based imaging, we here show an interplay between the pre-erythrocytic stages of Plasmodium berghei and the host cell Golgi during liver stage development. Liver stage schizonts fragment the host cell Golgi into miniaturized stacks, which increases surface interactions with the parasitophorous vacuolar membrane of the parasite. Expression of specific dominant-negative Arf1 and Rab GTPases, which interfere with the host cell Golgi-linked vesicular machinery, results in developmental delay and diminished survival of liver stage parasites. Moreover, functional Rab11a is critical for the ability of the parasites to induce Golgi fragmentation. Altogether, we demonstrate that the structural integrity of the host cell Golgi and Golgi-associated vesicular traffic is important for optimal pre-erythrocytic development of P. berghei. The parasite hijacks the Golgi structure of the hepatocyte to optimize its own intracellular development. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Reto Caldelari
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Gesine Kaiser
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Benoit Zuber
- Institute for Anatomy, University of Bern, CH-3012 Bern, Switzerland
| | - Won Do Heo
- Dept. of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Volker T. Heussler
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | | |
Collapse
|
13
|
ADP ribosylation factor guanylate kinase 1 promotes the malignant phenotype of gastric cancer by regulating focal adhesion kinase activation. Life Sci 2021; 273:119264. [PMID: 33639150 DOI: 10.1016/j.lfs.2021.119264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 11/21/2022]
Abstract
AIMS ADP ribosylation factor guanylate kinase 1 (ASAP1), a phospholipid-dependent guanosine triphosphate (GTP)ase activating protein, has been reported to be involved in the development of various malignant tumors. However, the biological function of ASAP1 in gastric cancer (GC) remains unclear. This study was to investigate its effect and the underlying mechanism for the malignant phenotype of GC. MATERIALS AND METHODS The Cell Counting Kit-8 assay, flow cytometry, Transwell invasion assay, and wound-healing assay were used to assess the malignant biological behavior of GC cells with ASAP1 overexpression and knockdown. In addition, co-immunoprecipitation was used to analyze the interaction between ASAP1 and FAK in BGC823 cells, and western blotting was used to determine the effects of overexpression and knockdown of ASAP1 on FAK activity in BGC823 cells. Subsequently, functional recovery experiments were used to observe the effect of ASAP1 and FAK on the malignant phenotype of GC cells. KEY FINDINGS ASAP1 overexpression strongly promoted the malignant biological behavior of SGC7901 cells. Knockdown of ASAP1 effectively weakened the malignant biological behavior of SGC7901 and BGC823 cells. ASAP1 directly interacted with FAK to potentiate FAK activation. In addition, knockdown of FAK combined with ASAP1 overexpression significantly weakened the malignant biological behavior of GC cells, whereas overexpression of FAK combined with knockdown of ASAP1 significantly enhanced the malignant biological behavior of GC cells. SIGNIFICANCE ASAP1 interacted with FAK, and ASAP1 promoted the malignant phenotype of GC cells by regulating FAK activity. The specific underlying mechanism is worth further investigation.
Collapse
|
14
|
CRL5-dependent regulation of the small GTPases ARL4C and ARF6 controls hippocampal morphogenesis. Proc Natl Acad Sci U S A 2020; 117:23073-23084. [PMID: 32873638 DOI: 10.1073/pnas.2002749117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The small GTPase ARL4C participates in the regulation of cell migration, cytoskeletal rearrangements, and vesicular trafficking in epithelial cells. The ARL4C signaling cascade starts by the recruitment of the ARF-GEF cytohesins to the plasma membrane, which, in turn, bind and activate the small GTPase ARF6. However, the role of ARL4C-cytohesin-ARF6 signaling during hippocampal development remains elusive. Here, we report that the E3 ubiquitin ligase Cullin 5/RBX2 (CRL5) controls the stability of ARL4C and its signaling effectors to regulate hippocampal morphogenesis. Both RBX2 knockout and Cullin 5 knockdown cause hippocampal pyramidal neuron mislocalization and development of multiple apical dendrites. We used quantitative mass spectrometry to show that ARL4C, Cytohesin-1/3, and ARF6 accumulate in the RBX2 mutant telencephalon. Furthermore, we show that depletion of ARL4C rescues the phenotypes caused by Cullin 5 knockdown, whereas depletion of CYTH1 or ARF6 exacerbates overmigration. Finally, we show that ARL4C, CYTH1, and ARF6 are necessary for the dendritic outgrowth of pyramidal neurons to the superficial strata of the hippocampus. Overall, we identified CRL5 as a key regulator of hippocampal development and uncovered ARL4C, CYTH1, and ARF6 as CRL5-regulated signaling effectors that control pyramidal neuron migration and dendritogenesis.
Collapse
|
15
|
Schreiber C, Saraswati S, Harkins S, Gruber A, Cremers N, Thiele W, Rothley M, Plaumann D, Korn C, Armant O, Augustin HG, Sleeman JP. Loss of ASAP1 in mice impairs adipogenic and osteogenic differentiation of mesenchymal progenitor cells through dysregulation of FAK/Src and AKT signaling. PLoS Genet 2019; 15:e1008216. [PMID: 31246957 PMCID: PMC6619832 DOI: 10.1371/journal.pgen.1008216] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/10/2019] [Accepted: 05/27/2019] [Indexed: 11/18/2022] Open
Abstract
ASAP1 is a multi-domain adaptor protein that regulates cytoskeletal dynamics, receptor recycling and intracellular vesicle trafficking. Its expression is associated with poor prognosis for a variety of cancers, and promotes cell migration, invasion and metastasis. Little is known about its physiological role. In this study, we used mice with a gene-trap inactivated ASAP1 locus to study the functional role of ASAP1 in vivo, and found defects in tissues derived from mesenchymal progenitor cells. Loss of ASAP1 led to growth retardation and delayed ossification typified by enlarged hypertrophic zones in growth plates and disorganized chondro-osseous junctions. Furthermore, loss of ASAP1 led to delayed adipocyte development and reduced fat depot formation. Consistently, deletion of ASAP1 resulted in accelerated chondrogenic differentiation of mesenchymal cells in vitro, but suppressed osteo- and adipogenic differentiation. Mechanistically, we found that FAK/Src and PI3K/AKT signaling is compromised in Asap1GT/GT MEFs, leading to impaired adipogenic differentiation. Dysregulated FAK/Src and PI3K/AKT signaling is also associated with attenuated osteogenic differentiation. Together these observations suggest that ASAP1 plays a decisive role during the differentiation of mesenchymal progenitor cells. Mesenchymal progenitor cells are capable of differentiating into a number of lineages including osteoblasts, chondrocytes and adipocytes, and have therefore attracted interest for their potential application in regenerative medicine. Furthermore, defects in mesenchymal progenitor cell differentiation are considered to contribute to various diseases including metabolic syndrome, obesity and osteoporosis. In this study, we analyzed mice deficient in the multi-adaptor protein ASAP1, which has been implicated in tumor progression and metastasis. These mice display growth retardation, and a delayed development of bone and fat tissue. Consistently, mesenchymal progenitor cells deficient in ASAP1 exhibited enhanced differentiation into chondrocytes, but impaired differentiation into adipocytes and osteoblasts. Together these observations suggest that ASAP1 plays a decisive role during the differentiation of mesenchymal stem cells, which may be relevant for a number of diseases such as cancer.
