1
|
Schulz MT, Rink L. Zinc deficiency as possible link between immunosenescence and age-related diseases. Immun Ageing 2025; 22:19. [PMID: 40390089 DOI: 10.1186/s12979-025-00511-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/23/2025] [Indexed: 05/21/2025]
Abstract
As global life expectancy increases, research reveals a critical challenge in aging: the progressive deterioration of immune function, termed immunosenescence. This age-related immune decline is characterized by a complex dysregulation of immune responses, which leaves older adults increasingly vulnerable to infections, chronic inflammatory states, and various degenerative diseases. Without intervention, immunosenescence significantly contributes to morbidity and mortality among the elderly, intensifying healthcare burdens and diminishing quality of life on both individual and societal levels. This review explores the essential role of zinc, a trace element critical for immune health, in mitigating the impact of immunosenescence and slowing the cascade of immunological dysfunctions associated with aging. By modulating the activity of key immune cells and pathways, zinc supplementation emerges as a promising approach to strengthen immunity, reduce oxidative stress, and counteract "inflammaging," a state of chronic, low-grade inflammation that accelerates tissue damage and drives disease progression. Zinc's involvement in cellular defense and repair mechanisms across the immune system highlights its ability to enhance immune cell functionality, resilience, and adaptability, strengthening the body's resistance to infection and its ability to manage stressors that contribute to diseases of aging. Indeed, zinc has demonstrated potential to improve immune responses, decrease inflammation, and mitigate the risk of age-related conditions including diabetes, depression, cardiovascular disease, and vision loss. Given the prevalent barriers to adequate zinc intake among older adults, including dietary limitations, decreased absorption, and interactions with medications, this review underscores the urgent need to address zinc deficiency in aging populations. Recent findings on zinc's cellular and molecular effects on immune health present zinc supplementation as a practical, accessible intervention for supporting healthier aging and improving quality of life. By integrating zinc into targeted strategies, public health efforts may not only sustain immunity in the elderly but also extend healthy longevity, reduce healthcare costs, and potentially mitigate the incidence and impact of chronic diseases that strain healthcare systems worldwide.
Collapse
Affiliation(s)
- Michael Tobias Schulz
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
2
|
Melamed M, Asraf H, Livne N, Bogdanovic M, Shendge A, Shamir G, Mero M, Adir O, Schroeder A, Sekler I, Hershfinkel M. The zinc receptor, ZnR/GPR39, modulates taste sensitivity by regulating ion secretion in mouse salivary gland. iScience 2025; 28:111912. [PMID: 40017509 PMCID: PMC11867543 DOI: 10.1016/j.isci.2025.111912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/28/2024] [Accepted: 01/24/2025] [Indexed: 03/01/2025] Open
Abstract
Reduced saliva secretion, dry mouth, and loss of taste are debilitating symptoms associated with zinc deficiency. A mechanism for zinc regulation of these processes is lacking. Here, we identified the Zn2+ sensing receptor ZnR/GPR39 as a mediator of ion transport in salivary gland epithelium. By monitoring transport of NH4 +, a surrogate for K+, we revealed that Zn2+ upregulates the Na+/K+ ATPase pump activity in parotid and submandibular salivary gland epithelium from wildtype (WT), but not from ZnR/GPR39 knockout (KO), mice. Since Na+/K+ ATPase activity is crucial for solute transport, we compared saliva composition in WT and ZnR/GPR39 KO mice and found impaired ionic concentration and reduced saliva secretion in ZnR/GPR39 KO mice. Moreover, mice deficient in ZnR/GPR39 exhibited decreased sensitivity to appetitive Na+ concentrations. Altogether, we demonstrate that salivary ZnR/GPR39 activity controls saliva ion composition and secretion, and provides a target for therapeutic approaches for dry mouth and taste disorders.
Collapse
Affiliation(s)
- Moran Melamed
- Department of Physiology and Cell Biology, School of Bio Medical Research, and the Zelman School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hila Asraf
- Department of Physiology and Cell Biology, School of Bio Medical Research, and the Zelman School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Noa Livne
- Department of Physiology and Cell Biology, School of Bio Medical Research, and the Zelman School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Milos Bogdanovic
- Department of Physiology and Cell Biology, School of Bio Medical Research, and the Zelman School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anil Shendge
- Department of Physiology and Cell Biology, School of Bio Medical Research, and the Zelman School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gilad Shamir
- Department of Physiology and Cell Biology, School of Bio Medical Research, and the Zelman School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maayan Mero
- Department of Physiology and Cell Biology, School of Bio Medical Research, and the Zelman School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Omer Adir
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology, School of Bio Medical Research, and the Zelman School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology, School of Bio Medical Research, and the Zelman School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
3
|
Cheng Y, Zhao C, Bin Y, Liu Y, Cheng L, Xia F, Tian X, Liu X, Liu S, Ying B, Shao Z, Yan W. The pathophysiological functions and therapeutic potential of GPR39: Focus on agonists and antagonists. Int Immunopharmacol 2024; 143:113491. [PMID: 39549543 DOI: 10.1016/j.intimp.2024.113491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/18/2024]
Abstract
G protein-coupled receptor 39 (GPR39), a member of the growth hormone-releasing peptide family, exhibits widespread expression across various tissues and demonstrates high constitutive activity, primarily activated by zinc ions. It plays critical roles in cell proliferation, differentiation, survival, apoptosis, and ion transport through the recruitment of Gq/11, Gs, G12/13, and β-arrestin proteins. GPR39 is involved in anti-inflammatory and antioxidant responses, highlighting its diverse pathophysiological functions. Recent discoveries of endogenous ligands have enhanced our understanding of GPR39's physiological roles. Aberrant expression and reactivation of GPR39 have been implicated in a range of diseases, particularly central nervous system disorders, endocrine disruptions, cardiovascular diseases, cancers, and liver conditions. These findings position GPR39 as a promising therapeutic target, with the efficacy of synthetic ligands validated in various in vivo models. Nonetheless, their clinical applicability remains uncertain, necessitating further exploration of novel agonists-especially biased agonists-and antagonists. This review examines the unique residues contributing to the high constitutive activity of GPR39, its endogenous and synthetic ligands, and its pathophysiological implications, aiming to elucidate its pharmacological potential for clinical application in disease treatment.
