1
|
Lewandowski M, Busch R, Marschner JA, Merk D. Comparative Evaluation and Profiling of Chemical Tools for the Nuclear Hormone Receptor Family 2. ACS Pharmacol Transl Sci 2025; 8:854-870. [PMID: 40046426 PMCID: PMC7617459 DOI: 10.1021/acsptsci.4c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Nuclear receptors regulate transcription in response to ligand signals and enable the pharmacological control of gene expression. However, many nuclear receptors are still poorly explored and are not accessible to ligand-based target identification studies. In particular, most members of the NR2 family are among the least studied proteins of the class, and apart from the retinoid X receptors (RXR), validated NR2 ligands are very rare. Here, we gathered the NR2 modulators reported in literature for comparative profiling in uniform test systems. Most candidate compounds displayed insufficient on-target activity or selectivity to be used as chemical tools for NR2 receptors underscoring the urgent need for further NR2 ligand development. Nevertheless, a small NR2 modulator set could be assembled for application in a chemogenomic fashion. There are 48 ligand-activated transcription factors in humans forming the superfamily of nuclear receptors (NRs, Figure 1a),1,2 which translate (endogenous) ligand signals into changes in gene expression patterns.3 The multifaceted roles of NRs span pivotal physiological processes, encompassing metabolism, inflammation, and cellular differentiation.4 Over decades, the NR1 and NR3 receptor families, including (steroid) hormone receptors and lipid sensors, have emerged as well-explored therapeutic targets of essential drugs like, for example, glucocorticoids as anti-inflammatory drugs, estrogen receptor modulators as contraceptives and anticancer agents, and PPAR agonists as oral antidiabetics.5-7 Despite this progress, a significant portion of the NR superfamily remains understudied, particularly within the NR2 family which comprises the hepatocyte nuclear factor-4 receptors (HNF4α/γ; NR2A1/2), the retinoid X receptors (RXRα/β/γ; NR2B1-3), the testicular receptors (TR2/4; NR2C1/2), the tailless-like receptors (TLX and PNR; NR2E1/3), and the COUP-TF-like receptors (COUP-TF1/2, V-erBA-related gene; NR2F1/2/6).8,9 Apart from RXR, all NR2 receptors are considered as orphan, and their ligands remain widely elusive. Therefore, chemical tools for most NR2 receptors are rare and poorly annotated posing an obstacle to target identification and validation studies. To enable chemogenomics on NR2 receptors and improve annotation, of the few available ligands, we gathered a scarce collection of NR2 modulators (agonists, antagonists, inverse agonists) for comparative evaluation and profiling. While the NR2B family (RXR) is well covered with high-quality ligands and a few early tools are available for NR2E1, we found the available ligands of the NR2A and NR2C families of insufficient quality to be used as chemical tools.
Collapse
Affiliation(s)
- Max Lewandowski
- Ludwig-Maximilians-Universität München, Department of Pharmacy, 81377Munich, Germany
| | - Romy Busch
- Ludwig-Maximilians-Universität München, Department of Pharmacy, 81377Munich, Germany
| | - Julian A. Marschner
- Ludwig-Maximilians-Universität München, Department of Pharmacy, 81377Munich, Germany
| | - Daniel Merk
- Ludwig-Maximilians-Universität München, Department of Pharmacy, 81377Munich, Germany
| |
Collapse
|
2
|
Tong H, Zhang J, Jiang L, Qu R, Lu T, Hu J. Antiviral activity of HuaganJiedu decoction (HGJDD) against hepatitis B virus (HBV) through FOXO4/ERK/HNF4α signal pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119238. [PMID: 39701219 DOI: 10.1016/j.jep.2024.119238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic hepatitis B virus (HBV) infection is still a widespread global health issue. HuaganJiedu Decoction (HGJDD) is a common prescription for treating HBV in China, which has the effect of enhancing antiviral efficacy and improving clinical efficacy. However, its precise mechanism of action remains unclear, warranting further investigation to elucidate its therapeutic potential and integration into standard medical practices. AIM OF THE STUDY This study aims to explore the therapeutic mechanism of HuaganJiedu Decoction (HGJDD) in HBV. MATERIALS AND METHODS We investigated the therapeutic potential of HGJDD, and LC-MS analysis characterized the chemical profile of HGJDD. In vitro, we utilized HepG2.2.15 cell line to assess cytotoxicity and treatment efficacy of HGJDD compared to Entecavir controls. In vivo, assessments included monitoring HBV-related biomarkers and viral load. Network pharmacology and RNA-seq analyses identified molecular pathways and targets influenced by HGJDD treatment. Immunofluorescence and Western blotting provided further insights into the therapeutic mechanisms underlying HGJDD for HBV. RESULTS HGJDD showed no toxicity on HepG2.2.15 cells at 10%, 20%, 40%, and 80% serum concentrations. In vitro, HGJDD reduced HBsAg, HBeAg, and HBV DNA levels by dose-dependently and time-dependently. HGJDD can decrease the levels of HBsAg, HBeAg, and HBV DNA in serum and liver levels, meanwhile the therapeutic effect of high-dose HGJDD approach to EVT's in HBV Tg mice. According to intersection of network pharmacology and transcriptome, FOXO signal pathway was highlighted as potential targets and Immunofluorescence find that FOXO4D protein expression lever was increased in three HGJDD group, especially in high-dose HGJDD group. Western blotting confirmed increased level of FOXO4, ERK, and p-ERK and decreased levels of HNF4α, which reflected that the therapeutic effect was closely to FOXO4/ERK/HNF4α signal pathway. CONCLUSIONS Traditional Chinese medicine (TCM) offers diverse herbal treatments for HBV, with HGJDD showing efficacy in reducing HBsAg, HBeAg, and HBV DNA levels at cellular and animal levels. This study identified that FOXO4/ERK/HNF4α signal pathway played an important role in HGJDD's therapeutic effects. These findings support HGJDD's potential in HBV treatment, providing a scientific basis for clinical use.
Collapse
Affiliation(s)
- Hongxuan Tong
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jiale Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lijie Jiang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Rendong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Tao Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Jingqing Hu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Brampton C, Pomozi V, Le Corre Y, Zoll J, Kauffenstein G, Ma C, Hoffmann PR, Martin L, Le Saux O. Bone Marrow-Derived ABCC6 Is an Essential Regulator of Ectopic Calcification In Pseudoxanthoma Elasticum. J Invest Dermatol 2024; 144:1772-1783.e3. [PMID: 38367909 PMCID: PMC11260544 DOI: 10.1016/j.jid.2024.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/31/2023] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
Physiological calcification of soft tissues is a common occurrence in aging and various acquired and inherited disorders. ABCC6 sequence variations cause the calcification phenotype of pseudoxanthoma elasticum (PXE) as well as some cases of generalized arterial calcification of infancy, which is otherwise caused by defective ENPP1. ABCC6 is primarily expressed in the liver, which has given the impression that the liver is central to the pathophysiology of PXE/generalized arterial calcification of infancy. The emergence of inflammation as a contributor to the calcification in PXE suggested that peripheral tissues play a larger role than expected. In this study, we investigated whether bone marrow-derived ABCC6 contributes to the calcification in PXE. In Abcc6‒/‒ mice, we observed prevalent mineralization in several lymph nodes and surrounding connective tissues and an extensive network of lymphatic vessels within vibrissae, a calcified tissue in Abcc6‒/‒ mice. Furthermore, we found evidence of lymphangiogenesis in patients with PXE and mouse skin, suggesting an inflammatory process. Finally, restoring wild-type bone marrow in Abcc6‒/‒ mice produced a significant reduction of calcification, suggesting that the liver alone is not sufficient to fully inhibit mineralization. With evidence that ABCC6 is expressed in lymphocytes, we suggest that the adaptative immune system and inflammation largely contribute to the calcification in PXE/generalized arterial calcification of infancy.