Collapse
Affiliation(s)
- Caroline Schreiber
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- * E-mail:
| | - Supriya Saraswati
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Shannon Harkins
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Annette Gruber
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Natascha Cremers
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- Institute for Toxicology and Genetics, KIT Campus Nord, Karlsruhe, Germany
| | - Wilko Thiele
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- Institute for Toxicology and Genetics, KIT Campus Nord, Karlsruhe, Germany
| | - Melanie Rothley
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- Institute for Toxicology and Genetics, KIT Campus Nord, Karlsruhe, Germany
| | - Diana Plaumann
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- Institute for Toxicology and Genetics, KIT Campus Nord, Karlsruhe, Germany
| | - Claudia Korn
- German Cancer Research Center (DKFZ-ZMBH-Alliance), Heidelberg, Germany
| | - Olivier Armant
- Institute for Toxicology and Genetics, KIT Campus Nord, Karlsruhe, Germany
| | - Hellmut G. Augustin
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- German Cancer Research Center (DKFZ-ZMBH-Alliance), Heidelberg, Germany
| | - Jonathan P. Sleeman
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- Institute for Toxicology and Genetics, KIT Campus Nord, Karlsruhe, Germany
| |
Collapse
|
16
|
Neurotrophin Responsiveness of Sympathetic Neurons Is Regulated by Rapid Mobilization of the p75 Receptor to the Cell Surface through TrkA Activation of Arf6. J Neurosci 2018; 38:5606-5619. [PMID: 29789375 DOI: 10.1523/jneurosci.0788-16.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/24/2018] [Accepted: 05/13/2018] [Indexed: 12/23/2022] Open
Abstract
The p75 neurotrophin receptor (p75NTR) plays an integral role in patterning the sympathetic nervous system during development. Initially, p75NTR is expressed at low levels as sympathetic axons project toward their targets, which enables neurotrophin-3 (NT3) to activate TrkA receptors and promote growth. Upon reaching nerve growth factor (NGF) producing tissues, p75NTR is upregulated, resulting in formation of TrkA-p75 complexes, which are high-affinity binding sites selective for NGF, thereby blunting NT3 signaling. The level of p75NTR expressed on the neuron surface is instrumental in regulating trophic factor response; however, the mechanisms by which p75NTR expression is regulated are poorly understood. Here, we demonstrate a rapid, translation independent increase in surface expression of p75NTR in response to NGF in rat sympathetic neurons. p75NTR was mobilized to the neuron surface from GGA3-postitive vesicles through activation of the GTPase Arf6, which was stimulated by NGF, but not NT3 binding to TrkA. Arf6 activation required PI3 kinase activity and was prevented by an inhibitor of the cytohesin family of Arf6 guanine nucleotide exchange factors. Overexpression of a constitutively active Arf6 mutant (Q67L) was sufficient to significantly increase surface expression of p75NTR even in the absence of NGF. Functionally, expression of active Arf6 markedly attenuated the ability of NT3 to promote neuronal survival and neurite outgrowth, whereas the NGF response was unaltered. These data suggest that NGF activation of Arf6 through TrkA is critical for the increase in p75NTR surface expression that enables the switch in neurotrophin responsiveness during development in the sympathetic nervous system.SIGNIFICANCE STATEMENT p75NTR is instrumental in the regulation of neuronal survival and apoptosis during development and is also implicated as a contributor to aberrant neurodegeneration in numerous conditions. Therefore, a better understanding of the mechanisms that mediate p75NTR surface availability may provide insight into how and why neurodegenerative processes manifest and reveal new therapeutic targets. Results from this study indicate a novel mechanism by which p75NTR can be rapidly shuttled to the cell surface from existing intracellular pools and explores a unique pathway by which NGF regulates the sympathetic innervation of target tissues, which has profound consequences for the function of these organs.
Collapse
|
17
|
Muralidharan-Chari V, Kohan HG, Asimakopoulos AG, Sudha T, Sell S, Kannan K, Boroujerdi M, Davis PJ, Mousa SA. Microvesicle removal of anticancer drugs contributes to drug resistance in human pancreatic cancer cells. Oncotarget 2018; 7:50365-50379. [PMID: 27391262 PMCID: PMC5226588 DOI: 10.18632/oncotarget.10395] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/17/2016] [Indexed: 12/30/2022] Open
Abstract
High mortality in pancreatic cancer patients is partly due to resistance to chemotherapy. We describe that human pancreatic cancer cells acquire drug resistance by a novel mechanism in which they expel and remove chemotherapeutic drugs from the microenvironment via microvesicles (MVs). Using human pancreatic cancer cells that exhibit varied sensitivity to gemcitabine (GEM), we show that GEM exposure triggers the cancer cells to release MVs in an amount that correlates with that cell line's sensitivity to GEM. The importance of MV-release in gaining drug resistance in GEM-resistant pancreatic cancer cells was confirmed when the inhibition of MV-release sensitized the cells to GEM treatment, both in vitro and in vivo. Mechanistically, MVs remove drugs that are internalized into the cells and that are in the microenvironment. The differences between the drug-resistant and drug-sensitive pancreatic cancer cell lines tested here are explained based on the variable content of influx/efflux proteins present on MVs, which directly dictates the ability of MVs either to trap GEM or to allow GEM to flow back to the microenvironment.
Collapse
Affiliation(s)
- Vandhana Muralidharan-Chari
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| | - Hamed Gilzad Kohan
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Alexandros G Asimakopoulos
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, NY 12201, USA
| | - Thangirala Sudha
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| | - Stewart Sell
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, NY 12201, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, NY 12201, USA
| | - Mehdi Boroujerdi
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Paul J Davis
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.,Department of Medicine, Albany Medical College, Albany, NY 12208, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| |
Collapse
|
18
|
eIF5B increases ASAP1 expression to promote HCC proliferation and invasion. Oncotarget 2018; 7:62327-62339. [PMID: 27694689 PMCID: PMC5308730 DOI: 10.18632/oncotarget.11469] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death worldwide. Despite the therapeutic advances that have been achieved during the past decade, the molecular pathogenesis underlying HCC remains poorly understood. In this study, we discovered that increased expression eukaryotic translation initiation factor 5B (eIF5B) was significantly correlated with aggressive characteristics and associated with shorter recurrence-free survival (RFS) and overall survival (OS) in a large cohort. We also found that eIF5B promoted HCC cell proliferation and migration in vitro and in vivo partly through increasing ASAP1 expression. Our findings strongly suggested that eIF5B could promote HCC progression and be considered a prognostic biomarker for HCC.
Collapse
|
19
|
Li H, Zhang D, Yu J, Liu H, Chen Z, Zhong H, Wan Y. CCL18-dependent translocation of AMAP1 is critical for epithelial to mesenchymal transition in breast cancer. J Cell Physiol 2017; 233:3207-3217. [PMID: 28834540 DOI: 10.1002/jcp.26164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Haiyan Li
- Department of Breast and Thyroid Surgery; The Sixth Affiliated Hospital; Sun Yat-Sen University; Guangzhou People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; The Sixth Affiliated Hospital; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Dawei Zhang
- Department of Hepatobiliary Surgery; The Second Affiliated Hospital of Guangzhou Medical University; Guangzhou People's Republic of China
| | - Jiandong Yu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; The Sixth Affiliated Hospital; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Hailing Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; The Sixth Affiliated Hospital; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Zhiping Chen
- Department of Breast and Thyroid Surgery; The Sixth Affiliated Hospital; Sun Yat-Sen University; Guangzhou People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; The Sixth Affiliated Hospital; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Haifeng Zhong
- Department of Breast and Thyroid Surgery; The Sixth Affiliated Hospital; Sun Yat-Sen University; Guangzhou People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; The Sixth Affiliated Hospital; Sun Yat-Sen University; Guangzhou People's Republic of China
| | - Yunle Wan
- Department of Breast and Thyroid Surgery; The Sixth Affiliated Hospital; Sun Yat-Sen University; Guangzhou People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases; The Sixth Affiliated Hospital; Sun Yat-Sen University; Guangzhou People's Republic of China
| |
Collapse
|
20
|
Selyunin AS, Iles LR, Bartholomeusz G, Mukhopadhyay S. Genome-wide siRNA screen identifies UNC50 as a regulator of Shiga toxin 2 trafficking. J Cell Biol 2017; 216:3249-3262. [PMID: 28883040 PMCID: PMC5626549 DOI: 10.1083/jcb.201704015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/06/2017] [Accepted: 08/02/2017] [Indexed: 12/19/2022] Open
Abstract
Toxins produced by Shigella bacteria undergo endosome-to-Golgi retrograde trafficking to evade degradation in the lysosome and reach the cytosol. Selyunin et al. performed a genome-wide siRNA screen and identify host factors required for the transport and toxicity of Shiga toxins. Shiga toxins 1 and 2 (STx1 and STx2) undergo retrograde trafficking to reach the cytosol. Early endosome-to-Golgi transport allows the toxins to evade degradation in lysosomes. Targeting this trafficking step has therapeutic promise, but the mechanism of trafficking for the more potent toxin STx2 is unclear. To identify host factors required for early endosome-to-Golgi trafficking of STx2, we performed a viability-based genome-wide siRNA screen in HeLa cells. 564, 535, and 196 genes were found to be required for toxicity induced by STx1 only, STx2 only, and both toxins, respectively. We focused on validating endosome/Golgi-localized hits specific for STx2 and found that depletion of UNC50 blocked early endosome-to-Golgi trafficking and induced lysosomal degradation of STx2. UNC50 acted by recruiting GBF1, an ADP ribosylation factor–guanine nucleotide exchange factor (ARF-GEF), to the Golgi. These results provide new information about STx2 trafficking mechanisms and may advance efforts to generate therapeutically viable toxin-trafficking inhibitors.
