1
|
Daumke O, van der Laan M. Molecular machineries shaping the mitochondrial inner membrane. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00854-z. [PMID: 40369159 DOI: 10.1038/s41580-025-00854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Mitochondria display intricately shaped deep invaginations of the mitochondrial inner membrane (MIM) termed cristae. This peculiar membrane architecture is essential for diverse mitochondrial functions, such as oxidative phosphorylation or the biosynthesis of cellular building blocks. Conserved protein nano-machineries such as F1Fo-ATP synthase oligomers and the mitochondrial contact site and cristae organizing system (MICOS) act as adaptable protein-lipid scaffolds controlling MIM biogenesis and its dynamic remodelling. Signal-dependent rearrangements of cristae architecture and MIM fusion events are governed by the dynamin-like GTPase optic atrophy 1 (OPA1). Recent groundbreaking structural insights into these nano-machineries have considerably advanced our understanding of the functional architecture of mitochondria. In this Review, we discuss how the MIM-shaping machineries cooperate to control cristae and crista junction dynamics, including MIM fusion, in response to cellular signalling pathways. We also explore how mutations affecting MIM-shaping machineries compromise mitochondrial functions.
Collapse
Affiliation(s)
- Oliver Daumke
- Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Martin van der Laan
- Medical Biochemistry & Molecular Biology, Center for Molecular Signalling (PZMS), Saarland University Medical School, Homburg/Saar, Germany.
| |
Collapse
|
2
|
Gordaliza-Alaguero I, Sànchez-Fernàndez-de-Landa P, Radivojevikj D, Villarreal L, Arauz-Garofalo G, Gay M, Martinez-Vicente M, Seco J, Martín-Malpartida P, Vilaseca M, Macías MJ, Palacin M, Ivanova S, Zorzano A. Endogenous interactomes of MFN1 and MFN2 provide novel insights into interorganelle communication and autophagy. Autophagy 2025; 21:957-978. [PMID: 39675054 PMCID: PMC12013434 DOI: 10.1080/15548627.2024.2440843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
MFN1 (mitofusin 1) and MFN2 are key players in mitochondrial fusion, endoplasmic reticulum (ER)-mitochondria juxtaposition, and macroautophagy/autophagy. However, the mechanisms by which these proteins participate in these processes are poorly understood. Here, we studied the interactomes of these two proteins by using CRISPR-Cas9 technology to insert an HA-tag at the C terminus of MFN1 and MFN2, and thus generating HeLa cell lines that endogenously expressed MFN1-HA or MFN2-HA. HA-affinity isolation followed by mass spectrometry identified potential interactors of MFN1 and MFN2. A substantial proportion of interactors were common for MFN1 and MFN2 and were regulated by nutrient deprivation. We validated novel ER and endosomal partners of MFN1 and/or MFN2 with a potential role in interorganelle communication. We characterized RAB5C (RAB5C, member RAS oncogene family) as an endosomal modulator of mitochondrial homeostasis, and SLC27A2 (solute carrier family 27 (fatty acid transporter), member 2) as a novel partner of MFN2 relevant in autophagy. We conclude that MFN proteins participate in nutrient-modulated pathways involved in organelle communication and autophagy.Abbreviations: ACTB: actin, beta; ATG2: autophagy related 2; ATG5: autophagy related 5; ATG12: autophagy related 12; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; Baf A1: bafilomycin A1; BECN1: beclin 1, autophagy related; BFDR: Bayesian false discovery rate; Cas9: CRISPR-associated endonuclease Cas9; CRISPR: clustered regularly interspaced short palindromic repeats; DNM1L/DRP1: dynamin 1-like; ER: endoplasmic reticulum; Faa1: fatty acid activation 1; FC: fold change; FDR: false discovery rate; FIS1: fission, mitochondrial 1; GABARAP: gamma-aminobutyric acid receptor associated protein; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HA: hemagglutinin; KO: knockout; LIR: LC3-interacting region; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MARCHF5: membrane associated ring-CH-type finger 5; MDVs: mitochondria-derived vesicles; MFN1: mitofusin 1; MFN2: mitofusin 2; NDFIP2: Nedd4 family interacting protein 2; OMM: outer mitochondrial membrane; OPA1: OPA1, mitochondrial dynamin like GTPase; OXPHOS: oxidative phosphorylation; PE: phosphatidylethanolamine; PINK1: PTEN induced putative kinase 1; PS: phosphatidylserine; RAB5C: RAB5C, member RAS oncogene family; S100A8: S100 calcium binding protein A8 (calgranulin A); S100A9: S100 calcium binding protein A9 (calgranulin B); SLC27A2: solute carrier family 27 (fatty acid transporter), member 2; TIMM44: translocase of inner mitochondrial membrane 44; TOMM20: translocase of outer mitochondrial membrane 20; ULK1: unc-51 like kinase 1; VCL: vinculin; VDAC1: voltage-dependent anion channel 1; WT: wild type.
Collapse
Affiliation(s)
- Isabel Gordaliza-Alaguero
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Paula Sànchez-Fernàndez-de-Landa
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Dragana Radivojevikj
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Villarreal
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - Gianluca Arauz-Garofalo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - Marina Gay
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - Marta Martinez-Vicente
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Jorge Seco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - Pau Martín-Malpartida
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - María J. Macías
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Manuel Palacin
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomedica En Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Saška Ivanova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Traa A, Keil A, AlOkda A, Jacob‐Tomas S, Tamez González AA, Zhu S, Rudich Z, Van Raamsdonk JM. Overexpression of mitochondrial fission or mitochondrial fusion genes enhances resilience and extends longevity. Aging Cell 2024; 23:e14262. [PMID: 38953684 PMCID: PMC11464124 DOI: 10.1111/acel.14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
The dynamicity of the mitochondrial network is crucial for meeting the ever-changing metabolic and energy needs of the cell. Mitochondrial fission promotes the degradation and distribution of mitochondria, while mitochondrial fusion maintains mitochondrial function through the complementation of mitochondrial components. Previously, we have reported that mitochondrial networks are tubular, interconnected, and well-organized in young, healthy C. elegans, but become fragmented and disorganized with advancing age and in models of age-associated neurodegenerative disease. In this work, we examine the effects of increasing mitochondrial fission or mitochondrial fusion capacity by ubiquitously overexpressing the mitochondrial fission gene drp-1 or the mitochondrial fusion genes fzo-1 and eat-3, individually or in combination. We then measured mitochondrial function, mitochondrial network morphology, physiologic rates, stress resistance, and lifespan. Surprisingly, we found that overexpression of either mitochondrial fission or fusion machinery both resulted in an increase in mitochondrial fragmentation. Similarly, both mitochondrial fission and mitochondrial fusion overexpression strains have extended lifespans and increased stress resistance, which in the case of the mitochondrial fusion overexpression strains appears to be at least partially due to the upregulation of multiple pathways of cellular resilience in these strains. Overall, our work demonstrates that increasing the expression of mitochondrial fission or fusion genes extends lifespan and improves biological resilience without promoting the maintenance of a youthful mitochondrial network morphology. This work highlights the importance of the mitochondria for both resilience and longevity.
Collapse
Affiliation(s)
- Annika Traa
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Metabolic Disorders and Complications ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Allison Keil
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Metabolic Disorders and Complications ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Abdelrahman AlOkda
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Metabolic Disorders and Complications ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Suleima Jacob‐Tomas
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Metabolic Disorders and Complications ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Aura A. Tamez González
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Metabolic Disorders and Complications ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Shusen Zhu
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Metabolic Disorders and Complications ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Zenith Rudich
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Metabolic Disorders and Complications ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Jeremy M. Van Raamsdonk
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Metabolic Disorders and Complications ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Brain Repair and Integrative Neuroscience ProgramResearch Institute of the McGill University Health CentreMontrealQuebecCanada
- Division of Experimental Medicine, Department of MedicineMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
4
|
Caggiano EG, Taniguchi CM. UCP2 and pancreatic cancer: conscious uncoupling for therapeutic effect. Cancer Metastasis Rev 2024; 43:777-794. [PMID: 38194152 PMCID: PMC11156755 DOI: 10.1007/s10555-023-10157-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/10/2024]
Abstract
Pancreatic cancer has an exaggerated dependence on mitochondrial metabolism, but methods to specifically target the mitochondria without off target effects in normal tissues that rely on these organelles is a significant challenge. The mitochondrial uncoupling protein 2 (UCP2) has potential as a cancer-specific drug target, and thus, we will review the known biology of UCP2 and discuss its potential role in the pathobiology and future therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Emily G Caggiano
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Yuan H, Fang R, Fu C, Wang S, Tong X, Feng D, Wei X, Hu X, Wang Y. ATIP/ATIP1 regulates prostate cancer metastasis through mitochondrial dynamic-dependent signaling. Acta Biochim Biophys Sin (Shanghai) 2024; 56:304-314. [PMID: 38282475 PMCID: PMC10984865 DOI: 10.3724/abbs.2024006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/24/2023] [Indexed: 01/30/2024] Open
Abstract
Mitochondria play a fundamental role in cell survival and motility. Abnormalities in mitochondria are associated with carcinogenesis, especially with tumor metastasis. In this study, we explore the biological function of ATIP1, which is a mitochondrial-located isoform of angiotensin II AT2 receptor interacting proteins (ATIPs) in prostate cancer cells. The results showed that ATIP is downregulated in prostate cancer tissues and is negatively correlated with the disease-free survival rate of prostate cancer patients. Silencing of ATIP promotes mitochondrial fission and enhances tumor cell migration and invasion. Reconstitution of ATIP1 in ATIP-deficient cells significantly attenuates mitochondrial trafficking and tumor cell movement. Therefore, ATIP1 is a negative regulator of mitochondrial dynamics and tumor cell motility and is also a potential biomarker for predicting prostate cancer malignancy.
Collapse
Affiliation(s)
- Haokun Yuan
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory MedicineSichuan Provincial People′s HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
- The School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Ruiqin Fang
- The School of Life ScienceUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Chi Fu
- The School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Shuo Wang
- The School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Xiaoqin Tong
- The School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Deyi Feng
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamen361104China
| | - Xiaoqing Wei
- The School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Xirong Hu
- The School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Yuan Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory MedicineSichuan Provincial People′s HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
- The School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
| |
Collapse
|
6
|
Karnan S, Hanamura I, Ota A, Vu LQ, Uchino K, Horio T, Murakami S, Mizuno S, Rahman ML, Wahiduzzaman M, Hasan MN, Biswas M, Hyodo T, Ito H, Suzuki A, Konishi H, Tsuzuki S, Hosokawa Y, Takami A. ARK5 enhances cell survival associated with mitochondrial morphological dynamics from fusion to fission in human multiple myeloma cells. Cell Death Discov 2024; 10:56. [PMID: 38282096 PMCID: PMC10822851 DOI: 10.1038/s41420-024-01814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/30/2024] Open
Abstract
5' adenosine monophosphate-activated protein kinase-related kinase 5 (ARK5) is involved in mitochondrial ATP production and associated with poor prognosis of multiple myeloma (MM). However, the molecular mechanisms of ARK5 in MM remain largely unknown. This study examined the pathogenic role of ARK5 in mitochondria by using genetically modified isogenic cell clones with or without ARK5 in human myeloma cell lines, KMS-11 and Sachi, which overexpress ARK5. The biallelic knockout of ARK5 (ARK5-KO) inhibited cell proliferation, colony formation, and migration with increased apoptosis. Mitochondrial fusion was enhanced in ARK5-KO cells, unlike in ARK5 wild-type (ARK5-WT) cells, which exhibited increased mitochondrial fission. Furthermore, ARK5-KO cells demonstrated a lower phosphorylated dynamin-related protein 1 at serine 616, higher protein expression of mitofusin-1 (MFN1) and MFN2, optic atrophy 1 with a lower level of ATP, and higher levels of lactate and reactive oxygen species than ARK5-WT cells. Our findings suggest that ARK5-enhanced myeloma cells can survive associated mitochondrial fission and activity. This study first revealed the relationship between ARK5 and mitochondrial morphological dynamics. Thus, our outcomes show novel aspects of mitochondrial biology of ARK5, which can afford a more advanced treatment approach for unfavorable MM expressing ARK5.