Collapse
Affiliation(s)
- Christopher Brampton
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA; Bio-Rad Laboratories, Hercules, California, USA
| | - Viola Pomozi
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA; Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Yannick Le Corre
- PXE National Reference Center (MAGEC Nord), University Hospital of Angers, Angers, France
| | - Janna Zoll
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Gilles Kauffenstein
- UMR INSERM 1260, Nano Regenerative Medicine, University of Strasbourg, Strasbourg, France
| | - Chi Ma
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Ludovic Martin
- PXE National Reference Center (MAGEC Nord), University Hospital of Angers, Angers, France; CNRS 6015, UMR INSERM U1083, MITOVASC Laboratory, University of Angers, Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA.
| |
Collapse
|
4
|
Lou B, Ma G, Yu X, Lv F, Xu F, Sun C, Chen Y. Deubiquitinase OTUD5 promotes hepatitis B virus replication by removing K48-linked ubiquitination of HBV core/precore and upregulates HNF4ɑ expressions by inhibiting the ERK1/2/mitogen-activated protein kinase pathway. Cell Mol Life Sci 2023; 80:336. [PMID: 37897511 PMCID: PMC10613150 DOI: 10.1007/s00018-023-04995-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/30/2023]
Abstract
Hepatitis B virus (HBV) infection is a major public health problem worldwide, causing nearly one million deaths annually. OTUD5 is a deubiquitinase associated with cancer development and innate immunity response. However, the regulatory mechanisms of OTUD5 underlying HBV replication need to be deeply elucidated. In the present investigation, we found that HBV induced significant up-regulation of OTUD5 protein in HBV-infected cells. Further study showed that OTUD5 interacted with HBV core/precore, removing their K48-linked ubiquitination chains and protecting their stability. Meanwhile, overexpression of OTUD5 could inhibit the MAPK pathway and then increase the expression of HNF4ɑ, and ERK1/2 signaling was required for OTUD5-mediated activation of HNF4α, promoting HBV replication. Together, these data indicate that OTUD5 could deubiquitinate HBV core protein degradation by its deubiquitinase function and promote HBV activity by up-regulating HNF4α expression via inhibition of the ERK1/2 pathway. These results might present a novel therapeutic strategy against HBV infection.
Collapse
Affiliation(s)
- Bin Lou
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road, Hangzhou, 310003, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Guanghua Ma
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road, Hangzhou, 310003, China
| | - Xiaopeng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China
| | - Feifei Lv
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road, Hangzhou, 310003, China
| | - Fanjie Xu
- The Shengzhou Hospital of Traditional Chinese Medicine, Shaoxing, 312432, Zhejiang, China
| | - Chengdi Sun
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road, Hangzhou, 310003, China
| | - Yu Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road, Hangzhou, 310003, China.
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, 310003, China.
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
5
|
Kozák E, Bartstra JW, de Jong PA, Mali WPTM, Fülöp K, Tőkési N, Pomozi V, Risseeuw S, Norel JOV, van Leeuwen R, Váradi A, Spiering W. Plasma Level of Pyrophosphate Is Low in Pseudoxanthoma Elasticum Owing to Mutations in the ABCC6 Gene, but It Does Not Correlate with ABCC6 Genotype. J Clin Med 2023; 12:jcm12031047. [PMID: 36769695 PMCID: PMC9917606 DOI: 10.3390/jcm12031047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/04/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Pseudoxanthoma elasticum (PXE), a monogenic disorder resulting in calcification affecting the skin, eyes and peripheral arteries, is caused by mutations in the ABCC6 gene, and is associated with low plasma inorganic pyrophosphate (PPi). It is unknown how ABCC6 genotype affects plasma PPi. METHODS We studied the association of ABCC6 genotype (192 patients with biallelic pathogenic ABCC6 mutations) and PPi levels, and its association with the severity of arterial and ophthalmological phenotypes. ABCC6 variants were classified as truncating or non-truncating, and three groups of the 192 patients were formed: those with truncating mutations on both chromosomes (n = 121), those with two non-truncating mutations (n = 10), and a group who had one truncating and one non-truncating ABCC6 mutation (n = 61). The hypothesis formulated before this study was that there was a negative association between PPi level and disease severity. RESULTS Our findings confirm low PPi in PXE compared with healthy controls (0.53 ± 0.15 vs. 1.13 ± 0.29 µM, p < 0.01). The PPi of patients correlated with increasing age (β: 0.05 µM, 95% CI: 0.03-0.06 per 10 years) and was higher in females (0.55 ± 0.17 vs. 0.51 ± 0.13 µM in males, p = 0.03). However, no association between PPi and PXE phenotypes was found. When adjusted for age and sex, no association between PPi and ABCC6 genotype was found. CONCLUSIONS Our data suggest that the relationship between ABCC6 mutations and reduced plasma PPi may not be as direct as previously thought. PPi levels varied widely, even in patients with the same ABCC6 mutations, further suggesting a lack of direct correlation between them, even though the ABCC6 protein-mediated pathway is responsible for ~60% of this metabolite in the circulation. We discuss potential factors that may perturb the expected associations between ABCC6 genotype and PPi and between PPi and disease severity. Our findings support the argument that predictions of pathogenicity made on the basis of mutations (or on the structure of the mutated protein) could be misleading.
Collapse
Affiliation(s)
- Eszter Kozák
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Center of Excellence, 1117 Budapest, Hungary
| | - Jonas W. Bartstra
- Department of Radiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Pim A. de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Willem P. T. M. Mali
- Department of Radiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Krisztina Fülöp
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Center of Excellence, 1117 Budapest, Hungary
| | - Natália Tőkési
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Center of Excellence, 1117 Budapest, Hungary
| | - Viola Pomozi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Center of Excellence, 1117 Budapest, Hungary
| | - Sara Risseeuw
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | | | - Redmer van Leeuwen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - András Váradi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Center of Excellence, 1117 Budapest, Hungary
| | - Wilko Spiering
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- Correspondence: ; Tel.: +31-88-7571188
| |
Collapse
|
6
|
Szeri F, Miko A, Navasiolava N, Kaposi A, Verschuere S, Molnar B, Li Q, Terry SF, Boraldi F, Uitto J, van de Wetering K, Martin L, Quaglino D, Vanakker OM, Tory K, Aranyi T. The pathogenic c.1171A>G (p.Arg391Gly) and c.2359G>A (p.Val787Ile) ABCC6 variants display incomplete penetrance causing pseudoxanthoma elasticum in a subset of individuals. Hum Mutat 2022; 43:1872-1881. [PMID: 36317459 PMCID: PMC9772137 DOI: 10.1002/humu.24498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
ABCC6 promotes ATP efflux from hepatocytes to bloodstream. ATP is metabolized to pyrophosphate, an inhibitor of ectopic calcification. Pathogenic variants of ABCC6 cause pseudoxanthoma elasticum, a highly variable recessive ectopic calcification disorder. Incomplete penetrance may initiate disease heterogeneity, hence symptoms may not, or differently manifest in carriers. Here, we investigated whether incomplete penetrance is a source of heterogeneity in pseudoxanthoma elasticum. By integrating clinical and genetic data of 589 patients, we created the largest European cohort. Based on allele frequency alterations, we identified two incomplete penetrant pathogenic variants, c.2359G>A (p.Val787Ile) and c.1171A>G (p.Arg391Gly), with 6.5% and 2% penetrance, respectively. However, when penetrant, the c.1171A>G (p.Arg391Gly) manifested a clinically unaltered severity. After applying in silico and in vitro characterization, we suggest that incomplete penetrant variants are only deleterious if a yet unknown interacting partner of ABCC6 is mutated simultaneously. The low penetrance of these variants should be contemplated in genetic counseling.