Collapse
Affiliation(s)
- Andrey S Selyunin
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX.,Institute for Neuroscience, The University of Texas at Austin, Austin, TX
| | - Lakesla R Iles
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX
| | | | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX .,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX.,Institute for Neuroscience, The University of Texas at Austin, Austin, TX
| |
Collapse
|
21
|
Abstract
Cutaneous melanoma (CM) and uveal melanoma (UM) derive from cutaneous and uveal melanocytes that share the same embryonic origin and display the same cellular function. However, the etiopathogenesis and biological behaviors of these melanomas are very different. CM and UM display distinct landscapes of genetic alterations and show different metastatic routes and tropisms. Hence, therapeutic improvements achieved in the last few years for the treatment of CM have failed to ameliorate the clinical outcomes of patients with UM. The scope of this review is to discuss the differences in tumorigenic processes (etiologic factors and genetic alterations) and tumor biology (gene expression and signaling pathways) between CM and UM. We develop hypotheses to explain these differences, which might provide important clues for research avenues and the identification of actionable vulnerabilities suitable for the development of new therapeutic strategies for metastatic UM.
Collapse
Affiliation(s)
- Charlotte Pandiani
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Guillaume E Béranger
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Justine Leclerc
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Robert Ballotti
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| | - Corine Bertolotto
- U1065, Institut National de la Santé et de la Recherche Médicale Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, 06200 Nice, France
| |
Collapse
|
22
|
Abstract
Uveal melanoma (UM), a rare cancer of the eye, is distinct from cutaneous melanoma by its etiology, the mutation frequency and profile, and its clinical behavior including resistance to targeted therapy and immune checkpoint blockers. Primary disease is efficiently controlled by surgery or radiation therapy, but about half of UMs develop distant metastasis mostly to the liver. Survival of patients with metastasis is below 1 year and has not improved in decades. Recent years have brought a deep understanding of UM biology characterized by initiating mutations in the G proteins GNAQ and GNA11. Cytogenetic alterations, in particular monosomy of chromosome 3 and amplification of the long arm of chromosome 8, and mutation of the BRCA1-associated protein 1, BAP1, a tumor suppressor gene, or the splicing factor SF3B1 determine UM metastasis. Cytogenetic and molecular profiling allow for a very precise prognostication that is still not matched by efficacious adjuvant therapies. G protein signaling has been shown to activate the YAP/TAZ pathway independent of HIPPO, and conventional signaling via the mitogen-activated kinase pathway probably also contributes to UM development and progression. Several lines of evidence indicate that inflammation and macrophages play a pro-tumor role in UM and in its hepatic metastases. UM cells benefit from the immune privilege in the eye and may adopt several mechanisms involved in this privilege for tumor escape that act even after leaving the niche. Here, we review the current knowledge of the biology of UM and discuss recent approaches to UM treatment.
Collapse
Affiliation(s)
- Adriana Amaro
- Laboratory of Molecular Pathology, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, L.go Rosanna Benzi 10, 16132, Genoa, Italy
| | - Rosaria Gangemi
- Laboratory of Biotherapies, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Francesca Piaggio
- Laboratory of Molecular Pathology, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, L.go Rosanna Benzi 10, 16132, Genoa, Italy
| | - Giovanna Angelini
- Laboratory of Molecular Pathology, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, L.go Rosanna Benzi 10, 16132, Genoa, Italy
| | - Gaia Barisione
- Laboratory of Biotherapies, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Silvano Ferrini
- Laboratory of Biotherapies, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Ulrich Pfeffer
- Laboratory of Molecular Pathology, Department of Integrated Oncology Therapies, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, L.go Rosanna Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
23
|
Wang C, Timmons CL, Shao Q, Kinlock BL, Turner TM, Iwamoto A, Zhang H, Liu H, Liu B. GB virus type C E2 protein inhibits human immunodeficiency virus type 1 Gag assembly by downregulating human ADP-ribosylation factor 1. Oncotarget 2016; 6:43293-309. [PMID: 26675377 PMCID: PMC4791233 DOI: 10.18632/oncotarget.6537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/21/2015] [Indexed: 12/28/2022] Open
Abstract
GB virus type C (GBV-C) glycoprotein E2 protein disrupts HIV-1 assembly and release by inhibiting Gag plasma membrane targeting, however the mechanism by which the GBV-C E2 inhibits Gag trafficking remains unclear. In the present study, we identified ADP-ribosylation factor 1 (ARF1) contributed to the inhibitory effect of GBV-C E2 on HIV-1 Gag membrane targeting. Expression of GBV-C E2 decreased ARF1 expression in a proteasomal degradation-dependent manner. The restoration of ARF1 expression rescued the HIV-1 Gag processing and membrane targeting defect imposed by GBV-C E2. In addition, GBV-C E2 expression also altered Golgi morphology and suppressed protein traffic through the secretory pathway, which are all consistent with a phenotype of disrupting the function of ARF1 protein. Thus, our results indicate that GBV-C E2 inhibits HIV-1 assembly and release by decreasing ARF1, and may provide insights regarding GBV-C E2's potential for a new therapeutic approach for treating HIV-1.
Collapse
Affiliation(s)
- Chenliang Wang
- Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, USA.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Clinical Laboratory, Guangdong Institute of Gastroenterology and The Sixth Affiliated Hospital, Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Christine L Timmons
- Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, USA
| | - Qiujia Shao
- Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, USA
| | - Ballington L Kinlock
- Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, USA
| | - Tiffany M Turner
- Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, USA
| | - Aikichi Iwamoto
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hui Zhang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Clinical Laboratory, Guangdong Institute of Gastroenterology and The Sixth Affiliated Hospital, Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huanliang Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Department of Clinical Laboratory, Guangdong Institute of Gastroenterology and The Sixth Affiliated Hospital, Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bindong Liu
- Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Abstract
Members of the ADP-ribosylation factor (Arf) family of small GTP-binding (G) proteins regulate several aspects of membrane trafficking, such as vesicle budding, tethering and cytoskeleton organization. Arf family members, including Arf-like (Arl) proteins have been implicated in several essential cellular functions, like cell spreading and migration. These functions are used by cancer cells to disseminate and invade the tissues surrounding the primary tumor, leading to the formation of metastases. Indeed, Arf and Arl proteins, as well as their guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) have been found to be abnormally expressed in different cancer cell types and human cancers. Here, we review the current evidence supporting the involvement of Arf family proteins and their GEFs and GAPs in cancer progression, focusing on 3 different mechanisms: cell-cell adhesion, integrin internalization and recycling, and actin cytoskeleton remodeling.
Collapse
Affiliation(s)
- Cristina Casalou
- a CEDOC, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisbon , Portugal
| | - Alexandra Faustino
- a CEDOC, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisbon , Portugal.,b ProRegeM PhD Program, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisbon , Portugal
| | - Duarte C Barral
- a CEDOC, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa , Lisbon , Portugal
| |
Collapse
|
25
|
Rodrigues FF, Shao W, Harris TJC. The Arf GAP Asap promotes Arf1 function at the Golgi for cleavage furrow biosynthesis in Drosophila. Mol Biol Cell 2016; 27:3143-3155. [PMID: 27535433 PMCID: PMC5063621 DOI: 10.1091/mbc.e16-05-0272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/11/2016] [Indexed: 11/11/2022] Open
Abstract
Drosophila embryo cleavage requires the conserved Arf GAP Asap. Asap seems to recycle Arf1 to the Golgi from post-Golgi membranes for optimal Golgi output and cleavage furrow biosynthesis. Biosynthetic traffic from the Golgi drives plasma membrane growth. For Drosophila embryo cleavage, this growth is rapid but regulated for cycles of furrow ingression and regression. The highly conserved small G protein Arf1 organizes Golgi trafficking. Arf1 is activated by guanine nucleotide exchange factors, but essential roles for Arf1 GTPase-activating proteins (GAPs) are less clear. We report that the conserved Arf GAP Asap is required for cleavage furrow ingression in the early embryo. Because Asap can affect multiple subcellular processes, we used genetic approaches to dissect its primary effect. Our data argue against cytoskeletal or endocytic involvement and reveal a common role for Asap and Arf1 in Golgi organization. Although Asap lacked Golgi enrichment, it was necessary and sufficient for Arf1 accumulation at the Golgi, and a conserved Arf1-Asap binding site was required for Golgi organization and output. Of note, Asap relocalized to the nuclear region at metaphase, a shift that coincided with subtle Golgi reorganization preceding cleavage furrow regression. We conclude that Asap is essential for Arf1 to function at the Golgi for cleavage furrow biosynthesis. Asap may recycle Arf1 to the Golgi from post-Golgi membranes, providing optimal Golgi output for specific stages of the cell cycle.