Collapse
Grants
- 19K08825, 22K08516[Hanamura] Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19K09292, 22K08985 [Karnan] Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21K08426 [Ota] Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Ichiro Hanamura
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
- Department of Nutritional Environment, College of Human Life and Environment, Kinjo Gakuin University, Nagoya, 463-8521, Japan
| | - Lam Quang Vu
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kaori Uchino
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Tomohiro Horio
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Satsuki Murakami
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shohei Mizuno
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Md Lutfur Rahman
- EuGEF Research Foundation, Chattogram, Bangladesh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Md Wahiduzzaman
- EuGEF Research Foundation, Chattogram, Bangladesh
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, 101 Mineola Blvd, Mineola, NY, 11501, USA
| | - Muhammad Nazmul Hasan
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
- EuGEF Research Foundation, Chattogram, Bangladesh
| | - Mrityunjoy Biswas
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Hideaki Ito
- Department of Pathology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Atsushi Suzuki
- Hematology Medical Franchise, Department of Medical Affairs, Novartis Japan, Tokyo, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University, Nagakute, Aichi, Japan
| | - Akiyoshi Takami
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
7
|
Schwarzer A, Oliveira M, Kleppa MJ, Slattery SD, Anantha A, Cooper A, Hannink M, Schambach A, Dörrie A, Kotlyarov A, Gaestel M, Hembrough T, Levine J, Luther M, Stocum M, Stiles L, Weinstock DM, Liesa M, Kostura MJ. Targeting Aggressive B-cell Lymphomas through Pharmacological Activation of the Mitochondrial Protease OMA1. Mol Cancer Ther 2023; 22:1290-1303. [PMID: 37643767 PMCID: PMC10723637 DOI: 10.1158/1535-7163.mct-22-0718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/02/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
DLBCL are aggressive, rapidly proliferating tumors that critically depend on the ATF4-mediated integrated stress response (ISR) to adapt to stress caused by uncontrolled growth, such as hypoxia, amino acid deprivation, and accumulation of misfolded proteins. Here, we show that ISR hyperactivation is a targetable liability in DLBCL. We describe a novel class of compounds represented by BTM-3528 and BTM-3566, which activate the ISR through the mitochondrial protease OMA1. Treatment of tumor cells with compound leads to OMA1-dependent cleavage of DELE1 and OPA1, mitochondrial fragmentation, activation of the eIF2α-kinase HRI, cell growth arrest, and apoptosis. Activation of OMA1 by BTM-3528 and BTM-3566 is mechanistically distinct from inhibitors of mitochondrial electron transport, as the compounds induce OMA1 activity in the absence of acute changes in respiration. We further identify the mitochondrial protein FAM210B as a negative regulator of BTM-3528 and BTM-3566 activity. Overexpression of FAM210B prevents both OMA1 activation and apoptosis. Notably, FAM210B expression is nearly absent in healthy germinal center B-lymphocytes and in derived B-cell malignancies, revealing a fundamental molecular vulnerability which is targeted by BTM compounds. Both compounds induce rapid apoptosis across diverse DLBCL lines derived from activated B-cell, germinal center B-cell, and MYC-rearranged lymphomas. Once-daily oral dosing of BTM-3566 resulted in complete regression of xenografted human DLBCL SU-DHL-10 cells and complete regression in 6 of 9 DLBCL patient-derived xenografts. BTM-3566 represents a first-of-its kind approach of selectively hyperactivating the mitochondrial ISR for treating DLBCL.
Collapse
Affiliation(s)
- Adrian Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Matheus Oliveira
- Department of Medicine, Endocrinology, UCLA, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Marc-Jens Kleppa
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Andy Anantha
- Bantam Pharmaceutical, Research Triangle Park, North Carolina
| | - Alan Cooper
- Bantam Pharmaceutical, Research Triangle Park, North Carolina
| | - Mark Hannink
- Biochemistry Department, Life Sciences Center and Ellis Fischel Cancer Center, University of Missouri, Columbia, Missouri
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Anneke Dörrie
- Department of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Alexey Kotlyarov
- Department of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Gaestel
- Department of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Todd Hembrough
- Bantam Pharmaceutical, Research Triangle Park, North Carolina
| | - Jedd Levine
- Bantam Pharmaceutical, Research Triangle Park, North Carolina
| | - Michael Luther
- Bantam Pharmaceutical, Research Triangle Park, North Carolina
| | - Michael Stocum
- Bantam Pharmaceutical, Research Triangle Park, North Carolina
| | - Linsey Stiles
- Department of Medicine, Endocrinology, UCLA, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | - Marc Liesa
- Department of Medicine, Endocrinology, UCLA, David Geffen School of Medicine at UCLA, Los Angeles, California
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Catalonia, Spain
| | | |
Collapse
|
8
|
Ju WK, Perkins GA, Kim KY, Bastola T, Choi WY, Choi SH. Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog Retin Eye Res 2023; 95:101136. [PMID: 36400670 DOI: 10.1016/j.preteyeres.2022.101136] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by a slow, progressive, and multifactorial degeneration of retinal ganglion cells (RGCs) and their axons, resulting in vision loss. Despite its high prevalence in individuals 60 years of age and older, the causing factors contributing to glaucoma progression are currently not well characterized. Intraocular pressure (IOP) is the only proven treatable risk factor. However, lowering IOP is insufficient for preventing disease progression. One of the significant interests in glaucoma pathogenesis is understanding the structural and functional impairment of mitochondria in RGCs and their axons and synapses. Glaucomatous risk factors such as IOP elevation, aging, genetic variation, neuroinflammation, neurotrophic factor deprivation, and vascular dysregulation, are potential inducers for mitochondrial dysfunction in glaucoma. Because oxidative phosphorylation stress-mediated mitochondrial dysfunction is associated with structural and functional impairment of mitochondria in glaucomatous RGCs, understanding the underlying mechanisms and relationship between structural and functional alterations in mitochondria would be beneficial to developing mitochondria-related neuroprotection in RGCs and their axons and synapses against glaucomatous neurodegeneration. Here, we review the current studies focusing on mitochondrial dynamics-based structural and functional alterations in the mitochondria of glaucomatous RGCs and therapeutic strategies to protect RGCs against glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Won-Kyu Ju
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tonking Bastola
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Woo-Young Choi
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA; Department of Plastic Surgery, College of Medicine, Chosun University, Gwang-ju, South Korea
| | - Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
9
|
Vodičková A, Koren SA, Wojtovich AP. Site-specific mitochondrial dysfunction in neurodegeneration. Mitochondrion 2022; 64:1-18. [PMID: 35182728 PMCID: PMC9035127 DOI: 10.1016/j.mito.2022.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
Mitochondria are essential for neuronal survival and mitochondrial dysfunction is a hallmark of neurodegeneration. The loss in mitochondrial energy production, oxidative stress, and changes in calcium handling are associated with neurodegenerative diseases; however, different sites and types of mitochondrial dysfunction are linked to distinct neuropathologies. Understanding the causal or correlative relationship between changes in mitochondria and neuropathology will lead to new therapeutic strategies. Here, we summarize the evidence of site-specific mitochondrial dysfunction and mitochondrial-related clinical trials for neurodegenerative diseases. We further discuss potential therapeutic approaches, such as mitochondrial transplantation, restoration of mitochondrial function, and pharmacological alleviation of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anežka Vodičková
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Shon A Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
10
|
Nguyen TT, Voeltz GK. An ER phospholipid hydrolase drives ER-associated mitochondrial constriction for fission and fusion. eLife 2022; 11:84279. [PMID: 36448541 PMCID: PMC9725753 DOI: 10.7554/elife.84279] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Mitochondria are dynamic organelles that undergo cycles of fission and fusion at a unified platform defined by endoplasmic reticulum (ER)-mitochondria membrane contact sites (MCSs). These MCSs or nodes co-localize fission and fusion machinery. We set out to identify how ER-associated mitochondrial nodes can regulate both fission and fusion machinery assembly. We have used a promiscuous biotin ligase linked to the fusion machinery, Mfn1, and proteomics to identify an ER membrane protein, ABHD16A, as a major regulator of node formation. In the absence of ABHD16A, fission and fusion machineries fail to recruit to ER-associated mitochondrial nodes, and fission and fusion rates are significantly reduced. ABHD16A contains an acyltransferase motif and an α/β hydrolase domain, and point mutations in critical residues of these regions fail to rescue the formation of ER-associated mitochondrial hot spots. These data suggest a mechanism whereby ABHD16A functions by altering phospholipid composition at ER-mitochondria MCSs. Our data present the first example of an ER membrane protein that regulates the recruitment of both fission and fusion machineries to mitochondria.
Collapse
Affiliation(s)
- Tricia T Nguyen
- Howard Hughes Medical InstituteChevy ChaseUnited States,Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| | - Gia K Voeltz
- Howard Hughes Medical InstituteChevy ChaseUnited States,Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| |
Collapse
|
11
|
Kim IS, Silwal P, Jo EK. Mitofusin 2, a key coordinator between mitochondrial dynamics and innate immunity. Virulence 2021; 12:2273-2284. [PMID: 34482801 PMCID: PMC8425681 DOI: 10.1080/21505594.2021.1965829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Remodeling of mitochondrial dynamics and mitochondrial morphology plays a pivotal role in the maintenance of mitochondrial homeostasis in response to pathogenic attacks or stress stimuli. In addition to their role in metabolism and energy production, mitochondria participate in diverse biological functions, including innate immune responses driven by macrophages in response to infections or inflammatory stimuli. Mitofusin-2 (MFN2), a mitochondria-shaping protein regulating mitochondrial fusion and fission, plays a crucial role in linking mitochondrial function and innate immune responses. In this article, we review the role of MFN2 in the regulation of innate immune responses during viral and bacterial infections. We also summarize the current knowledge on the role of MFN2 in coordinating inflammatory, atherogenic, and fibrotic responses. MFN2-mediated crosstalk between mitochondrial dynamics and innate immune responses may determine the outcomes of pathogenic infections.
Collapse
Affiliation(s)
- In Soo Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
12
|
Sheng X, Cristea IM. The antiviral sirtuin 3 bridges protein acetylation to mitochondrial integrity and metabolism during human cytomegalovirus infection. PLoS Pathog 2021; 17:e1009506. [PMID: 33857259 PMCID: PMC8078788 DOI: 10.1371/journal.ppat.1009506] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/27/2021] [Accepted: 03/25/2021] [Indexed: 01/22/2023] Open
Abstract
Regulation of mitochondrial structure and function is a central component of infection with viruses, including human cytomegalovirus (HCMV), as a virus means to modulate cellular metabolism and immune responses. Here, we link the activity of the mitochondrial deacetylase SIRT3 and global mitochondrial acetylation status to host antiviral responses via regulation of both mitochondrial structural integrity and metabolism during HCMV infection. We establish that SIRT3 deacetylase activity is necessary for suppressing virus production, and that SIRT3 maintains mitochondrial pH and membrane potential during infection. By defining the temporal dynamics of SIRT3-substrate interactions during infection, and overlaying acetylome and proteome information, we find altered SIRT3 associations with the mitochondrial fusion factor OPA1 and acetyl-CoA acyltransferase 2 (ACAA2), concomitant with changes in their acetylation levels. Using mutagenesis, microscopy, and virology assays, we determine OPA1 regulates mitochondrial morphology of infected cells and inhibits HCMV production. OPA1 acetylation status modulates these functions, and we establish K834 as a site regulated by SIRT3. Control of SIRT3 protein levels or enzymatic activity is sufficient for regulating mitochondrial filamentous structure. Lastly, we establish a virus restriction function for ACAA2, an enzyme involved in fatty acid beta-oxidation. Altogether, we highlight SIRT3 activity as a regulatory hub for mitochondrial acetylation and morphology during HCMV infection and point to global acetylation as a reflection of mitochondrial health. Given their functions in cellular metabolism and immune responses, mitochondria are targeted and disrupted by numerous prevalent viral pathogens, including human cytomegalovirus (HCMV). To characterize mechanisms underlying mitochondrial regulation during HCMV infection in human fibroblasts, this study integrates enzyme-substrate interaction studies, mass spectrometry quantification of protein abundance and acetylation, mutagenesis, microscopy, and virology assays. These analyses establish a link between the mitochondrial acetylation status and mitochondrial structure and metabolism during HCMV infection. We demonstrate that the mitochondrial deacetylase SIRT3 acts in host defense by modulating proteins that regulate mitochondrial structure and fatty acid oxidation. SIRT3 helps to maintain mitochondrial integrity through several mechanisms, including regulation of mitochondrial pH, membrane potential, and the balance between mitochondrial fission and fusion. As excess mitochondrial acetylation is detrimental to mitochondrial metabolism, the virus-induced alterations in SIRT3 functions and mitochondrial acetylation may be linked to known HCMV pathologies, such as the metabolic syndrome and cardiac hypertrophy.