Collapse
Affiliation(s)
- Yuhui Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chang Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yan Bin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lin Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000 China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiaowen Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xinlei Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Sicen Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Binwu Ying
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhenhua Shao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Tianfu Jincheng Laboratory, Frontiers Medical Center, Chengdu 610212, Sichuan, China.
| | - Wei Yan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
4
|
Shendge AK, Sekler I, Hershfinkel M. ZnR/GPR39 regulates hepatic insulin signaling, tunes liver bioenergetics and ROS production, and mitigates liver fibrosis and injury. Redox Biol 2024; 78:103403. [PMID: 39514940 PMCID: PMC11584770 DOI: 10.1016/j.redox.2024.103403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Adequate supply of zinc is essential for hepatic function and its deficiency is associated with acute liver injury (ALI) and chronic nonalcoholic fatty liver disease (NAFLD). However, how zinc controls hepatic function is unknown. We found that the zinc sensitive ZnR/GPR39, a mediator of zinc signaling, enhances hepatic phosphorylation of ERK1/2, which is reduced in ZnR/GPR39 deficient livers. Surprisingly, livers from ZnR/GPR39 knockout (KO) mice exhibited elevated insulin receptor expression and downstream AKT activation. Moreover, ZnR/GPR39 KO mice had higher blood fasting glucose level, pronounced hepatic lipid accumulation, increased hepatocyte oxygen consumption rate (OCR) and reactive oxygen species (ROS) levels. These data suggest that ZnR/GPR39 modulates insulin receptor signaling, a major pathway in hepatic metabolism. Associated with the impaired signaling, ZnR/GPR39 KO livers exhibited increased tissue fibrosis, manifested by marked elevation of collagen expression, compared to wildtype (WT). Additionally, we found alteration of hepatocyte junctional proteins that was accompanied by increased macrophage infiltration and higher liver inflammation in ZnR/GPR39 KO mice. To determine the role of ZnR/GPR39 in ALI, we applied a mild LPS challenge that induced profound decrease in hepatic OCR, also leading to higher ROS generation in ZnR/GPR39 KO hepatocytes, but not in WT. We further found increased serum IL-2 and AST/ALT ratio only in ZnR/GPR39 KO mice. Our findings reveal a role of ZnR/GPR39 in controlling hepatic insulin receptor signaling and mitigating liver fibrosis and inflammation, thus underscoring the important role of ZnR/GPR39 in liver signaling and function.
Collapse
Affiliation(s)
- Anil Khushalrao Shendge
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
5
|
Hill JJ. Macrophage GPNMB-mediated cardiac repair. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1270-1271. [PMID: 39455835 DOI: 10.1038/s44161-024-00559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Affiliation(s)
- Jennifer J Hill
- Human Health Therapeutics, National Research Council Canada, Ottawa, Ontario, Canada.
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.
| |
Collapse
|
6
|
Jiang X, Zhang W, Xie S. METTL3 inhibits microglial pyroptosis in neonatal hypoxia-ischemia encephalopathy by regulating GPR39 expression in an m6A-HuR-dependent manner. Neuroscience 2024; 563:175-187. [PMID: 39461660 DOI: 10.1016/j.neuroscience.2024.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Neonatal hypoxia-ischemia encephalopathy (HIE) is a significant reason for neonatal mortality and prolonged disability. We have previously revealed that GPR39 activation attenuates neuroinflammation in a neonatal HIE rat model. This study aimed to investigate whether GPR39 affected microglial pyroptosis post-HIE. METHODS A neonatal rat model of HIE and a microglia cell model of oxygen-glucose deprivation (OGD) were established. Neuronal loss and cerebral infarction were assessed by using TTC, H&E staining, and Nissl staining. Pyroptosis was evaluated with western blot, LDH assay kit, ELISA, and flow cytometry. Total m6A level and GPR39 m6A modification were determined using m6A dot blot and MeRIP. The interaction between METTL3/HuR/GSK3β and GPR39 was analyzed by performing molecular interaction experiments. GPR39 mRNA stability was examined with actinomycin D. RESULTS The level of GPR39 was increased in neonatal HIE rats and OGD-treated microglia. Brain injury and neuronal loss were significantly increased in the HIE model when GPR39 was knocked down. GPR39 knockdown aggravated NLRP3 inflammasome-mediated microglial pyroptosis. METTL3 upregulated GPR39 expression in an m6A-dependent manner. METTL3 enhanced the interaction of HuR and GPR39. In OGD-exposed microglia, METTL3 elevated GPR39 expression and mRNA stability, which declined after HuR depletion. METTL3 knockdown promoted microglial pyroptosis, which was reversed by GPR39 agonist. Furthermore, microglial pyroptosis was inhibited by GPR39 upregulation, but the outcome was reverted by GSK3β activator SNP. CONCLUSION METTL3 inhibits microglial pyroptosis in neonatal HIE via regulating m6A-HuR dependent stabilization of GPR39, which contributes to therapeutics development for neonatal HIE.