Collapse
Affiliation(s)
- Francisco F Rodrigues
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Wei Shao
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Tony J C Harris
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
26
|
Yan X, Nykänen NP, Brunello CA, Haapasalo A, Hiltunen M, Uronen RL, Huttunen HJ. FRMD4A-cytohesin signaling modulates the cellular release of tau. J Cell Sci 2016; 129:2003-15. [PMID: 27044754 DOI: 10.1242/jcs.180745] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 03/24/2016] [Indexed: 11/20/2022] Open
Abstract
One of the defining pathological features of Alzheimer's disease is the intraneuronal accumulation of tau (also known as MAPT) protein. Tau is also secreted from neurons in response to various stimuli and accumulates in the cerebrospinal fluid of Alzheimer's disease patients. Tau pathology might spread from cell to cell through a mechanism involving secretion and uptake. Here, we developed an assay to follow cellular release and uptake of tau dimers. Individual silencing of ten common late-onset Alzheimer's disease risk genes in HEK293T cells expressing the tau reporters suggested that FRMD4A is functionally linked to tau secretion. FRMD4A depletion by using RNA interference (RNAi) reduced and overexpression increased tau secretion. The activity of cytohesins, interactors of FRMD4A and guanine-nucleotide-exchange factors of Arf6, was necessary for FRMD4A-induced tau secretion. Increased Arf6 and cell polarity signaling through Par6 and atypical protein kinase Cζ (aPKCζ) stimulated tau secretion. In mature cortical neurons, FRMD4A RNAi or inhibition of cytohesins strongly upregulated secretion of endogenous tau. These results suggest that FRMD4A, a genetic risk factor for late-onset Alzheimer's disease, regulates tau secretion by activating cytohesin-Arf6 signaling. We conclude that genetic risk factors of Alzheimer's disease might modulate disease progression by altering tau secretion.
Collapse
Affiliation(s)
- Xu Yan
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | | - Annakaisa Haapasalo
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, FI-70211 Kuopio, Finland Department of Neurology, Kuopio University Hospital, FI-70029 Kuopio, Finland Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, FI-70211 Kuopio, Finland Department of Neurology, Kuopio University Hospital, FI-70029 Kuopio, Finland Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | | | - Henri J Huttunen
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
27
|
Hofmann D, Tenzer S, Bannwarth MB, Messerschmidt C, Glaser SF, Schild H, Landfester K, Mailänder V. Mass spectrometry and imaging analysis of nanoparticle-containing vesicles provide a mechanistic insight into cellular trafficking. ACS NANO 2014; 8:10077-10088. [PMID: 25244389 DOI: 10.1021/nn502754c] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Rational design of nanocarriers for drug delivery approaches requires an unbiased knowledge of uptake mechanisms and intracellular trafficking pathways. Here we dissected these processes using a quantitative proteomics approach. We isolated intracellular vesicles containing superparamagnetic iron oxide polystyrene nanoparticles and analyzed their protein composition by label-free quantitative mass spectrometry. The proteomic snapshot of organelle marker proteins revealed that an atypical macropinocytic-like mechanism mediated the entry of nanoparticles. We show that the entry mechanism is controlled by actin reorganization, atypical macropinocytic signaling, and ADP-ribosylation factor 1. Additionally, our proteomics data demonstrated a central role for multivesicular bodies and multilamellar lysosomes in trafficking and final nanoparticle storage. This was confirmed by confocal microscopy and cryo-TEM measurements. By quantitatively analyzing the protein composition of nanoparticle-containing vesicles, our study clearly defines the routes of nanoparticle entry, intracellular trafficking, and the proteomic milieu of a nanoparticle-containing vesicle.
Collapse
Affiliation(s)
- Daniel Hofmann
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Baïlo N, Cosson P, Charette SJ, Paquet VE, Doublet P, Letourneur F. Defective lysosome maturation and Legionella pneumophila replication in Dictyostelium cells mutant for the Arf GAP ACAP-A. J Cell Sci 2014; 127:4702-13. [PMID: 25189617 DOI: 10.1242/jcs.154559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Dictyostelium discoideum ACAP-A is an Arf GTPase-activating protein (GAP) involved in cytokinesis, cell migration and actin cytoskeleton dynamics. In mammalian cells, ACAP family members regulate endocytic protein trafficking. Here, we explored the function of ACAP-A in the endocytic pathway of D. discoideum. In the absence of ACAP-A, the efficiency of fusion between post-lysosomes and the plasma membrane was reduced, resulting in the accumulation of post-lysosomes. Moreover, internalized fluid-phase markers showed extended intracellular transit times, and the transfer kinetics of phagocyted particles from lysosomes to post-lysosomes was reduced. Neutralization of lysosomal pH, one essential step in lysosome maturation, was also delayed. Whereas expression of ACAP-A-GFP in acapA(-) cells restored normal particle transport kinetics, a mutant ACAP-A protein with no GAP activity towards the small GTPase ArfA failed to complement this defect. Taken together, these data support a role for ACAP-A in maturation of lysosomes into post-lysosomes through an ArfA-dependent mechanism. In addition, we reveal that ACAP-A is required for efficient intracellular growth of Legionella pneumophila, a pathogen known to subvert the endocytic host cell machinery for replication. This further emphasizes the role of ACAP-A in the endocytic pathway.
Collapse
Affiliation(s)
- Nathalie Baïlo
- CIRI, International Centre for Infectiology Research, Legionella pathogenesis group, Université de Lyon, 69364 Lyon Cedex 07, France Inserm, U1111, 69342 Lyon Cedex 07, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon Cedex 07, France CNRS, UMR5308, 69007 Lyon, France
| | - Pierre Cosson
- Département de Physiologie Cellulaire et Métabolisme, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, G1V 0A6, Canada Centre de Recherche de L'institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada
| | - Valérie E Paquet
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, G1V 0A6, Canada Centre de Recherche de L'institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada
| | - Patricia Doublet
- CIRI, International Centre for Infectiology Research, Legionella pathogenesis group, Université de Lyon, 69364 Lyon Cedex 07, France Inserm, U1111, 69342 Lyon Cedex 07, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69364 Lyon Cedex 07, France CNRS, UMR5308, 69007 Lyon, France
| | - François Letourneur
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier II et I, CNRS, UMR 5235, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
29
|
Tien DN, Kishihata M, Yoshikawa A, Hashimoto A, Sabe H, Nishi E, Kamei K, Arai H, Kita T, Kimura T, Yokode M, Ashida N. AMAP1 as a negative-feedback regulator of nuclear factor-κB under inflammatory conditions. Sci Rep 2014; 4:5094. [PMID: 24865276 PMCID: PMC4035583 DOI: 10.1038/srep05094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/07/2014] [Indexed: 12/24/2022] Open
Abstract
NF-κB is a major transcriptional factor regulating many cellular functions including inflammation; therefore, its appropriate control is of high importance. The detailed mechanism of its activation has been well characterized, but that of negative regulation is poorly understood. In this study, we showed AMAP1, an Arf-GTPase activating protein, as a negative feedback regulator for NF-κB by binding with IKKβ, an essential kinase in NF-κB signaling. Proteomics analysis identified AMAP1 as a binding protein with IKKβ. Overexpression of AMAP1 suppressed NF-κB activity by interfering the binding of IKKβ and NEMO, and deletion of AMAP1 augmented NF-κB activity. The activation of NF-κB induced translocation of AMAP1 to cytoplasm from cell membrane and nucleus, which resulted in augmented interaction of AMAP1 and IKKβ. These results demonstrated a novel role of AMAP1 as a negative feedback regulator of NF-κB, and presented it as a possible target for anti-inflammatory treatments.