Collapse
Affiliation(s)
- Xinlei Sheng
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, NJ, United States of America
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, NJ, United States of America
- * E-mail:
| |
Collapse
|
13
|
Xin Y, Li J, Wu W, Liu X. Mitofusin-2: A New Mediator of Pathological Cell Proliferation. Front Cell Dev Biol 2021; 9:647631. [PMID: 33869201 PMCID: PMC8049505 DOI: 10.3389/fcell.2021.647631] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/02/2021] [Indexed: 02/05/2023] Open
Abstract
Cell proliferation is an important cellular process for physiological tissue homeostasis and remodeling. The mechanisms of cell proliferation in response to pathological stresses are not fully understood. Mitochondria are highly dynamic organelles whose shape, number, and biological functions are modulated by mitochondrial dynamics, including fusion and fission. Mitofusin-2 (Mfn-2) is an essential GTPase-related mitochondrial dynamics protein for maintaining mitochondrial network and bioenergetics. A growing body of evidence indicates that Mfn-2 has a potential role in regulating cell proliferation in various cell types. Here we review these new functions of Mfn-2, highlighting its crucial role in several signaling pathways during the process of pathological cell proliferation. We conclude that Mfn-2 could be a new mediator of pathological cell proliferation and a potential therapeutic target.
Collapse
Affiliation(s)
- Yanguo Xin
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Junli Li
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojing Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Kim KW, Baek MO, Yoon MS, Son KH. Deterioration of mitochondrial function in the human intercostal muscles differs among individuals with sarcopenia, obesity, and sarcopenic obesity. Clin Nutr 2021; 40:2697-2706. [PMID: 33933735 DOI: 10.1016/j.clnu.2021.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/19/2021] [Accepted: 03/05/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Sarcopenic obesity (SO) increases the risk of mortality more than sarcopenia or obesity alone. Sarcopenia weakens the peripheral and respiratory muscles, leading to respiratory complications. It also induces mitochondrial dysfunction in the peripheral muscle; however, whether mitochondrial dysfunction in respiratory muscles differs among individuals with obesity, sarcopenia, and SO remains unknown. We evaluated the deterioration of respiratory muscle strength and mitochondrial function among normal, sarcopenia, obesity, and SO subjects. METHODS Twenty-five patients who underwent lung resections were enrolled between April 2017 and January 2021, and their intercostal muscles were harvested. Based on their L3 muscle index and visceral fat area, the patients were divided into four groups (normal, obesity, sarcopenia, and SO). The clinical data, mRNA expression, and protein expressions associated with mitochondrial biogenesis/fusion/fission in the intercostal muscles were compared among the four groups. RESULTS The respiratory muscle strength was evaluated using peak expiratory flow rate (PEFR). The PEFR values of the four groups were not significantly different. The levels of pAkt/Akt and mTOR (a marker of protein synthesis) were not significantly different among the four groups; however, those in the SO group were substantially lower than those in the sarcopenia or obesity groups. The levels of Atrogen-1 and MuRF1 (a marker of protein degradation) were not significantly different among the four groups; however, those in the SO group were substantially higher than those in the sarcopenia or obesity groups. Expression of PGC1-α (a marker of mitochondrial biogenesis) in the SO group was significantly lower than that in the normal group. MFN1 and MFN2 (marker of mitochondrial fusion) levels were significantly lower in the SO group than those in the normal group. DRP1 (a marker of mitochondrial fission) level in the SO group was substantially lower than that in the normal group. The expression of TNF-α (a pro-inflammatory cytokine) in the SO group was substantially lower than that in the normal group. CONCLUSION Our results suggest that the deterioration of protein synthesis and degradation of mitochondrial function in the respiratory muscles was most prominent in the SO before the weakening of the respiratory muscles. The deterioration mechanism may differentially regulate obesity, sarcopenia, and SO.
Collapse
Affiliation(s)
- Kun Woo Kim
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, South Korea
| | - Mi-Ock Baek
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 21999, South Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea
| | - Mee-Sup Yoon
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 21999, South Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea.
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, South Korea.
| |
Collapse
|
15
|
Maloney DM, Chadderton N, Millington-Ward S, Palfi A, Shortall C, O'Byrne JJ, Cassidy L, Keegan D, Humphries P, Kenna P, Farrar GJ. Optimized OPA1 Isoforms 1 and 7 Provide Therapeutic Benefit in Models of Mitochondrial Dysfunction. Front Neurosci 2020; 14:571479. [PMID: 33324145 PMCID: PMC7726421 DOI: 10.3389/fnins.2020.571479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/30/2020] [Indexed: 01/09/2023] Open
Abstract
Optic Atrophy 1 (OPA1) is a mitochondrially targeted GTPase that plays a pivotal role in mitochondrial health, with mutations causing severe mitochondrial dysfunction and typically associated with Dominant Optic Atrophy (DOA), a progressive blinding disease involving retinal ganglion cell loss and optic nerve damage. In the current study, we investigate the use of codon-optimized versions of OPA1 isoform 1 and 7 as potential therapeutic interventions in a range of in vitro and in vivo models of mitochondrial dysfunction. We demonstrate that both isoforms perform equally well in ameliorating mitochondrial dysfunction in OPA1 knockout mouse embryonic fibroblast cells but that OPA1 expression levels require tight regulation for optimal benefit. Of note, we demonstrate for the first time that both OPA1 isoform 1 and 7 can be used independently to protect spatial visual function in a murine model of retinal ganglion cell degeneration caused by mitochondrial dysfunction, as well as providing benefit to mitochondrial bioenergetics in DOA patient derived fibroblast cells. These results highlight the potential value of OPA1-based gene therapy interventions.
Collapse
Affiliation(s)
- Daniel M Maloney
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Naomi Chadderton
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | | | - Arpad Palfi
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Ciara Shortall
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | - James J O'Byrne
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University Hospital, Dublin, Ireland.,Clinical Genetics Centre for Ophthalmology, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Lorraine Cassidy
- The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - David Keegan
- Clinical Genetics Centre for Ophthalmology, The Mater Misericordiae University Hospital, Dublin, Ireland
| | - Peter Humphries
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Paul Kenna
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland.,The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Gwyneth Jane Farrar
- The School of Genetics & Microbiology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Chen S, Liu S, Wang J, Wu Q, Wang A, Guan H, Zhang Q, Zhang D, Wang X, Song H, Qin J, Zou J, Jiang Z, Ouyang S, Feng XH, Liang T, Xu P. TBK1-Mediated DRP1 Targeting Confers Nucleic Acid Sensing to Reprogram Mitochondrial Dynamics and Physiology. Mol Cell 2020; 80:810-827.e7. [PMID: 33171123 DOI: 10.1016/j.molcel.2020.10.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022]
Abstract
Mitochondrial morphology shifts rapidly to manage cellular metabolism, organelle integrity, and cell fate. It remains unknown whether innate nucleic acid sensing, the central and general mechanisms of monitoring both microbial invasion and cellular damage, can reprogram and govern mitochondrial dynamics and function. Here, we unexpectedly observed that upon activation of RIG-I-like receptor (RLR)-MAVS signaling, TBK1 directly phosphorylated DRP1/DNM1L, which disabled DRP1, preventing its high-order oligomerization and mitochondrial fragmentation function. The TBK1-DRP1 axis was essential for assembly of large MAVS aggregates and healthy antiviral immunity and underlay nutrient-triggered mitochondrial dynamics and cell fate determination. Knockin (KI) strategies mimicking TBK1-DRP1 signaling produced dominant-negative phenotypes reminiscent of human DRP1 inborn mutations, while interrupting the TBK1-DRP1 connection compromised antiviral responses. Thus, our findings establish an unrecognized function of innate immunity governing both morphology and physiology of a major organelle, identify a lacking loop during innate RNA sensing, and report an elegant mechanism of shaping mitochondrial dynamics.
Collapse
Affiliation(s)
- Shasha Chen
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shengduo Liu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junxian Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qirou Wu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ailian Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hongxin Guan
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Qian Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dan Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaojian Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hai Song
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital, Institutes of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Xin-Hua Feng
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Michael E. DeBakey Department of Surgery and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030, USA
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
17
|
Georgiadou E, Rutter GA. Control by Ca 2+ of mitochondrial structure and function in pancreatic β-cells. Cell Calcium 2020; 91:102282. [PMID: 32961506 PMCID: PMC7116533 DOI: 10.1016/j.ceca.2020.102282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Mitochondria play a central role in glucose metabolism and the stimulation of insulin secretion from pancreatic β-cells. In this review, we discuss firstly the regulation and roles of mitochondrial Ca2+ transport in glucose-regulated insulin secretion, and the molecular machinery involved. Next, we discuss the evidence that mitochondrial dysfunction in β-cells is associated with type 2 diabetes, from a genetic, functional and structural point of view, and then the possibility that these changes may in part be mediated by dysregulation of cytosolic Ca2+. Finally, we review the importance of preserved mitochondrial structure and dynamics for mitochondrial gene expression and their possible relevance to the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Eleni Georgiadou
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
18
|
Abrisch RG, Gumbin SC, Wisniewski BT, Lackner LL, Voeltz GK. Fission and fusion machineries converge at ER contact sites to regulate mitochondrial morphology. J Cell Biol 2020; 219:e201911122. [PMID: 32328629 PMCID: PMC7147108 DOI: 10.1083/jcb.201911122] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 11/22/2022] Open
Abstract
The steady-state morphology of the mitochondrial network is maintained by a balance of constitutive fission and fusion reactions. Disruption of this steady-state morphology results in either a fragmented or elongated network, both of which are associated with altered metabolic states and disease. How the processes of fission and fusion are balanced by the cell is unclear. Here we show that mitochondrial fission and fusion are spatially coordinated at ER membrane contact sites (MCSs). Multiple measures indicate that the mitochondrial fusion machinery, Mitofusins, accumulate at ER MCSs where fusion occurs. Furthermore, fission and fusion machineries colocalize to form hotspots for membrane dynamics at ER MCSs that can persist through sequential events. Because these hotspots can undergo fission and fusion, they have the potential to quickly respond to metabolic cues. Indeed, we discover that ER MCSs define the interface between polarized and depolarized segments of mitochondria and can rescue the membrane potential of damaged mitochondria by ER-associated fusion.
Collapse
Affiliation(s)
- Robert G. Abrisch
- Department of Biochemistry, University of Colorado, Boulder, CO
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Samantha C. Gumbin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO
- Howard Hughes Medical Institute, Chevy Chase, MD
| | | | - Laura L. Lackner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Gia K. Voeltz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
19
|
Rastogi A, Joshi P, Contreras E, Gama V. Remodeling of mitochondrial morphology and function: an emerging hallmark of cellular reprogramming. Cell Stress 2019; 3:181-194. [PMID: 31225513 PMCID: PMC6558935 DOI: 10.15698/cst2019.06.189] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Research in the stem cell field has traditionally focused on understanding key transcriptional factors that provide pluripotent cell identity. However, much less is known about other critical non-transcriptional signaling networks that govern stem cell identity. Although we continue to gain critical insights into the mechanisms underlying mitochondrial morphology and function during cellular reprogramming – the process of reverting the fate of a differentiated cell into a stem cell, many uncertainties remain. Recent studies suggest an emerging landscape in which mitochondrial morphology and function have an active role in maintaining and regulating changes in cell identity. In this review, we will focus on these emerging concepts as crucial modulators of cellular reprogramming. Recognition of the widespread applicability of these concepts will increase our understanding of the mitochondrial mechanisms involved in cell identity, cell fate and disease.
