1
|
Yang X, Zhu Y, Zhao X, Xun J, Wang X, Cheng Y, Xiong S, Yu X, Li S, Wang D, Hu Z, Shen Y, Jiang S, Lu H, Wang G, Zhu H. RYBP promotes HIV-1 latency through promoting H2AK119ub and decreasing H3K4me3. Cell Commun Signal 2025; 23:222. [PMID: 40361117 PMCID: PMC12070685 DOI: 10.1186/s12964-025-02221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Acquired immunodeficiency syndrome (AIDS) cannot be completely cured, and the main obstacle is the existence of viral reservoirs. However, we currently do not fully understand the molecular mechanisms by which HIV-1 latency is established and maintained. METHODS Here, based on engineered chromatin immunoprecipitation (enChIP) technology that using FLAG-tagged zinc finger nucleic acid proteins (FLAG-ZFP) that bind to the HIV-1 L region and chromatin immunoprecipitation, we identified RYBP as a new HIV-1 latency-promoting gene. The effect of RYBP on HIV-1 latency was explored in multiple cell lines and primary latency models through gene knockout methods. Western blot and chromatin immunoprecipitation (ChIP) were used to explore the molecular mechanism of RYBP in promoting HIV-1 latency. RESULTS Disruption of RYBP gene can activate latent HIV-1 in different latent cell lines and primary latent cell models. Mechanistically, the HIV-1 long terminal repeats (LTR) region binding protein Yin Yang 1 (YY1) can recruit RYBP to the HIV-1 L region. Then, RYBP can further recruit KDM2B, thereby promoting the increased ubiquitination level of H2AK119 and decreases the level of H3K4me3, to decrease HIV-1 L transcriptional elongation and enter a latent state. At the same time, during the stage of viral transcription and replication, Tat protein can inhibit the expression of RYBP, promoting viral transcription and replication. Finally, we found that the H2AK119ub inhibitor PRT4165 can promote latent HIV-1 activation and has good synergy with reported latent reactivating agents. CONCLUSION These results provide mechanistically new insights into a critical role of RYBP in the regulation of histone modification and H2AK119ub may be directly targeted to control HIV reservoirs.
Collapse
Affiliation(s)
- Xinyi Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China.
- Yunnan Provincial Infectious Diseases Hospital/Yunnan AIDS Care Center, Kunming, China.
| | - Yuqi Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China
| | - Xiaying Zhao
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China
| | - Jingna Xun
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xingyu Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China
| | - Yipeng Cheng
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China
| | - Su Xiong
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China
| | - Xingwen Yu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China
| | - Suixiang Li
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China
| | - Danqing Wang
- Yunnan Provincial Infectious Diseases Hospital/Yunnan AIDS Care Center, Kunming, China
| | - Zhiliang Hu
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing Medical University, Center for Global Health, School of Public Health, Nanjing, China
| | - Yinzhong Shen
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Diseases and Nursing Research Institution, National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Gang Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Yiwu Research Institute of Fudan University, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Jones JE, Gunderson CE, Wigdahl B, Nonnemacher MR. Impact of chromatin on HIV-1 latency: a multi-dimensional perspective. Epigenetics Chromatin 2025; 18:9. [PMID: 40055755 PMCID: PMC11889793 DOI: 10.1186/s13072-025-00573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 05/13/2025] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is a retrovirus that infects multiple immune cell types and integrates into host cell DNA termed provirus. Under antiretroviral control, provirus in cells is able to evade targeting by both host immune surveillance and antiretroviral drug regimens. Additionally, the provirus remains integrated for the life of the cell, and clonal expansion establishes a persistent reservoir. As host cells become quiescent following the acute stage of infection, the provirus also enters a latent state characterized by low levels of transcription and virion production. Proviral latency may last years or even decades, but stimuli such as immune activation, accumulation of viral proteins, and certain medications can trigger reactivation of proviral gene expression. Left untreated, this can lead to virema, development of pathogenic out comes, and even death as the immune system becomes weakened and dysregulated. Over the last few decades, the role of chromatin in both HIV-1 latency and reactivation has been characterized in-depth, and a number of host factors have been identified as key players in modifying the local (2D) chromatin environment of the provirus. Here, the impact of the 2D chromatin environment and its related factors are reviewed. Enzymes that catalyze the addition or removal of covalent groups from histone proteins, such as histone deacetylase complexes (HDACs) and methyltransferases (HMTs) are of particular interest, as they both alter the affinity of histones for proviral DNA and function to recruit other proteins that contribute to chromatin remodeling and gene expression from the provirus. More recently, advances in next-generation sequencing and imaging technology has enabled the study of how the higher-order (3D) chromatin environment relates to proviral latency, including the impacts of integration site and cell type. All together, these multi-dimensional factors regulate latency by influencing the degree of accessibility to the proviral DNA by transcription machinery. Finally, additional implications for therapeutics and functional studies are proposed and discussed.
Collapse
Affiliation(s)
- Joanna E Jones
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Chelsea E Gunderson
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
3
|
Tioka L, Diez RC, Sönnerborg A, van de Klundert MAA. Latency Reversing Agents and the Road to an HIV Cure. Pathogens 2025; 14:232. [PMID: 40137717 PMCID: PMC11944434 DOI: 10.3390/pathogens14030232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
HIV-1 infection cannot be cured due to the presence of HIV-1 latently infected cells. These cells do not produce the virus, but they can resume virus production at any time in the absence of antiretroviral therapy. Therefore, people living with HIV (PLWH) need to take lifelong therapy. Strategies have been coined to eradicate the viral reservoir by reactivating HIV-1 latently infected cells and subsequently killing them. Various latency reversing agents (LRAs) that can reactivate HIV-1 in vitro and ex vivo have been identified. The most potent LRAs also strongly activate T cells and therefore cannot be applied in vivo. Many LRAs that reactivate HIV in the absence of general T cell activation have been identified and have been tested in clinical trials. Although some LRAs could reduce the reservoir size in clinical trials, so far, they have failed to eradicate the reservoir. More recently, immune modulators have been applied in PLWH, and the first results seem to indicate that these may reduce the reservoir and possibly improve immunological control after therapy interruption. Potentially, combinations of LRAs and immune modulators could reduce the reservoir size, and in the future, immunological control may enable PLWH to live without developing HIV-related disease in the absence of therapy.
Collapse
Affiliation(s)
- Louis Tioka
- Faculty of Medicine, Erlangen-Nürnberg, Friedrich-Alexander-Universität, 91054 Erlangen, Germany;
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, 17177 Stockholm, Sweden; (R.C.D.); (A.S.)
| | - Rafael Ceña Diez
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, 17177 Stockholm, Sweden; (R.C.D.); (A.S.)
| | - Anders Sönnerborg
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, 17177 Stockholm, Sweden; (R.C.D.); (A.S.)
- Department of Infectious Diseases, Karolinska University Hospital, 17177 Stockholm, Sweden
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Maarten A. A. van de Klundert
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, 17177 Stockholm, Sweden; (R.C.D.); (A.S.)
| |
Collapse
|
4
|
Chen C, Zhong Z, Zhang W, Xia B, Wu L, Liang L, Zhang Y, Zhang H, Zhang X, Pan T, Li L, Liu B. Tannic acid reactivates HIV-1 latency by mediating CBX4 degradation. J Virol 2025; 99:e0117324. [PMID: 39692477 PMCID: PMC11790007 DOI: 10.1128/jvi.01173-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024] Open
Abstract
HIV-1 can integrate viral DNA into host cell chromosomes and establish a long-term stable latent viral reservoir, a major obstacle in curing HIV-1 infection. The reactivation of latent proviruses with latency-reversing agents (LRAs) is a prerequisite for the eradication of viral reservoirs. Previous reports have shown that tannic acid (TA) exerts several biological functions, including antioxidant and antitumor activities. Here, we identified a novel function of TA as a reactivator of HIV-1 latency. TA showed similar features to the HIV-1 transactivator of transcription (Tat) and was able to reactivate a larger number of proviruses from various integration sites. TA also showed a strong synergistic effect with other LRAs acting on different signaling pathways. Further studies revealed that the polycomb repressive complex 1 component, chromobox protein homolog 4 (CBX4), is specifically degraded by TA through ubiquitination. CBX4 is associated with the tri-methylation at lysine 27 of histone H3 (H3K27me3) which was enriched on HIV-1 long terminal repeat regions. The TA-induced CBX4 degradation decreased the H3K27me3 enrichment and subsequently enhanced the transcriptional activity of the integrated proviruses. These results suggest that TA is an efficient LRA aiming to a new target for HIV-1 latency, which could be developed to eradicate latent proviruses.IMPORTANCEHIV-1 remains a global health challenge, with its ability to integrate into the host genome and evade the effects of drugs. To overcome this obstacle, the "shock and kill" strategy was proposed, targeting the reactivation of latent HIV-1 for subsequent eradication through antiretroviral medication and immune system reinforcement. Here, we found a new reactivator for HIV-1 latency, tannic acid (TA), which can reactivate HIV-1 latency widely and deeply. Moreover, we demonstrated that TA could promote the interaction between the polycomb repressive complex 1 component CBX4 and the E3 ubiquitin ligase cullin 4A (CUL4A), resulting in CBX4 degradation through the ubiquitin-proteasome system. These events reduce H3K27me3 enrichment in the HIV-1 long terminal repeat region, thereby promoting HIV-1 transcription and ultimately reactivating HIV-1 latent infection. Our work may facilitate the identification of new latency-reversing agents and provide more theoretical evidence for the molecular mechanism of HIV-1 latency.
Collapse
Affiliation(s)
- Cancan Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhihan Zhong
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wanying Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Infectious Diseases Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Baijin Xia
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liyang Wu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liting Liang
- Qianyang Biomedical Research Institute, Guangzhou, Guangdong, China
| | - Yiwen Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xu Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Pan
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Linghua Li
- Infectious Diseases Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bingfeng Liu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
He H, Li X, Su F, Jin H, Zhang J, Wang Y. Current and Emerging Approaches Targeting G9a for the Treatment of Various Diseases. J Med Chem 2025; 68:1068-1089. [PMID: 39740072 DOI: 10.1021/acs.jmedchem.4c02781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
G9a, a histone lysine methyltransferase, is instrumental in regulating gene expression through epigenetic modifications. Its overexpression is closely linked to the progression of various human diseases, including cancers. Therefore, targeting G9a enzyme is a promising strategy for treating various diseases. Although no G9a inhibitors have yet reached clinical trials, several small molecule inhibitors have demonstrated strong preclinical efficacy. For instance, the orally available inhibitor 16 (DS79932728) shows significant potential for treating sickle cell disease, while 34 (compound 15h) has shown promising treatment of rhabdomyosarcoma. This Perspective summarizes the protein structure and biological functions of G9a, along with its association with various diseases. We highlight the design strategies, structure-activity relationships, and biological activity assessments of G9a inhibitors. Additionally, we discuss the unique advantages of the mechanisms of novel G9a inhibitors, offering insights for the future development of more effective drugs targeting G9a.