Collapse
Affiliation(s)
- Flora Szeri
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and The PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA,Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Agnes Miko
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Nastassia Navasiolava
- PXE Consultation Center, MAGEC Nord Reference Center for Rare Skin Diseases, Angers University Hospital, Angers, France
| | - Ambrus Kaposi
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Shana Verschuere
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Beatrix Molnar
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and The PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and The PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, The Sidney Kimmel Medical College, and The PXE International Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Nord Reference Center for Rare Skin Diseases, Angers University Hospital, Angers, France
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy,Interuniversity Consortium for Biotechnologies (CIB), Italy
| | | | - Kalman Tory
- MTA-SE Lendület Nephrogenetic Laboratory, Budapest, Hungary,1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Tamas Aranyi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Department of Molecular Biology, Semmelweis University, Budapest, Hungary.,Corresponding author:
| |
Collapse
|
7
|
Abruzzese V, Sukowati CHC, Tiribelli C, Matera I, Ostuni A, Bisaccia F. The Expression Level of ABCC6 Transporter in Colon Cancer Cells Correlates with the Activation of Different Intracellular Signaling Pathways. PATHOPHYSIOLOGY 2022; 29:173-186. [PMID: 35645325 PMCID: PMC9149812 DOI: 10.3390/pathophysiology29020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
The ATP-binding cassette sub-family C member 6 transporter (ABCC6) is mainly found in the basolateral plasma membrane of hepatic and kidney cells. In hepatocarcinoma HepG2 cells, ABCC6 was involved in cell migration. In the present study, we investigated the role of ABCC6 in colon cancer evaluating the effect of Quercetin and Probenecid, inhibitors of the ectonucleotidase NT5E and ABCC6, respectively, on migration rate of Caco2 and HT29 cell lines. Both drugs reduced cell migration analyzed by scratch test. Gene and protein expression were evaluated by quantitative reverse-transcription PCR (RT-qPCR) and Western blot, respectively. In Caco2 cells, in which ABCC6 is significantly expressed, the addition of ATP restored motility, suggesting the involvement of P2 receptors. Contrary to HT29 cells, where the expression of ABCC6 is negligible but remarkable to the level of NT5E, no effect of ATP addition was detected, suggesting a main role on their migration by the phosphatidylinositol 3'-kinase (PI3K)/Akt system. Therefore, in some colon cancers in which ABCC6 is overexpressed, it may have a primary role in controlling the extracellular purinergic system by feeding it with ATP, thus representing a potential target for a therapy aimed at mitigating invasiveness of those type of cancers.
Collapse
Affiliation(s)
- Vittorio Abruzzese
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (V.A.); (I.M.)
| | - Caecilia H. C. Sukowati
- Fondazione Italiana Fegato ONLUS, AREA Science Park Basovizza, 34149 Trieste, Italy; (C.H.C.S.); (C.T.)
| | - Claudio Tiribelli
- Fondazione Italiana Fegato ONLUS, AREA Science Park Basovizza, 34149 Trieste, Italy; (C.H.C.S.); (C.T.)
| | - Ilenia Matera
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (V.A.); (I.M.)
| | - Angela Ostuni
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (V.A.); (I.M.)
| | - Faustino Bisaccia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (V.A.); (I.M.)
| |
Collapse
|
8
|
Fang W, Chen Q, Cui K, Chen Q, Li X, Xu N, Mai K, Ai Q. Lipid overload impairs hepatic VLDL secretion via oxidative stress-mediated PKCδ-HNF4α-MTP pathway in large yellow croaker (Larimichthys crocea). Free Radic Biol Med 2021; 172:213-225. [PMID: 34116177 DOI: 10.1016/j.freeradbiomed.2021.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 02/08/2023]
Abstract
Lipid overload-induced hepatic steatosis is a major public health problem worldwide. However, the potential molecular mechanism is not completely understood. Herein, we found that high-fat diet (HFD) or oleic acid (OA) treatment induced oxidative stress which prevented the entry of hepatocyte nuclear factor 4 alpha (HNF4α) into the nucleus by activating protein kinase C delta (PKCδ) in vivo and in vitro in large yellow croaker (Larimichthys crocea). This reduced the level of microsomal triglyceride transfer protein (MTP) transcription, resulting in the impaired secretion of very-low-density lipoprotein (VLDL) and the abnormal accumulation of triglyceride (TG) in hepatocytes. Meanwhile, the detrimental effects induced by lipid overload could be partly alleviated by pretreating hepatocytes with Go6983 (PKCδ inhibitor) or N-acetylcysteine (NAC, reactive oxygen species (ROS) scavenger). In conclusion, for the first time, we revealed that lipid overload impaired hepatic VLDL secretion via oxidative stress-mediated PKCδ-HNF4α-MTP pathway in fish. This study may provide critical insights into potential intervention strategies against lipid overload-induced hepatic steatosis of fish and human beings.
Collapse
Affiliation(s)
- Wei Fang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Qiuchi Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Qiang Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Xueshan Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Ning Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
9
|
Verschuere S, Van Gils M, Nollet L, Vanakker OM. From membrane to mineralization: the curious case of the ABCC6 transporter. FEBS Lett 2020; 594:4109-4133. [PMID: 33131056 DOI: 10.1002/1873-3468.13981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette subfamily C member 6 gene/protein (ABCC6) is an ATP-dependent transmembrane transporter predominantly expressed in the liver and the kidney. ABCC6 first came to attention in human medicine when it was discovered in 2000 that mutations in its encoding gene, ABCC6, caused the autosomal recessive multisystemic mineralization disease pseudoxanthoma elasticum (PXE). Since then, the physiological and pathological roles of ABCC6 have been the subject of intense research. In the last 20 years, significant findings have clarified ABCC6 structure as well as its physiological role in mineralization homeostasis in humans and animal models. Yet, several facets of ABCC6 biology remain currently incompletely understood, ranging from the precise nature of its substrate(s) to the increasingly complex molecular genetics. Nonetheless, advances in our understanding of pathophysiological mechanisms causing mineralization lead to several treatment options being suggested or already tested in pilot clinical trials for ABCC6 deficiency. This review highlights current knowledge of ABCC6 and the challenges ahead, particularly the attempts to translate basic science into clinical practice.
Collapse
Affiliation(s)
- Shana Verschuere
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| | - Matthias Van Gils
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| | - Lukas Nollet
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| | - Olivier M Vanakker
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| |
Collapse
|
10
|
Hatchwell L, Harney DJ, Cielesh M, Young K, Koay YC, O’Sullivan JF, Larance M. Multi-omics Analysis of the Intermittent Fasting Response in Mice Identifies an Unexpected Role for HNF4α. Cell Rep 2020; 30:3566-3582.e4. [DOI: 10.1016/j.celrep.2020.02.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/24/2020] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
|
11
|
Wang ZY, Li YQ, Guo ZW, Zhou XH, Lu MD, Xue TC, Gao B. ERK1/2-HNF4α axis is involved in epigallocatechin-3-gallate inhibition of HBV replication. Acta Pharmacol Sin 2020; 41:278-285. [PMID: 31554961 PMCID: PMC7468327 DOI: 10.1038/s41401-019-0302-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
Abstract
Epigallocatechin gallate (EGCG), a major polyphenol in green tea, exhibits diverse biological activities. Previous studies show that EGCG could effectively suppress HBV gene expression and replication, but the role of EGCG in HBV replication and its underlying mechanisms, especially the signaling pathways involved, remain unclear. In this study we investigated the mechanisms underlying EGCG inhibition on HBV replication with a focus on the signaling pathways. We showed that EGCG (12.5-50 μM) dose-dependently inhibited HBV gene expression and replication in HepG2.2.15 cells. Similar results were observed in HBV mice receiving EGCG (25 mg· kg-1· d-1, ip) for 5 days. In HepG2.2.15 cells, we showed that EGCG (12.5-50 μM) significantly activate ERK1/2 MAPK signaling, slightly activate p38 MAPK and JAK2/STAT3 signaling, while had no significant effect on the activation of JNK MAPK, PI3K/AKT/mTOR and NF-κB signaling. By using specific inhibitors of these signaling pathways, we demonstrated that ERK1/2 signaling pathway, but not other signaling pathways, was involved in EGCG-mediated inhibition of HBV transcription and replication. Furthermore, we showed that EGCG treatment dose-dependently decreased the expression of hepatocyte nuclear factor 4α (HNF4α) both at the mRNA and protein levels, which could be reversed by pretreatment with the ERK1/2 inhibitor PD98059 (20 μM). Moreover, we revealed that EGCG treatment dose-dependently inhibited the activity of HBV core promoter and the following HBV replication. In summary, our results demonstrate that EGCG inhibits HBV gene expression and replication, which involves ERK1/2-mediated downregulation of HNF4α.These data reveal a novel mechanism for EGCG to inhibit HBV gene expression and replication.