Collapse
Affiliation(s)
- Xili Jiang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha 410008, China
| | - Wei Zhang
- Department of Radiology, The Second People's Hospital of Hunan Province/Brain Hospital of Hunan Province, Changsha 410008, China
| | - Shucai Xie
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
7
|
Chen W, Chen A, Lian G, Yan Y, Liu J, Wu J, Gao G, Xie L. Zinc attenuates monocrotaline-induced pulmonary hypertension in rats through upregulation of A20. J Mol Cell Cardiol 2024; 195:24-35. [PMID: 39002608 DOI: 10.1016/j.yjmcc.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Pulmonary hypertension (PH) is characterized by excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), in which inflammatory signaling caused by activation of the NF-κB pathway plays an important role. A20 is an important negative regulator of the NF-κB pathway, and zinc promotes the expression of A20 and exerts a protective effect against various diseases (e.g. COVID19) by inhibiting the inflammatory signaling. The role of A20 and intracellular zinc signaling in PH has been explored, but the extracellular zinc signaling is not well understood, and whether zinc has protective effects on PH is still elusive. Using inductively coupled plasma mass spectrometry (ICP-MS), we studied the alteration of trace elements during the progression of monocrotaline (MCT)-induced PH and found that serum zinc concentration was decreased with the onset of PH accompanied by abnormalities of other three elements, including copper, chromium, and magnesium. Zinc chloride injection with the dosage of 5 mg/kg intraperitoneally partially corrected this abnormality and inhibited the progression of PH. Zinc supplementation induced the expression of A20 in lung tissue and reduce the inflammatory responses. In vitro, zinc supplementation time-dependently upregulated the expression of A20 in PASMCs, therefore correcting the excessive proliferation and migration of cells caused by hypoxia. Using genetically encoded-FRET based zinc probe, we found that these effects of zinc ions are not achieved by entering cells, but most likely by activating cell surface zinc receptor (ZnR/GPR39). These results provide the first evidence of the effectiveness of zinc supplementation in the treatment of PH.
Collapse
Affiliation(s)
- Weixiao Chen
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Ai Chen
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Guili Lian
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yan Yan
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Junping Liu
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jingying Wu
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Gufeng Gao
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Liangdi Xie
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China; Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fujian Province, Fuzhou, People's Republic of China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China.
| |
Collapse
|
8
|
Hershfinkel M. Cross-talk between zinc and calcium regulates ion transport: A role for the zinc receptor, ZnR/GPR39. J Physiol 2024; 602:1579-1594. [PMID: 37462604 DOI: 10.1113/jp283834] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/26/2023] [Indexed: 04/21/2024] Open
Abstract
Zinc is essential for many physiological functions, with a major role in digestive system, skin health, and learning and memory. On the cellular level, zinc is involved in cell proliferation and cell death. A selective zinc sensing receptor, ZnR/GPR39 is a Gq-coupled receptor that acts via the inositol trisphosphate pathway to release intracellular Ca2+. The ZnR/GPR39 serves as a mediator between extracellular changes in Zn2+ concentration and cellular Ca2+ signalling. This signalling pathway regulates ion transporters activity and thereby controls the formation of transepithelial gradients or neuronal membrane potential, which play a fundamental role in the physiological function of these tissues. This review focuses on the role of Ca2+ signalling, and specifically ZnR/GPR39, with respect to the regulation of the Na+/H+ exchanger, NHE1, and of the K+/Cl- cotransporters, KCC1-3, and also describes the physiological implications of this regulation.