Collapse
Affiliation(s)
- Hua He
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center and Laboratory of Neuro-system and Multimorbidity, Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoxue Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center and Laboratory of Neuro-system and Multimorbidity, Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feijing Su
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center and Laboratory of Neuro-system and Multimorbidity, Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Jin
- College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center and Laboratory of Neuro-system and Multimorbidity, Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center and Laboratory of Neuro-system and Multimorbidity, Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| |
Collapse
|
6
|
Bowden-Reid E, Moles E, Kelleher A, Ahlenstiel C. Harnessing antiviral RNAi therapeutics for pandemic viruses: SARS-CoV-2 and HIV. Drug Deliv Transl Res 2025:10.1007/s13346-025-01788-x. [PMID: 39833468 DOI: 10.1007/s13346-025-01788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Using the knowledge from decades of research into RNA-based therapies, the COVID-19 pandemic response saw the rapid design, testing and production of the first ever mRNA vaccines approved for human use in the clinic. This breakthrough has been a significant milestone for RNA therapeutics and vaccines, driving an exponential growth of research into the field. The development of novel RNA therapeutics targeting high-threat pathogens, that pose a substantial risk to global health, could transform the future of health delivery. In this review, we provide a detailed overview of the two RNA interference (RNAi) pathways and how antiviral RNAi therapies can be used to treat acute or chronic diseases caused by the pandemic viruses SARS-CoV-2 and HIV, respectively. We also provide insights into short-interfering RNA (siRNA) delivery systems, with a focus on how lipid nanoparticles can be functionalized to achieve targeted delivery to specific sites of disease. This review will provide the current developments of SARS-CoV-2 and HIV targeted siRNAs, highlighting strategies to advance the progression of antiviral siRNA along the clinical development pathway.
Collapse
Affiliation(s)
| | - Ernest Moles
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, 2052, Australia.
- Australian Centre for Nanomedicine, Faculty of Engineering, UNSW Sydney, Sydney, 2052, Australia.
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney, 2052, Australia.
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia.
| | - Anthony Kelleher
- The Kirby Institute, UNSW Sydney, Sydney, 2052, Australia
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia
| | - Chantelle Ahlenstiel
- The Kirby Institute, UNSW Sydney, Sydney, 2052, Australia.
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia.
| |
Collapse
|
7
|
D'Orso I. The HIV-1 Transcriptional Program: From Initiation to Elongation Control. J Mol Biol 2025; 437:168690. [PMID: 38936695 PMCID: PMC11994015 DOI: 10.1016/j.jmb.2024.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
A large body of work in the last four decades has revealed the key pillars of HIV-1 transcription control at the initiation and elongation steps. Here, I provide a recount of this collective knowledge starting with the genomic elements (DNA and nascent TAR RNA stem-loop) and transcription factors (cellular and the viral transactivator Tat), and later transitioning to the assembly and regulation of transcription initiation and elongation complexes, and the role of chromatin structure. Compelling evidence support a core HIV-1 transcriptional program regulated by the sequential and concerted action of cellular transcription factors and Tat to promote initiation and sustain elongation, highlighting the efficiency of a small virus to take over its host to produce the high levels of transcription required for viral replication. I summarize new advances including the use of CRISPR-Cas9, genetic tools for acute factor depletion, and imaging to study transcriptional dynamics, bursting and the progression through the multiple phases of the transcriptional cycle. Finally, I describe current challenges to future major advances and discuss areas that deserve more attention to both bolster our basic knowledge of the core HIV-1 transcriptional program and open up new therapeutic opportunities.
Collapse
Affiliation(s)
- Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Horvath RM, Sadowski I. CBP/p300 lysine acetyltransferases inhibit HIV-1 expression in latently infected T cells. iScience 2024; 27:111244. [PMID: 39640574 PMCID: PMC11617383 DOI: 10.1016/j.isci.2024.111244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
HIV-1 latency is regulated by chromatin modifying enzymes, and histone deacetylase inhibitors (HDACi) cause reactivation of provirus expression. Surprisingly, we observed that inhibitors of the CBP/p300 acetyltransferases also cause reversal of latency in T cells. CBP/p300 inhibitors synergize with various latency reversing agents to cause HIV-1 reactivation. In contrast, inhibition of CBP/p300 impaired reversal of latency by the HDACi SAHA, indicating that CBP/p300 must contribute to acetylation on the HIV-1 LTR associated with HDACi-mediated latency reversal. CBP/p300 inhibition caused loss of H3K27ac and H3K4me3 from the LTR, but did not affect association of the inhibitor protein BRD4. Furthermore, inhibition of the additional lysine acetyltransferases PCAF/GCN5 or KAT6A/KAT6B also caused reversal of latency, suggesting that protein acetylation has an inhibitory effect on HIV-1 expression. Collectively, these observations indicate that transcription from the HIV-1 LTR is controlled both positively and negatively by protein acetylation, likely including both histone and non-histone regulatory targets.
Collapse
Affiliation(s)
- Riley M. Horvath
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Hiner CR, Mueller AL, Su H, Goldstein H. Interventions during Early Infection: Opening a Window for an HIV Cure? Viruses 2024; 16:1588. [PMID: 39459922 PMCID: PMC11512236 DOI: 10.3390/v16101588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Although combination antiretroviral therapy (ART) has been a landmark achievement for the treatment of human immunodeficiency virus (HIV), an HIV cure has remained elusive. Elimination of latent HIV reservoirs that persist throughout HIV infection is the most challenging barrier to an HIV cure. The progressive HIV infection is marked by the increasing size and diversity of latent HIV reservoirs until an effective immune response is mobilized, which can control but not eliminate HIV infection. The stalemate between HIV replication and the immune response is manifested by the establishment of a viral set point. ART initiation during the early stage limits HIV reservoir development, preserves immune function, improves the quality of life, and may lead to ART-free viral remission in a few people living with HIV (PLWH). However, for the overwhelming majority of PLWH, early ART initiation alone does not cure HIV, and lifelong ART is needed to sustain viral suppression. A critical area of research is focused on determining whether HIV could be functionally cured if additional treatments are provided alongside early ART. Several HIV interventions including Block and Lock, Shock and Kill, broadly neutralizing antibody (bNAb) therapy, adoptive CD8+ T cell therapy, and gene therapy have demonstrated delayed viral rebound and/or viral remission in animal models and/or some PLWH. Whether or not their application during early infection can improve the success of HIV remission is less studied. Herein, we review the current state of clinical and investigative HIV interventions and discuss their potential to improve the likelihood of post-treatment remission if initiated during early infection.
Collapse
Affiliation(s)
- Christopher R. Hiner
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - April L. Mueller
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - Hang Su
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - Harris Goldstein
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
10
|
Zhou M, Yang T, Yuan M, Li X, Deng J, Wu S, Zhong Z, Lin Y, Zhang W, Xia B, Wu Y, Wang L, Chen T, Liu R, Pan T, Ma X, Li L, Liu B, Zhang H. ORC1 enhances repressive epigenetic modifications on HIV-1 LTR to promote HIV-1 latency. J Virol 2024; 98:e0003524. [PMID: 39082875 PMCID: PMC11334468 DOI: 10.1128/jvi.00035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/21/2024] [Indexed: 08/21/2024] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) reservoir consists of latently infected cells which present a major obstacle to achieving a functional cure for HIV-1. The formation and maintenance of HIV-1 latency have been extensively studied, and latency-reversing agents (LRAs) that can reactivate latent HIV-1 by targeting the involved host factors are developed; however, their clinical efficacies remain unsatisfactory. Therefore, it is imperative to identify novel targets for more potential candidates or better combinations for LRAs. In this study, we utilized CRISPR affinity purification in situ of regulatory elements system to screen for host factors associated with the HIV-1 long terminal repeat region that could potentially be involved in HIV-1 latency. We successfully identified that origin recognition complex 1 (ORC1), the largest subunit of the origin recognition complex, contributes to HIV-1 latency in addition to its function in DNA replication initiation. Notably, ORC1 is enriched on the HIV-1 promoter and recruits a series of repressive epigenetic elements, including DNMT1 and HDAC1/2, and histone modifiers, such as H3K9me3 and H3K27me3, thereby facilitating the establishment and maintenance of HIV-1 latency. Moreover, the reactivation of latent HIV-1 through ORC1 depletion has been confirmed across various latency cell models and primary CD4+ T cells from people living with HIV-1. Additionally, we comprehensively validated the properties of liquid-liquid phase separation (LLPS) of ORC1 from multiple perspectives and identified the key regions that promote the formation of LLPS. This property is important for the recruitment of ORC1 to the HIV-1 promoter. Collectively, these findings highlight ORC1 as a potential novel target implicated in HIV-1 latency and position it as a promising candidate for the development of novel LRAs. IMPORTANCE Identifying host factors involved in maintaining human immunodeficiency virus type 1 (HIV-1) latency and understanding their mechanisms prepares the groundwork to discover novel targets for HIV-1 latent infection and provides further options for the selection of latency-reversing agents in the "shock" strategy. In this study, we identified a novel role of the DNA replication factor origin recognition complex 1 (ORC1) in maintaining repressive chromatin structures surrounding the HIV-1 promoter region, thereby contributing to HIV-1 latency. This discovery expands our understanding of the non-replicative functions of the ORC complex and provides a potential therapeutic strategy for HIV-1 cure.
Collapse
Affiliation(s)
- Mo Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tao Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Yuan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinyu Li
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jieyi Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shiyu Wu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhihan Zhong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingtong Lin
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wanying Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baijin Xia
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Science), Guangzhou, China
| | - Yating Wu
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Science), Guangzhou, China
| | - Lilin Wang
- Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Tao Chen
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Ruxin Liu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ting Pan
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiancai Ma
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
| | - Linghua Li
- Center for Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bingfeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Howard JN, Zaikos TD, Levinger C, Rivera E, McMahon EK, Holmberg CS, Terao J, Sanz M, Copertino DC, Wang W, Soriano-Sarabia N, Jones RB, Bosque A. The HIV latency reversing agent HODHBt inhibits the phosphatases PTPN1 and PTPN2. JCI Insight 2024; 9:e179680. [PMID: 39115957 PMCID: PMC11457865 DOI: 10.1172/jci.insight.179680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Nonreceptor tyrosine phosphatases (NTPs) play an important role in regulating protein phosphorylation and have been proposed as attractive therapeutic targets for cancer and metabolic diseases. We have previously identified that 3-Hydroxy-1,2,3-benzotriazin-4(3H)-one (HODHBt) enhanced STAT activation upon cytokine stimulation, leading to increased reactivation of latent HIV and effector functions of NK and CD8 T cells. Here, we demonstrate that HODHBt interacted with and inhibited the NTPs PTPN1 and PTPN2 through a mixed inhibition mechanism. We also confirm that PTPN1 and PTPN2 specifically controlled the phosphorylation of different STATs. The small molecule ABBV-CLS-484 (AC-484) is an active site inhibitor of PTPN1 and PTPN2 currently in clinical trials for advanced solid tumors. We compared AC-484 and HODHBt and found similar effects on STAT5 and immune activation, albeit with different mechanisms of action leading to varying effects on latency reversal. Our studies provide the first specific evidence to our knowledge that enhancing STAT phosphorylation via inhibition of PTPN1 and PTPN2 is an effective tool against HIV.