Collapse
Affiliation(s)
- Dat Nguyen Tien
- 1] Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan [2] Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan [3] Department of Biomolecular Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | - Masako Kishihata
- 1] Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan [2] Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Ayumu Yoshikawa
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Hisataka Sabe
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kaeko Kamei
- Department of Biomolecular Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | - Hidenori Arai
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toru Kita
- Kobe City Medical Center General Hospital, Kobe, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Yokode
- Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Noboru Ashida
- 1] Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan [2] Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
30
|
Wittinghofer A. Arf Proteins and Their Regulators: At the Interface Between Membrane Lipids and the Protein Trafficking Machinery. RAS SUPERFAMILY SMALL G PROTEINS: BIOLOGY AND MECHANISMS 2 2014. [PMCID: PMC7123483 DOI: 10.1007/978-3-319-07761-1_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Arf small GTP-binding (G) proteins regulate membrane traffic and organelle structure in eukaryotic cells through a regulated cycle of GTP binding and hydrolysis. The first function identified for Arf proteins was recruitment of cytosolic coat complexes to membranes to mediate vesicle formation. However, subsequent studies have uncovered additional functions, including roles in plasma membrane signalling pathways, cytoskeleton regulation, lipid droplet function, and non-vesicular lipid transport. In contrast to other families of G proteins, there are only a few Arf proteins in each organism, yet they function specifically at many different cellular locations. Part of this specificity is achieved by formation of complexes with their guanine nucleotide-exchange factors (GEFs) and GTPase activating proteins (GAPs) that catalyse GTP binding and hydrolysis, respectively. Because these regulators outnumber their Arf substrates by at least 3-to-1, an important aspect of understanding Arf function is elucidating the mechanisms by which a single Arf protein is incorporated into different GEF, GAP, and effector complexes. New insights into these mechanisms have come from recent studies showing GEF–effector interactions, Arf activation cascades, and positive feedback loops. A unifying theme in the function of Arf proteins, carried out in conjunction with their regulators and effectors, is sensing and modulating the properties of the lipids that make up cellular membranes.
Collapse
Affiliation(s)
- Alfred Wittinghofer
- Max-Planck-Institute of Molecular Physiology, Dortmund, Nordrhein-Westfalen Germany
| |
Collapse
|
31
|
Fan C, Tian Y, Miao Y, Lin X, Zhang X, Jiang G, Luan L, Wang E. ASAP3 expression in non-small cell lung cancer: association with cancer development and patients' clinical outcome. Tumour Biol 2014; 35:1489-94. [PMID: 24078447 DOI: 10.1007/s13277-013-1205-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/16/2013] [Indexed: 01/15/2023] Open
Abstract
ASAP3 belongs to Arf-specific GTPase-activating proteins which regulate Arfs by stimulating their intrinsic GTP hydrolysis. ASAP3 expression and the clinical significance in malignant tumors are largely unknown. In this study, we examined ASAP3 expression in non-small cell lung cancer (NSCLC) to find out its clinicopathological significance. Immunohistochemistry shows elevated expression of ASAP3 in cancer tissues (54.8 % (57/104)) compared to normal lung tissues (18.0 % (9/50)) (p < 0.05). Increased ASAP3 expression was associated with poor differentiation, lymph node metastasis, and advanced TNM stages in NSCLC (p < 0.05). Survival analysis reveals that ASAP3 expression contributes to patients' poor clinical outcome (p < 0.05). We also examined ASAP3 expression in several lung cancer cell lines using Western blotting. We downregulated ASAP3 expression in LTE cell which has a relative high level of ASAP3 expression using siRNA and found that reduced ASAP3 leads to significant inhibition of cancer cell invasion (p < 0.05). These data indicate that ASAP3 is elevated in NSCLC and may contribute to cancer development and patients' poor clinical outcome, which is possibly due to its critical roles in regulating cancer invasion.
Collapse
|
32
|
ASAP1 mediates the invasive phenotype of human laryngeal squamous cell carcinoma to affect survival prognosis. Oncol Rep 2014; 31:2676-82. [PMID: 24788532 DOI: 10.3892/or.2014.3150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 03/24/2014] [Indexed: 11/05/2022] Open
Abstract
ASAP1 helps regulate cellular structures such as actin cytoskeletal remodeling and focal adhesions that have a pivotal function in tumor progression. Overexpression of ASAP1 has proven to be a malignant indicator for a variety of tumors. To further determine the potential involvement of ASAP1 in laryngeal squamous cell carcinoma (LSCC), we evaluated the expression levels of ASAP1 by quantitative real-time reverse-transcriptase polymerase chain reaction (qRT-PCR) and immunohistochemistry in tissue samples of 64 LSCC patients. We then analyzed and correlated the results with clinicopathological features. Furthermore, we used small interfering RNA (siRNA) to inhibit ASAP1 expression in vitro. The potential function of ASAP1 in invasiveness was evaluated in the Hep-2 LSCC cell line. Kaplan-Meier method was utilized to determine the association of ASAP1 expression with survival of patients. We showed that ASAP1 was upregulated in primary LSCC tumors and was correlated with lymph node metastasis and clinical tumor stage. Similarly, higher levels of ASAP1 were detected in the Hep-2 cell line compared to the 16 human bronchial epithelial (16HBE) cell line. ASAP1 expression was downregulated by lentiviral vector transfection containing siRNA in vitro. The invasive potential of these cells was found to be significantly suppressed, while expression levels of Rac1 and Cdc42 positively correlated with the inhibition of ASAP1 expression. In Kaplan-Meier overall survival curves, higher ASAP1 mRNA levels were found to be associated with a shorter progression-free survival trend. Based on these results, ASAP1 appears to contribute to the malignant mechanism of LSCC and may represent a significant prognostic marker for LSCC patients.
Collapse
|
33
|
Van Acker T, Eyckerman S, Vande Walle L, Gerlo S, Goethals M, Lamkanfi M, Bovijn C, Tavernier J, Peelman F. The small GTPase Arf6 is essential for the Tram/Trif pathway in TLR4 signaling. J Biol Chem 2013; 289:1364-76. [PMID: 24297182 DOI: 10.1074/jbc.m113.499194] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recognition of lipopolysaccharides (LPS) by Toll-like receptor 4 (TLR4) at the plasma membrane triggers NF-κB activation through recruitment of the adaptor proteins Mal and MyD88. Endocytosis of the activated TLR4 allows recruitment of the adaptors Tram and Trif, leading to activation of the transcription factor IRF3 and interferon production. The small GTPase ADP-ribosylation factor 6 (Arf6) was shown to regulate the plasma membrane association of Mal. Here we demonstrate that inhibition of Arf6 also markedly reduced LPS-induced cytokine production in Mal(-/-) mouse macrophages. In this article, we focus on a novel role for Arf6 in the MyD88-independent TLR4 pathway. MyD88-independent IRF3 activation and IRF3-dependent gene transcription were strictly dependent on Arf6. Arf6 was involved in transport of Tram to the endocytic recycling compartment and internalization of LPS, possibly explaining its requirement for LPS-induced IRF3 activation. Together, these results show a critical role for Arf6 in regulating Tram/Trif-dependent TLR4 signaling.
Collapse
Affiliation(s)
- Tim Van Acker
- From the Department of Medical Protein Research, Cytokine Receptor Lab, VIB, Ghent B-9000, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
LRRK2 (leucine-rich repeat kinase 2) is a large protein encoding multiple functional domains, including two catalytically active domains, a kinase and a GTPase domain. The LRRK2 GTPase belongs to the Ras-GTPase superfamily of GTPases, more specifically to the ROC (Ras of complex proteins) subfamily. Studies with recombinant LRRK2 protein purified from eukaryotic cells have confirmed that LRRK2 binds guanine nucleotides and catalyses the hydrolysis of GTP to GDP. LRRK2 is linked to PD (Parkinson's disease) and GTPase activity is impaired for several PD mutants located in the ROC and COR (C-terminal of ROC) domains, indicating that it is involved in PD pathogenesis. Ras family GTPases are known to function as molecular switches, and several studies have explored this possibility for LRRK2. These studies show that there is interplay between the LRRK2 GTPase function and its kinase function, with most data pointing towards a role for the kinase domain as an upstream regulator of ROC. The GTPase function is therefore a pivotal functionality within the LRRK2-mediated signalling cascade which includes partners encoded by other LRRK2 domains as well as other cellular signalling partners. The present review examines what is known of the enzymatic properties of the LRRK2 GTPase, the interplay between ROC and other LRRK2 domains, and the interplay between ROC and other cellular proteins with the dual goal to understand how LRRK2 GTPase affects cellular functions and point to future research venues.