Collapse
Affiliation(s)
- Michal Hershfinkel
- Department of Physiology and Cell Biology and the School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
9
|
Doboszewska U, Maret W, Wlaź P. GPR39: An orphan receptor begging for ligands. Drug Discov Today 2024; 29:103861. [PMID: 38122967 DOI: 10.1016/j.drudis.2023.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Progress in the understanding of the receptor GPR39 is held up by inconsistent pharmacological data. First, the endogenous ligand(s) remain(s) contentious. Data pointing to zinc ions (Zn2+) and/or eicosanoids as endogenous ligands are a matter of debate. Second, there are uncertainties in the specificity of the widely used synthetic ligand (agonist) TC-G 1008. Third, activation of GPR39 has been often proposed as a novel treatment strategy, but new data also support that inhibition might be beneficial in certain disease contexts. Constitutive activity/promiscuous signaling suggests the need for antagonists/inverse agonists in addition to (biased) agonists. Here, we scrutinize data on the signaling and functions of GPR39 and critically assess factors that might have contributed to divergent outcomes and interpretations of investigations on this important receptor.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Wolfgang Maret
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, UK
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| |
Collapse
|
10
|
Zhang L, Sunchen S, Lu C, Xu F, Dong H. Zinc-sensing receptor activation induces endothelium-dependent hyperpolarization-mediated vasorelaxation of arterioles. Biochem Pharmacol 2024; 219:115961. [PMID: 38049010 DOI: 10.1016/j.bcp.2023.115961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND The micronutrient zinc (Zn2+) is critical for cell function as intracellular signaling and endogenous ligand for Zn2+ sensing receptor (ZnR). Although cytosolic Zn2+ (cyt) signaling in the vascular system was studied previously, role of the ZnR has not been explored in vascular physiology. METHODS ZnR-mediated relaxation response of human submucosal arterioles and the mesenteric arterioles from wide-type (WT), ZnR-/- and TRPV4-/- mice were determined by a Mulvany-style wire myograph. The perfused vessel density (PVD) of mouse mesenteric arterioles was also measured in in vivo study. The expression of ZnR in arterioles and vascular endothelial cells (VEC) were examined by immunofluorescence staining, and its function was characterized in VEC by Ca2+ imaging and patch clamp study. RESULTS ZnR expression was detected on human submucosal arterioles, murine mesenteric arterioles and VEC but not in ZnR-/- mice. ZnR activation predominately induced endothelium-dependent hyperpolarization (EDH)-mediated vasorelaxation of arterioles in vitro and in vivo via Ca2+ signaling, which is totally different from endothelium-dependent vasorelaxation via Zn2+ (cyt) signaling reported previously. Furthermore, ZnR-induced vasorelaxation via EDH was significantly impaired in ZnR-/- and TRPV4-/- mice. Mechanistically, ZnR induced endothelium-dependent vasorelaxation predominately via PLC/IP3/IP3R and TRPV4/SOCE. The role of ZnR in regulating Ca2+ signaling and ion channels on VEC was verified by Ca2+ imaging and patch clamp techniques. CONCLUSION ZnR activation induces endothelium-dependent vasorelaxation of resistance vessels predominately via TRPV4/Ca2+/EDH pathway. We therefore not only provide new insights into physiological role of ZnR in vascular system but also may pave a potential pathway for developing Zn2+-based treatments for vascular disease.
Collapse
Affiliation(s)
- Luyun Zhang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400037, China; Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Sijin Sunchen
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400037, China.
| | - Hui Dong
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400037, China; Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
11
|
Elgheznawy A, Öftering P, Englert M, Mott K, Kaiser F, Kusch C, Gbureck U, Bösl MR, Schulze H, Nieswandt B, Vögtle T, Hermanns HM. Loss of zinc transporters ZIP1 and ZIP3 augments platelet reactivity in response to thrombin and accelerates thrombus formation in vivo. Front Immunol 2023; 14:1197894. [PMID: 37359521 PMCID: PMC10285393 DOI: 10.3389/fimmu.2023.1197894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Zinc (Zn2+) is considered as important mediator of immune cell function, thrombosis and haemostasis. However, our understanding of the transport mechanisms that regulate Zn2+ homeostasis in platelets is limited. Zn2+ transporters, ZIPs and ZnTs, are widely expressed in eukaryotic cells. Using mice globally lacking ZIP1 and ZIP3 (ZIP1/3 DKO), our aim was to explore the potential role of these Zn2+ transporters in maintaining platelet Zn2+ homeostasis and in the regulation of platelet function. While ICP-MS measurements indicated unaltered overall Zn2+ concentrations in platelets of ZIP1/3 DKO mice, we observed a significantly increased content of FluoZin3-stainable free Zn2+, which, however, appears to be released less efficiently upon thrombin-stimulated platelet activation. On the functional level, ZIP1/3 DKO platelets exhibited a hyperactive response towards threshold concentrations of G protein-coupled receptor (GPCR) agonists, while immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptor agonist signalling was unaffected. This resulted in enhanced platelet aggregation towards thrombin, bigger thrombus volume under flow ex vivo and faster in vivo thrombus formation in ZIP1/3 DKO mice. Molecularly, augmented GPCR responses were accompanied by enhanced Ca2+ and PKC, CamKII and ERK1/2 signalling. The current study thereby identifies ZIP1 and ZIP3 as important regulators for the maintenance of platelet Zn2+ homeostasis and function.
Collapse
Affiliation(s)
- Amro Elgheznawy
- Medical Clinic II, Division of Hepatology, University Hospital Würzburg, Würzburg, Germany
| | - Patricia Öftering
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Maximilian Englert
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Kristina Mott
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Friederike Kaiser
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| | - Charly Kusch
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| | - Michael R. Bösl
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Timo Vögtle
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Heike M. Hermanns
- Medical Clinic II, Division of Hepatology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Cao B, Wang J, Feng J. Signaling pathway mechanisms of neurological diseases induced by G protein-coupled receptor 39. CNS Neurosci Ther 2023; 29:1470-1483. [PMID: 36942516 PMCID: PMC10173710 DOI: 10.1111/cns.14174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND G protein-coupled receptor 39 (GPR39) is a transmembrane zinc receptor with two splice variants, which belongs to the G-protein-coupled receptor growth hormone-releasing peptide family. Its expression is induced by zinc, which activates GPR39, and its activation mediates cell proliferation, ion homeostasis, and anti-inflammatory, antioxidant, and other pathophysiological effects via different signaling pathways. AIMS The article reviews the latest literature in this field. In particular, the role of GPR39 in nervous system is discussed. MATERIALS AND METHODS GPR39 can be a promising target in neurological diseases for targeted therapy, which will help doctors overcome the associated problems. DISCUSSION GPR39 is expressed in vivo at several sites. Increasing evidence suggests that GPR39 plays an important role as a neuroprotective agent in vivo and regulates various neurological functions, including neurodegeneration, neuroelectrophysiology, and neurovascular homeostasis. CONCLUSION This review aims to provide an overview of the functions, signal transduction pathways, and pathophysiological role of GPR39 in neurological diseases and summarize the GPR39 agonists that have been identified in the recent years.