Collapse
Affiliation(s)
- J. Natalie Howard
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Thomas D. Zaikos
- Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Callie Levinger
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Esteban Rivera
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Elyse K. McMahon
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Carissa S. Holmberg
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Joshua Terao
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Marta Sanz
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Dennis C. Copertino
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Weisheng Wang
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Natalia Soriano-Sarabia
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - R. Brad Jones
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Alberto Bosque
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| |
Collapse
|
12
|
Mondal A, Sarkar A, Das D, Sengupta A, Kabiraj A, Mondal P, Nag R, Mukherjee S, Das C. Epigenetic orchestration of the DNA damage response: Insights into the regulatory mechanisms. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:99-141. [PMID: 39179350 DOI: 10.1016/bs.ircmb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
The DNA damage response (DDR) is a critical cellular mechanism that safeguards genome integrity and prevents the accumulation of harmful DNA lesions. Increasing evidence highlights the intersection between DDR signaling and epigenetic regulation, offering profound insights into various aspects of cellular function including oncogenesis. This comprehensive review explores the intricate relationship between the epigenetic modifications and DDR activation, with a specific focus on the impact of viral infections. Oncogenic viruses, such as human papillomavirus, hepatitis virus (HBV or HCV), and Epstein-Barr virus have been shown to activate the DDR. Consequently, these DNA damage events trigger a cascade of epigenetic alterations, including changes in DNA methylation patterns, histone modifications and the expression of noncoding RNAs. These epigenetic changes exert profound effects on chromatin structure, gene expression, and maintenance of genome stability. Importantly, elucidation of the viral-induced epigenetic alterations in the context of DDR holds significant implications for comprehending the complexity of cancer and provides potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | | | - Dipanwita Das
- Virus Unit [NICED-ICMR], ID and BG Hospital, Kolkata, India
| | - Amrita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Aindrila Kabiraj
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Rachayita Nag
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
13
|
Khatun S, Amin SA, Choudhury D, Chowdhury B, Jha T, Gayen S. Advances in structure-activity relationships of HDAC inhibitors as HIV latency-reversing agents. Expert Opin Drug Discov 2024; 19:353-368. [PMID: 38258439 DOI: 10.1080/17460441.2024.2305730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
INTRODUCTION HIV-infected cells may rebound due to the existence of the silent HIV-infected memory CD4+ T cells (HIV latency). This HIV latency makes the disease almost incurable. In latency, the integrated proviral DNA of HIV is transcriptionally silenced partly due to the activity of histone deacetylases (HDACs). Hence, inhibition of HDAC is considered a prime target for HIV latency reversal. AREAS COVERED A brief biology and function of HDACs have been discussed to identify key points to design HDAC inhibitors (HDACis). This article summarizes recent achievements in the development of HDACis to achieve HIV latency reversal. Structure-activity relationships (SARs) of some series of compounds were also explored. EXPERT OPINION Depletion of the HIV reservoir is the only way to end this deadly epidemic. HDACis are latency-reversing agents (LRA) that can be used to 'shock' the latently infected CD4+ T cells to induce them to produce viral proteins. It is interesting to note that HDAC3, which is extensively expressed in resting T cells, is specifically preferred by benzamide-containing HDACis for inhibition. Thus, the benzamide class of compounds should be explored. Nevertheless, more data on selective HDAC inhibition is needed for further development of HDACis in HIV latency reversal.
Collapse
Affiliation(s)
- Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Sk Abdul Amin
- Department of Pharmaceutical Technology, JIS University, Kolkata, India
| | | | - Boby Chowdhury
- Department of Pharmaceutical Technology, JIS University, Kolkata, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
14
|
Rausch JW, Parvez S, Pathak S, Capoferri AA, Kearney MF. HIV Expression in Infected T Cell Clones. Viruses 2024; 16:108. [PMID: 38257808 PMCID: PMC10820123 DOI: 10.3390/v16010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
The principal barrier to an HIV-1 cure is the persistence of infected cells harboring replication-competent proviruses despite antiretroviral therapy (ART). HIV-1 transcriptional suppression, referred to as viral latency, is foremost among persistence determinants, as it allows infected cells to evade the cytopathic effects of virion production and killing by cytotoxic T lymphocytes (CTL) and other immune factors. HIV-1 persistence is also governed by cellular proliferation, an innate and essential capacity of CD4+ T cells that both sustains cell populations over time and enables a robust directed response to immunological threats. However, when HIV-1 infects CD4+ T cells, this capacity for proliferation can enable surreptitious HIV-1 propagation without the deleterious effects of viral gene expression in latently infected cells. Over time on ART, the HIV-1 reservoir is shaped by both persistence determinants, with selective forces most often favoring clonally expanded infected cell populations harboring transcriptionally quiescent proviruses. Moreover, if HIV latency is incomplete or sporadically reversed in clonal infected cell populations that are replenished faster than they are depleted, such populations could both persist indefinitely and contribute to low-level persistent viremia during ART and viremic rebound if treatment is withdrawn. In this review, select genetic, epigenetic, cellular, and immunological determinants of viral transcriptional suppression and clonal expansion of HIV-1 reservoir T cells, interdependencies among these determinants, and implications for HIV-1 persistence will be presented and discussed.
Collapse
Affiliation(s)
- Jason W. Rausch
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.P.); (S.P.); (A.A.C.); (M.F.K.)
| | | | | | | | | |
Collapse
|
15
|
Peterson JJ, Lewis CA, Burgos SD, Manickam A, Xu Y, Rowley AA, Clutton G, Richardson B, Zou F, Simon JM, Margolis DM, Goonetilleke N, Browne EP. A histone deacetylase network regulates epigenetic reprogramming and viral silencing in HIV-infected cells. Cell Chem Biol 2023; 30:1617-1633.e9. [PMID: 38134881 PMCID: PMC10754471 DOI: 10.1016/j.chembiol.2023.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/23/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
A long-lived latent reservoir of HIV-1-infected CD4 T cells persists with antiretroviral therapy and prevents cure. We report that the emergence of latently infected primary CD4 T cells requires the activity of histone deacetylase enzymes HDAC1/2 and HDAC3. Data from targeted HDAC molecules, an HDAC3-directed PROTAC, and CRISPR-Cas9 knockout experiments converge on a model where either HDAC1/2 or HDAC3 targeting can prevent latency, whereas all three enzymes must be targeted to achieve latency reversal. Furthermore, HDACi treatment targets features of memory T cells that are linked to proviral latency and persistence. Latency prevention is associated with increased H3K9ac at the proviral LTR promoter region and decreased H3K9me3, suggesting that this epigenetic switch is a key proviral silencing mechanism that depends on HDAC activity. These findings support further mechanistic work on latency initiation and eventual clinical studies of HDAC inhibitors to interfere with latency initiation.
Collapse
Affiliation(s)
- Jackson J Peterson
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Catherine A Lewis
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Samuel D Burgos
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Ashokkumar Manickam
- University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Yinyan Xu
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Allison A Rowley
- University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Genevieve Clutton
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Brian Richardson
- Department of Biostatistics, UNC Gillings School of Global Public Health, Chapel Hill, NC 27514, USA
| | - Fei Zou
- Department of Biostatistics, UNC Gillings School of Global Public Health, Chapel Hill, NC 27514, USA
| | - Jeremy M Simon
- Department of Genetics, UNC School of Medicine, Chapel Hill, NC 27514, USA; UNC Neuroscience Center, UNC School of Medicine, Chapel Hill, NC 27514, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David M Margolis
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA; Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27514, USA; Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, NC 27514, USA
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA
| | - Edward P Browne
- Department of Microbiology and Immunology, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC 27514, USA; University of North Carolina HIV Cure Center, Institute of Global Health and Infectious Diseases, Chapel Hill, NC 27514, USA.
| |
Collapse
|
16
|
Zhou Z, Jiang Y, Zhong X, Yang J, Yang G. Characteristics and mechanisms of latency-reversing agents in the activation of the human immunodeficiency virus 1 reservoir. Arch Virol 2023; 168:301. [PMID: 38019293 DOI: 10.1007/s00705-023-05931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
The "Shock and Kill" method is being considered as a potential treatment for eradicating HIV-1 and achieving a functional cure for acquired immunodeficiency syndrome (AIDS). This approach involves using latency-reversing agents (LRAs) to activate human immunodeficiency virus (HIV-1) transcription in latent cells, followed by treatment with antiviral drugs to kill these cells. Although LRAs have shown promise in HIV-1 patient research, their widespread clinical use is hindered by side effects and limitations. In this review, we categorize and explain the mechanisms of these agonists in activating HIV-1 in vivo and discuss their advantages and disadvantages. In the future, combining different HIV-1 LRAs may overcome their respective shortcomings and facilitate a functional cure for HIV-1.
Collapse
Affiliation(s)
- Zhujiao Zhou
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310013, China
| | - Yashuang Jiang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xinyu Zhong
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310013, China
| | - Jingyi Yang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Geng Yang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310013, China.
| |
Collapse
|
17
|
Prakhar P, Bhatt B, Lohia GK, Shah A, Mukherjee T, Kolthur-Seetharam U, Sundaresan NR, Rajmani RS, Balaji KN. G9a and Sirtuin6 epigenetically modulate host cholesterol accumulation to facilitate mycobacterial survival. PLoS Pathog 2023; 19:e1011731. [PMID: 37871034 PMCID: PMC10621959 DOI: 10.1371/journal.ppat.1011731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/02/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023] Open
Abstract
Cholesterol derived from the host milieu forms a critical factor for mycobacterial pathogenesis. However, the molecular circuitry co-opted by Mycobacterium tuberculosis (Mtb) to accumulate cholesterol in host cells remains obscure. Here, we report that the coordinated action of WNT-responsive histone modifiers G9a (H3K9 methyltransferase) and SIRT6 (H3K9 deacetylase) orchestrate cholesterol build-up in in vitro and in vivo mouse models of Mtb infection. Mechanistically, G9a, along with SREBP2, drives the expression of cholesterol biosynthesis and uptake genes; while SIRT6 along with G9a represses the genes involved in cholesterol efflux. The accumulated cholesterol in Mtb infected macrophages promotes the expression of antioxidant genes leading to reduced oxidative stress, thereby supporting Mtb survival. In corroboration, loss-of-function of G9a in vitro and pharmacological inhibition in vivo; or utilization of BMDMs derived from Sirt6-/- mice or in vivo infection in haplo-insufficient Sirt6-/+ mice; hampered host cholesterol accumulation and restricted Mtb burden. These findings shed light on the novel roles of G9a and SIRT6 during Mtb infection and highlight the previously unknown contribution of host cholesterol in potentiating anti-oxidative responses for aiding Mtb survival.