Collapse
Affiliation(s)
- Zi-Yu Wang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yu-Qi Li
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Wei Guo
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xing-Hao Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Mu-Dan Lu
- Genetic laboratory, the Affiliated Wuxi Maternity and Child Health Care Hospital, Nanjing Medical University, Wuxi, 214002, China
| | - Tong-Chun Xue
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China.
| | - Bo Gao
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Li L, Li Y, Xiong Z, Shu W, Yang Y, Guo Z, Gao B. FoxO4 inhibits HBV core promoter activity through ERK-mediated downregulation of HNF4α. Antiviral Res 2019; 170:104568. [DOI: 10.1016/j.antiviral.2019.104568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 06/17/2019] [Accepted: 07/24/2019] [Indexed: 01/12/2023]
|
13
|
Sugawara K, Nomura K, Okada Y, Sugano A, Matsumoto M, Takarada T, Takeuchi A, Awano H, Hirota Y, Nishio H, Takaoka Y, Ogawa W. In silico and in vitro analyses of the pathological relevance of the R258H mutation of hepatocyte nuclear factor 4α identified in maturity-onset diabetes of the young type 1. J Diabetes Investig 2019; 10:680-684. [PMID: 30325586 PMCID: PMC6497599 DOI: 10.1111/jdi.12960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/04/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022] Open
Abstract
Mutations of the hepatocyte nuclear factor 4α (HNF4α) gene give rise to maturity-onset diabetes of the young type 1. Although many such mutations have been identified in affected individuals, part of these mutations has been characterized with regard to their pathological relevance. We here identified a missense mutation (c.773G>A, p.R258H) of HNF4A in a mother and daughter with early-onset diabetes and impaired insulin secretion. In silico simulation and in vitro luciferase reporter analyses showed that the mutation impairs the stability of self-dimerization and the transactivation activity of HNF4α. Although arginine-258 does not appear to participate directly in dimerization, its mutation alters the electrostatic surface potential of the dimer interface. Our results thus suggest that this mutation impairs the function of HNF4α and thereby contributes to the pathogenesis of maturity-onset diabetes of the young type 1.
Collapse
Affiliation(s)
- Kenji Sugawara
- Division of Diabetes and EndocrinologyDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Kazuhiro Nomura
- Division of Diabetes and EndocrinologyDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Yuko Okada
- Division of Diabetes and EndocrinologyDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Aki Sugano
- Division of Medical Informatics and BioinformaticsKobe University Graduate School of MedicineKobeJapan
| | - Masaaki Matsumoto
- Department of PediatricsKobe University Graduate School of MedicineKobeJapan
| | | | | | - Hiroyuki Awano
- Department of PediatricsKobe University Graduate School of MedicineKobeJapan
| | - Yushi Hirota
- Division of Diabetes and EndocrinologyDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare ScienceKobe University Graduate School of MedicineKobeJapan
| | - Yutaka Takaoka
- Division of Medical Informatics and BioinformaticsKobe University Graduate School of MedicineKobeJapan
| | - Wataru Ogawa
- Division of Diabetes and EndocrinologyDepartment of Internal MedicineKobe University Graduate School of MedicineKobeJapan
| |
Collapse
|
14
|
de Boussac H, Gondeau C, Briolotti P, Duret C, Treindl F, Römer M, Fabre JM, Herrero A, Ramos J, Maurel P, Templin M, Gerbal-Chaloin S, Daujat-Chavanieu M. Epidermal Growth Factor Represses Constitutive Androstane Receptor Expression in Primary Human Hepatocytes and Favors Regulation by Pregnane X Receptor. Drug Metab Dispos 2018; 46:223-236. [PMID: 29269410 DOI: 10.1124/dmd.117.078683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
Growth factors have key roles in liver physiology and pathology, particularly by promoting cell proliferation and growth. Recently, it has been shown that in mouse hepatocytes, epidermal growth factor receptor (EGFR) plays a crucial role in the activation of the xenosensor constitutive androstane receptor (CAR) by the antiepileptic drug phenobarbital. Due to the species selectivity of CAR signaling, here we investigated epidermal growth factor (EGF) role in CAR signaling in primary human hepatocytes. Primary human hepatocytes were incubated with CITCO, a human CAR agonist, or with phenobarbital, an indirect CAR activator, in the presence or absence of EGF. CAR-dependent gene expression modulation and PXR involvement in these responses were assessed upon siRNA-based silencing of the genes that encode CAR and PXR. EGF significantly reduced CAR expression and prevented gene induction by CITCO and, to a lower extent, by phenobarbital. In the absence of EGF, phenobarbital and CITCO modulated the expression of 144 and 111 genes, respectively, in primary human hepatocytes. Among these genes, only 15 were regulated by CITCO and one by phenobarbital in a CAR-dependent manner. Conversely, in the presence of EGF, CITCO and phenobarbital modulated gene expression only in a CAR-independent and PXR-dependent manner. Overall, our findings suggest that in primary human hepatocytes, EGF suppresses specifically CAR signaling mainly through transcriptional regulation and drives the xenobiotic response toward a pregnane X receptor (PXR)-mediated mechanism.
Collapse
Affiliation(s)
- Hugues de Boussac
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Claire Gondeau
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Philippe Briolotti
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Cédric Duret
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Fridolin Treindl
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Michael Römer
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Jean-Michel Fabre
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Astrid Herrero
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Jeanne Ramos
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Patrick Maurel
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Markus Templin
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Sabine Gerbal-Chaloin
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Martine Daujat-Chavanieu
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| |
Collapse
|
15
|
Favre G, Laurain A, Aranyi T, Szeri F, Fulop K, Le Saux O, Duranton C, Kauffenstein G, Martin L, Lefthériotis G. The ABCC6 Transporter: A New Player in Biomineralization. Int J Mol Sci 2017; 18:ijms18091941. [PMID: 28891970 PMCID: PMC5618590 DOI: 10.3390/ijms18091941] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 12/16/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is an inherited metabolic disease with autosomal recessive inheritance caused by mutations in the ABCC6 gene. Since the first description of the disease in 1896, alleging a disease involving the elastic fibers, the concept evolved with the further discoveries of the pivotal role of ectopic mineralization that is preponderant in the elastin-rich tissues of the skin, eyes and blood vessel walls. After discovery of the causative gene of the disease in 2000, the function of the ABCC6 protein remains elusive. More than 300 mutations have been now reported and the concept of a dermal disease has progressively evolved toward a metabolic disorder resulting from the remote effects caused by lack of a circulating anti-mineralization factor. Very recently, evidence has accumulated that this anti-mineralizing factor is inorganic pyrophosphate (PPi). This leads to decreased PPi/Pi (inorganic phosphate) ratio that results from the lack of extracellular ATP release by hepatocytes and probably renal cells harboring the mutant ABCC6 protein. However, the mechanism by which ABCC6 dysfunction causes diminished ATP release remains an enigma. Studies of other ABC transporters, such as ABCC7 or ABCC1 could help our understanding of what ABCC6 exact function is. Data and a hypothesis on the possible roles of ABCC6 in acquired metabolic diseases are also discussed.
Collapse
Affiliation(s)
- Guillaume Favre
- FINSERM, U 1081, Aging and Diabetes Team, Institute for Research on Cancer and Aging of Nice (IRCAN), 06107 Nice, France.
- CNRS, UMR7284, Institute for Research on Cancer and Aging of Nice (IRCAN), 06107 Nice, France.
- Faculty of Medicine, University of Nice-Sophia Antipolis, 06107 Nice, France.
- Nephrology Department, University Hospital, 06107 Nice, France.
| | - Audrey Laurain
- Nephrology Department, University Hospital, 06107 Nice, France.
| | - Tamas Aranyi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - Flora Szeri
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - Krisztina Fulop
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary.
| | - Olivier Le Saux
- Department Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA.
| | - Christophe Duranton
- Laboratory of Physiology and Molecular Medicine (LP2M) UMR CNRS 7073, 06107 Nice, France.
| | - Gilles Kauffenstein
- UMR CNRS 6015-Inserm 1083, School of Medicine, Bretagne Loire University, 49045 Angers, France.