Collapse
Affiliation(s)
- Bin Cao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Arvanagh FM, Masoumabad AB, Yangjeh AH, Bayrami M, Feizpoor S, Nourani MR, Taheri RA. Anti-inflammatory and collagenation effects of zinc oxide-based nanocomposites biosynthesised with Mentha longifolia leaf extract. J Wound Care 2023; 32:44-54. [PMID: 36630114 DOI: 10.12968/jowc.2023.32.1.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The integration of nanomaterials and herbal medicine has led to the design of new nanocomposites, which are therapeutically more effective. The purpose of this study was to prepare different zinc oxide (ZnO)-based nanoparticles (NPs) via Mentha longifolia extract based on gauze linen fibre and study its effects on wound healing. METHODS The textural properties, morphology, thermal stability, purity, spectroscopic and phase structure of nanoparticles were investigated. Subsequently, male Wistar rats were subjected to wounds in six different treatment groups: Group I: control; group II: ZnO/W prepared in water (W); group III: ZnO/M synthesised with Mentha longifolia (M) extract; group IV: ZnO/copper(II) oxide (CuO)/M nanocomposite synthesised with M extract; group IV: treated with ZnO/silver (Ag)/M nanocomposite; group V: treated with ZnO/Ag/M nanocomposite; and finally, group VI: treated with ZnO/CuO/Ag/M nanocomposite. In all groups, the wounds were treated for 21 days with prepared samples. Every seven days, after measuring the decreasing rate of the wound size, tissue samples from each group were taken for histopathological analysis. The prepared tissue sections were assessed by haematoxylin and eosin staining for the formation of the epidermis, dermis and muscular tissue, and Masson's Trichrome staining for the formation of collagen fibres. RESULTS The results showed that the ZnO/CuO/Ag/M nanocomposite was a significantly more effective wound healing material in comparison with other samples (p<0.05). CONCLUSION In this study, the integration of ZnO/CuO/Ag nanocomposites with secondary metabolites of Mentha longifolia gave rise to a superior combination, which could support different phases of wound healing via the regulation of cytokines and growth factors in the course of healing.
Collapse
Affiliation(s)
| | | | - Aziz Habibi Yangjeh
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mahdi Bayrami
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Solmaz Feizpoor
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mohammad Reza Nourani
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Renteria M, Belkin O, Aickareth J, Jang D, Hawwar M, Zhang J. Zinc's Association with the CmPn/CmP Signaling Network in Breast Cancer Tumorigenesis. Biomolecules 2022; 12:1672. [PMID: 36421686 PMCID: PMC9687477 DOI: 10.3390/biom12111672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 08/24/2023] Open
Abstract
It is well-known that serum and cellular concentrations of zinc are altered in breast cancer patients. Specifically, there are notable zinc hyper-aggregates in breast tumor cells when compared to normal mammary epithelial cells. However, the mechanisms responsible for zinc accumulation and the consequences of zinc dysregulation are poorly understood. In this review, we detailed cellular zinc regulation/dysregulation under the influence of varying levels of sex steroids and breast cancer tumorigenesis to try to better understand the intricate relationship between these factors based on our current understanding of the CmPn/CmP signaling network. We also made some efforts to propose a relationship between zinc signaling and the CmPn/CmP signaling network.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
15
|
Functions of the Zinc-Sensing Receptor GPR39 in Regulating Intestinal Health in Animals. Int J Mol Sci 2022; 23:ijms232012133. [PMID: 36292986 PMCID: PMC9602648 DOI: 10.3390/ijms232012133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
G protein-coupled receptor 39 (GPR39) is a zinc-sensing receptor (ZnR) that can sense changes in extracellular Zn2+, mediate Zn2+ signal transmission, and participate in the regulation of numerous physiological activities in living organisms. For example, GPR39 activates the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) and phosphatidylinositol3-kinase/protein kinase B (PI3K/AKT) signaling pathways upon Zn2+ stimulation, enhances the proliferation and differentiation of colonic cells, and regulates ion transport, as well as exerting other functions. In recent years, with the increased attention to animal gut health issues and the intensive research on GPR39, GPR39 has become a potential target for regulating animal intestinal health. On the one hand, GPR39 is involved in regulating ion transport in the animal intestine, mediating the Cl− efflux by activating the K+/Cl− synergistic protein transporter, and relieving diarrhea symptoms. On the other hand, GPR39 can maintain the homeostasis of the animal intestine, promoting pH restoration in colonic cells, regulating gastric acid secretion, and facilitating nutrient absorption. In addition, GPR39 can affect the expression of tight junction proteins in intestinal epithelial cells, improving the barrier function of the animal intestinal mucosa, and maintaining the integrity of the intestine. This review summarizes the structure and signaling transduction processes involving GPR39 and the effect of GPR39 on the regulation of intestinal health in animals, with the aim of further highlighting the role of GPR39 in regulating animal intestinal health and providing new directions and ideas for studying the prevention and treatment of animal intestinal diseases.