Collapse
Affiliation(s)
- Anuj Rastogi
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Piyush Joshi
- Neuroscience Program, Vanderbilt University Medical Center, Nashville, TN 37240.,Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN 37240
| | - Ela Contreras
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Vivian Gama
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37240.,Neuroscience Program, Vanderbilt University Medical Center, Nashville, TN 37240.,Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN 37240.,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37240
| |
Collapse
|
20
|
Purohit PK, Edwards R, Tokatlidis K, Saini N. MiR-195 regulates mitochondrial function by targeting mitofusin-2 in breast cancer cells. RNA Biol 2019; 16:918-929. [PMID: 30932749 PMCID: PMC6546347 DOI: 10.1080/15476286.2019.1600999] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial dynamics is a highly dysregulated process in cancer. Apoptosis and mitochondrial fission are two concurrent events wherein increased mitochondrial fragmentation serves as a hallmark of apoptosis. We have shown earlier that miR-195 exerts pro-apoptotic effects in breast cancer cells. Herein, we have demonstrated miR-195 as a modulator of mitochondrial dynamics and function. Imaging experiments upon miR-195 treatment have shown that mitochondria undergo extensive fission. We validated mitofusin2 as a potential target of miR-195. This may provide a molecular explanation for the respiratory defects induced by miR-195 over-expression in breast cancer cells. Active, but not total, mitochondrial mass, was reduced with increasing levels of miR-195. We have further shown that miR-195 enhances mitochondrial SOD-2 expression but does not affect PINK1 levels in breast cancer cells. Collectively, we have revealed that miR-195 is a modulator of mitochondrial dynamics by targeting MFN2 thereby impairing mitochondrial function. Concomitantly, it enhances the scavenger of reactive oxygen species (SOD-2) to maintain moderate levels of oxidative stress. Our findings suggest a therapeutic potential of miR-195 in both ER-positive as well as ER-negative breast cancer cells.
Collapse
Affiliation(s)
- Paresh Kumar Purohit
- a Functional Genomics Unit , CSIR-Institute of Genomics and Integrative Biology , Delhi , India.,b Academy of Scientific & Innovative Research , CSIR-Institute of Genomics and Integrative Biology , Delhi , India
| | - Ruairidh Edwards
- c Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences , University of Glasgow , Glasgow , UK
| | - Kostas Tokatlidis
- c Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences , University of Glasgow , Glasgow , UK
| | - Neeru Saini
- a Functional Genomics Unit , CSIR-Institute of Genomics and Integrative Biology , Delhi , India.,b Academy of Scientific & Innovative Research , CSIR-Institute of Genomics and Integrative Biology , Delhi , India
| |
Collapse
|
21
|
Wang D, Sun H, Song G, Yang Y, Zou X, Han P, Li S. Resveratrol Improves Muscle Atrophy by Modulating Mitochondrial Quality Control in STZ-Induced Diabetic Mice. Mol Nutr Food Res 2018; 62:e1700941. [PMID: 29578301 PMCID: PMC6001753 DOI: 10.1002/mnfr.201700941] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/10/2018] [Indexed: 12/14/2022]
Abstract
SCOPE In this study, we aim to determine the effects of resveratrol (RSV) on muscle atrophy in streptozocin-induced diabetic mice and to explore mitochondrial quality control (MQC) as a possible mechanism. METHODS AND RESULTS The experimental mice were fed either a control diet or an identical diet containing 0.04% RSV for 8 weeks. Examinations were subsequently carried out, including the effects of RSV on muscle atrophy and muscle function, as well as on the signaling pathways related to protein degradation and MQC processes. The results show that RSV supplementation improves muscle atrophy and muscle function, attenuates the increase in ubiquitin and muscle RING-finger protein-1 (MuRF-1), and simultaneously attenuates LC3-II and cleaved caspase-3 in the skeletal muscle of diabetic mice. Moreover, RSV treatment of diabetic mice results in an increase in mitochondrial biogenesis and inhibition of the activation of mitophagy in skeletal muscle. RSV also protects skeletal muscle against excess mitochondrial fusion and fission in the diabetic mice. CONCLUSION The results suggest that RSV ameliorates diabetes-induced skeletal muscle atrophy by modulating MQC.
Collapse
MESH Headings
- Animals
- Antioxidants/therapeutic use
- Apoptosis
- Autophagy
- Biomarkers/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/physiopathology
- Dietary Supplements
- Gene Expression Regulation
- Male
- Mice, Inbred C57BL
- Microscopy, Electron, Transmission
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Mitochondria, Muscle/ultrastructure
- Mitochondrial Dynamics
- Muscle Proteins/antagonists & inhibitors
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle Strength
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Muscle, Skeletal/ultrastructure
- Muscular Atrophy/complications
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Muscular Atrophy/prevention & control
- Muscular Disorders, Atrophic/complications
- Muscular Disorders, Atrophic/metabolism
- Muscular Disorders, Atrophic/pathology
- Muscular Disorders, Atrophic/prevention & control
- Resveratrol/therapeutic use
- Signal Transduction
- Streptozocin
- Tripartite Motif Proteins/antagonists & inhibitors
- Tripartite Motif Proteins/genetics
- Tripartite Motif Proteins/metabolism
- Ubiquitin/antagonists & inhibitors
- Ubiquitin/genetics
- Ubiquitin/metabolism
- Ubiquitin-Protein Ligases/antagonists & inhibitors
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Dongtao Wang
- Department of Traditional Chinese MedicineShenzhen HospitalSouthern Medical UniversityShenzhenGuangdong518000China
- Department of NephrologyShenzhen Traditional Chinese Medicine HospitalGuangzhou University of Chinese MedicineShenzhenGuangdong518033China
- Department of NephrologyRuikang Affiliated HospitalGuangxi University of Chinese MedicineNanning530011China
| | - Huili Sun
- Department of NephrologyShenzhen Traditional Chinese Medicine HospitalGuangzhou University of Chinese MedicineShenzhenGuangdong518033China
| | - Gaofeng Song
- Department of NephrologyShenzhen Traditional Chinese Medicine HospitalGuangzhou University of Chinese MedicineShenzhenGuangdong518033China
| | - Yajun Yang
- Department of PharmacologyGuangdong Key Laboratory for R&D of Natural DrugGuangdong Medical CollegeZhanjiang524023China
| | - Xiaohu Zou
- Department of Traditional Chinese MedicineShenzhen HospitalSouthern Medical UniversityShenzhenGuangdong518000China
| | - Pengxun Han
- Department of NephrologyShenzhen Traditional Chinese Medicine HospitalGuangzhou University of Chinese MedicineShenzhenGuangdong518033China
| | - Shunmin Li
- Department of NephrologyShenzhen Traditional Chinese Medicine HospitalGuangzhou University of Chinese MedicineShenzhenGuangdong518033China
| |
Collapse
|
22
|
Rogne M, Chu DT, Küntziger TM, Mylonakou MN, Collas P, Tasken K. OPA1-anchored PKA phosphorylates perilipin 1 on S522 and S497 in adipocytes differentiated from human adipose stem cells. Mol Biol Cell 2018; 29:1487-1501. [PMID: 29688805 PMCID: PMC6014102 DOI: 10.1091/mbc.e17-09-0538] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Optic atrophy 1 (OPA1) is the A-kinase anchoring protein targeting the pool of protein kinase A (PKA) responsible for perilipin 1 phosphorylation, a gatekeeper for lipolysis. However, the involvement of OPA1-bound PKA in the downstream regulation of lipolysis is unknown. Here we show up-regulation and relocation of OPA1 from mitochondria to lipid droplets during adipocytic differentiation of human adipose stem cells. We employed various biochemical and immunological approaches to demonstrate that OPA1-bound PKA phosphorylates perilipin 1 at S522 and S497 on lipolytic stimulation. We show that the first 30 amino acids of OPA1 are essential for its lipid droplet localization as is OMA1-dependent processing. Finally, our results indicate that presence of OPA1 is necessary for lipolytic phosphorylation of downstream targets. Our results show for the first time, to our knowledge, how OPA1 mediates adrenergic control of lipolysis in human adipocytes by regulating phosphorylation of perilipin 1.
Collapse
Affiliation(s)
- Marie Rogne
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Dinh-Toi Chu
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | | | - Maria-Niki Mylonakou
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway.,Norewegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Kjetil Tasken
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway.,Department of Cancer Immunology, Institute of Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
23
|
Wollam J, Mahata S, Riopel M, Hernandez-Carretero A, Biswas A, Bandyopadhyay GK, Chi NW, Eiden LE, Mahapatra NR, Corti A, Webster NJG, Mahata SK. Chromogranin A regulates vesicle storage and mitochondrial dynamics to influence insulin secretion. Cell Tissue Res 2017; 368:487-501. [PMID: 28220294 PMCID: PMC10843982 DOI: 10.1007/s00441-017-2580-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/16/2017] [Indexed: 01/01/2023]
Abstract
Chromogranin A (CgA) is a prohormone and a granulogenic factor that regulates secretory pathways in neuroendocrine tissues. In β-cells of the endocrine pancreas, CgA is a major cargo in insulin secretory vesicles. The impact of CgA deficiency on the formation and exocytosis of insulin vesicles is yet to be investigated. In addition, no literature exists on the impact of CgA on mitochondrial function in β-cells. Using three different antibodies, we demonstrate that CgA is processed to vasostatin- and catestatin-containing fragments in pancreatic islet cells. CgA deficiency in Chga-KO islets leads to compensatory overexpression of chromogranin B, secretogranin II, SNARE proteins and insulin genes, as well as increased insulin protein content. Ultrastructural studies of pancreatic islets revealed that Chga-KO β-cells contain fewer immature secretory granules than wild-type (WT) control but increased numbers of mature secretory granules and plasma membrane-docked vesicles. Compared to WT control, CgA-deficient β-cells exhibited increases in mitochondrial volume, numerical densities and fusion, as well as increased expression of nuclear encoded genes (Ndufa9, Ndufs8, Cyc1 and Atp5o). These changes in secretory vesicles and the mitochondria likely contribute to the increased glucose-stimulated insulin secretion observed in Chga-KO mice. We conclude that CgA is an important regulator for coordination of mitochondrial dynamics, secretory vesicular quanta and GSIS for optimal secretory functioning of β-cells, suggesting a strong, CgA-dependent positive link between mitochondrial fusion and GSIS.
Collapse
Affiliation(s)
- Joshua Wollam
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sumana Mahata
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Matthew Riopel
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Angshuman Biswas
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Nai-Wen Chi
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Lee E Eiden
- Section on Molecular Neuroscience, NIMH-IRP, Bethesda, MD, USA
| | - Nitish R Mahapatra
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Angelo Corti
- IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Nicholas J G Webster
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Sushil K Mahata
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- VA San Diego Healthcare System, San Diego, CA, USA.