- PXE Health and Research Center, University Hospital of Angers, 49045 Angers, France.
| | - Ludovic Martin
- UMR CNRS 6015-Inserm 1083, School of Medicine, Bretagne Loire University, 49045 Angers, France.
- PXE Health and Research Center, University Hospital of Angers, 49045 Angers, France.
| | - Georges Lefthériotis
- Faculty of Medicine, University of Nice-Sophia Antipolis, 06107 Nice, France.
- Laboratory of Physiology and Molecular Medicine (LP2M) UMR CNRS 7073, 06107 Nice, France.
| |
Collapse
|
16
|
Dai XQ, Cai WT, Wu X, Chen Y, Han FM. Protocatechuic acid inhibits hepatitis B virus replication by activating ERK1/2 pathway and down-regulating HNF4α and HNF1α in vitro. Life Sci 2017; 180:68-74. [DOI: 10.1016/j.lfs.2017.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 01/02/2023]
|
17
|
Abstract
Pseudoxanthoma elasticum (PXE) is a genetic metabolic disease with autosomal recessive inheritance caused by mutations in the ABCC6 gene. The lack of functional ABCC6 protein leads to ectopic mineralization that is most apparent in the elastic tissues of the skin, eyes and blood vessels. The clinical prevalence of PXE has been estimated at between 1 per 100,000 and 1 per 25,000, with slight female predominance. The first clinical sign of PXE is almost always small yellow papules on the nape and sides of the neck and in flexural areas. The papules coalesce, and the skin becomes loose and wrinkled. The mid-dermal elastic fibers are short, fragmented, clumped and calcified. Dystrophic calcification of Bruch's membrane, revealed by angioid streaks, may trigger choroidal neovascularization and, ultimately, loss of central vision and blindness in late-stage disease. Lesions in small and medium-sized artery walls may result in intermittent claudication and peripheral artery disease. Cardiac complications (myocardial infarction, angina pectoris) are thought to be relatively rare but merit thorough investigation. Ischemic strokes have been reported. PXE is a metabolic disease in which circulating levels of an anti-mineralization factor are low. There is good evidence to suggest that the factor is inorganic pyrophosphate (PPi), and that the circulating low levels of PPi and decreased PPi/Pi ratio result from the lack of ATP release by hepatocytes harboring the mutant ABCC6 protein. However, the substrate(s) bound, transported or modulated by the ABCC6 protein remain unknown. More than 300 sequence variants of the ABCC6 gene have been identified. There is no cure for PXE; the main symptomatic treatments are vascular endothelial growth factor inhibitor therapy (for ophthalmic manifestations), lifestyle, lipid-lowering and dietary measures (for reducing vascular risk factors), and vascular surgery (for severe cardiovascular manifestations). Future treatment options may include gene therapy/editing and pharmacologic chaperone therapy.
Collapse
Affiliation(s)
- Dominique P Germain
- Division of Medical Genetics, University of Versailles - Saint Quentin en Yvelines, Paris-Saclay University, 2 avenue de la source de la Bièvre, F-78180, Montigny, France.
| |
Collapse
|
18
|
Miglionico R, Ostuni A, Armentano MF, Milella L, Crescenzi E, Carmosino M, Bisaccia F. ABCC6 knockdown in HepG2 cells induces a senescent-like cell phenotype. Cell Mol Biol Lett 2017; 22:7. [PMID: 28536638 PMCID: PMC5415800 DOI: 10.1186/s11658-017-0036-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/02/2017] [Indexed: 11/17/2022] Open
Abstract
Background Pseudoxanthoma elasticum (PXE) is characterized by progressive ectopic mineralization of elastic fibers in dermal, ocular and vascular tissues. No effective treatment exists. It is caused by inactivating mutations in the gene encoding for the ATP-binding cassette, sub-family C member 6 transporter (ABCC6), which is mainly expressed in the liver. The ABCC6 substrate (s) and the PXE pathomechanism remain unknown. Recent studies have shown that overexpression of ABCC6 in HEK293 cells results in efflux of ATP, which is rapidly converted into nucleoside monophosphates and pyrophosphate (PPi). Since the latter inhibits mineralization, it was proposed that the absence of circulating PPi in PXE patients results in the characteristic ectopic mineralization. These studies also demonstrated that the presence of ABCC6 modifies cell secretory activity and suggested that ABCC6 can change the cell phenotype. Methods Stable ABCC6 knockdown HepG2 clones were generated using small hairpin RNA (shRNA) technology. The intracellular glutathione and ROS levels were determined. Experiments using cell cycle analysis, real-time PCR and western blot were performed on genes involved in the senescence phenotype. Results To shed light on the physiological role of ABCC6, we focused on the phenotype of HepG2 cells that lack ABCC6 activity. Interestingly, we found that ABCC6 knockdown HepG2 cells show: 1) intracellular reductive stress; 2) cell cycle arrest in G1 phase; 3) upregulation of p21Cip p53 independent; and 4) downregulation of lamin A/C. Conclusions These findings show that the absence of ABCC6 profoundly changes the HepG2 phenotype, suggesting that the PXE syndrome is a complex metabolic disease that is not exclusively related to the absence of pyrophosphate in the bloodstream.
Collapse
Affiliation(s)
- Rocchina Miglionico
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano, 85100 Potenza, Italy
| | - Angela Ostuni
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano, 85100 Potenza, Italy
| | | | - Luigi Milella
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano, 85100 Potenza, Italy
| | - Elvira Crescenzi
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano, 85100 Potenza, Italy
| | - Faustino Bisaccia
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano, 85100 Potenza, Italy
| |
Collapse
|
19
|
Huminiecki Ł, Horbańczuk J. Can We Predict Gene Expression by Understanding Proximal Promoter Architecture? Trends Biotechnol 2017; 35:530-546. [PMID: 28377102 DOI: 10.1016/j.tibtech.2017.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/14/2017] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
Abstract
We review computational predictions of expression from the promoter architecture - the set of transcription factors that can bind the proximal promoter. We focus on spatial expression patterns in animals with complex body plans and many distinct tissue types. This field is ripe for change as functional genomics datasets accumulate for both expression and protein-DNA interactions. While there has been some success in predicting the breadth of expression (i.e., the fraction of tissue types a gene is expressed in), predicting tissue specificity remains challenging. We discuss how progress can be achieved through either machine learning or complementary combinatorial data mining. The likely impact of single-cell expression data is considered. Finally, we discuss the design of artificial promoters as a practical application.
Collapse
Affiliation(s)
- Łukasz Huminiecki
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, ul. Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland.
| | - Jarosław Horbańczuk
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, ul. Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| |
Collapse
|
20
|
The transcriptional activity of hepatocyte nuclear factor 4 alpha is inhibited via phosphorylation by ERK1/2. PLoS One 2017; 12:e0172020. [PMID: 28196117 PMCID: PMC5308853 DOI: 10.1371/journal.pone.0172020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/30/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatocyte nuclear factor 4 alpha (HNF4α) nuclear receptor is a master regulator of hepatocyte development, nutrient transport and metabolism. HNF4α is regulated both at the transcriptional and post-transcriptional levels by different mechanisms. Several kinases (PKA, PKC, AMPK) were shown to phosphorylate and decrease the activity of HNF4α. Activation of the ERK1/2 signalling pathway, inducing proliferation and survival, inhibits the expression of HNF4α. However, based on our previous results we hypothesized that HNF4α is also regulated at the post-transcriptional level by ERK1/2. Here we show that ERK1/2 is capable of directly phosphorylating HNF4α in vitro at several phosphorylation sites including residues previously shown to be targeted by other kinases, as well. Furthermore, we also demonstrate that phosphorylation of HNF4α leads to a reduced trans-activational capacity of the nuclear receptor in luciferase reporter gene assay. We confirm the functional relevance of these findings by demonstrating with ChIP-qPCR experiments that 30-minute activation of ERK1/2 leads to reduced chromatin binding of HNF4α. Accordingly, we have observed decreasing but not disappearing binding of HNF4α to the target genes. In addition, 24-hour activation of the pathway further decreased HNF4α chromatin binding to specific loci in ChIP-qPCR experiments, which confirms the previous reports on the decreased expression of the HNF4a gene due to ERK1/2 activation. Our data suggest that the ERK1/2 pathway plays an important role in the regulation of HNF4α-dependent hepatic gene expression.