Collapse
Affiliation(s)
- Praveen Prakhar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Bharat Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Gaurav Kumar Lohia
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Awantika Shah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Tanushree Mukherjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Nagalingam R. Sundaresan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Raju S. Rajmani
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore–, Karnataka, India
| | | |
Collapse
|
18
|
Horvath RM, Dahabieh M, Malcolm T, Sadowski I. TRIM24 controls induction of latent HIV-1 by stimulating transcriptional elongation. Commun Biol 2023; 6:86. [PMID: 36690785 PMCID: PMC9870992 DOI: 10.1038/s42003-023-04484-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
Binding of USF1/2 and TFII-I (RBF-2) at conserved sites flanking the HIV-1 LTR enhancer is essential for reactivation from latency in T cells, with TFII-I knockdown rendering the provirus insensitive to T cell signaling. We identified an interaction of TFII-I with the tripartite motif protein TRIM24, and these factors were found to be constitutively associated with the HIV-1 LTR. Similar to the effect of TFII-I depletion, loss of TRIM24 impaired reactivation of HIV-1 in response to T cell signaling. TRIM24 deficiency did not affect recruitment of RNA Pol II to the LTR promoter, but inhibited transcriptional elongation, an effect that was associated with decreased RNA Pol II CTD S2 phosphorylation and impaired recruitment of CDK9. A considerable number of genomic loci are co-occupied by TRIM24/TFII-I, and we found that TRIM24 deletion caused altered T cell immune response, an effect that is facilitated by TFII-I. These results demonstrate a role of TRIM24 for regulation of transcriptional elongation from the HIV-1 promoter, through its interaction with TFII-I, and by recruitment of P-TEFb. Furthermore, these factors co-regulate a significant proportion of genes involved in T cell immune response, consistent with tight coupling of HIV-1 transcriptional activation and T cell signaling.
Collapse
Affiliation(s)
- Riley M Horvath
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Matthew Dahabieh
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Tom Malcolm
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, Molecular Epigenetics Group, LSI, University of British Columbia, Vancouver, B.C., Canada.
| |
Collapse
|
19
|
Discovery of cysteine-targeting covalent histone methyltransferase inhibitors. Eur J Med Chem 2023; 246:115028. [PMID: 36528996 DOI: 10.1016/j.ejmech.2022.115028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Post-translational methylation of histone lysine or arginine residues by histone methyltransferases (HMTs) plays crucial roles in gene regulation and diverse physiological processes and is implicated in a plethora of human diseases, especially cancer. Therefore, histone methyltransferases have been increasingly recognized as potential therapeutic targets. Consequently, the discovery and development of histone methyltransferase inhibitors have been pursued with steadily increasing interest over the past decade. However, the disadvantages of limited clinical efficacy, moderate selectivity, and propensity for acquired resistance have hindered the development of HMTs inhibitors. Targeted covalent modification represents a proven strategy for kinase drug development and has gained increasing attention in HMTs drug discovery. In this review, we focus on the discovery, characterization, and biological applications of covalent inhibitors for HMTs with emphasis on advancements in the field. In addition, we identify the challenges and future directions in this fast-growing research area of drug discovery.
Collapse
|
20
|
Epigenetic Regulation of HIV-1 Sense and Antisense Transcription in Response to Latency-Reversing Agents. Noncoding RNA 2023; 9:ncrna9010005. [PMID: 36649034 PMCID: PMC9844351 DOI: 10.3390/ncrna9010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Nucleosomes positioned on the HIV-1 5' long terminal repeat (LTR) regulate sense transcription as well as the establishment and maintenance of latency. A negative-sense promoter (NSP) in the 3' LTR expresses antisense transcripts with coding and non-coding activities. Previous studies identified cis-acting elements that modulate NSP activity. Here, we used the two chronically infected T cell lines, ACH-2 and J1.1, to investigate epigenetic regulation of NSP activity. We found that histones H3 and H4 are present on the 3' LTR in both cell lines. Following treatment with histone deacetylase inhibitors (HDACi), the levels of H3K27Ac increased and histone occupancy declined. HDACi treatment also led to increased levels of RNA polymerase II (RNPII) at NSP, and antisense transcription was induced with similar kinetics and to a similar extent as 5' LTR-driven sense transcription. We also detected H3K9me2 and H3K27me3 on NSP, along with the enzymes responsible for these epigenetic marks, namely G9a and EZH2, respectively. Treatment with their respective inhibitors had little or no effect on RNPII occupancy at the two LTRs, but it induced both sense and antisense transcription. Moreover, the increased expression of antisense transcripts in response to treatment with a panel of eleven latency-reversing agents closely paralleled and was often greater than the effect on sense transcripts. Thus, HIV-1 sense and antisense RNA expression are both regulated via acetylation and methylation of lysine 9 and 27 on histone H3. Since HIV-1 antisense transcripts act as non-coding RNAs promoting epigenetic silencing of the 5' LTR, our results suggest that the limited efficacy of latency-reversing agents in the context of 'shock and kill' cure strategies may be due to concurrent induction of antisense transcripts thwarting their effect on sense transcription.
Collapse
|
21
|
Medicinal Chemistry of Anti-HIV-1 Latency Chemotherapeutics: Biotargets, Binding Modes and Structure-Activity Relationship Investigation. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010003. [PMID: 36615199 PMCID: PMC9822059 DOI: 10.3390/molecules28010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The existence of latent viral reservoirs (LVRs), also called latent cells, has long been an acknowledged stubborn hurdle for effective treatment of HIV-1/AIDS. This stable and heterogeneous reservoir, which mainly exists in resting memory CD4+ T cells, is not only resistant to highly active antiretroviral therapy (HAART) but cannot be detected by the immune system, leading to rapid drug resistance and viral rebound once antiviral treatment is interrupted. Accordingly, various functional cure strategies have been proposed to combat this barrier, among which one of the widely accepted and utilized protocols is the so-called 'shock-and-kill' regimen. The protocol begins with latency-reversing agents (LRAs), either alone or in combination, to reactivate the latent HIV-1 proviruses, then eliminates them by viral cytopathic mechanisms (e.g., currently available antiviral drugs) or by the immune killing function of the immune system (e.g., NK and CD8+ T cells). In this review, we focuse on the currently explored small molecular LRAs, with emphasis on their mechanism-directed drug targets, binding modes and structure-relationship activity (SAR) profiles, aiming to provide safer and more effective remedies for treating HIV-1 infection.
Collapse
|
22
|
Mediouni S, Lyu S, Schader SM, Valente ST. Forging a Functional Cure for HIV: Transcription Regulators and Inhibitors. Viruses 2022; 14:1980. [PMID: 36146786 PMCID: PMC9502519 DOI: 10.3390/v14091980] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Current antiretroviral therapy (ART) increases the survival of HIV-infected individuals, yet it is not curative. The major barrier to finding a definitive cure for HIV is our inability to identify and eliminate long-lived cells containing the dormant provirus, termed viral reservoir. When ART is interrupted, the viral reservoir ensures heterogenous and stochastic HIV viral gene expression, which can reseed infection back to pre-ART levels. While strategies to permanently eradicate the virus have not yet provided significant success, recent work has focused on the management of this residual viral reservoir to effectively limit comorbidities associated with the ongoing viral transcription still observed during suppressive ART, as well as limit the need for daily ART. Our group has been at the forefront of exploring the viability of the block-and-lock remission approach, focused on the long-lasting epigenetic block of viral transcription such that without daily ART, there is no risk of viral rebound, transmission, or progression to AIDS. Numerous studies have reported inhibitors of both viral and host factors required for HIV transcriptional activation. Here, we highlight and review some of the latest HIV transcriptional inhibitor discoveries that may be leveraged for the clinical exploration of block-and-lock and revolutionize the way we treat HIV infections.
Collapse
Affiliation(s)
- Sonia Mediouni
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| | - Shuang Lyu
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| | - Susan M. Schader
- Department of Infectious Disease Research, Drug Development Division, Southern Research, 431 Aviation Way, Frederick, MD 21701, USA
| | - Susana T. Valente
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, 130 Scripps Way, 3C1, Jupiter, FL 33458, USA
| |
Collapse
|
23
|
Wu L, Pan T, Zhou M, Chen T, Wu S, Lv X, Liu J, Yu F, Guan Y, Liu B, Zhang W, Deng X, Chen Q, Liang A, Lin Y, Wang L, Tang X, Cai W, Li L, He X, Zhang H, Ma X. CBX4 contributes to HIV-1 latency by forming phase-separated nuclear bodies and SUMOylating EZH2. EMBO Rep 2022; 23:e53855. [PMID: 35642598 PMCID: PMC9253744 DOI: 10.15252/embr.202153855] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 04/17/2022] [Accepted: 05/18/2022] [Indexed: 09/13/2023] Open
Abstract
The retrovirus HIV-1 integrates into the host genome and establishes a latent viral reservoir that escapes immune surveillance. Molecular mechanisms of HIV-1 latency have been studied extensively to achieve a cure for the acquired immunodeficiency syndrome (AIDS). Latency-reversing agents (LRAs) have been developed to reactivate and eliminate the latent reservoir by the immune system. To develop more promising LRAs, it is essential to evaluate new therapeutic targets. Here, we find that CBX4, a component of the Polycomb Repressive Complex 1 (PRC1), contributes to HIV-1 latency in seven latency models and primary CD4+ T cells. CBX4 forms nuclear bodies with liquid-liquid phase separation (LLPS) properties on the HIV-1 long terminal repeat (LTR) and recruits EZH2, the catalytic subunit of PRC2. CBX4 SUMOylates EZH2 utilizing its SUMO E3 ligase activity, thereby enhancing the H3K27 methyltransferase activity of EZH2. Our results indicate that CBX4 acts as a bridge between the repressor complexes PRC1 and PRC2 that act synergistically to maintain HIV-1 latency. Dissolution of phase-separated CBX4 bodies could be a potential intervention to reactivate latent HIV-1.