Collapse
|
35
|
Rovira-Clavé X, Angulo-Ibáñez M, Noguer O, Espel E, Reina M. Syndecan-2 can promote clearance of T-cell receptor/CD3 from the cell surface. Immunology 2012; 137:214-25. [PMID: 22881146 DOI: 10.1111/j.1365-2567.2012.03626.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
T cells express the heparan sulphate proteoglycans syndecan-2 and syndecan-4. Syndecan-4 plays a T-cell inhibitory role; however, the function of syndecan-2 is unknown. In an attempt to examine this function, syndecan-2 was expressed constitutively in Jurkat T cells. Interestingly, the expression of syndecan-2 decreased the surface levels of T-cell receptor (TCR)/CD3 complex, concomitant with intracellular retention of CD3ε and partial degradation of the TCR-ζ chain. Immunofluorescence microscopy revealed that intracellular CD3ε co-located with Rab-4 endosomes. However, the intracellular pool of CD3ε did not recycle to the cell surface. The lower TCR/CD3 surface levels caused by syndecan-2 led to reduced TCR/CD3 responsiveness. We show that the cytosolic PDZ-binding domain of syndecan-2 is not necessary to elicit TCR/CD3 down-regulation. These results identify a previously unrecognized means of controlling surface TCR/CD3 expression by syndecan-2.
Collapse
Affiliation(s)
- Xavier Rovira-Clavé
- Departament de Biologia Cellular, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
36
|
ARF6 directs axon transport and traffic of integrins and regulates axon growth in adult DRG neurons. J Neurosci 2012; 32:10352-64. [PMID: 22836268 DOI: 10.1523/jneurosci.1409-12.2012] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Integrins are involved in axon growth and regeneration. Manipulation of integrins is a route to promoting axon regeneration and understanding regeneration failure in the CNS. Expression of α9 integrin promotes axon regeneration, so we have investigated α9β1 trafficking and transport in axons and at the growth cone. We have previously found that α9 and β1 integrins traffic via Rab11-positive recycling endosomes in peripheral axons and growth cones. However, transport via Rab11 is slow, while rapid transport occurs in vesicles lacking Rab11. We have further studied α9 and β1 integrin transport and traffic in adult rat dorsal root ganglion axons and PC12 cells. Integrins are in ARF6 vesicles during rapid axonal transport and during trafficking in the growth cone. We report that rapid axonal transport of these integrins and their trafficking at the cell surface is regulated by ARF6. ARF6 inactivation by expression of ACAP1 leads to increased recycling of β1 integrins to the neuronal surface and to increased anterograde axonal transport. ARF6 activation by expression of the neuronal guanine nucleotide exchange factors, ARNO or EFA6, increases retrograde integrin transport in axons and increases integrin internalization. ARF6 inactivation increases integrin-mediated outgrowth, while activation decreases it. The coordinated changes in integrin transport and recycling resulting from ARF6 activation or inactivation are the probable mechanism behind this regulation of axon growth. Our data suggest a novel mechanism of integrin traffic and transport in peripheral axons, regulated by the activation state of ARF6, and suggest that ARF6 might be targeted to enhance integrin-dependent axon regeneration after injury.
Collapse
|
37
|
Dikeakos JD, Thomas L, Kwon G, Elferich J, Shinde U, Thomas G. An interdomain binding site on HIV-1 Nef interacts with PACS-1 and PACS-2 on endosomes to down-regulate MHC-I. Mol Biol Cell 2012; 23:2184-97. [PMID: 22496420 PMCID: PMC3364181 DOI: 10.1091/mbc.e11-11-0928] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
HIV-1 Nef pirates PACS-1 and PACS-2 to downregulate MHC-I, but little is known about the Nef–PACS interaction. The sites on Nef and the PACS proteins required for their interaction are identified, and their importance for Nef trafficking and Nef-induced MHC-I downregulation is discussed. The results provide insight into the molecular basis of Nef action. The human immunodeficiency virus type 1 (HIV-1) accessory protein Nef directs virus escape from immune surveillance by subverting host cell intracellular signaling and membrane traffic to down-regulate cell-surface major histocompatibility complex class I (MHC-I). The interaction of Nef with the sorting proteins PACS-1 and PACS-2 mediates key signaling and trafficking steps required for Nef-mediated MHC-I down-regulation. Little is known, however, about the molecular basis underlying the Nef–PACS interaction. Here we identify the sites on Nef and the PACS proteins required for their interaction and describe the consequences of disrupting this interaction for Nef action. A previously unidentified cargo subsite on PACS-1 and PACS-2 interacted with a bipartite site on Nef formed by the EEEE65 acidic cluster on the N-terminal domain and W113 in the core domain. Mutation of these sites prevented the interaction between Nef and the PACS proteins on Rab5 (PACS-2 and PACS-1)- or Rab7 (PACS-1)-positive endosomes as determined by bimolecular fluorescence complementation and caused a Nef mutant defective in PACS binding to localize to distorted endosomal compartments. Consequently, disruption of the Nef–PACS interaction repressed Nef-induced MHC-I down-regulation in peripheral blood mononuclear cells. Our results provide insight into the molecular basis of Nef action and suggest new strategies to combat HIV-1.
Collapse
Affiliation(s)
- Jimmy D Dikeakos
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
38
|
Obinata D, Takayama KI, Urano T, Murata T, Ikeda K, Horie-Inoue K, Ouchi Y, Takahashi S, Inoue S. ARFGAP3, an androgen target gene, promotes prostate cancer cell proliferation and migration. Int J Cancer 2011; 130:2240-8. [PMID: 21647875 DOI: 10.1002/ijc.26224] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 05/23/2011] [Indexed: 01/04/2023]
Abstract
ADP ribosylation factor GTPase-activating protein 3 (ARFGAP3) is a GTPase-activating protein that associates with the Golgi apparatus and regulates the vesicular trafficking pathway. In the present study, we examined the contribution of ARFGAP3 to prostate cancer cell biology. We showed that ARFGAP3 expression was induced by 100 nM of dihydrotestosterone (DHT) at both the mRNA and protein levels in androgen-sensitive LNCaP cells. We generated stable transfectants of LNCaP cells with FLAG-tagged ARFGAP3 or a control empty vector and showed that ARFGAP3 overexpression promoted cell proliferation and migration compared with control cells. We found that ARFGAP3 interacted with paxillin, a focal adhesion adaptor protein that is important for cell mobility and migration. Small interfering RNA (siRNA)-mediated knockdown of ARFGAP3 showed that ARFGAP3 siRNA markedly reduced LNCaP cell growth. Androgen receptor (AR)-dependent transactivation activity on prostate-specific antigen (PSA) enhancer was synergistically promoted by exogenous ARFGAP3 and paxillin expression, as shown by luciferase assay in LNCaP cells. Thus, our results suggest that ARFGAP3 is a novel androgen-regulated gene that can promote prostate cancer cell proliferation and migration in collaboration with paxillin.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Anti-Aging Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lavoie JN, Landry MC, Faure RL, Champagne C. Src-family kinase signaling, actin-mediated membrane trafficking and organellar dynamics in the control of cell fate: lessons to be learned from the adenovirus E4orf4 death factor. Cell Signal 2010; 22:1604-14. [PMID: 20417707 DOI: 10.1016/j.cellsig.2010.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 04/15/2010] [Indexed: 12/15/2022]
Abstract
Evidence has accumulated that there are different modes of regulated cell death, which share overlapping signaling pathways. Cytoskeletal-dependent inter-organellar communication as a result of protein and lipid trafficking in and out of organelles has emerged as a common, key issue in the regulation of cell death modalities. The movement of proteins and lipids between cell compartments is believed to relay death signals in part through modifications of organelles dynamics. Little is known, however, regarding how trafficking is integrated within stress signaling pathways directing organelle-specific remodeling events. In this review, we discuss emerging evidence supporting a role for regulated changes in actin dynamics and intracellular membrane flow. Based on recent findings using the adenovirus E4orf4 death factor as a probing tool to tackle the mechanistic underpinnings that control alternative modes of cell death, we propose the existence of multifunctional platforms at the endosome-Golgi interface regulated by SFK-signaling. These endosomal platforms could be mobilized during cell activation processes to reorganize cellular membranes and promote inter-organelle signaling.