Collapse
|
21
|
Anti-HBV activity and mechanism of marine-derived polyguluronate sulfate (PGS) in vitro. Carbohydr Polym 2016; 143:139-48. [DOI: 10.1016/j.carbpol.2016.01.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/20/2022]
|
22
|
New insights into the roles of the N-terminal region of the ABCC6 transporter. J Bioenerg Biomembr 2016; 48:259-67. [PMID: 26942607 DOI: 10.1007/s10863-016-9654-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/23/2016] [Indexed: 01/07/2023]
Abstract
ABCC6 is a human ATP binding cassette (ABC) transporter of the plasma membrane associated with Pseudoxanthoma elasticum (PXE), an autosomal recessive disease characterized by ectopic calcification of elastic fibers in dermal, ocular and vascular tissues. Similar to other ABC transporters, ABCC6 encloses the core structure of four domains: two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) but also an additional N-terminal extension, including a transmembrane domain (TMD0) and a cytosolic loop (L0), which is only found in some members of ABCC subfamily, and for which the function remains to be established. To investigate the functional roles of this N-terminal region, we generated several domain deletion constructs of ABCC6, expressed in HEK293 and polarized LLC-PK1 cells. ABCC6 lacking TMD0 displayed full transport activity as the wild type protein. Unlike the wild type protein, ABCC6 without L0 was not targeted to the basolateral membrane. Moreover, homology modeling of L0 suggests that it forms an ATPase regulatory domain. Furthermore, we show that the expression of ABCC6 is linked to a cellular influx of Ca(2+). The results suggest that TMD0 is not required for transport function and that L0 maintains ABCC6 in a targeting-competent state for the basolateral membrane and might be involved in regulating the NBDs. These findings shed new light on a possible physiological function of ABCC6 and may explain some of the hallmarks of the clinical features associated with PXE that could contribute to the identification of novel pharmacological targets.
Collapse
|
23
|
Miglionico R, Armentano MF, Carmosino M, Salvia AM, Cuviello F, Bisaccia F, Ostuni A. Dysregulation of gene expression in ABCC6 knockdown HepG2 cells. Cell Mol Biol Lett 2014; 19:517-26. [PMID: 25169437 PMCID: PMC6275862 DOI: 10.2478/s11658-014-0208-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 08/20/2014] [Indexed: 01/31/2023] Open
Abstract
ABCC6 protein is an ATP-dependent transporter that is mainly found in the basolateral plasma membrane of hepatocytes. ABCC6 deficiency is the primary cause of several forms of ectopic mineralization syndrome. Mutations in the human ABCC6 gene cause pseudoxanthoma elasticum (PXE), an autosomal recessive disease characterized by ectopic calcification of the elastic fibers in dermal, ocular and vascular tissues. Mutations in the mouse ABCC6 gene were also associated with dystrophic cardiac calcification. Reduced levels of ABCC6 protein were found in a β-thalassemic mouse model. Moreover, some cases of generalized arterial calcification in infancy are due to ABCC6 mutations. In order to study the role of ABCC6 in the pathogenesis of ectopic mineralization, the expressions of genes involved in this process were evaluated in HepG2 cells upon stable knockdown of ABCC6 by small hairpin RNA (shRNA) technology. ABCC6 knockdown in HepG2 cells causes a significant upregulation of the genes promoting mineralization, such as TNAP, and a parallel downregulation of genes with anti-mineralization activity, such as NT5E, Fetuin A and Osteopontin. Although the absence of ABCC6 has been already associated with ectopic mineralization syndromes, this study is the first to show a direct relationship between reduced ABCC6 levels and the expression of pro-mineralization genes in hepatocytes.
Collapse
Affiliation(s)
- Rocchina Miglionico
- Department of Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | | | - Monica Carmosino
- Department of Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Antonella Maria Salvia
- Department of Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Flavia Cuviello
- Department of Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Faustino Bisaccia
- Department of Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Angela Ostuni
- Department of Sciences, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
24
|
Kuzaj P, Kuhn J, Dabisch-Ruthe M, Faust I, Götting C, Knabbe C, Hendig D. ABCC6- a new player in cellular cholesterol and lipoprotein metabolism? Lipids Health Dis 2014; 13:118. [PMID: 25064003 PMCID: PMC4124508 DOI: 10.1186/1476-511x-13-118] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/17/2014] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Dysregulations in cholesterol and lipid metabolism have been linked to human diseases like hypercholesterolemia, atherosclerosis or the metabolic syndrome. Many ABC transporters are involved in trafficking of metabolites derived from these pathways. Pseudoxanthoma elasticum (PXE), an autosomal-recessive disease caused by ABCC6 mutations, is characterized by atherogenesis and soft tissue calcification. METHODS In this study we investigated the regulation of cholesterol biosynthesis in human dermal fibroblasts from PXE patients and healthy controls. RESULTS Gene expression analysis of 84 targets indicated dysregulations in cholesterol metabolism in PXE fibroblasts. Transcript levels of ABCC6 were strongly increased in lipoprotein-deficient serum (LPDS) and under serum starvation in healthy controls. For the first time, increased HMG CoA reductase activities were found in PXE fibroblasts. We further observed strongly elevated transcript and protein levels for the proprotein convertase subtilisin/kexin type 9 (PCSK9), as well as a significant reduction in APOE mRNA expression in PXE. CONCLUSION Increased cholesterol biosynthesis, elevated PCSK9 levels and reduced APOE mRNA expression newly found in PXE fibroblasts could enforce atherogenesis and cardiovascular risk in PXE patients. Moreover, the increase in ABCC6 expression accompanied by the induction of cholesterol biosynthesis supposes a functional role for ABCC6 in human lipoprotein and cholesterol homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Doris Hendig
- Herz- und Diabeteszentrum NRW, Institut für Laboratoriums- und Transfusionsmedizin, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32 545 Bad Oeynhausen, Germany.
| |
Collapse
|
25
|
Vanakker OM, Hosen MJ, Paepe AD. The ABCC6 transporter: what lessons can be learnt from other ATP-binding cassette transporters? Front Genet 2013; 4:203. [PMID: 24137173 PMCID: PMC3797522 DOI: 10.3389/fgene.2013.00203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/23/2013] [Indexed: 01/31/2023] Open
Abstract
ABC transporters represent a large family of ATP-driven transmembrane transporters involved in uni- or bidirectional transfer of a large variety of substrates. Divided in seven families, they represent 48 transporter proteins, several of which have been associated with human disease. Among the latter is ABCC6, a unidirectional exporter protein primarily expressed in liver and kidney. ABCC6 deficiency has been shown to cause the ectopic mineralization disorder pseudoxanthoma elasticum (PXE), characterized by calcification and fragmentation of elastic fibers, resulting in oculocutaneous and cardiovascular symptoms. Unique in the group of connective tissue disorders, the pathophysiological relation between the ABCC6 transporter and ectopic mineralization in PXE remains enigmatic, not in the least because of lack of knowledge on the substrate(s) of ABCC6 and its unusual expression pattern. Because many features, including structure and transport mechanism, are shared by many ABC transporters, it is worthwhile to evaluate if and to what extent the knowledge on the physiology and pathophysiology of these other transporters may provide useful clues toward understanding the (patho)physiological role of ABCC6 and how its deficiency may be dealt with.