Collapse
Affiliation(s)
- Liyang Wu
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Ting Pan
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Center for Infection and Immunity StudySchool of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Mo Zhou
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Tao Chen
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Shiyu Wu
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Xi Lv
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Jun Liu
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Fei Yu
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Yuanjun Guan
- Core Laboratory Platform for Medical ScienceZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Bingfeng Liu
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Wanying Zhang
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Xiaohui Deng
- Center for Infection and Immunity StudySchool of MedicineSun Yat‐sen UniversityShenzhenChina
| | - Qianyu Chen
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Anqi Liang
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Yingtong Lin
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | | | - Xiaoping Tang
- Department of Infectious DiseasesGuangzhou 8 People's HospitalGuangzhouChina
| | - Weiping Cai
- Department of Infectious DiseasesGuangzhou 8 People's HospitalGuangzhouChina
| | - Linghua Li
- Department of Infectious DiseasesGuangzhou 8 People's HospitalGuangzhouChina
| | - Xin He
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Hui Zhang
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Guangzhou LaboratoryGuangzhou International Bio‐IslandGuangzhouChina
| | - Xiancai Ma
- Institute of Human VirologyKey Laboratory of Tropical Disease Control of Ministry EducationGuangdong Engineering Research Center for Antimicrobial Agent and ImmunotechnologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
- Guangzhou LaboratoryGuangzhou International Bio‐IslandGuangzhouChina
| |
Collapse
|
24
|
Ding J, Wang S, Wang Z, Chen S, Zhao J, Solomon M, Liu Z, Guo F, Ma L, Wen J, Li X, Liang C, Cen S. Schlafen 5 suppresses human immunodeficiency virus type 1 transcription by commandeering cellular epigenetic machinery. Nucleic Acids Res 2022; 50:6137-6153. [PMID: 35687115 PMCID: PMC9226525 DOI: 10.1093/nar/gkac489] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 11/14/2022] Open
Abstract
Schlafen-5 (SLFN5) is an interferon-induced protein of the Schlafen family, which are involved in immune responses and oncogenesis. To date, little is known regarding its anti-HIV-1 function. Here, the authors report that overexpression of SLFN5 inhibits HIV-1 replication and reduces viral mRNA levels, whereas depletion of endogenous SLFN5 promotes HIV-1 replication. Moreover, they show that SLFN5 markedly decreases the transcriptional activity of HIV-1 long terminal repeat (LTR) via binding to two sequences in the U5-R region, which consequently represses the recruitment of RNA polymerase II to the transcription initiation site. Mutagenesis studies show the importance of nuclear localization and the N-terminal 1-570 amino acids fragment in the inhibition of HIV-1. Further mechanistic studies demonstrate that SLFN5 interacts with components of the PRC2 complex, G9a and Histone H3, thereby promoting H3K27me2 and H3K27me3 modification leading to silencing HIV-1 transcription. In concert with this, they find that SLFN5 blocks the activation of latent HIV-1. Altogether, their findings demonstrate that SLFN5 is a transcriptional repressor of HIV-1 through epigenetic modulation and a potential determinant of HIV-1 latency.
Collapse
Affiliation(s)
- Jiwei Ding
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Shujie Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Zhen Wang
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Shumin Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Magan Solomon
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Zhenlong Liu
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Fei Guo
- Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Jiajia Wen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Chen Liang
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.,CAMS Key Laboratory of Antiviral Drug Research, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
25
|
Lin Y, Qiu T, Wei G, Que Y, Wang W, Kong Y, Xie T, Chen X. Role of Histone Post-Translational Modifications in Inflammatory Diseases. Front Immunol 2022; 13:852272. [PMID: 35280995 PMCID: PMC8908311 DOI: 10.3389/fimmu.2022.852272] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a defensive reaction for external stimuli to the human body and generally accompanied by immune responses, which is associated with multiple diseases such as atherosclerosis, type 2 diabetes, Alzheimer’s disease, psoriasis, asthma, chronic lung diseases, inflammatory bowel disease, and multiple virus-associated diseases. Epigenetic mechanisms have been demonstrated to play a key role in the regulation of inflammation. Common epigenetic regulations are DNA methylation, histone modifications, and non-coding RNA expression; among these, histone modifications embrace various post-modifications including acetylation, methylation, phosphorylation, ubiquitination, and ADP ribosylation. This review focuses on the significant role of histone modifications in the progression of inflammatory diseases, providing the potential target for clinical therapy of inflammation-associated diseases.
Collapse
Affiliation(s)
- Yingying Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yueyue Que
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Wenxin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
26
|
Ta TM, Malik S, Anderson EM, Jones AD, Perchik J, Freylikh M, Sardo L, Klase ZA, Izumi T. Insights Into Persistent HIV-1 Infection and Functional Cure: Novel Capabilities and Strategies. Front Microbiol 2022; 13:862270. [PMID: 35572626 PMCID: PMC9093714 DOI: 10.3389/fmicb.2022.862270] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Although HIV-1 replication can be efficiently suppressed to undetectable levels in peripheral blood by combination antiretroviral therapy (cART), lifelong medication is still required in people living with HIV (PLWH). Life expectancies have been extended by cART, but age-related comorbidities have increased which are associated with heavy physiological and economic burdens on PLWH. The obstacle to a functional HIV cure can be ascribed to the formation of latent reservoir establishment at the time of acute infection that persists during cART. Recent studies suggest that some HIV reservoirs are established in the early acute stages of HIV infection within multiple immune cells that are gradually shaped by various host and viral mechanisms and may undergo clonal expansion. Early cART initiation has been shown to reduce the reservoir size in HIV-infected individuals. Memory CD4+ T cell subsets are regarded as the predominant cellular compartment of the HIV reservoir, but monocytes and derivative macrophages or dendritic cells also play a role in the persistent virus infection. HIV latency is regulated at multiple molecular levels in transcriptional and post-transcriptional processes. Epigenetic regulation of the proviral promoter can profoundly regulate the viral transcription. In addition, transcriptional elongation, RNA splicing, and nuclear export pathways are also involved in maintaining HIV latency. Although most proviruses contain large internal deletions, some defective proviruses may induce immune activation by expressing viral proteins or producing replication-defective viral-like particles. In this review article, we discuss the state of the art on mechanisms of virus persistence in the periphery and tissue and summarize interdisciplinary approaches toward a functional HIV cure, including novel capabilities and strategies to measure and eliminate the infected reservoirs and induce immune control.
Collapse
Affiliation(s)
- Tram M. Ta
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Sajjaf Malik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Elizabeth M. Anderson
- Office of the Assistant Secretary for Health, Region 3, U.S. Department of Health and Human Services, Washington, DC, United States
| | - Amber D. Jones
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jocelyn Perchik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Maryann Freylikh
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Luca Sardo
- Department of Infectious Disease and Vaccines, Merck & Co., Inc., Kenilworth, NJ, United States
| | - Zackary A. Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States,Center for Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University of Medicine, Philadelphia, PA, United States
| | - Taisuke Izumi
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,*Correspondence: Taisuke Izumi,
| |
Collapse
|
27
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
28
|
Yokoe S, Hasuike A, Watanabe N, Tanaka H, Karahashi H, Wakuda S, Takeichi O, Kawato T, Takai H, Ogata Y, Sato S, Imai K. Epstein-Barr Virus Promotes the Production of Inflammatory Cytokines in Gingival Fibroblasts and RANKL-Induced Osteoclast Differentiation in RAW264.7 Cells. Int J Mol Sci 2022; 23:ijms23020809. [PMID: 35054995 PMCID: PMC8775710 DOI: 10.3390/ijms23020809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 01/27/2023] Open
Abstract
Periodontitis is an inflammatory condition that causes the destruction of the supporting tissues of teeth and is a major public health problem affecting more than half of the adult population worldwide. Recently, members of the herpes virus family, such as the Epstein–Barr virus (EBV), have been suggested to be involved in the etiology of periodontitis because bacterial activity alone does not adequately explain the clinical characteristics of periodontitis. However, the role of EBV in the etiology of periodontitis is unknown. This study aimed to examine the effect of inactivated EBV on the expression of inflammatory cytokines in human gingival fibroblasts (HGFs) and the induction of osteoclast differentiation. We found that extremely high levels of interleukin (IL)-6 and IL-8 were induced by inactivated EBV in a copy-dependent manner in HGFs. The levels of IL-6 and IL-8 in HGFs were higher when the cells were treated with EBV than when treated with lipopolysaccharide and lipoteichoic acid. EBV induced IκBα degradation, NF-κB transcription, and RAW264.7 cell differentiation into osteoclast-like cells. These findings suggest that even without infecting the cells, EBV contributes to inflammatory cytokine production and osteoclast differentiation by contact with oral cells or macrophage lineage, resulting in periodontitis onset and progression.
Collapse
Affiliation(s)
- Sho Yokoe
- Department of Periodontology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (S.Y.); (A.H.); (N.W.); (H.K.); (S.W.); (S.S.)
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Akira Hasuike
- Department of Periodontology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (S.Y.); (A.H.); (N.W.); (H.K.); (S.W.); (S.S.)
| | - Norihisa Watanabe
- Department of Periodontology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (S.Y.); (A.H.); (N.W.); (H.K.); (S.W.); (S.S.)
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Hideki Tanaka
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (H.T.); (T.K.)
| | - Hiroyuki Karahashi
- Department of Periodontology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (S.Y.); (A.H.); (N.W.); (H.K.); (S.W.); (S.S.)
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Shin Wakuda
- Department of Periodontology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (S.Y.); (A.H.); (N.W.); (H.K.); (S.W.); (S.S.)
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Osamu Takeichi
- Department of Endodontics, Nihon University School of Dentistry, Tokyo 101-8310, Japan;
| | - Takayuki Kawato
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (H.T.); (T.K.)
| | - Hideki Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan; (H.T.); (Y.O.)
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan; (H.T.); (Y.O.)
| | - Shuichi Sato
- Department of Periodontology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (S.Y.); (A.H.); (N.W.); (H.K.); (S.W.); (S.S.)
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
- Correspondence: ; Tel.: +81-3-33219-8115
| |
Collapse
|
29
|
Abstract
As already discussed for T cell lines, also myeloid cell lines as served as the earliest models of chronic HIV infection. They were particularly relevant in the late 1980s and early 1990s when most experimental in vitro infections were based on laboratory-adapted "T-cell tropic" strains of HIV-1, such as LAI/IIIB or others, that later were found to rely upon CXCR4 as coreceptor for viral entry in addition to CD4 as primary receptor. Although primary macrophages do express CXCR4 together with CD4, virus replication is much less efficient than that observed with CCR5-using "macrophage-tropic" strains, as discussed separately in this book. Although different myeloid cell lines have been used to generate models of chronic HIV-1 infection that could be used to investigate features of proviral reactivation, as reviewed in (Cassol et al. J Leukoc Biol 80:1018-1030, 2006), two cell lines in particular have been broadly used and will be here discussed: the U937-derived U1 and HL-60-derived OM-10.1.