- Metabolic Physiology & Ultrastructural Biology Laboratory, Department of Medicine, University of California, San Diego (0732), 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA.
| |
Collapse
|
24
|
Lee H, Smith SB, Yoon Y. The short variant of the mitochondrial dynamin OPA1 maintains mitochondrial energetics and cristae structure. J Biol Chem 2017; 292:7115-7130. [PMID: 28298442 DOI: 10.1074/jbc.m116.762567] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/15/2017] [Indexed: 01/06/2023] Open
Abstract
The protein optic atrophy 1 (OPA1) is a dynamin-related protein associated with the inner mitochondrial membrane and functions in mitochondrial inner membrane fusion and cristae maintenance. Inner membrane-anchored long OPA1 (L-OPA1) undergoes proteolytic cleavage resulting in short OPA1 (S-OPA1). It is often thought that S-OPA1 is a functionally insignificant proteolytic product of L-OPA1 because the accumulation of S-OPA1 due to L-OPA1 cleavage is observed in mitochondrial fragmentation and dysfunction. However, cells contain a mixture of both L- and S-OPA1 in normal conditions, suggesting the functional significance of maintaining both OPA1 forms, but the differential roles of L- and S-OPA1 in mitochondrial fusion and energetics are ill-defined. Here, we examined mitochondrial fusion and energetic activities in cells possessing L-OPA1 alone, S-OPA1 alone, or both L- and S-OPA1. Using a mitochondrial fusion assay, we established that L-OPA1 confers fusion competence, whereas S-OPA1 does not. Remarkably, we found that S-OPA1 alone without L-OPA1 can maintain oxidative phosphorylation function as judged by growth in oxidative phosphorylation-requiring media, respiration measurements, and levels of the respiratory complexes. Most strikingly, S-OPA1 alone maintained normal mitochondrial cristae structure, which has been commonly assumed to be the function of OPA1 oligomers containing both L- and S-OPA1. Furthermore, we found that the GTPase activity of OPA1 is critical for maintaining cristae tightness and thus energetic competency. Our results demonstrate that, contrary to conventional notion, S-OPA1 is fully competent for maintaining mitochondrial energetics and cristae structure.
Collapse
Affiliation(s)
| | - Sylvia B Smith
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | | |
Collapse
|
25
|
El-Sikhry HE, Alsaleh N, Dakarapu R, Falck JR, Seubert JM. Novel Roles of Epoxyeicosanoids in Regulating Cardiac Mitochondria. PLoS One 2016; 11:e0160380. [PMID: 27494529 PMCID: PMC4975494 DOI: 10.1371/journal.pone.0160380] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/18/2016] [Indexed: 11/18/2022] Open
Abstract
Maintenance of a healthy pool of mitochondria is important for the function and survival of terminally differentiated cells such as cardiomyocytes. Epoxyeicosatrienoic acids (EETs) are epoxy lipids derived from metabolism of arachidonic acid by cytochrome P450 epoxygenases. We have previously shown that EETs trigger a protective response limiting mitochondrial dysfunction and reducing cellular death. The aim of this study was to investigate whether EET-mediated effects influence mitochondrial quality in HL-1 cardiac cells during starvation. HL-1 cells were subjected to serum- and amino acid free conditions for 24h. We employed a dual-acting synthetic analog UA-8 (13-(3-propylureido)tridec-8-enoic acid), possessing both EET-mimetic and soluble epoxide hydrolase (sEH) inhibitory properties, or 14,15-EET as model EET molecules. We demonstrated that EET-mediated events significantly improved mitochondrial function as assessed by preservation of the ADP/ATP ratio and oxidative respiratory capacity. Starvation induced mitochondrial hyperfusion observed in control cells was attenuated by UA-8. However, EET-mediated events did not affect the expression of mitochondrial dynamic proteins Fis1, DRP-1 or Mfn2. Rather we observed increased levels of OPA-1 oligomers and increased mitochondrial cristae density, which correlated with the preserved mitochondrial function. Increased DNA binding activity of pCREB and Nrf1/2 and increased SIRT1 activity together with elevated mitochondrial proteins suggest EET-mediated events led to preserved mitobiogenesis. Thus, we provide new evidence for EET-mediated events that preserve a healthier pool of mitochondria in cardiac cells following starvation-induced stress.
Collapse
Affiliation(s)
- Haitham E. El-Sikhry
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Nasser Alsaleh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Rambabu Dakarapu
- Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - John R. Falck
- Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- * E-mail:
| |
Collapse
|
26
|
Halilovic A, Schmedt T, Benischke AS, Hamill C, Chen Y, Santos JH, Jurkunas UV. Menadione-Induced DNA Damage Leads to Mitochondrial Dysfunction and Fragmentation During Rosette Formation in Fuchs Endothelial Corneal Dystrophy. Antioxid Redox Signal 2016; 24:1072-83. [PMID: 26935406 PMCID: PMC4931310 DOI: 10.1089/ars.2015.6532] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/11/2016] [Accepted: 02/29/2016] [Indexed: 12/13/2022]
Abstract
AIMS Fuchs endothelial corneal dystrophy (FECD), a leading cause of age-related corneal edema requiring transplantation, is characterized by rosette formation of corneal endothelium with ensuing apoptosis. We sought to determine whether excess of mitochondrial reactive oxygen species leads to chronic accumulation of oxidative DNA damage and mitochondrial dysfunction, instigating cell death. RESULTS We modeled the pathognomonic rosette formation of postmitotic corneal cells by increasing endogenous cellular oxidative stress with menadione (MN) and performed a temporal analysis of its effect in normal (HCEnC, HCECi) and FECD (FECDi) cells and ex vivo specimens. FECDi and FECD ex vivo specimens exhibited extensive mtDNA and nDNA damage as detected by quantitative PCR. Exposure to MN triggered an increase in mitochondrial superoxide levels and led to mtDNA and nDNA damage, while DNA amplification was restored with NAC pretreatment. Furthermore, MN exposure led to a decrease in ΔΨm and adenosine triphosphate levels in normal cells, while FECDi exhibited mitochondrial dysfunction at baseline. Mitochondrial fragmentation and cytochrome c release were detected in FECD tissue and after MN treatment of HCEnCs. Furthermore, cleavage of caspase-9 and caspase-3 followed MN-induced cytochrome c release in HCEnCs. INNOVATION This study provides the first line of evidence that accumulation of oxidative DNA damage leads to rosette formation, loss of functionally intact mitochondria via fragmentation, and subsequent cell death during postmitotic cell degeneration of ocular tissue. CONCLUSION MN induced rosette formation, along with mtDNA and nDNA damage, mitochondrial dysfunction, and fragmentation, leading to activation of the intrinsic apoptosis via caspase cleavage and cytochrome c release. Antioxid. Redox Signal. 24, 1072-1083.
Collapse
Affiliation(s)
- Adna Halilovic
- 1 Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary (MEEI), Harvard Medical School , Boston, Massachusetts
| | - Thore Schmedt
- 1 Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary (MEEI), Harvard Medical School , Boston, Massachusetts
| | - Anne-Sophie Benischke
- 1 Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary (MEEI), Harvard Medical School , Boston, Massachusetts
| | - Cecily Hamill
- 1 Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary (MEEI), Harvard Medical School , Boston, Massachusetts
| | - Yuming Chen
- 1 Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary (MEEI), Harvard Medical School , Boston, Massachusetts
| | - Janine Hertzog Santos
- 2 Department of Pharmacology and Physiology, New Jersey Medical School Rutgers, Rutgers University , New Jersey
| | - Ula V Jurkunas
- 1 Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary (MEEI), Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
27
|
Saita S, Ishihara T, Maeda M, Iemura SI, Natsume T, Mihara K, Ishihara N. Distinct types of protease systems are involved in homeostasis regulation of mitochondrial morphology via balanced fusion and fission. Genes Cells 2016; 21:408-24. [PMID: 26935475 DOI: 10.1111/gtc.12351] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/28/2016] [Indexed: 01/08/2023]
Abstract
Mitochondrial morphology is dynamically regulated by fusion and fission. Several GTPase proteins control fusion and fission, and posttranslational modifications of these proteins are important for the regulation. However, it has not been clarified how the fusion and fission is balanced. Here, we report the molecular mechanism to regulate mitochondrial morphology in mammalian cells. Ablation of the mitochondrial fission, by repression of Drp1 or Mff, or by over-expression of MiD49 or MiD51, results in a reduction in the fusion GTPase mitofusins (Mfn1 and Mfn2) in outer membrane and long form of OPA1 (L-OPA1) in inner membrane. RNAi- or CRISPR-induced ablation of Drp1 in HeLa cells enhanced the degradation of Mfns via the ubiquitin-proteasome system (UPS). We further found that UPS-related protein BAT3/BAG6, here we identified as Mfn2-interacting protein, was implicated in the turnover of Mfns in the absence of mitochondrial fission. Ablation of the mitochondrial fission also enhanced the proteolytic cleavage of L-OPA1 to soluble S-OPA1, and the OPA1 processing was reversed by inhibition of the inner membrane protease OMA1 independent on the mitochondrial membrane potential. Our findings showed that the distinct degradation systems of the mitochondrial fusion proteins in different locations are enhanced in response to the mitochondrial morphology.
Collapse
Affiliation(s)
- Shotaro Saita
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume, 839-0864, Japan.,Institute for Genetics, CECAD, University of Cologne, 50674, Cologne, Germany
| | - Takaya Ishihara
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume, 839-0864, Japan
| | - Maki Maeda
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume, 839-0864, Japan
| | - Shun-Ichiro Iemura
- Biological Systems Control Team, Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, 135-0064, Japan
| | - Tohru Natsume
- Biological Systems Control Team, Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, 135-0064, Japan
| | - Katsuyoshi Mihara
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Naotada Ishihara
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume, 839-0864, Japan
| |
Collapse
|
28
|
Khan M, Syed GH, Kim SJ, Siddiqui A. Mitochondrial dynamics and viral infections: A close nexus. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:2822-33. [PMID: 25595529 PMCID: PMC4500740 DOI: 10.1016/j.bbamcr.2014.12.040] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/09/2014] [Accepted: 12/25/2014] [Indexed: 12/17/2022]
Abstract
Viruses manipulate cellular machinery and functions to subvert intracellular environment conducive for viral proliferation. They strategically alter functions of the multitasking mitochondria to influence energy production, metabolism, survival, and immune signaling. Mitochondria either occur as heterogeneous population of individual organelles or large interconnected tubular network. The mitochondrial network is highly susceptible to physiological and environmental insults, including viral infections, and is dynamically maintained by mitochondrial fission and fusion. Mitochondrial dynamics in tandem with mitochondria-selective autophagy 'mitophagy' coordinates mitochondrial quality control and homeostasis. Mitochondrial dynamics impacts cellular homeostasis, metabolism, and innate-immune signaling, and thus can be major determinant of the outcome of viral infections. Herein, we review how mitochondrial dynamics is affected during viral infections and how this complex interplay benefits the viral infectious process and associated diseases.
Collapse
Affiliation(s)
- Mohsin Khan
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gulam Hussain Syed
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Seong-Jun Kim
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Aleem Siddiqui
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
29
|
Zorzano A, Claret M. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction. Front Aging Neurosci 2015; 7:101. [PMID: 26113818 PMCID: PMC4461829 DOI: 10.3389/fnagi.2015.00101] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/11/2015] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial dynamics is a term that encompasses the movement of mitochondria along the cytoskeleton, regulation of their architecture, and connectivity mediated by tethering and fusion/fission. The importance of these events in cell physiology and pathology has been partially unraveled with the identification of the genes responsible for the catalysis of mitochondrial fusion and fission. Mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause neurodegenerative diseases, namely Charcot-Marie Tooth type 2A and autosomal dominant optic atrophy (ADOA). Alterations in mitochondrial dynamics may be involved in the pathophysiology of prevalent neurodegenerative conditions. Moreover, impairment of the activity of mitochondrial fusion proteins dysregulates the function of hypothalamic neurons, leading to alterations in food intake and in energy homeostasis. Here we review selected findings in the field of mitochondrial dynamics and their relevance for neurodegeneration and hypothalamic dysfunction.
Collapse
Affiliation(s)
- Antonio Zorzano
- Molecular Medicine Program, Institute of Research in Biomedicine (IRB Barcelona) Barcelona, Spain ; Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona Barcelona, Spain ; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III Barcelona, Spain
| | - Marc Claret
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III Barcelona, Spain ; Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain
| |
Collapse
|
30
|
Kaufman BA, Li C, Soleimanpour SA. Mitochondrial regulation of β-cell function: maintaining the momentum for insulin release. Mol Aspects Med 2015; 42:91-104. [PMID: 25659350 PMCID: PMC4404204 DOI: 10.1016/j.mam.2015.01.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 01/15/2023]
Abstract
All forms of diabetes share the common etiology of insufficient pancreatic β-cell function to meet peripheral insulin demand. In pancreatic β-cells, mitochondria serve to integrate the metabolism of exogenous nutrients into energy output, which ultimately leads to insulin release. As such, mitochondrial dysfunction underlies β-cell failure and the development of diabetes. Mitochondrial regulation of β-cell function occurs through many diverse pathways, including metabolic coupling, generation of reactive oxygen species, maintenance of mitochondrial mass, and through interaction with other cellular organelles. In this chapter, we will focus on the importance of enzymatic regulators of mitochondrial fuel metabolism and control of mitochondrial mass to pancreatic β-cell function, describing how defects in these pathways ultimately lead to diabetes. Furthermore, we will examine the factors responsible for mitochondrial biogenesis and degradation and their roles in the balance of mitochondrial mass in β-cells. Clarifying the causes of β-cell mitochondrial dysfunction may inform new approaches to treat the underlying etiologies of diabetes.