Collapse
|
16
|
Wan Y, Zhang B. The Impact of Zinc and Zinc Homeostasis on the Intestinal Mucosal Barrier and Intestinal Diseases. Biomolecules 2022; 12:biom12070900. [PMID: 35883455 PMCID: PMC9313088 DOI: 10.3390/biom12070900] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
Zinc is an essential trace element for living organisms, and zinc homeostasis is essential for the maintenance of the normal physiological functions of cells and organisms. The intestine is the main location for zinc absorption and excretion, while zinc and zinc homeostasis is also of great significance to the structure and function of the intestinal mucosal barrier. Zinc excess or deficiency and zinc homeostatic imbalance are all associated with many intestinal diseases, such as IBD (inflammatory bowel disease), IBS (irritable bowel syndrome), and CRC (colorectal cancer). In this review, we describe the role of zinc and zinc homeostasis in the intestinal mucosal barrier and the relevance of zinc homeostasis to gastrointestinal diseases.
Collapse
|
17
|
Villarreal D, Pradhan G, Zhou Y, Xue B, Sun Y. Diverse and Complementary Effects of Ghrelin and Obestatin. Biomolecules 2022; 12:517. [PMID: 35454106 PMCID: PMC9028691 DOI: 10.3390/biom12040517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Ghrelin and obestatin are two "sibling proteins" encoded by the same preproghrelin gene but possess an array of diverse and complex functions. While there are ample literature documenting ghrelin's functions, the roles of obestatin are less clear and controversial. Ghrelin and obestatin have been perceived to be antagonistic initially; however, recent studies challenge this dogma. While they have opposing effects in some systems, they function synergistically in other systems, with many functions remaining debatable. In this review, we discuss their functional relationship under three "C" categories, namely complex, complementary, and contradictory. Their functions in food intake, weight regulation, hydration, gastrointestinal motility, inflammation, and insulin secretion are complex. Their functions in pancreatic beta cells, cardiovascular, muscle, neuroprotection, cancer, and digestive system are complementary. Their functions in white adipose tissue, thermogenesis, and sleep regulation are contradictory. Overall, this review accumulates the multifaceted functions of ghrelin and obestatin under both physiological and pathological conditions, with the intent of contributing to a better understanding of these two important gut hormones.
Collapse
Affiliation(s)
- Daniel Villarreal
- Department of Nutrition, Texas A & M University, College Station, TX 77843, USA;
| | - Geetali Pradhan
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China;
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
| | - Yuxiang Sun
- Department of Nutrition, Texas A & M University, College Station, TX 77843, USA;
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
18
|
Hu Y, Fu QY, Fu DN, Wang XL, Wang ZH, Zhang JT, Xu WJ, Zhou GK, Chen LH, Liu T. The Role of Transient Receptor Potential A1 and G Protein-Coupled Receptor 39 in Zinc-Mediated Acute and Chronic Itch in Mice. Front Mol Neurosci 2022; 14:768731. [PMID: 35095413 PMCID: PMC8790520 DOI: 10.3389/fnmol.2021.768731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022] Open
Abstract
Itching is a common symptom of many skin or systemic diseases and has a negative impact on the quality of life. Zinc, one of the most important trace elements in an organism, plays an important role in the regulation of pain. Whether and how zinc regulates itching is largely unclear. Herein, we explored the role of Zn2+ in the regulation of acute and chronic itch in mice. It is found that intradermal injection (i.d.) of Zn2+ dose-dependently induced acute itch and transient receptor potential A1 (TRPA1) participated in Zn2+-induced acute itch in mice. Moreover, the pharmacological analysis showed the involvement of histamine, mast cells, opioid receptors, and capsaicin-sensitive C-fibers in Zn2+-induced acute itch in mice. Systemic administration of Zn2+ chelators, such as N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), pyrithione, and clioquinol were able to attenuate both acute itch and dry skin-induced chronic itch in mice. Quantitative polymerase chain reaction (Q-PCR) analysis showed that the messenger RNA (mRNA) expression levels of zinc transporters (ZIPs and ZnTs) significantly changed in the dorsal root ganglia (DRG) under dry skin-induced chronic itch condition in mice. Activation of extracellular signal-regulated kinase (ERK) pathway was induced in the DRG and skin by the administration of zinc or under dry skin condition, which was inhibited by systemic administration of Zn2+ chelators. Finally, we found that the expression of GPR39 (a zinc-sensing GPCR) was significantly upregulated in the dry skin mice model and involved in the pathogenesis of chronic itch. Together, these results indicated that the TRPA1/GPR39/ERK axis mediated the zinc-induced itch and, thus, targeting zinc signaling may be a promising strategy for anti-itch therapy.