Collapse
|
26
|
Pseudoxanthoma elasticum: progress in research toward treatment: summary of the 2012 PXE international research meeting. J Invest Dermatol 2013; 133:1444-9. [PMID: 23673496 DOI: 10.1038/jid.2013.20] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Arányi T, Bacquet C, de Boussac H, Ratajewski M, Pomozi V, Fülöp K, Brampton CN, Pulaski L, Le Saux O, Váradi A. Transcriptional regulation of the ABCC6 gene and the background of impaired function of missense disease-causing mutations. Front Genet 2013; 4:27. [PMID: 23483032 PMCID: PMC3593682 DOI: 10.3389/fgene.2013.00027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/20/2013] [Indexed: 12/11/2022] Open
Abstract
The human ATP-binding cassette family C member 6 (ABCC6) gene encodes an ABC transporter protein expressed primarily in the liver and to a lesser extent in the kidneys and the intestines. We review here the mechanisms of this restricted tissue-specific expression and the role of hepatocyte nuclear factor 4α which is responsible for the expression pattern. Detailed analyses uncovered further regulators of the expression of the gene pointing to an intronic primate-specific regulator region, an activator of the expression of the gene by binding CCAAT/enhancer-binding protein beta, which interacts with other proteins acting in the proximal promoter. This regulatory network is affected by various environmental stimuli including oxidative stress and the extracellular signal-regulated protein kinases 1 and 2 pathway. We also review here the structural and functional consequences of disease-causing missense mutations of ABCC6. A significant clustering of the missense disease-causing mutations was found at the domain–domain interfaces. This clustering means that the domain contacts are much less permissive to amino acid replacements than the rest of the protein. We summarize the experimental methods resulting in the identification of mutants with preserved transport activity but failure in intracellular targeting. These mutants are candidates for functional rescue by chemical chaperons. The results of such research can provide the basis of future allele-specific therapy of ABCC6-mediated disorders like pseudoxanthoma elasticum or the generalized arterial calcification in infancy.
Collapse
Affiliation(s)
- Tamás Arányi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ronchetti I, Boraldi F, Annovi G, Cianciulli P, Quaglino D. Fibroblast involvement in soft connective tissue calcification. Front Genet 2013; 4:22. [PMID: 23467434 PMCID: PMC3588566 DOI: 10.3389/fgene.2013.00022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/11/2013] [Indexed: 12/19/2022] Open
Abstract
Soft connective tissue calcification is not a passive process, but the consequence of metabolic changes of local mesenchymal cells that, depending on both genetic and environmental factors, alter the balance between pro- and anti-calcifying pathways. While the role of smooth muscle cells and pericytes in ectopic calcifications has been widely investigated, the involvement of fibroblasts is still elusive. Fibroblasts isolated from the dermis of pseudoxanthoma elasticum (PXE) patients and of patients exhibiting PXE-like clinical and histopathological findings offer an attractive model to investigate the mechanisms leading to the precipitation of mineral deposits within elastic fibers and to explore the influence of the genetic background and of the extracellular environment on fibroblast-associated calcifications, thus improving the knowledge on the role of mesenchymal cells on pathologic mineralization.
Collapse
Affiliation(s)
| | - Federica Boraldi
- PXELab, University of Modena and Reggio EmiliaModena, Italy
- Department of Life Science, University of Modena and Reggio EmiliaModena, Italy
| | - Giulia Annovi
- PXELab, University of Modena and Reggio EmiliaModena, Italy
- Department of Life Science, University of Modena and Reggio EmiliaModena, Italy
| | | | - Daniela Quaglino
- PXELab, University of Modena and Reggio EmiliaModena, Italy
- Department of Life Science, University of Modena and Reggio EmiliaModena, Italy
| |
Collapse
|
29
|
Le Saux O, Martin L, Aherrahrou Z, Leftheriotis G, Váradi A, Brampton CN. The molecular and physiological roles of ABCC6: more than meets the eye. Front Genet 2012; 3:289. [PMID: 23248644 PMCID: PMC3520154 DOI: 10.3389/fgene.2012.00289] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/23/2012] [Indexed: 12/30/2022] Open
Abstract
Abnormal mineralization occurs in the context of several common conditions, including advanced age, diabetes, hypercholesterolemia, chronic renal failure, and certain genetic conditions. Metabolic, mechanical, infectious, and inflammatory injuries promote ectopic mineralization through overlapping yet distinct molecular mechanisms of initiation and progression. The ABCC6 protein is an ATP-dependent transporter primarily found in the plasma membrane of hepatocytes. ABCC6 exports unknown substrates from the liver presumably for systemic circulation. ABCC6 deficiency is the primary cause for chronic and acute forms of ectopic mineralization described in diseases such as pseudoxanthoma elasticum (PXE), β-thalassemia, and generalized arterial calcification of infancy (GACI) in humans and dystrophic cardiac calcification (DCC) in mice. These pathologies are characterized by mineralization of cardiovascular, ocular, and dermal tissues. PXE and to an extent GACI are caused by inactivating ABCC6 mutations, whereas the mineralization associated with β-thalassemia patients derives from a liver-specific change in ABCC6 expression. DCC is an acquired phenotype resulting from cardiovascular insults (ischemic injury or hyperlipidemia) and secondary to ABCC6 insufficiency. Abcc6-deficient mice develop ectopic calcifications similar to both the human PXE and mouse DCC phenotypes. The precise molecular and cellular mechanism linking deficient hepatic ABCC6 function to distal ectopic mineral deposition is not understood and has captured the attention of many research groups. Our previously published work along with that of others show that ABCC6 influences other modulators of calcification and that it plays a much greater physiological role than originally thought.
Collapse
Affiliation(s)
- Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii Honolulu, HI, USA
| | | | | | | | | | | |
Collapse
|
30
|
Stimulus-induced expression of the ABCG2 multidrug transporter in HepG2 hepatocarcinoma model cells involves the ERK1/2 cascade and alternative promoters. Biochem Biophys Res Commun 2012; 426:172-6. [DOI: 10.1016/j.bbrc.2012.08.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/09/2012] [Indexed: 01/08/2023]
|
31
|
Kringen MK, Stormo C, Grimholt RM, Berg JP, Piehler AP. Copy number variations of the ATP-binding cassette transporter ABCC6 gene and its pseudogenes. BMC Res Notes 2012; 5:425. [PMID: 22873774 PMCID: PMC3434077 DOI: 10.1186/1756-0500-5-425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 08/01/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ATP-binding cassette transporter ABCC6 gene is located on chromosome 16 between its two pseudogenes (ABCC6P1 and ABCC6P2). Previously, we have shown that ABCC6P1 is transcribed and affects ABCC6 at the transcriptional level. In this study we aimed to determine copy number variations of ABCC6, ABCC6P1 and ABCC6P2 in different populations. Moreover, we sought to study the transcription pattern of ABCC6 and ABCC6 pseudogenes in 39 different human tissues. FINDINGS Genomic DNA from healthy individuals from five populations, Chinese (n = 24), Middle East (n = 20), Mexicans (n = 24), Caucasians (n = 50) and Africans (n = 24), were examined for copy number variations of ABCC6 and its pseudogenes by pyrosequencing and quantitative PCR. Copy number variation of ABCC6 was very rare (2/142; 1.4%). However, one or three copies of ABCC6P1 were relatively common (3% and 8%, respectively). Only one person had a single copy of ABCC6P2 while none had three copies. In Chinese, deletions or duplications of ABCC6P1 were more frequent than in any other population (9/24; 37.5%). The transcription pattern of ABCC6P2 was highly similar to ABCC6 and ABCC6P1, with highest transcription in liver and kidney. Interestingly, the total transcription level of pseudogenes, ABCC6P1 + ABCC6P2, was higher than ABCC6 in most tissues, including liver and kidney. CONCLUSIONS Copy number variations of the ABCC6 pseudogenes are quite common, especially in populations of Chinese ancestry. The expression pattern of ABCC6P2 in 39 human tissues was highly similar to that of ABCC6 and ABCC6P1 suggesting similar regulatory mechanisms for ABCC6 and its pseudogenes.