Collapse
Affiliation(s)
- Brett A Kaufman
- Division of Cardiology, Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Changhong Li
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Scott A Soleimanpour
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
31
|
Hladik F, Burgener A, Ballweber L, Gottardo R, Vojtech L, Fourati S, Dai JY, Cameron MJ, Strobl J, Hughes SM, Hoesley C, Andrew P, Johnson S, Piper J, Friend DR, Ball TB, Cranston RD, Mayer KH, McElrath MJ, McGowan I. Mucosal effects of tenofovir 1% gel. eLife 2015; 4. [PMID: 25647729 PMCID: PMC4391502 DOI: 10.7554/elife.04525] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/02/2015] [Indexed: 02/07/2023] Open
Abstract
Tenofovir gel is being evaluated for vaginal and rectal pre-exposure prophylaxis against HIV transmission. Because this is a new prevention strategy, we broadly assessed its effects on the mucosa. In MTN-007, a phase-1, randomized, double-blinded rectal microbicide trial, we used systems genomics/proteomics to determine the effect of tenofovir 1% gel, nonoxynol-9 2% gel, placebo gel or no treatment on rectal biopsies (15 subjects/arm). We also treated primary vaginal epithelial cells from four healthy women with tenofovir in vitro. After seven days of administration, tenofovir 1% gel had broad-ranging effects on the rectal mucosa, which were more pronounced than, but different from, those of the detergent nonoxynol-9. Tenofovir suppressed anti-inflammatory mediators, increased T cell densities, caused mitochondrial dysfunction, altered regulatory pathways of cell differentiation and survival, and stimulated epithelial cell proliferation. The breadth of mucosal changes induced by tenofovir indicates that its safety over longer-term topical use should be carefully monitored.
Collapse
Affiliation(s)
- Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, United States
| | - Adam Burgener
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Lamar Ballweber
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Raphael Gottardo
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, United States
| | - Slim Fourati
- Vaccine and Gene Therapy Institute of Florida, Port Saint Lucie, United States
| | - James Y Dai
- Department of Biostatistics, University of Washington, Seattle, United States
| | - Mark J Cameron
- Vaccine and Gene Therapy Institute of Florida, Port Saint Lucie, United States
| | - Johanna Strobl
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Sean M Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, United States
| | - Craig Hoesley
- Department of Medicine, University of Alabama, Birmingham, United States
| | | | | | - Jeanna Piper
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - David R Friend
- CONRAD, Eastern Virginia Medical School, Arlington, United States
| | - T Blake Ball
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Ross D Cranston
- University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Kenneth H Mayer
- Fenway Health, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, United States
| | - M Juliana McElrath
- Department of Medicine, University of Washington, Seattle, United States
| | - Ian McGowan
- University of Pittsburgh School of Medicine, Pittsburgh, United States
| |
Collapse
|
32
|
Neural-specific deletion of Htra2 causes cerebellar neurodegeneration and defective processing of mitochondrial OPA1. PLoS One 2014; 9:e115789. [PMID: 25531304 PMCID: PMC4274161 DOI: 10.1371/journal.pone.0115789] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 11/27/2014] [Indexed: 01/28/2023] Open
Abstract
HTRA2, a serine protease in the intermembrane space, has important functions in mitochondrial stress signaling while its abnormal activity may contribute to the development of Parkinson’s disease. Mice with a missense or null mutation of Htra2 fail to thrive, suffer striatal neuronal loss, and a parkinsonian phenotype that leads to death at 30–40 days of age. While informative, these mouse models cannot separate neural contributions from systemic effects due to the complex phenotypes of HTRA2 deficiency. Hence, we developed mice carrying a Htra2-floxed allele to query the consequences of tissue-specific HTRA2 deficiency. We found that mice with neural-specific deletion of Htra2 exhibited atrophy of the thymus and spleen, cessation to gain weight past postnatal (P) day 18, neurological symptoms including ataxia and complete penetrance of premature death by P40. Histologically, increased apoptosis was detected in the cerebellum, and to a lesser degree in the striatum and the entorhinal cortex, from P25. Even earlier at P20, mitochondria in the cerebella already exhibited abnormal morphology, including swelling, vesiculation, and fragmentation of the cristae. Furthermore, the onset of these structural anomalies was accompanied by defective processing of OPA1, a key molecule for mitochondrial fusion and cristae remodeling, leading to depletion of the L-isoform. Together, these findings suggest that HTRA2 is essential for maintenance of the mitochondrial integrity in neurons. Without functional HTRA2, a lifespan as short as 40 days accumulates a large quantity of dysfunctional mitochondria that contributes to the demise of mutant mice.
Collapse
|
33
|
Patten DA, Wong J, Khacho M, Soubannier V, Mailloux RJ, Pilon-Larose K, MacLaurin JG, Park DS, McBride HM, Trinkle-Mulcahy L, Harper ME, Germain M, Slack RS. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J 2014; 33:2676-91. [PMID: 25298396 DOI: 10.15252/embj.201488349] [Citation(s) in RCA: 314] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA1's role in mitochondrial fusion, since an OPA1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA1 was required for resistance to starvation-induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (SLC25A) as OPA1 interactors and show that their pharmacological and genetic blockade inhibited OPA1 oligomerization and function. Thus, we propose a novel way in which OPA1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC25A protein-dependent manner.
Collapse
Affiliation(s)
- David A Patten
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jacob Wong
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mireille Khacho
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Vincent Soubannier
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Ryan J Mailloux
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Karine Pilon-Larose
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jason G MacLaurin
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David S Park
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Heidi M McBride
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Marc Germain
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Ruth S Slack
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
34
|
Joseph AM, Nguyen LMD, Welter AE, Dominguez JM, Behnke BJ, Adhihetty PJ. Mitochondrial adaptations evoked with exercise are associated with a reduction in age-induced testicular atrophy in Fischer-344 rats. Biogerontology 2014; 15:517-534. [PMID: 25108553 DOI: 10.1007/s10522-014-9526-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/29/2014] [Indexed: 11/30/2022]
Abstract
Mitochondrial dysfunction in various tissues has been associated with numerous conditions including aging. In testes, aging induces atrophy and a decline in male reproductive function but the involvement of mitochondria is not clear. The purpose of this study was to examine whether the mitochondrial profile differed with (1) aging, and (2) 10-weeks of treadmill exercise training, in the testes of young (6 month) and old (24 month) Fischer-344 (F344) animals. Old animals exhibited significant atrophy (30 % decline; P < 0.05) in testes compared to young animals. However, relative mitochondrial content was not reduced with age and this was consistent with the lack of change in the mitochondrial biogenesis regulator protein, peroxisome proliferator-activated receptor gamma coactivator 1-alpha and its downstream targets nuclear respiratory factor-1 and mitochondrial transcription factor A. No effect was observed in the pro- or anti-apoptotic proteins, Bax and Bcl-2, respectively, but age increased apoptosis inducing factor levels. Endurance training induced beneficial mitochondrial adaptations that were more prominent in old animals including greater increases in relative mtDNA content, biogenesis/remodeling (mitofusin 2), antioxidant capacity (mitochondrial superoxide dismutase) and lower levels of phosphorylated histone H2AX, an early marker of DNA damage (P < 0.05). Importantly, these exercise-induced changes were associated with an attenuation of testes atrophy in older sedentary animals (P < 0.05). Our results indicate that aging-induced atrophy in testes may not be associated with changes in relative mitochondrial content and key regulatory proteins and that exercise started in late-life elicits beneficial changes in mitochondria that may protect against age-induced testicular atrophy.
Collapse
Affiliation(s)
- A-M Joseph
- Institute on Aging, Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - L M-D Nguyen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - A E Welter
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - J M Dominguez
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - B J Behnke
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - P J Adhihetty
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
35
|
Mitochondria modify exercise-induced development of stem cell-derived neurons in the adult brain. J Neurosci 2014; 34:6624-33. [PMID: 24806687 DOI: 10.1523/jneurosci.4972-13.2014] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Neural stem cells in the adult mammalian hippocampus continuously generate new functional neurons, which modify the hippocampal network and significantly contribute to cognitive processes and mood regulation. Here, we show that the development of new neurons from stem cells in adult mice is paralleled by extensive changes to mitochondrial mass, distribution, and shape. Moreover, exercise-a strong modifier of adult hippocampal neurogenesis-accelerates neuronal maturation and induces a profound increase in mitochondrial content and the presence of mitochondria in dendritic segments. Genetic inhibition of the activity of the mitochondrial fission factor dynamin-related protein 1 (Drp1) inhibits neurogenesis under basal and exercise conditions. Conversely, enhanced Drp1 activity furthers exercise-induced acceleration of neuronal maturation. Collectively, these results indicate that adult hippocampal neurogenesis requires adaptation of the mitochondrial compartment and suggest that mitochondria are targets for enhancing neurogenesis-dependent hippocampal plasticity.
Collapse
|
36
|
Alaimo A, Gorojod RM, Beauquis J, Muñoz MJ, Saravia F, Kotler ML. Deregulation of mitochondria-shaping proteins Opa-1 and Drp-1 in manganese-induced apoptosis. PLoS One 2014; 9:e91848. [PMID: 24632637 PMCID: PMC3954806 DOI: 10.1371/journal.pone.0091848] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 02/17/2014] [Indexed: 01/15/2023] Open
Abstract
Mitochondria are dynamic organelles that undergo fusion and fission processes. These events are regulated by mitochondria-shaping proteins. Changes in the expression and/or localization of these proteins lead to a mitochondrial dynamics impairment and may promote apoptosis. Increasing evidence correlates the mitochondrial dynamics disruption with the occurrence of neurodegenerative diseases. Therefore, we focused on this topic in Manganese (Mn)-induced Parkinsonism, a disorder associated with Mn accumulation preferentially in the basal ganglia where mitochondria from astrocytes represent an early target. Using MitoTracker Red staining we observed increased mitochondrial network fission in Mn-exposed rat astrocytoma C6 cells. Moreover, Mn induced a marked decrease in fusion protein Opa-1 levels as well as a dramatic increase in the expression of fission protein Drp-1. Additionally, Mn provoked a significant release of high MW Opa-1 isoforms from the mitochondria to the cytosol as well as an increased Drp-1 translocation to the mitochondria. Both Mdivi-1, a pharmacological Drp-1 inhibitor, and rat Drp-1 siRNA reduced the number of apoptotic nuclei, preserved the mitochondrial network integrity and prevented cell death. CsA, an MPTP opening inhibitor, prevented mitochondrial Δψm disruption, Opa-1 processing and Drp-1 translocation to the mitochondria therefore protecting Mn-exposed cells from mitochondrial disruption and apoptosis. The histological analysis and Hoechst 33258 staining of brain sections of Mn-injected rats in the striatum showed a decrease in cellular mass paralleled with an increase in the occurrence of apoptotic nuclei. Opa-1 and Drp-1 expression levels were also changed by Mn-treatment. Our results demonstrate for the first time that abnormal mitochondrial dynamics is implicated in both in vitro and in vivo Mn toxicity. In addition we show that the imbalance in fusion/fission equilibrium might be involved in Mn-induced apoptosis. This knowledge may provide new therapeutic tools for the treatment of Manganism and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Agustina Alaimo
- Laboratorio de Apoptosis en el Sistema Nervioso y Nano-Oncología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica, Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Roxana M. Gorojod
- Laboratorio de Apoptosis en el Sistema Nervioso y Nano-Oncología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica, Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Juan Beauquis
- Laboratorio de Neurobiología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Manuel J. Muñoz
- Departamento de Fisiología, Biología Molecular y Celular and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Flavia Saravia
- Laboratorio de Neurobiología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Mónica L. Kotler
- Laboratorio de Apoptosis en el Sistema Nervioso y Nano-Oncología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Química Biológica, Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
37
|
Abstract
Mitophagy describes the selective targeting and degradation of mitochondria by the autophagy pathway. In this process, defective mitochondria are first purged from the mitochondrial network then delivered to the lysosome by the autophagy machinery. Mitophagy has emerged as a key facet of mitochondrial quality control and has been implicated in a variety of human diseases. Disturbances in the cellular control of mitophagy can result in a dysfunctional mitochondrial network with grave implications for high energy demanding tissue. The present chapter reviews the recent advancements in the study of mitophagy mechanisms and regulation.