Collapse
Affiliation(s)
- Yue Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Qing-Yue Fu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Dan-Ni Fu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xue-Long Wang
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital Beijing, Beijing, China
| | - Zhi-Hong Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jiang-Tao Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Wen-Jing Xu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Guo-Kun Zhou
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Li-Hua Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
- Li-Hua Chen
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
- College of Life Sciences, Yanan University, Yan'an, China
- Suzhou Key Laboratory of Intelligent Medicine and Equipment, Soochow University, Suzhou, China
- *Correspondence: Tong Liu
| |
Collapse
|
19
|
Salesa B, Sabater i Serra R, Serrano-Aroca Á. Zinc Chloride: Time-Dependent Cytotoxicity, Proliferation and Promotion of Glycoprotein Synthesis and Antioxidant Gene Expression in Human Keratinocytes. BIOLOGY 2021; 10:1072. [PMID: 34827065 PMCID: PMC8615178 DOI: 10.3390/biology10111072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/20/2022]
Abstract
The use of ionic metals such as zinc (Zn2+) is providing promising results in regenerative medicine. In this study, human keratinocytes (HaCaT cells) were treated with different concentrations of zinc chloride (ZnCl2), ranging from 1 to 800 µg/mL, for 3, 12 and 24 h. The results showed a time-concentration dependence with three non-cytotoxic concentrations (10, 5 and 1 µg/mL) and a median effective concentration value of 13.5 µg/mL at a cell exposure to ZnCl2 of 24 h. However, the zinc treatment with 5 or 1 µg/mL had no effect on cell proliferation in HaCaT cells in relation to the control sample at 72 h. The effects of the Zn2+ treatment on the expression of several genes related to glycoprotein synthesis, oxidative stress, proliferation and differentiation were assessed at the two lowest non-cytotoxic concentrations after 24 h of treatment. Out of 13 analyzed genes (superoxide dismutase 1 (SOD1), catalase (CAT), matrix metallopeptidase 1 (MMP1), transforming growth factor beta 1 (TGFB1), glutathione peroxidase 1 (GPX1), fibronectin 1 (FN1), hyaluronan synthase 2 (HAS2), laminin subunit beta 1 (LAMB1), lumican (LUM), cadherin 1 (CDH1), collagen type IV alpha (COL4A1), fibrillin (FBN) and versican (VCAN)), Zn2+ was able to upregulate SOD1, CAT, TGFB1, GPX1, LUM, CDH1, FBN and VCAN, with relative expression levels of at least 1.9-fold with respect to controls. We found that ZnCl2 promoted glycoprotein synthesis and antioxidant gene expression, thus confirming its great potential in biomedicine.
Collapse
Affiliation(s)
- Beatriz Salesa
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46022 València, Spain;
| | - Roser Sabater i Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain
- Biomedical Research Networking Center, Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46022 València, Spain;
| |
Collapse
|
20
|
Hierons SJ, Marsh JS, Wu D, Blindauer CA, Stewart AJ. The Interplay between Non-Esterified Fatty Acids and Plasma Zinc and Its Influence on Thrombotic Risk in Obesity and Type 2 Diabetes. Int J Mol Sci 2021; 22:ijms221810140. [PMID: 34576303 PMCID: PMC8471329 DOI: 10.3390/ijms221810140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/29/2022] Open
Abstract
Thrombosis is a major comorbidity of obesity and type-2 diabetes mellitus (T2DM). Despite the development of numerous effective treatments and preventative strategies to address thrombotic disease in such individuals, the incidence of thrombotic complications remains high. This suggests that not all the pathophysiological mechanisms underlying these events have been identified or targeted. Non-esterified fatty acids (NEFAs) are increasingly regarded as a nexus between obesity, insulin resistance, and vascular disease. Notably, plasma NEFA levels are consistently elevated in obesity and T2DM and may impact hemostasis in several ways. A potentially unrecognized route of NEFA-mediated thrombotic activity is their ability to disturb Zn2+ speciation in the plasma. Zn2+ is a potent regulator of coagulation and its availability in the plasma is monitored carefully through buffering by human serum albumin (HSA). The binding of long-chain NEFAs such as palmitate and stearate, however, trigger a conformational change in HSA that reduces its ability to bind Zn2+, thus increasing the ion’s availability to bind and activate coagulation proteins. NEFA-mediated perturbation of HSA-Zn2+ binding is thus predicted to contribute to the prothrombotic milieu in obesity and T2DM, representing a novel targetable disease mechanism in these disorders.
Collapse
Affiliation(s)
- Stephen J. Hierons
- School of Medicine, University of St. Andrews, St. Andrews KY16 9TF, Fife, UK; (S.J.H.); (J.S.M.); (D.W.)
| | - Jordan S. Marsh
- School of Medicine, University of St. Andrews, St. Andrews KY16 9TF, Fife, UK; (S.J.H.); (J.S.M.); (D.W.)
| | - Dongmei Wu
- School of Medicine, University of St. Andrews, St. Andrews KY16 9TF, Fife, UK; (S.J.H.); (J.S.M.); (D.W.)
| | | | - Alan J. Stewart
- School of Medicine, University of St. Andrews, St. Andrews KY16 9TF, Fife, UK; (S.J.H.); (J.S.M.); (D.W.)