Collapse
Affiliation(s)
- Josée N Lavoie
- Centre de Recherche en Cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, CRCHUQ, Québec, Canada.
| | | | | | | |
Collapse
|
40
|
Fang Z, Takizawa N, Wilson KA, Smith TC, Delprato A, Davidson MW, Lambright DG, Luna EJ. The membrane-associated protein, supervillin, accelerates F-actin-dependent rapid integrin recycling and cell motility. Traffic 2010; 11:782-99. [PMID: 20331534 DOI: 10.1111/j.1600-0854.2010.01062.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In migrating cells, the cytoskeleton coordinates signal transduction and redistribution of transmembrane proteins, including integrins and growth factor receptors. Supervillin is an F-actin- and myosin II-binding protein that tightly associates with signaling proteins in cholesterol-rich, 'lipid raft' membrane microdomains. We show here that supervillin also can localize with markers for early and sorting endosomes (EE/SE) and with overexpressed components of the Arf6 recycling pathway in the cell periphery. Supervillin tagged with the photoswitchable fluorescent protein, tdEos, moves both into and away from dynamic structures resembling podosomes at the basal cell surface. Rapid integrin recycling from EE/SE is inhibited in supervillin-knockdown cells, but the rates of integrin endocytosis and recycling from the perinuclear recycling center (PNRC) are unchanged. A lack of synergy between supervillin knockdown and the actin filament barbed-end inhibitor, cytochalasin D, suggests that both treatments affect actin-dependent rapid recycling. Supervillin also enhances signaling from the epidermal growth factor receptor (EGFR) to extracellular signal-regulated kinases (ERKs) 1 and 2 and increases the velocity of cell translocation. These results suggest that supervillin, F-actin and associated proteins coordinate a rapid, basolateral membrane recycling pathway that contributes to ERK signaling and actin-based cell motility.
Collapse
Affiliation(s)
- Zhiyou Fang
- Department of Cell Biology, University of Massachusetts Medical School, Biotech 4, Suite 306, 377 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
ASAP1 promotes tumor cell motility and invasiveness, stimulates metastasis formation in vivo, and correlates with poor survival in colorectal cancer patients. Oncogene 2010; 29:2393-403. [PMID: 20154719 DOI: 10.1038/onc.2010.6] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have previously performed an unbiased screen to identify genes whose expression is associated with the metastatic phenotype. Secondary screening of these genes using custom microarray chips identified ASAP1, a multi-domain adaptor protein with ADP-ribosylation factor-GAP activity, as being potentially involved in tumor progression. Here, we show that at least three different splice forms of ASAP1 are upregulated in rodent tumor models in a manner that correlates with metastatic potential. In human cancers, we found that ASAP1 expression is strongly upregulated in a variety of tumors in comparison with normal tissue and that this expression correlates with poor metastasis-free survival and prognosis in colorectal cancer patients. Using loss and gain of function approaches, we were able to show that ASAP1 promotes metastasis formation in vivo and stimulates tumor cell motility, invasiveness, and adhesiveness in vitro. Furthermore, we show that ASAP1 interacts with the metastasis-promoting protein h-prune and stimulates its phosphodiesterase activity. In addition, ASAP1 binds to the SH3 domains of several proteins, including SLK with which it co-immunoprecipitates. These data support the notion that ASAP1 can contribute to the dissemination of a variety of tumor types and represent a potential target for cancer therapy.
Collapse
|
42
|
Internalization of coxsackievirus A9 is mediated by {beta}2-microglobulin, dynamin, and Arf6 but not by caveolin-1 or clathrin. J Virol 2010; 84:3666-81. [PMID: 20089652 DOI: 10.1128/jvi.01340-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Coxsackievirus A9 (CAV9) is a member of the human enterovirus B species within the Enterovirus genus of the family Picornaviridae. It has been shown to utilize alphaV integrins, particularly alphaVbeta6, as its receptors. The endocytic pathway by which CAV9 enters human cells after the initial attachment to the cell surface has so far been unknown. Here, we present a systematic study concerning the internalization mechanism of CAV9 to A549 human lung carcinoma cells. The small interfering RNA (siRNA) silencing of integrin beta6 subunit inhibited virus proliferation, confirming that alphaVbeta6 mediates the CAV9 infection. However, siRNAs against integrin-linked signaling molecules, such as Src, Fyn, RhoA, phosphatidylinositol 3-kinase, and Akt1, did not reduce CAV9 proliferation, suggesting that the internalization of the virus does not involve integrin-linked signaling events. CAV9 endocytosis was independent of clathrin or caveolin-1 but was restrained by dynasore, an inhibitor of dynamin. The RNA interference silencing of beta2-microglobulin efficiently inhibited virus infection and caused CAV9 to accumulate on the cell surface. Furthermore, CAV9 infection was found to depend on Arf6 as both silencing of this molecule by siRNA and the expression of a dominant negative construct resulted in decreased virus infection. In conclusion, the internalization of CAV9 to A549 cells follows an endocytic pathway that is dependent on integrin alphaVbeta6, beta2-microglobulin, dynamin, and Arf6 but independent of clathrin and caveolin-1.
Collapse
|
43
|
Chen PW, Randazzo PA, Parent CA. ACAP-A/B are ArfGAP homologs in dictyostelium involved in sporulation but not in chemotaxis. PLoS One 2010; 5:e8624. [PMID: 20062541 PMCID: PMC2797641 DOI: 10.1371/journal.pone.0008624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 12/14/2009] [Indexed: 11/29/2022] Open
Abstract
Arfs and Arf GTPase-activating proteins (ArfGAPs) are regulators of membrane trafficking and actin dynamics in mammalian cells. In this study, we identified a primordial Arf, ArfA, and two ArfGAPs (ACAP-A/B) containing BAR, PH, ArfGAP and Ankyrin repeat domains in the eukaryote Dictyostelium discoideum. In vitro, ArfA has similar nucleotide binding properties as mammalian Arfs and, with GTP bound, is a substrate for ACAP-A and B. We also investigated the physiological functions of ACAP-A/B by characterizing cells lacking both ACAP-A and B. Although ACAP-A/B knockout cells showed no defects in cell growth, migration or chemotaxis, they exhibited abnormal actin protrusions and ∼50% reduction in spore yield. We conclude that while ACAP-A/B have a conserved biochemical mechanism and effect on actin organization, their role in migration is not conserved. The absence of an effect on Dictyostelium migration may be due to a specific requirement for ACAPs in mesenchymal migration, which is observed in epithelial cancer cells where most studies of mammalian ArfGAPs were performed.
Collapse
Affiliation(s)
- Pei-Wen Chen
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Paul A. Randazzo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
44
|
Anthonio EA, Brees C, Baumgart-Vogt E, Hongu T, Huybrechts SJ, Van Dijck P, Mannaerts GP, Kanaho Y, Van Veldhoven PP, Fransen M. Small G proteins in peroxisome biogenesis: the potential involvement of ADP-ribosylation factor 6. BMC Cell Biol 2009; 10:58. [PMID: 19686593 PMCID: PMC3224584 DOI: 10.1186/1471-2121-10-58] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 08/17/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Peroxisomes execute diverse and vital functions in virtually every eukaryote. New peroxisomes form by budding from pre-existing organelles or de novo by vesiculation of the ER. It has been suggested that ADP-ribosylation factors and COPI coatomer complexes are involved in these processes. RESULTS Here we show that all viable Saccharomyces cerevisiae strains deficient in one of the small GTPases which have an important role in the regulation of vesicular transport contain functional peroxisomes, and that the number of these organelles in oleate-grown cells is significantly upregulated in the arf1 and arf3 null strains compared to the wild-type strain. In addition, we provide evidence that a portion of endogenous Arf6, the mammalian orthologue of yeast Arf3, is associated with the cytoplasmic face of rat liver peroxisomes. Despite this, ablation of Arf6 did neither influence the regulation of peroxisome abundance nor affect the localization of peroxisomal proteins in cultured fetal hepatocytes. However, co-overexpression of wild-type, GTP hydrolysis-defective or (dominant-negative) GTP binding-defective forms of Arf1 and Arf6 caused mislocalization of newly-synthesized peroxisomal proteins and resulted in an alteration of peroxisome morphology. CONCLUSION These observations suggest that Arf6 is a key player in mammalian peroxisome biogenesis. In addition, they also lend strong support to and extend the concept that specific Arf isoform pairs may act in tandem to regulate exclusive trafficking pathways.