Collapse
Affiliation(s)
- Guido Poli
- Human Immuno-Virology (H.I.V.) Unit, San Raffaele Scientific Institute and School of Medicine, Vita-Salute San Raffaele University, Milano, Italy.
| |
Collapse
|
30
|
de Paz-Silava SLM, Victoriano-Belvis AFB, Gloriani NG, Hibi Y, Asamitsu K, Okamoto T. In Vitro Antiviral Activity of Mentha cordifolia Plant Extract in HIV-1 Latently Infected Cells Using an Established Human Cell Line. AIDS Res Hum Retroviruses 2022; 38:64-72. [PMID: 34030452 DOI: 10.1089/aid.2021.0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Emergence of drug resistance demands new therapeutic strategies against the human immunodeficiency virus (HIV). Currently, there is an increasing research focus on targeting gene expression-the crucial step wherein new viruses and new viral strains are amplified. Moreover, natural products are also being considered as potential candidates for new antivirals. We screened the extract obtained from a Philippine medicinal plant, Mentha cordifolia (Mc). In this study, we demonstrated that Mc ammonium sulfate extract has antiretroviral activity against HIV. HIV-1 latently infected cells (OM10.1) were pretreated with Mc extract and activated with TNFα. In treated cells, viral replication was inhibited in both cell culture supernatant and whole cell lysates. The level of viral production, as measured by the viral p24 protein concentration, was very much inhibited under noncytotoxic concentrations to the similar level without addition of TNFα. Luciferase assays, however, showed that Mc does not inhibit the HIV-1 long terminal repeat-driven gene expression. IκBα degradation and p65 nuclear translocation was also not affected as visualized through Western blot and immunofluorescence. These observations demonstrated that Mc possessed an antiviral component against HIV-1 and warrant further work to explore its target of action at a later step of gene expression. Our study introduces a potential source of a lead compound that targets steps in the HIV life cycle.
Collapse
Affiliation(s)
- Sheriah Laine M. de Paz-Silava
- College of Medicine, University of the Philippines, Manila, Philippines
- Department of Medical Microbiology, College of Public Health, University of the Philippines, Manila, Philippines
- Department of Molecular and Cellular Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Ann Florence B. Victoriano-Belvis
- Department of Medical Microbiology, College of Public Health, University of the Philippines, Manila, Philippines
- Research and Biotechnology, Center for Basic Science Research, St. Luke's Medical Center, Quezon City, Philippines
| | - Nina G. Gloriani
- Department of Medical Microbiology, College of Public Health, University of the Philippines, Manila, Philippines
| | - Yurina Hibi
- Department of Molecular and Cellular Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kaori Asamitsu
- Department of Molecular and Cellular Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Takashi Okamoto
- Department of Molecular and Cellular Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
31
|
Acchioni C, Palermo E, Sandini S, Acchioni M, Hiscott J, Sgarbanti M. Fighting HIV-1 Persistence: At the Crossroads of "Shoc-K and B-Lock". Pathogens 2021; 10:pathogens10111517. [PMID: 34832672 PMCID: PMC8622007 DOI: 10.3390/pathogens10111517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the success of highly active antiretroviral therapy (HAART), integrated HIV-1 proviral DNA cannot be eradicated from an infected individual. HAART is not able to eliminate latently infected cells that remain invisible to the immune system. Viral sanctuaries in specific tissues and immune-privileged sites may cause residual viral replication that contributes to HIV-1 persistence. The “Shock or Kick, and Kill” approach uses latency reversing agents (LRAs) in the presence of HAART, followed by cell-killing due to viral cytopathic effects and immune-mediated clearance. Different LRAs may be required for the in vivo reactivation of HIV-1 in different CD4+ T cell reservoirs, leading to the activation of cellular transcription factors acting on the integrated proviral HIV-1 LTR. An important requirement for LRA drugs is the reactivation of viral transcription and replication without causing a generalized immune activation. Toll-like receptors, RIG-I like receptors, and STING agonists have emerged recently as a new class of LRAs that augment selective apoptosis in reactivated T lymphocytes. The challenge is to extend in vitro observations to HIV-1 positive patients. Further studies are also needed to overcome the mechanisms that protect latently infected cells from reactivation and/or elimination by the immune system. The Block and Lock alternative strategy aims at using latency promoting/inducing agents (LPAs/LIAs) to block the ability of latent proviruses to reactivate transcription in order to achieve a long term lock down of potential residual virus replication. The Shock and Kill and the Block and Lock approaches may not be only alternative to each other, but, if combined together (one after the other), or given all at once [namely “Shoc-K(kill) and B(block)-Lock”], they may represent a better approach to a functional cure.
Collapse
Affiliation(s)
- Chiara Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Enrico Palermo
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Silvia Sandini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Marta Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - John Hiscott
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
- Correspondence: ; Tel.: +39-06-4990-3266
| |
Collapse
|
32
|
Abstract
Combinatory antiretroviral therapy (cART) reduces human immunodeficiency virus type 1 (HIV-1) replication but is not curative because cART interruption almost invariably leads to a rapid rebound of viremia due to the persistence of stable HIV-1-infected cellular reservoirs. These reservoirs are mainly composed of CD4+ T cells harboring replication-competent latent proviruses. A broadly explored approach to reduce the HIV-1 reservoir size, the shock and kill strategy, consists of reactivating HIV-1 gene expression from the latently infected cellular reservoirs (the shock), followed by killing of the virus-producing infected cells (the kill). Based on improved understanding of the multiple molecular mechanisms controlling HIV-1 latency, distinct classes of latency reversing agents (LRAs) have been studied for their efficiency to reactivate viral gene expression in in vitro and ex vivo cell models. Here, we provide an up-to-date review of these different mechanistic classes of LRAs and discuss optimizations of the shock strategy by combining several LRAs simultaneously or sequentially.
Collapse
Affiliation(s)
- Anthony Rodari
- Service of Molecular Virology, Department of Molecular Biology, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium;
| | - Gilles Darcis
- Infectious Diseases Department, Liège University Hospital, 4000 Liège, Belgium
| | - Carine M Van Lint
- Service of Molecular Virology, Department of Molecular Biology, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium;
| |
Collapse
|
33
|
Radaic A, Ganther S, Kamarajan P, Grandis J, Yom SS, Kapila YL. Paradigm shift in the pathogenesis and treatment of oral cancer and other cancers focused on the oralome and antimicrobial-based therapeutics. Periodontol 2000 2021; 87:76-93. [PMID: 34463982 PMCID: PMC8415008 DOI: 10.1111/prd.12388] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The oral microbiome is a community of microorganisms, comprised of bacteria, fungi, viruses, archaea, and protozoa, that form a complex ecosystem within the oral cavity. Although minor perturbations in the environment are frequent and compensable, major shifts in the oral microbiome can promote an unbalanced state, known as dysbiosis. Dysbiosis can promote oral diseases, including periodontitis. In addition, oral dysbiosis has been associated with other systemic diseases, including cancer. The objective of this review is to evaluate the epidemiologic evidence linking periodontitis to oral, gastrointestinal, lung, breast, prostate, and uterine cancers, as well as describe new evidence and insights into the role of oral dysbiosis in the etiology and pathogenesis of the cancer types discussed. Finally, we discuss how antimicrobials, antimicrobial peptides, and probiotics may be promising tools to prevent and treat these cancers, targeting both the microbes and associated carcinogenesis processes. These findings represent a novel paradigm in the pathogenesis and treatment of cancer focused on the oral microbiome and antimicrobial‐based therapies.
Collapse
Affiliation(s)
- Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Sean Ganther
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Jennifer Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
34
|
Potential Utility of Natural Killer Cells for Eliminating Cells Harboring Reactivated Latent HIV-1 Following the Removal of CD8 + T Cell-Mediated Pro-Latency Effect(s). Viruses 2021; 13:v13081451. [PMID: 34452317 PMCID: PMC8402732 DOI: 10.3390/v13081451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
An impediment to curing HIV-1 infection is the persistence of latently infected cells in ART-treated people living with HIV (PLWH). A key strategy for curing HIV-1 infection is to activate transcription and translation of latent virus using latency reversing agents (LRAs) and eliminate cells harboring reactivated virus via viral cytopathic effect or immune clearance. In this review, we provide an overview of available LRAs and their use in clinical trials. Furthermore, we describe recent data suggesting that CD8+ T cells promote HIV-1 latency in the context of ART, even in the presence of LRAs, which might at least partially explain the clinical inefficiency of previous “shock and kill” trials. Here, we propose a novel cure strategy called “unlock, shock, disarm, and kill”. The general premise of this strategy is to shut down the pro-latency function(s) of CD8+ T cells, use LRAs to reverse HIV-1 latency, counteract anti-apoptotic molecules, and engage natural killer (NK) cells to mediate the killing of cells harboring reactivated latent HIV-1.
Collapse
|
35
|
Campbell GR, Spector SA. Induction of Autophagy to Achieve a Human Immunodeficiency Virus Type 1 Cure. Cells 2021; 10:cells10071798. [PMID: 34359967 PMCID: PMC8307643 DOI: 10.3390/cells10071798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Effective antiretroviral therapy has led to significant human immunodeficiency virus type 1 (HIV-1) suppression and improvement in immune function. However, the persistence of integrated proviral DNA in latently infected reservoir cells, which drive viral rebound post-interruption of antiretroviral therapy, remains the major roadblock to a cure. Therefore, the targeted elimination or permanent silencing of this latently infected reservoir is a major focus of HIV-1 research. The most studied approach in the development of a cure is the activation of HIV-1 expression to expose latently infected cells for immune clearance while inducing HIV-1 cytotoxicity—the “kick and kill” approach. However, the complex and highly heterogeneous nature of the latent reservoir, combined with the failure of clinical trials to reduce the reservoir size casts doubt on the feasibility of this approach. This concern that total elimination of HIV-1 from the body may not be possible has led to increased emphasis on a “functional cure” where the virus remains but is unable to reactivate which presents the challenge of permanently silencing transcription of HIV-1 for prolonged drug-free remission—a “block and lock” approach. In this review, we discuss the interaction of HIV-1 and autophagy, and the exploitation of autophagy to kill selectively HIV-1 latently infected cells as part of a cure strategy. The cure strategy proposed has the advantage of significantly decreasing the size of the HIV-1 reservoir that can contribute to a functional cure and when optimised has the potential to eradicate completely HIV-1.