Collapse
|
38
|
Calvani R, Joseph AM, Adhihetty PJ, Miccheli A, Bossola M, Leeuwenburgh C, Bernabei R, Marzetti E. Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy. Biol Chem 2013; 394:393-414. [PMID: 23154422 DOI: 10.1515/hsz-2012-0247] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/13/2012] [Indexed: 12/18/2022]
Abstract
Muscle loss during aging and disuse is a highly prevalent and disabling condition, but knowledge about cellular pathways mediating muscle atrophy is still limited. Given the postmitotic nature of skeletal myocytes, the maintenance of cellular homeostasis relies on the efficiency of cellular quality control mechanisms. In this scenario, alterations in mitochondrial function are considered a major factor underlying sarcopenia and muscle atrophy. Damaged mitochondria are not only less bioenergetically efficient, but also generate increased amounts of reactive oxygen species, interfere with cellular quality control mechanisms, and display a greater propensity to trigger apoptosis. Thus, mitochondria stand at the crossroad of signaling pathways that regulate skeletal myocyte function and viability. Studies on these pathways have sometimes provided unexpected and counterintuitive results, which suggests that they are organized into a complex, heterarchical network that is currently insufficiently understood. Untangling the complexity of such a network will likely provide clinicians with novel and highly effective therapeutics to counter the muscle loss associated with aging and disuse. In this review, we summarize the current knowledge on the mechanisms whereby mitochondrial dysfunction intervenes in the pathogenesis of sarcopenia and disuse atrophy, and highlight the prospect of targeting specific processes to treat these conditions.
Collapse
Affiliation(s)
- Riccardo Calvani
- Institute of Crystallography, Italian National Research Council (CNR), Bari 70126, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Dysregulation of mitochondrial quality control processes contribute to sarcopenia in a mouse model of premature aging. PLoS One 2013; 8:e69327. [PMID: 23935986 PMCID: PMC3720551 DOI: 10.1371/journal.pone.0069327] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/07/2013] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) mutations lead to decrements in mitochondrial function and accelerated rates of these mutations has been linked to skeletal muscle loss (sarcopenia). The purpose of this study was to investigate the effect of mtDNA mutations on mitochondrial quality control processes in skeletal muscle from animals (young; 3–6 months and older; 8–15 months) expressing a proofreading-deficient version of mtDNA polymerase gamma (PolG). This progeroid aging model exhibits elevated mtDNA mutation rates, mitochondrial dysfunction, and a premature aging phenotype that includes sarcopenia. We found increased expression of the mitochondrial biogenesis regulator peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) and its target proteins, nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (Tfam) in PolG animals compared to wild-type (WT) (P<0.05). Muscle from older PolG animals displayed higher mitochondrial fission protein 1 (Fis1) concurrent with greater induction of autophagy, as indicated by changes in Atg5 and p62 protein content (P<0.05). Additionally, levels of the Tom22 import protein were higher in PolG animals when compared to WT (P<0.05). In contrast, muscle from normally-aged animals exhibited a distinctly different expression profile compared to PolG animals. Older WT animals appeared to have higher fusion (greater Mfn1/Mfn2, and lower Fis1) and lower autophagy (Beclin-1 and p62) compared to young WT suggesting that autophagy is impaired in aging muscle. In conclusion, muscle from mtDNA mutator mice display higher mitochondrial fission and autophagy levels that likely contribute to the sarcopenic phenotype observed in premature aging and this differs from the response observed in normally-aged muscle.
Collapse
|
40
|
Marzetti E, Csiszar A, Dutta D, Balagopal G, Calvani R, Leeuwenburgh C. Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics. Am J Physiol Heart Circ Physiol 2013; 305:H459-76. [PMID: 23748424 DOI: 10.1152/ajpheart.00936.2012] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advanced age is associated with a disproportionate prevalence of cardiovascular disease (CVD). Intrinsic alterations in the heart and the vasculature occurring over the life course render the cardiovascular system more vulnerable to various stressors in late life, ultimately favoring the development of CVD. Several lines of evidence indicate mitochondrial dysfunction as a major contributor to cardiovascular senescence. Besides being less bioenergetically efficient, damaged mitochondria also produce increased amounts of reactive oxygen species, with detrimental structural and functional consequences for the cardiovascular system. The age-related accumulation of dysfunctional mitochondrial likely results from the combination of impaired clearance of damaged organelles by autophagy and inadequate replenishment of the cellular mitochondrial pool by mitochondriogenesis. In this review, we summarize the current knowledge about relevant mechanisms and consequences of age-related mitochondrial decay and alterations in mitochondrial quality control in the cardiovascular system. The involvement of mitochondrial dysfunction in the pathogenesis of cardiovascular conditions especially prevalent in late life and the emerging connections with neurodegeneration are also illustrated. Special emphasis is placed on recent discoveries on the role played by alterations in mitochondrial dynamics (fusion and fission), mitophagy, and their interconnections in the context of age-related CVD and endothelial dysfunction. Finally, we discuss pharmacological interventions targeting mitochondrial dysfunction to delay cardiovascular aging and manage CVD.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Rome, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Gray JJ, Zommer AE, Bouchard RJ, Duval N, Blackstone C, Linseman DA. N-terminal cleavage of the mitochondrial fusion GTPase OPA1 occurs via a caspase-independent mechanism in cerebellar granule neurons exposed to oxidative or nitrosative stress. Brain Res 2012; 1494:28-43. [PMID: 23220553 DOI: 10.1016/j.brainres.2012.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 11/16/2012] [Accepted: 12/01/2012] [Indexed: 01/02/2023]
Abstract
Neuronal cell death via apoptosis or necrosis underlies several devastating neurodegenerative diseases associated with aging. Mitochondrial dysfunction resulting from oxidative or nitrosative stress often acts as an initiating stimulus for intrinsic apoptosis or necrosis. These events frequently occur in conjunction with imbalances in the mitochondrial fission and fusion equilibrium, although the cause and effect relationships remain elusive. Here, we demonstrate in primary rat cerebellar granule neurons (CGNs) that oxidative or nitrosative stress induces an N-terminal cleavage of optic atrophy-1 (OPA1), a dynamin-like GTPase that regulates mitochondrial fusion and maintenance of cristae architecture. This cleavage event is indistinguishable from the N-terminal cleavage of OPA1 observed in CGNs undergoing caspase-mediated apoptosis (Loucks et al., 2009) and results in removal of a key lysine residue (K301) within the GTPase domain. OPA1 cleavage in CGNs occurs coincident with extensive mitochondrial fragmentation, disruption of the microtubule network, and cell death. In contrast to OPA1 cleavage induced in CGNs by removing depolarizing extracellular potassium (5K apoptotic conditions), oxidative or nitrosative stress-induced OPA1 cleavage caused by complex I inhibition or nitric oxide, respectively, is caspase-independent. N-terminal cleavage of OPA1 is also observed in vivo in aged rat and mouse midbrain and hippocampal tissues. We conclude that N-terminal cleavage and subsequent inactivation of OPA1 may be a contributing factor in the neuronal cell death processes underlying neurodegenerative diseases, particularly those associated with aging. Furthermore, these data suggest that OPA1 cleavage is a likely convergence point for mitochondrial dysfunction and imbalances in mitochondrial fission and fusion induced by oxidative or nitrosative stress.
Collapse
Affiliation(s)
- Josie J Gray
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Mitochondrial dynamics contribute to the regulation of mitochondrial shape as well as various mitochondrial functions and quality control. This is of particular interest in the beta-cell because of the key role mitochondria play in the regulation of beta-cell insulin secretion function. Moreover, mitochondrial dysfunction has been suggested to contribute to the development of Type 2 Diabetes. Genetic tools that shift the balance of mitochondrial fusion and fission result in alterations to beta-cell function and viability. Additionally, conditions that induce beta-cell dysfunction, such as exposure to a high nutrient environment, disrupt mitochondrial morphology and dynamics. While it has been shown that mitochondria display a fragmented morphology in islets of diabetic patients and animal models, the mechanism behind this is currently unknown. Here, we review the current literature on mitochondrial morphology and dynamics in the beta-cell as well as some of the unanswered question in this field.
Collapse
Affiliation(s)
| | - Orian S. Shirihai
- Corresponding author: Orian Shirihai, Boston University School of Medicine, 650 Albany St., EBRC X-840, Boston, MA 02118, 1-617-230-8570,
| |
Collapse
|
43
|
Maltecca F, De Stefani D, Cassina L, Consolato F, Wasilewski M, Scorrano L, Rizzuto R, Casari G. Respiratory dysfunction by AFG3L2 deficiency causes decreased mitochondrial calcium uptake via organellar network fragmentation. Hum Mol Genet 2012; 21:3858-70. [PMID: 22678058 PMCID: PMC3412383 DOI: 10.1093/hmg/dds214] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 05/29/2012] [Indexed: 11/28/2022] Open
Abstract
The mitochondrial protein AFG3L2 forms homo-oligomeric and hetero-oligomeric complexes with paraplegin in the inner mitochondrial membrane, named m-AAA proteases. These complexes are in charge of quality control of misfolded proteins and participate in the regulation of OPA1 proteolytic cleavage, required for mitochondrial fusion. Mutations in AFG3L2 cause spinocerebellar ataxia type 28 and a complex neurodegenerative syndrome of childhood. In this study, we demonstrated that the loss of AFG3L2 in mouse embryonic fibroblasts (MEFs) reduces mitochondrial Ca(2+) uptake capacity. This defect is neither a consequence of global alteration in cellular Ca(2+) homeostasis nor of the reduced driving force for Ca(2+) internalization within mitochondria, since cytosolic Ca(2+) transients and mitochondrial membrane potential remain unaffected. Moreover, experiments in permeabilized cells revealed unaltered mitochondrial Ca(2+) uptake speed in Afg3l2(-/-) cells, indicating the presence of functional Ca(2+) uptake machinery. Our results show that the defective Ca(2+) handling in Afg3l2(-/-) cells is caused by fragmentation of the mitochondrial network, secondary to respiratory dysfunction and the consequent processing of OPA1. This leaves a number of mitochondria devoid of connections to the ER and thus without Ca(2+) elevations, hampering the proper Ca(2+) diffusion along the mitochondrial network. The recovery of mitochondrial fragmentation in Afg3l2(-/-) MEFs by overexpression of OPA1 rescues the impaired mitochondrial Ca(2+) buffering, but fails to restore respiration. By linking mitochondrial morphology and Ca(2+) homeostasis, these findings shed new light in the molecular mechanisms underlining neurodegeneration caused by AFG3L2 mutations.