Collapse
Affiliation(s)
- Erin A Anthonio
- Department of Molecular Cell Biology, Catholic University of Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sabe H, Hashimoto S, Morishige M, Ogawa E, Hashimoto A, Nam JM, Miura K, Yano H, Onodera Y. The EGFR-GEP100-Arf6-AMAP1 signaling pathway specific to breast cancer invasion and metastasis. Traffic 2009; 10:982-93. [PMID: 19416474 PMCID: PMC2721971 DOI: 10.1111/j.1600-0854.2009.00917.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tumors are tissue-specific diseases, and their mechanisms of invasion and metastasis are highly diverse. In breast cancer, biomarkers that specifically correlate with the invasive phenotypes have not been clearly identified. A small GTPase Arf6 primarily regulates recycling of plasma membrane components. We have shown that Arf6 and its effector AMAP1 (DDEF1, DEF1, ASAP1 and centaurin β4) are abnormally overexpressed in some breast cancers and used for their invasion and metastasis. Overexpression of these proteins is independent of the transcriptional upregulation of their genes, and occurs only in highly malignant breast cancer cells. We recently identified GEP100 (BRAG2) to be responsible for the Arf6 activation to induce invasion and metastasis, by directly binding to ligand-activated epidermal growth factor receptor (EGFR). A series of our studies revealed that for activation of the invasion pathway of EGFR, it is prerequisite that Arf6 and AMAP1 both are highly overexpressed, and that EGFR is activated by ligands. Pathological analyses indicate that a significant large population of human ductal cancers may utilize the EGFR-GEP100-Arf6-AMAP1 pathway for their malignancy. Microenvironments have been highly implicated in the malignancy of mammary tumors. Our results reveal an aspect of the precise molecular mechanisms of some breast cancers, in which full invasiveness is not acquired just by intracellular alterations of cancer cells, but extracellular factors from microenvironments may also be necessary. Possible translation of our knowledge to cancer therapeutics will also be discussed.
Collapse
Affiliation(s)
- Hisataka Sabe
- Department of Molecular Biology, Osaka Bioscience Institute, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Inoue H, Ha VL, Prekeris R, Randazzo PA. Arf GTPase-activating protein ASAP1 interacts with Rab11 effector FIP3 and regulates pericentrosomal localization of transferrin receptor-positive recycling endosome. Mol Biol Cell 2008; 19:4224-37. [PMID: 18685082 DOI: 10.1091/mbc.e08-03-0290] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
ADP-ribosylation factors (Arfs) and Arf GTPase-activating proteins (GAPs) are key regulators of membrane trafficking and the actin cytoskeleton. The Arf GAP ASAP1 contains an N-terminal BAR domain, which can induce membrane tubulation. Here, we report that the BAR domain of ASAP1 can also function as a protein binding site. Two-hybrid screening identified FIP3, which is a putative Arf6- and Rab11-effector, as a candidate ASAP1 BAR domain-binding protein. Both coimmunoprecipitation and in vitro pulldown assays confirmed that ASAP1 directly binds to FIP3 through its BAR domain. ASAP1 formed a ternary complex with Rab11 through FIP3. FIP3 binding to the BAR domain stimulated ASAP1 GAP activity against Arf1, but not Arf6. ASAP1 colocalized with FIP3 in the pericentrosomal endocytic recycling compartment. Depletion of ASAP1 or FIP3 by small interfering RNA changed the localization of transferrin receptor, which is a marker of the recycling endosome, in HeLa cells. The depletion also altered the trafficking of endocytosed transferrin. These results support the conclusion that ASAP1, like FIP3, functions as a component of the endocytic recycling compartment.
Collapse
Affiliation(s)
- Hiroki Inoue
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
47
|
Ha VL, Bharti S, Inoue H, Vass WC, Campa F, Nie Z, de Gramont A, Ward Y, Randazzo PA. ASAP3 is a focal adhesion-associated Arf GAP that functions in cell migration and invasion. J Biol Chem 2008; 283:14915-26. [PMID: 18400762 DOI: 10.1074/jbc.m709717200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
ASAP3, an Arf GTPase-activating protein previously called DDEFL1 and ACAP4, has been implicated in the pathogenesis of hepatocellular carcinoma. We have examined in vitro and in vivo functions of ASAP3 and compared it to the related Arf GAP ASAP1 that has also been implicated in oncogenesis. ASAP3 was biochemically similar to ASAP1: the pleckstrin homology domain affected function of the catalytic domain by more than 100-fold; catalysis was stimulated by phosphatidylinositol 4,5-bisphosphate; and Arf1, Arf5, and Arf6 were used as substrates in vitro. Like ASAP1, ASAP3 associated with focal adhesions and circular dorsal ruffles. Different than ASAP1, ASAP3 did not localize to invadopodia or podosomes. Cells, derived from a mammary carcinoma and from a glioblastoma, with reduced ASAP3 expression had fewer actin stress fiber, reduced levels of phosphomyosin, and migrated more slowly than control cells. Reducing ASAP3 expression also slowed invasion of mammary carcinoma cells. In contrast, reduction of ASAP1 expression had no effect on migration or invasion. We propose that ASAP3 functions nonredundantly with ASAP1 to control cell movement and may have a role in cancer cell invasion. In comparing ASAP1 and ASAP3, we also found that invadopodia are dispensable for the invasive behavior of cells derived from a mammary carcinoma.
Collapse
Affiliation(s)
- Vi Luan Ha
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The Arf (ADP-ribosylation factor) GAPs (GTPase-activating proteins) are a family of proteins with a common catalytic domain that induces hydrolysis of GTP bound to Arf GTP-binding proteins. At least three groups of multidomain Arf GAPs affect the actin cytoskeleton and cellular activities, such as migration and movement, that depend on the cytoskeleton. One role of the Arf GAPs is to regulate membrane remodelling that accompanies actin polymerization. Regulation of membrane remodelling is mediated in part by the regulation of Arf proteins. However, Arf GAPs also regulate actin independently of effects on membranes or Arf. These functions include acting as upstream regulators of Rho family proteins and providing a scaffold for Rho effectors and exchange factors. With multiple functional elements, the Arf GAPs could integrate signals and biochemical activities that result in co-ordinated changes in actin and membranes necessary for a wide range of cellular functions.
Collapse
Affiliation(s)
- Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
49
|
Ha VL, Luo R, Nie Z, Randazzo PA. Contribution of AZAP-Type Arf GAPs to cancer cell migration and invasion. Adv Cancer Res 2008; 101:1-28. [PMID: 19055940 PMCID: PMC7249260 DOI: 10.1016/s0065-230x(08)00401-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arf GAPs are a family of proteins with a common catalytic domain that induces hydrolysis of GTP bound to the small GTP-binding protein Arf. The proteins are otherwise structurally diverse. Several subtypes of Arf GAPs have been found to be targets of oncogenes and to control cell proliferation and cell migration. The latter effects are thought to be mediated by coordinating changes in actin remodeling and membrane traffic. In this chapter, we discuss Arf GAPs that have been linked to oncogenesis and the molecular mechanisms underlying the effects of these proteins in cancer cells. We also discuss the enzymology of the Arf GAPs related to possible targeted inhibition of specific subtypes of Arf GAPs.
Collapse
Affiliation(s)
- Vi Luan Ha
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
50
|
Cuthbert EJ, Davis KK, Casanova JE. Substrate specificities and activities of AZAP family Arf GAPs in vivo. Am J Physiol Cell Physiol 2007; 294:C263-70. [PMID: 18003747 DOI: 10.1152/ajpcell.00292.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ADP-ribosylation factor (Arf) GTPases are important regulators of vesicular transport in eukaryotic cells. Like other GTPases, the Arfs require guanine nucleotide exchange factors to facilitate GTP loading and GTPase-activating proteins (GAPs) to promote GTP hydrolysis. Whereas there are only six mammalian Arfs, the human genome encodes over 20 proteins containing Arf GAP domains. A subset of these, referred to as AZAPs (Randazzo PA, Hirsch DS. Cell Signal 16: 401-413, 2004), are characterized by the presence of at least one NH(2)-terminal pleckstrin homology domain and two or more ankyrin repeats following the GAP domain. The substrate specificities of these proteins have been previously characterized by using in vitro assay systems. However, a limitation of such assays is that they may not accurately represent intracellular conditions, including posttranslational modifications, or subcellular compartmentalization. Here we present a systematic analysis of the GAP activity of seven AZAPs in vivo, using an assay for measurement of cellular Arf-GTP (Santy LC, Casanova JE. J Cell Biol 154: 599-610, 2001). In agreement with previous in vitro results, we found that ACAP1 and ACAP2 have robust, constitutive Arf6 GAP activity in vivo, with little activity toward Arf1. In contrast, although ARAP1 was initially reported to be an Arf1 GAP, we found that it acts primarily on Arf6 in vivo. Moreover, this activity appears to be regulated through a mechanism involving the NH(2)-terminal sterile-alpha motif. AGAP1 is unique among the AZAPs in its specificity for Arf1, and this activity is dependent on its NH(2)-terminal GTPase-like domain. Finally, we found that expression of AGAP1 induces a surprising reciprocal activation of Arf6, which suggests that regulatory cross talk exists among Arf isoforms.
Collapse
Affiliation(s)
- Ellen J Cuthbert
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908-0732, USA
| | | | | |
Collapse
|