Collapse
Affiliation(s)
- Grant R. Campbell
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
- Correspondence: ; Tel.: +1-858-534-7477
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
- Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
36
|
Quinlan RBA, Brennan PE. Chemogenomics for drug discovery: clinical molecules from open access chemical probes. RSC Chem Biol 2021; 2:759-795. [PMID: 34458810 PMCID: PMC8341094 DOI: 10.1039/d1cb00016k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years chemical probes have proved valuable tools for the validation of disease-modifying targets, facilitating investigation of target function, safety, and translation. Whilst probes and drugs often differ in their properties, there is a belief that chemical probes are useful for translational studies and can accelerate the drug discovery process by providing a starting point for small molecule drugs. This review seeks to describe clinical candidates that have been inspired by, or derived from, chemical probes, and the process behind their development. By focusing primarily on examples of probes developed by the Structural Genomics Consortium, we examine a variety of epigenetic modulators along with other classes of probe.
Collapse
Affiliation(s)
- Robert B A Quinlan
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Old Road Campus Oxford OX3 7FZ UK
| | - Paul E Brennan
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Old Road Campus Oxford OX3 7FZ UK
- Alzheimer's Research (UK) Oxford Drug Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford OX3 7FZ UK
| |
Collapse
|
37
|
Ma X, Chen T, Peng Z, Wang Z, Liu J, Yang T, Wu L, Liu G, Zhou M, Tong M, Guan Y, Zhang X, Lin Y, Tang X, Li L, Tang Z, Pan T, Zhang H. Histone chaperone CAF-1 promotes HIV-1 latency by leading the formation of phase-separated suppressive nuclear bodies. EMBO J 2021; 40:e106632. [PMID: 33739466 PMCID: PMC8126954 DOI: 10.15252/embj.2020106632] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 01/08/2023] Open
Abstract
HIV-1 latency is a major obstacle to achieving a functional cure for AIDS. Reactivation of HIV-1-infected cells followed by their elimination via immune surveillance is one proposed strategy for eradicating the viral reservoir. However, current latency-reversing agents (LRAs) show high toxicity and low efficiency, and new targets are needed to develop more promising LRAs. Here, we found that the histone chaperone CAF-1 (chromatin assembly factor 1) is enriched on the HIV-1 long terminal repeat (LTR) and forms nuclear bodies with liquid-liquid phase separation (LLPS) properties. CAF-1 recruits epigenetic modifiers and histone chaperones to the nuclear bodies to establish and maintain HIV-1 latency in different latency models and primary CD4+ T cells. Three disordered regions of the CHAF1A subunit are important for phase-separated CAF-1 nuclear body formation and play a key role in maintaining HIV-1 latency. Disruption of phase-separated CAF-1 bodies could be a potential strategy to reactivate latent HIV-1.
Collapse
Affiliation(s)
- Xiancai Ma
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Tao Chen
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhilin Peng
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ziwen Wang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jun Liu
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Tao Yang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Liyang Wu
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Guangyan Liu
- College of Basic Medical SciencesShenyang Medical CollegeShenyangLiaoningChina
| | - Mo Zhou
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Muye Tong
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yuanjun Guan
- Core Laboratory Platform for Medical ScienceZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xu Zhang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yingtong Lin
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiaoping Tang
- Department of Infectious DiseasesGuangzhou 8th People’s HospitalGuangzhouGuangdongChina
| | - Linghua Li
- Department of Infectious DiseasesGuangzhou 8th People’s HospitalGuangzhouGuangdongChina
| | - Zhonghui Tang
- Department of BioinformaticsZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ting Pan
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Center for Infection and Immunity StudySchool of MedicineSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Hui Zhang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control of Ministry of EducationZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
38
|
Epigenetic Mechanisms of HIV-1 Persistence. Vaccines (Basel) 2021; 9:vaccines9050514. [PMID: 34067608 PMCID: PMC8156729 DOI: 10.3390/vaccines9050514] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/01/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Eradicating HIV-1 in infected individuals will not be possible without addressing the persistence of the virus in its multiple reservoirs. In this context, the molecular characterization of HIV-1 persistence is key for the development of rationalized therapeutic interventions. HIV-1 gene expression relies on the redundant and cooperative recruitment of cellular epigenetic machineries to cis-regulatory proviral regions. Furthermore, the complex repertoire of HIV-1 repression mechanisms varies depending on the nature of the viral reservoir, although, so far, few studies have addressed the specific regulatory mechanisms of HIV-1 persistence in other reservoirs than the well-studied latently infected CD4+ T cells. Here, we present an exhaustive and updated picture of the heterochromatinization of the HIV-1 promoter in its different reservoirs. We highlight the complexity, heterogeneity and dynamics of the epigenetic mechanisms of HIV-1 persistence, while discussing the importance of further understanding HIV-1 gene regulation for the rational design of novel HIV-1 cure strategies.
Collapse
|
39
|
Combinatorial Use of Both Epigenetic and Non-Epigenetic Mechanisms to Efficiently Reactivate HIV Latency. Int J Mol Sci 2021; 22:ijms22073697. [PMID: 33918134 PMCID: PMC8036438 DOI: 10.3390/ijms22073697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
The persistence of latent HIV provirus pools in different resting CD4+ cell subsets remains the greatest obstacle in the current efforts to treat and cure HIV infection. Recent efforts to purge out latently infected memory CD4+ T-cells using latency-reversing agents have failed in clinical trials. This review discusses the epigenetic and non-epigenetic mechanisms of HIV latency control, major limitations of the current approaches of using latency-reversing agents to reactivate HIV latency in resting CD4+ T-cells, and potential solutions to these limitations.
Collapse
|
40
|
Chandar Charles MR, Li MC, Hsieh HP, Coumar MS. Mimicking H3 Substrate Arginine in the Design of G9a Lysine Methyltransferase Inhibitors for Cancer Therapy: A Computational Study for Structure-Based Drug Design. ACS OMEGA 2021; 6:6100-6111. [PMID: 33718701 PMCID: PMC7948220 DOI: 10.1021/acsomega.0c04710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/09/2021] [Indexed: 05/30/2023]
Abstract
G9a protein methyltransferase is a potential epigenetic drug target in different cancers and other disease conditions overexpressing the enzyme. G9a is responsible for the H3K9 dimethylation mark, which epigenetically regulates gene expression. Arg8 and Lys9 of the H3 substrate peptide are the two crucial residues for substrate-specific recognition and methylation. Several substrate competitive inhibitors are reported for the potent inhibition of G9a by incorporating lysine mimic groups in the inhibitor design. In this study, we explored the concept of arginine mimic strategy. The hydrophobic segment of the reported inhibitors BIX-01294 and UNC0638 was replaced by a guanidine moiety (side-chain moiety of arginine). The newly substituted guanidine moieties of the inhibitors were positioned similar to the Arg8 of the substrate peptide in molecular docking. Additionally, improved reactivity of the guanidine-substituted inhibitors was observed in density functional theory studies. Molecular dynamics, molecular mechanics Poisson-Boltzmann surface area binding free energy, linear interaction energy, and potential mean force calculated from steered molecular dynamics simulations of the newly designed analogues show enhanced conformational stability and improved H-bond potential and binding affinity toward the target G9a. Moreover, the presence of both lysine and arginine mimics together shows a drastic increase in the binding affinity of the inhibitor towards G9a. Hence, we propose incorporating a guanidine group to imitate the substrate arginine's side chain in the inhibitor design to improve the potency of G9a inhibitors.
Collapse
Affiliation(s)
- M. Ramya Chandar Charles
- Centre
for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Mu-Chun Li
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli
County, Taiwan 350, ROC
- Department
of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan
| | - Hsing-Pang Hsieh
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli
County, Taiwan 350, ROC
- Department
of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan
- Biomedical
Translation Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Mohane Selvaraj Coumar
- Centre
for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| |
Collapse
|
41
|
Zhang XN, Wu LJ, Kong X, Zheng BY, Zhang Z, He ZW. Regulation of the expression of proinflammatory cytokines induced by SARS-CoV-2. World J Clin Cases 2021; 9:1513-1523. [PMID: 33728295 PMCID: PMC7942047 DOI: 10.12998/wjcc.v9.i7.1513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
An outbreak of a novel coronavirus was reported in Wuhan, China, in late 2019. It has spread rapidly through China and many other countries, causing a global pandemic. Since February 2020, over 28 countries/regions have reported confirmed cases. Individuals with the infection known as coronavirus disease-19 (COVID-19) have similar clinical features as severe acute respiratory syndrome first encountered 17 years ago, with fever, cough, and upper airway congestion, along with high production of proinflammatory cytokines (PICs), which form a cytokine storm. PICs induced by COVID-19 include interleukin (IL)-6, IL-17, and monocyte chemoattractant protein-1. The production of cytokines is regulated by activated nuclear factor-kB and involves downstream pathways such as Janus kinase/signal transducers and activators transcription. Protein expression is also regulated by post-translational modification of chromosomal markers. Lysine residues in the peptide tails stretching out from the core of histones bind the sequence upstream of the coding portion of genomic DNA. Covalent modification, particularly methylation, activates or represses gene transcription. PICs have been reported to be induced by histone modification and stimulate exudation of hyaluronic acid, which is implicated in the occurrence of COVID-19. These findings indicate the impact of the expression of PICs on the pathogenesis and therapeutic targeting of COVID-19.
Collapse
Affiliation(s)
- Xiang-Ning Zhang
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Long-Ji Wu
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Xia Kong
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Bi-Ying Zheng
- Department of Clinical Microbiology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| | - Zhe Zhang
- Department of ENT and Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning 531000, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Wei He
- Department of Pathophysiology, Guangdong Medical University, Dongguan 523808, Guangdong Province, China
| |
Collapse
|
42
|
Bedwell GJ, Engelman AN. Factors that mold the nuclear landscape of HIV-1 integration. Nucleic Acids Res 2021; 49:621-635. [PMID: 33337475 PMCID: PMC7826272 DOI: 10.1093/nar/gkaa1207] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022] Open
Abstract
The integration of retroviral reverse transcripts into the chromatin of the cells that they infect is required for virus replication. Retroviral integration has far-reaching consequences, from perpetuating deadly human diseases to molding metazoan evolution. The lentivirus human immunodeficiency virus 1 (HIV-1), which is the causative agent of the AIDS pandemic, efficiently infects interphase cells due to the active nuclear import of its preintegration complex (PIC). To enable integration, the PIC must navigate the densely-packed nuclear environment where the genome is organized into different chromatin states of varying accessibility in accordance with cellular needs. The HIV-1 capsid protein interacts with specific host factors to facilitate PIC nuclear import, while additional interactions of viral integrase, the enzyme responsible for viral DNA integration, with cellular nuclear proteins and nucleobases guide integration to specific chromosomal sites. HIV-1 integration favors transcriptionally active chromatin such as speckle-associated domains and disfavors heterochromatin including lamina-associated domains. In this review, we describe virus-host interactions that facilitate HIV-1 PIC nuclear import and integration site targeting, highlighting commonalities among factors that participate in both of these steps. We moreover discuss how the nuclear landscape influences HIV-1 integration site selection as well as the establishment of active versus latent virus infection.