Collapse
Affiliation(s)
- Marianne K Kringen
- Department of Pharmacology, Oslo University Hospital, Ullevål, Oslo, Norway.
| | | | | | | | | |
Collapse
|
32
|
Zhao Z, Hong W, Zeng Z, Wu Y, Hu K, Tian X, Li W, Cao Z. Mucroporin-M1 inhibits hepatitis B virus replication by activating the mitogen-activated protein kinase (MAPK) pathway and down-regulating HNF4α in vitro and in vivo. J Biol Chem 2012; 287:30181-90. [PMID: 22791717 DOI: 10.1074/jbc.m112.370312] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B virus (HBV) is a noncytopathic human hepadnavirus that causes acute, chronic hepatitis and hepatocellular carcinoma (HCC). As the clinical utility of current therapies is limited, new anti-HBV agents and sources for such agents are still highly sought after. Here, we report that Mucroporin-M1, a scorpion venom-derived peptide, reduces the amount of extracellular HBsAg, HBeAg, and HBV DNA productions of HepG2.2.15 cells in a dose-dependent manner and inhibits HBV capsid DNA, HBV intracellular RNA replication intermediates and the HBV Core protein in the cytoplasm of HepG2.2.15 cells. Using a mouse model of HBV infection, we found that HBV replication was significantly inhibited by intravenous injection of the Mucroporin-M1 peptide. This inhibitory activity was due to a reduction in HBV promoter activity caused by a decrease in the binding of HNF4α to the precore/core promoter region. Furthermore, we confirmed that Mucroporin-M1 could selectively activate mitogen-activated protein kinases (MAPKs) and lead to the down-regulation of HNF4α expression, which explains the decreased binding of HNF4α to the HBV promoter. Moreover, when the protein phosphorylation activity of the MAPK pathway was inhibited, both HNF4α expression and HBV replication recovered. Finally, we proved that treatment with the Mucroporin-M1 peptide increased phosphorylation of the MAPK proteins in HBV-harboring mice. These results implicate Mucroporin-M1 peptide can activate the MAPK pathway and then reduce the expression of HNF4α, resulting in the inhibition of HBV replication in vitro and in vivo. Our work also opens new doors to discovering novel anti-HBV agents or sources.
Collapse
Affiliation(s)
- Zhenhuan Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ratajewski M, de Boussac H, Sachrajda I, Bacquet C, Kovács T, Váradi A, Pulaski L, Arányi T. ABCC6 expression is regulated by CCAAT/enhancer-binding protein activating a primate-specific sequence located in the first intron of the gene. J Invest Dermatol 2012; 132:2709-17. [PMID: 22763786 DOI: 10.1038/jid.2012.218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pseudoxanthoma elasticum (PXE), a rare recessive genetic disease causing skin, eye, and cardiovascular lesions, is characterized by the calcification of elastic fibers. The disorder is due to loss-of-function mutations of the ABCC6 gene, but the pathophysiology of the disease is still not understood. Here we investigated the transcriptional regulation of the gene, using DNase I hypersensitivity assay followed by luciferase reporter gene assay. We identified three DNase I hypersensitive sites (HSs) specific to cell lines expressing ABCC6. These HSs are located in the proximal promoter and in the first intron of the gene. We further characterized the role of the HSs by luciferase assay and demonstrated the transcriptional activity of the intronic HS. We identified the CCAAT/enhancer-binding protein β (C/EBPβ) as a factor binding the second intronic HS by chromatin immunoprecipitation and corroborated this finding by luciferase assays. We also showed that C/EBPβ interacts with the proximal promoter of the gene. We propose that C/EBPβ forms a complex with other regulatory proteins including the previously identified regulatory factor hepatocyte nuclear factor 4α (HNF4α). This complex would account for the tissue-specific expression of the gene and might serve as a metabolic sensor. Our results point toward a better understanding of the physiological role of ABCC6.
Collapse
Affiliation(s)
- Marcin Ratajewski
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Expression and in vivo rescue of human ABCC6 disease-causing mutants in mouse liver. PLoS One 2011; 6:e24738. [PMID: 21935449 PMCID: PMC3173462 DOI: 10.1371/journal.pone.0024738] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/16/2011] [Indexed: 12/31/2022] Open
Abstract
Loss-of-function mutations in ABCC6 can cause chronic or acute forms of dystrophic mineralization described in disease models such as pseudoxanthoma elasticum (OMIM 26480) in human and dystrophic cardiac calcification in mice. The ABCC6 protein is a large membrane-embedded organic anion transporter primarily found in the plasma membrane of hepatocytes. We have established a complex experimental strategy to determine the structural and functional consequences of disease-causing mutations in the human ABCC6. The major aim of our study was to identify mutants with preserved transport activity but failure in intracellular targeting. Five missense mutations were investigated: R1138Q, V1298F, R1314W, G1321S and R1339C. Using in vitro assays, we have identified two variants; R1138Q and R1314W that retained significant transport activity. All mutants were transiently expressed in vivo, in mouse liver via hydrodynamic tail vein injections. The inactive V1298F was the only mutant that showed normal cellular localization in liver hepatocytes while the other mutants showed mostly intracellular accumulation indicating abnormal trafficking. As both R1138Q and R1314W displayed endoplasmic reticulum localization, we tested whether 4-phenylbutyrate (4-PBA), a drug approved for clinical use, could restore their intracellular trafficking to the plasma membrane in MDCKII and mouse liver. The cellular localization of R1314W was significantly improved by 4-PBA treatment, thus potentially rescuing its physiological function. Our work demonstrates the feasibility of the in vivo rescue of cellular maturation of some ABCC6 mutants in physiological conditions very similar to the biology of the fully differentiated human liver and could have future human therapeutic application.
Collapse
|
35
|
Mizutani A, Koinuma D, Tsutsumi S, Kamimura N, Morikawa M, Suzuki HI, Imamura T, Miyazono K, Aburatani H. Cell type-specific target selection by combinatorial binding of Smad2/3 proteins and hepatocyte nuclear factor 4alpha in HepG2 cells. J Biol Chem 2011; 286:29848-60. [PMID: 21646355 PMCID: PMC3191026 DOI: 10.1074/jbc.m110.217745] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Specific regulation of target genes by transforming growth factor-β (TGF-β) in a given cellular context is determined in part by transcription factors and cofactors that interact with the Smad complex. In this study, we determined Smad2 and Smad3 (Smad2/3) binding regions in the promoters of known genes in HepG2 hepatoblastoma cells, and we compared them with those in HaCaT epidermal keratinocytes to elucidate the mechanisms of cell type- and context-dependent regulation of transcription induced by TGF-β. Our results show that 81% of the Smad2/3 binding regions in HepG2 cells were not shared with those found in HaCaT cells. Hepatocyte nuclear factor 4α (HNF4α) is expressed in HepG2 cells but not in HaCaT cells, and the HNF4α-binding motif was identified as an enriched motif in the HepG2-specific Smad2/3 binding regions. Chromatin immunoprecipitation sequencing analysis of HNF4α binding regions under TGF-β stimulation revealed that 32.5% of the Smad2/3 binding regions overlapped HNF4α bindings. MIXL1 was identified as a new combinatorial target of HNF4α and Smad2/3, and both the HNF4α protein and its binding motif were required for the induction of MIXL1 by TGF-β in HepG2 cells. These findings generalize the importance of binding of HNF4α on Smad2/3 binding genomic regions for HepG2-specific regulation of transcription by TGF-β and suggest that certain transcription factors expressed in a cell type-specific manner play important roles in the transcription regulated by the TGF-β-Smad signaling pathway.
Collapse
Affiliation(s)
- Anna Mizutani
- From the Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033
| | - Daizo Koinuma
- From the Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033
| | - Shuichi Tsutsumi
- the Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, and
| | - Naoko Kamimura
- the Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, and
| | - Masato Morikawa
- From the Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033
| | - Hiroshi I. Suzuki
- From the Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033
| | - Takeshi Imamura
- the Division of Biochemistry, Cancer Institute of the Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Kohei Miyazono
- From the Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033
- To whom correspondence should be addressed. Tel.: 81-3-5841-3356; Fax: 81-3-5841-3354; E-mail:
| | - Hiroyuki Aburatani
- the Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, and
| |
Collapse
|