Collapse
Affiliation(s)
- Francesca Maltecca
- San Raffaele Scientific Institute, Vita-Salute San Raffaele University and Center for Translational Genomics and Bioinformatics, Milan-I, Italy
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padova, Padova-I, Italy
| | - Laura Cassina
- San Raffaele Scientific Institute, Vita-Salute San Raffaele University and Center for Translational Genomics and Bioinformatics, Milan-I, Italy
- Department of Genetics, Biology and Biochemistry, University of Turin, Turin-I, Italy
| | - Francesco Consolato
- San Raffaele Scientific Institute, Vita-Salute San Raffaele University and Center for Translational Genomics and Bioinformatics, Milan-I, Italy
- PhD school of Neurobiology, University of Insubria, Varese-I, Italy
| | - Michal Wasilewski
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Genève-CH, Switzerland and Dulbecco-Telethon Institute, Padova-I, Italy
| | - Luca Scorrano
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Genève-CH, Switzerland and Dulbecco-Telethon Institute, Padova-I, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Padova-I, Italy
| | - Giorgio Casari
- San Raffaele Scientific Institute, Vita-Salute San Raffaele University and Center for Translational Genomics and Bioinformatics, Milan-I, Italy
| |
Collapse
|
44
|
Escobar-Henriques M, Anton F. Mechanistic perspective of mitochondrial fusion: tubulation vs. fragmentation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:162-75. [PMID: 22884630 DOI: 10.1016/j.bbamcr.2012.07.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/28/2012] [Accepted: 07/30/2012] [Indexed: 01/02/2023]
Abstract
Mitochondrial fusion is a fundamental process driven by dynamin related GTPase proteins (DRPs), in contrast to the general SNARE-dependence of most cellular fusion events. The DRPs Mfn1/Mfn2/Fzo1 and OPA1/Mgm1 are the key effectors for fusion of the mitochondrial outer and inner membranes, respectively. In order to promote fusion, these two DRPs require post-translational modifications and proteolysis. OPA1/Mgm1 undergoes partial proteolytic processing, which results in a combination between short and long isoforms. In turn, ubiquitylation of mitofusins, after oligomerization and GTP hydrolysis, promotes and positively regulates mitochondrial fusion. In contrast, under conditions of mitochondrial dysfunction, negative regulation by proteolysis on these DRPs results in mitochondrial fragmentation. This occurs by complete processing of OPA1 and via ubiquitylation and degradation of mitofusins. Mitochondrial fragmentation contributes to the elimination of damaged mitochondria by mitophagy, and may play a protective role against Parkinson's disease. Moreover, a link of Mfn2 to Alzheimer's disease is emerging and mutations in Mfn2 or OPA1 cause Charcot-Marie-Tooth type 2A neuropathy or autosomal-dominant optic atrophy. Here, we summarize our current understanding on the molecular mechanisms promoting or inhibiting fusion of mitochondrial membranes, which is essential for cellular survival and disease control. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology.
Collapse
|
45
|
Wasilewski M, Semenzato M, Rafelski SM, Robbins J, Bakardjiev AI, Scorrano L. Optic atrophy 1-dependent mitochondrial remodeling controls steroidogenesis in trophoblasts. Curr Biol 2012; 22:1228-34. [PMID: 22658590 PMCID: PMC3396839 DOI: 10.1016/j.cub.2012.04.054] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/28/2012] [Accepted: 04/25/2012] [Indexed: 01/12/2023]
Abstract
During human pregnancy, placental trophoblasts differentiate and syncytialize into syncytiotrophoblasts that sustain progesterone production [1]. This process is accompanied by mitochondrial fragmentation and cristae remodeling [2], two facets of mitochondrial apoptosis, whose molecular mechanisms and functional consequences on steroidogenesis are unclear. Here we show that the mitochondria-shaping protein Optic atrophy 1 (Opa1) controls efficiency of steroidogenesis. During syncytialization of trophoblast BeWo cells, levels of the profission mitochondria-shaping protein Drp1 increase, and those of Opa1 and mitofusin (Mfn) decrease, leading to mitochondrial fragmentation and cristae remodeling. Manipulation of the levels of Opa1 reveal an inverse relationship with the efficiency of steroidogenesis in trophoblasts and in mouse embryonic fibroblasts where the mitochondrial steroidogenetic pathway has been engineered. In an in vitro assay, accumulation of cholesterol is facilitated in the inner membrane of isolated mitochondria lacking Opa1. Thus, Opa1-dependent inner membrane remodeling controls efficiency of steroidogenesis.
Collapse
Affiliation(s)
- Michał Wasilewski
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Zhao T, Huang X, Han L, Wang X, Cheng H, Zhao Y, Chen Q, Chen J, Cheng H, Xiao R, Zheng M. Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes. J Biol Chem 2012; 287:23615-25. [PMID: 22619176 DOI: 10.1074/jbc.m112.379164] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the heart, autophagy has been implicated in cardioprotection and ischemia-reperfusion tolerance, and the dysregulation of autophagy is associated with the development of heart failure. Mitochondrial dynamic proteins are profoundly involved in autophagic processes, especially the initiation and formation of autophagosomes, but it is not clear whether they play any role in cardiac autophagy. We previously reported that mitofusin 2 (MFN2), a mitochondrial outer membrane protein, serves as a major determinant of cardiomyocyte apoptosis mediated by oxidative stress. Here, we reveal a novel and essential role of MFN2 in mediating cardiac autophagy. We found that specific deletion of MFN2 in cardiomyocytes caused extensive accumulation of autophagosomes. In particular, the fusion of autophagosomes with lysosomes, a critical step in autophagic degradation, was markedly retarded without altering the formation of autophagosomes and lysosomes in response to ischemia-reperfusion stress. Importantly, MFN2 co-immunoprecipitated with RAB7 in the heart, and starvation further increased it. Knockdown of MFN2 by shRNA prevented, whereas re-expression of MFN2 restored, the autophagosome-lysosome fusion in neonatal cardiomyocytes. Hearts from cardiac-specific MFN2 knock-out mice had abnormal mitochondrial and cellular metabolism and were vulnerable to ischemia-reperfusion challenge. Our study defined a novel and essential role of MFN2 in the cardiac autophagic process by mediating the maturation of autophagy at the phase of autophagosome-lysosome fusion; deficiency of MFN2 caused multiple molecular and functional defects that undermined cardiac reserve and gradually led to cardiac vulnerability and dysfunction.
Collapse
Affiliation(s)
- Ting Zhao
- Institute of Molecular Medicine, State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kim E, Shino S, Yoon J, Leung HT. In search of proteins that are important for synaptic functions in Drosophila visual system. J Neurogenet 2012; 26:151-7. [PMID: 22283835 DOI: 10.3109/01677063.2011.648290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This is the second of two reviews that include some of the studies we, members of the Pak laboratory and collaborators, did from 2000 to 2010 on the mutants that affect synaptic transmission in the Drosophila visual system. Of the five mutants we discuss, two turned out to also play roles in the larval neuromuscular junction. This review complements the one on phototransduction to give a fairly complete account of what we focused on during the 10-year period, although we also did some studies on photoreceptor degeneration in the early part of the decade. Besides showing the power of using a genetic approach to the study of synaptic transmission, the review contains some unexpected results that illustrate the serendipitous nature of research.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
48
|
Pidoux G, Witczak O, Jarnæss E, Myrvold L, Urlaub H, Stokka AJ, Küntziger T, Taskén K. Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis. EMBO J 2011; 30:4371-86. [PMID: 21983901 DOI: 10.1038/emboj.2011.365] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 09/07/2011] [Indexed: 12/16/2022] Open
Abstract
Adrenergic stimulation of adipocytes yields a cAMP signal that activates protein kinase A (PKA). PKA phosphorylates perilipin, a protein localized on the surface of lipid droplets that serves as a gatekeeper to regulate access of lipases converting stored triglycerides to free fatty acids and glycerol in a phosphorylation-dependent manner. Here, we report a new function for optic atrophy 1 (OPA1), a protein known to regulate mitochondrial dynamics, as a dual-specificity A-kinase anchoring protein associated with lipid droplets. By a variety of protein interaction assays, immunoprecipitation and immunolocalization experiments, we show that OPA1 organizes a supramolecular complex containing both PKA and perilipin. Furthermore, by a combination of siRNA-mediated knockdown, reconstitution experiments using full-length OPA1 with or without the ability to bind PKA or truncated OPA1 fused to a lipid droplet targeting domain and cellular delivery of PKA anchoring disruptor peptides, we demonstrate that OPA1 targeting of PKA to lipid droplets is necessary for hormonal control of perilipin phosphorylation and lipolysis.
Collapse
Affiliation(s)
- Guillaume Pidoux
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Yu W, Sun Y, Guo S, Lu B. The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons. Hum Mol Genet 2011; 20:3227-40. [PMID: 21613270 DOI: 10.1093/hmg/ddr235] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
PTEN-induced putative kinase 1 (PINK1) and Parkin act in a common pathway to regulate mitochondrial dynamics, the involvement of which in the pathogenesis of Parkinson's disease (PD) is increasingly being appreciated. However, how the PINK1/Parkin pathway influences mitochondrial function is not well understood, and the exact role of this pathway in controlling mitochondrial dynamics remains controversial. Here we used mammalian primary neurons to examine the function of the PINK1/Parkin pathway in regulating mitochondrial dynamics and function. In rat hippocampal neurons, PINK1 or Parkin overexpression resulted in increased mitochondrial number, smaller mitochondrial size and reduced mitochondrial occupancy of neuronal processes, suggesting that the balance of mitochondrial fission/fusion dynamics is tipped toward more fission. Conversely, inactivation of PINK1 resulted in elongated mitochondria, indicating that the balance of mitochondrial fission/fusion dynamics is tipped toward more fusion. Furthermore, overexpression of the fission protein Drp1 (dynamin-related protein 1) or knocking down of the fusion protein OPA1 (optical atrophy 1) suppressed PINK1 RNAi-induced mitochondrial morphological defect, and overexpression of PINK1 or Parkin suppressed the elongated mitochondria phenotype caused by Drp1 RNAi. Functionally, PINK1 knockdown and overexpression had opposite effects on dendritic spine formation and neuronal vulnerability to excitotoxicity. Finally, we found that PINK1/Parkin similarly influenced mitochondrial dynamics in rat midbrain dopaminergic neurons. These results, together with previous findings in Drosophila dopaminergic neurons, indicate that the PINK1/Parkin pathway plays conserved roles in regulating neuronal mitochondrial dynamics and function.
Collapse
Affiliation(s)
- Wendou Yu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
50
|
Cleland MM, Norris KL, Karbowski M, Wang C, Suen DF, Jiao S, George NM, Luo X, Li Z, Youle RJ. Bcl-2 family interaction with the mitochondrial morphogenesis machinery. Cell Death Differ 2011; 18:235-47. [PMID: 20671748 PMCID: PMC2970747 DOI: 10.1038/cdd.2010.89] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/17/2010] [Accepted: 06/15/2010] [Indexed: 01/06/2023] Open
Abstract
The regulation of both mitochondrial dynamics and apoptosis is key for maintaining the health of a cell. Bcl-2 family proteins, central in apoptosis regulation, also have roles in the maintenance of the mitochondrial network. Here we report that Bax and Bak participate in the regulation of mitochondrial fusion in mouse embryonic fibroblasts, primary mouse neurons and human colon carcinoma cells. To assess how Bcl-2 family members may regulate mitochondrial morphogenesis, we determined the binding of a series of chimeras between Bcl-xL and Bax to the mitofusins, mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2). One chimera (containing helix 5 (H5) of Bax replacing H5 of Bcl-xL (Bcl-xL/Bax H5)) co-immunoprecipitated with Mfn1 and Mfn2 significantly better than either wild-type Bax or Bcl-xL. Expression of Bcl-xL/Bax H5 in cells reduced the mobility of Mfn1 and Mfn2 and colocalized with ectopic Mfn1 and Mfn2, as well as endogenous Mfn2 to a greater extent than wild-type Bax. Ultimately, Bcl-xL/Bax H5 induced substantial mitochondrial fragmentation in healthy cells. Therefore, we propose that Bcl-xL/Bax H5 disturbs mitochondrial morphology by binding and inhibiting Mfn1 and Mfn2 activity, supporting the hypothesis that Bcl-2 family members have the capacity to regulate mitochondrial morphology through binding to the mitofusins in healthy cells.
Collapse
Affiliation(s)
- M M Cleland
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - K L Norris
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - M Karbowski
- University of Maryland Biotechnology Institute, Medical Biotechnology Center, Bethesda, MD, USA
| | - C Wang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - D-F Suen
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - S Jiao
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - N M George
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - X Luo
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Z Li
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - R J Youle
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|