Collapse
Affiliation(s)
- Gregory J Bedwell
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
43
|
HIV latency reversal agents: A potential path for functional cure? Eur J Med Chem 2021; 213:113213. [PMID: 33540228 DOI: 10.1016/j.ejmech.2021.113213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 12/28/2022]
Abstract
Despite the advances in Human Immunodeficiency Virus (HIV) treatment, the cure for all HIV patients still poses a major challenge, which needs to be surpassed in the coming years. Among the strategies pursuing this aim, the 'kick-and-kill' approach, which involves the reactivation and elimination of a latent HIV reservoir that resides in some CD4+ T cells, appears promising. The first step of this approach requires the use of latency reversal agents (LRAs) that induce the reactivation of the latent virus. Although several classes of LRAs have been reported so far, some limitations of these compounds still need to be overcome before their clinical use. The complete exhaustion of the reservoir of latent virus will contribute to promote the second step of this approach, facilitating the elimination of the reactivated HIV. Therefore, potent, safe, and non-toxic LRAs are necessary to promote efficient elimination of the HIV-1 virus from its reservoir. In this review article, we focus on the promising LRAs that have been described in the literature over the past few years, highlighting the advantages and disadvantages of their use in the 'kick and kill' approach, thus opening a new avenue in the development of a potential cure.
Collapse
|
44
|
Wong LM, Jiang G. NF-κB sub-pathways and HIV cure: A revisit. EBioMedicine 2021; 63:103159. [PMID: 33340992 PMCID: PMC7750564 DOI: 10.1016/j.ebiom.2020.103159] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 11/30/2022] Open
Abstract
HIV cure is thwarted by the presence of quiescent yet replication competent HIV-1 (HIV). Antiretroviral therapy (ART) is unable to eradicate reservoirs, and upon cessation of ART, HIV will rebound. This review encompasses the curative strategies of HIV in the context of NF-κB sub-pathways that are currently exploited and demonstrate promise in the disruption of latent HIV. Canonical NF-κB signaling has long been established to drive HIV proviral expression while noncanonical NF-κB signaling, a novel and perhaps more desirable mechanism of latency reversal due to its unique characteristics, has recently been shown to also promote HIV expression from latency. Furthermore, we discuss the previously unrecognized upstream signaling of NF-κB as a new avenue for exploration of a functional cure of HIV.
Collapse
Affiliation(s)
- Lilly M Wong
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, United States
| | - Guochun Jiang
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, United States; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill Chapel Hill, NC 27599-7042, United States.
| |
Collapse
|
45
|
Balance between Retroviral Latency and Transcription: Based on HIV Model. Pathogens 2020; 10:pathogens10010016. [PMID: 33383617 PMCID: PMC7824405 DOI: 10.3390/pathogens10010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/04/2023] Open
Abstract
The representative of the Lentivirus genus is the human immunodeficiency virus type 1 (HIV-1), the causative agent of acquired immunodeficiency syndrome (AIDS). To date, there is no cure for AIDS because of the existence of the HIV-1 reservoir. HIV-1 infection can persist for decades despite effective antiretroviral therapy (ART), due to the persistence of infectious latent viruses in long-lived resting memory CD4+ T cells, macrophages, monocytes, microglial cells, and other cell types. However, the biology of HIV-1 latency remains incompletely understood. Retroviral long terminal repeat region (LTR) plays an indispensable role in controlling viral gene expression. Regulation of the transcription initiation plays a crucial role in establishing and maintaining a retrovirus latency. Whether and how retroviruses establish latency and reactivate remains unclear. In this article, we describe what is known about the regulation of LTR-driven transcription in HIV-1, that is, the cis-elements present in the LTR, the role of LTR transcription factor binding sites in LTR-driven transcription, the role of HIV-1-encoded transactivator protein, hormonal effects on virus transcription, impact of LTR variability on transcription, and epigenetic control of retrovirus LTR. Finally, we focus on a novel clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/dCas9)-based strategy for HIV-1 reservoir purging.
Collapse
|
46
|
Moranguinho I, Valente ST. Block-And-Lock: New Horizons for a Cure for HIV-1. Viruses 2020; 12:v12121443. [PMID: 33334019 PMCID: PMC7765451 DOI: 10.3390/v12121443] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
HIV-1/AIDS remains a global public health problem. The world health organization (WHO) reported at the end of 2019 that 38 million people were living with HIV-1 worldwide, of which only 67% were accessing antiretroviral therapy (ART). Despite great success in the clinical management of HIV-1 infection, ART does not eliminate the virus from the host genome. Instead, HIV-1 remains latent as a viral reservoir in any tissue containing resting memory CD4+ T cells. The elimination of these residual proviruses that can reseed full-blown infection upon treatment interruption remains the major barrier towards curing HIV-1. Novel approaches have recently been developed to excise or disrupt the virus from the host cells (e.g., gene editing with the CRISPR-Cas system) to permanently shut off transcription of the virus (block-and-lock and RNA interference strategies), or to reactivate the virus from cell reservoirs so that it can be eliminated by the immune system or cytopathic effects (shock-and-kill strategy). Here, we will review each of these approaches, with the major focus placed on the block-and-lock strategy.
Collapse
|
47
|
Abstract
Antiretroviral therapy (ART) can effectively inhibit human immunodeficiency virus-1 (HIV-1) replication, but is not curative due to the existence of a stable viral latent reservoir harboring replication-competent proviruses. In order to reduce or eliminate the HIV-1 latent reservoir, characteristics of the latently infected cells need to be intensively studied, and a comprehensive understanding of the heterogenous nature of the latent reservoir will be critical to develop novel therapeutic strategies. Here, we discuss the different cell types and mechanisms contributing to the complexity and heterogeneity of HIV-1 latent reservoirs, and summarize the key challenges to the development of cure strategies for acquired immunodeficiency syndrome (AIDS).
Collapse
Affiliation(s)
- Jia-Cong Zhao
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
48
|
Koike R, Nodomi K, Watanabe N, Ogata Y, Takeichi O, Takei M, Kaneko T, Tonogi M, Kotani AI, Imai K. Butyric Acid in Saliva of Chronic Periodontitis Patients Induces Transcription of the EBV Lytic Switch Activator BZLF1: A Pilot Study. In Vivo 2020; 34:587-594. [PMID: 32111757 DOI: 10.21873/invivo.11811] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND/AIM Epstein-Barr virus (EBV) associates with human chronic periodontitis (CP) progression. We previously demonstrated that butyric acid (BA), produced by periodontopathic bacteria, induced EBV lytic switch activator BZLF1 expression. We investigated whether short chain fatty acids (SCFAs) in CP patients' saliva enabled EBV reactivation. MATERIALS AND METHODS Saliva was collected from seven CP patients and five periodontally healthy individuals. SCFAs were quantified using HPLC. BZLF1 mRNA and its pertinent protein ZEBRA were determined with Real-time PCR and western blotting. Histone H3 acetylation (AcH3) was further examined. RESULTS BZLF1 mRNA expression and transcriptional activity in EBV-infected Daudi cells were induced only when treated with the CP saliva. Among SCFAs, BA alone correlated significantly with the BZLF1 transcription (r=0.88; p<0.02). As expected, CP patients' saliva induced AcH3. CONCLUSION BA in saliva may play a role in EBV reactivation and hence contribute to EBV-related disease progression in CP patients.
Collapse
Affiliation(s)
- Ryo Koike
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan.,Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Keiko Nodomi
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Norihisa Watanabe
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Osamu Takeichi
- Department of Endodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tadayoshi Kaneko
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - Morio Tonogi
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - A I Kotani
- Department of Hematological Malignancy, Institute of Medical Science, Tokai University, Kanagawa, Japan
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
49
|
Fujinaga K, Cary DC. Experimental Systems for Measuring HIV Latency and Reactivation. Viruses 2020; 12:v12111279. [PMID: 33182414 PMCID: PMC7696534 DOI: 10.3390/v12111279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The final obstacle to achieving a cure to HIV/AIDS is the presence of latent HIV reservoirs scattered throughout the body. Although antiretroviral therapy maintains plasma viral loads below the levels of detection, upon cessation of therapy, the latent reservoir immediately produces infectious progeny viruses. This results in elevated plasma viremia, which leads to clinical progression to AIDS. Thus, if a HIV cure is ever to become a reality, it will be necessary to target and eliminate the latent reservoir. To this end, tremendous effort has been dedicated to locate the viral reservoir, understand the mechanisms contributing to latency, find optimal methods to reactivate HIV, and specifically kill latently infected cells. Although we have not yet identified a therapeutic approach to completely eliminate HIV from patients, these efforts have provided many technological breakthroughs in understanding the underlying mechanisms that regulate HIV latency and reactivation in vitro. In this review, we summarize and compare experimental systems which are frequently used to study HIV latency. While none of these models are a perfect proxy for the complex systems at work in HIV+ patients, each aim to replicate HIV latency in vitro.
Collapse
Affiliation(s)
- Koh Fujinaga
- Division of Rheumatology, Department of Medicine, School of Medicine, University of California, San Francisco, CA 94143-0703, USA
- Correspondence: ; Tel.: +1-415-502-1908
| | - Daniele C. Cary
- Department of Medicine, Microbiology, and Immunology, School of Medicine, University of California, San Francisco, CA 94143-0703, USA;
| |
Collapse
|
50
|
Sahay B, Mergia A. The Potential Contribution of Caveolin 1 to HIV Latent Infection. Pathogens 2020; 9:pathogens9110896. [PMID: 33121153 PMCID: PMC7692328 DOI: 10.3390/pathogens9110896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
Combinatorial antiretroviral therapy (cART) suppresses HIV replication to undetectable levels and has been effective in prolonging the lives of HIV infected individuals. However, cART is not capable of eradicating HIV from infected individuals mainly due to HIV’s persistence in small reservoirs of latently infected resting cells. Latent infection occurs when the HIV-1 provirus becomes transcriptionally inactive and several mechanisms that contribute to the silencing of HIV transcription have been described. Despite these advances, latent infection remains a major hurdle to cure HIV infected individuals. Therefore, there is a need for more understanding of novel mechanisms that are associated with latent infection to purge HIV from infected individuals thoroughly. Caveolin 1(Cav-1) is a multifaceted functional protein expressed in many cell types. The expression of Cav-1 in lymphocytes has been controversial. Recent evidence, however, convincingly established the expression of Cav-1 in lymphocytes. In lieu of this finding, the current review examines the potential role of Cav-1 in HIV latent infection and provides a perspective that helps uncover new insights to understand HIV latent infection.
Collapse
Affiliation(s)
| | - Ayalew Mergia
- Correspondence: ; Tel.: +352-294-4139; Fax: +352-392-9704
| |
Collapse
|