- Correspondence: ; Tel.: +44-(0)-1334-463546; Fax: +44-(0)-1334-463482
| |
Collapse
|
21
|
Zinc Signaling in the Mammary Gland: For Better and for Worse. Biomedicines 2021; 9:biomedicines9091204. [PMID: 34572390 PMCID: PMC8469023 DOI: 10.3390/biomedicines9091204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
Zinc (Zn2+) plays an essential role in epithelial physiology. Among its many effects, most prominent is its action to accelerate cell proliferation, thereby modulating wound healing. It also mediates affects in the gastrointestinal system, in the testes, and in secretory organs, including the pancreas, salivary, and prostate glands. On the cellular level, Zn2+ is involved in protein folding, DNA, and RNA synthesis, and in the function of numerous enzymes. In the mammary gland, Zn2+ accumulation in maternal milk is essential for supporting infant growth during the neonatal period. Importantly, Zn2+ signaling also has direct roles in controlling mammary gland development or, alternatively, involution. During breast cancer progression, accumulation or redistribution of Zn2+ occurs in the mammary gland, with aberrant Zn2+ signaling observed in the malignant cells. Here, we review the current understanding of the role of in Zn2+ the mammary gland, and the proteins controlling cellular Zn2+ homeostasis and signaling, including Zn2+ transporters and the Gq-coupled Zn2+ sensing receptor, ZnR/GPR39. Significant advances in our understanding of Zn2+ signaling in the normal mammary gland as well as in the context of breast cancer provides new avenues for identification of specific targets for breast cancer therapy.
Collapse
|
22
|
Modulations of Cardiac Functions and Pathogenesis by Reactive Oxygen Species and Natural Antioxidants. Antioxidants (Basel) 2021; 10:antiox10050760. [PMID: 34064823 PMCID: PMC8150787 DOI: 10.3390/antiox10050760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 01/11/2023] Open
Abstract
Homeostasis in the level of reactive oxygen species (ROS) in cardiac myocytes plays a critical role in regulating their physiological functions. Disturbance of balance between generation and removal of ROS is a major cause of cardiac myocyte remodeling, dysfunction, and failure. Cardiac myocytes possess several ROS-producing pathways, such as mitochondrial electron transport chain, NADPH oxidases, and nitric oxide synthases, and have endogenous antioxidation mechanisms. Cardiac Ca2+-signaling toolkit proteins, as well as mitochondrial functions, are largely modulated by ROS under physiological and pathological conditions, thereby producing alterations in contraction, membrane conductivity, cell metabolism and cell growth and death. Mechanical stresses under hypertension, post-myocardial infarction, heart failure, and valve diseases are the main causes for stress-induced cardiac remodeling and functional failure, which are associated with ROS-induced pathogenesis. Experimental evidence demonstrates that many cardioprotective natural antioxidants, enriched in foods or herbs, exert beneficial effects on cardiac functions (Ca2+ signal, contractility and rhythm), myocytes remodeling, inflammation and death in pathological hearts. The review may provide knowledge and insight into the modulation of cardiac pathogenesis by ROS and natural antioxidants.
Collapse
|
23
|
Sun A, Wang WX. Adenine deficient yeast: A fluorescent biosensor for the detection of Labile Zn(II) in aqueous solution. Biosens Bioelectron 2021; 179:113075. [DOI: 10.1016/j.bios.2021.113075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/28/2022]
|
24
|
Laitakari A, Liu L, Frimurer TM, Holst B. The Zinc-Sensing Receptor GPR39 in Physiology and as a Pharmacological Target. Int J Mol Sci 2021; 22:ijms22083872. [PMID: 33918078 PMCID: PMC8070507 DOI: 10.3390/ijms22083872] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
The G-protein coupled receptor GPR39 is abundantly expressed in various tissues and can be activated by changes in extracellular Zn2+ in physiological concentrations. Previously, genetically modified rodent models have been able to shed some light on the physiological functions of GPR39, and more recently the utilization of novel synthetic agonists has led to the unraveling of several new functions in the variety of tissues GPR39 is expressed. Indeed, GPR39 seems to be involved in many important metabolic and endocrine functions, but also to play a part in inflammation, cardiovascular diseases, saliva secretion, bone formation, male fertility, addictive and depression disorders and cancer. These new discoveries offer opportunities for the development of novel therapeutic approaches against many diseases where efficient therapeutics are still lacking. This review focuses on Zn2+ as an endogenous ligand as well as on the novel synthetic agonists of GPR39, placing special emphasis on the recently discovered physiological functions and discusses their pharmacological potential.
Collapse
Affiliation(s)
- Anna Laitakari
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (A.L.); (L.L.); (T.M.F.)
| | - Lingzhi Liu
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (A.L.); (L.L.); (T.M.F.)
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Thomas M. Frimurer
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (A.L.); (L.L.); (T.M.F.)
| | - Birgitte Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (A.L.); (L.L.); (T.M.F.)
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
25
|
Chakraborty M, Asraf H, Sekler I, Hershfinkel M. ZnR/GPR39 controls cell migration by orchestrating recruitment of KCC3 into protrusions, re-organization of actin and activation of MMP. Cell Calcium 2021; 94:102330. [PMID: 33465674 DOI: 10.1016/j.ceca.2020.102330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022]
Abstract
Actin re-organization and degradation of extracellular matrix by metalloproteases (MMPs) facilitate formation of cellular protrusions that are required for cell proliferation and migration. We find that Zn2+ activation of the Gq-coupled receptor ZnR/GPR39 controls these processes by regulating K+/Cl- co-transporter KCC3, which modulates cell volume. Silencing of KCC3 expression or activity reverses ZnR/GPR39 enhancement of cell proliferation, migration and invasion through Matrigel. Activation of ZnR/GPR39 recruits KCC3 into F-actin rich membrane protrusions, suggesting that it can locally control volume changes. Immunofluorescence analysis indicates that Zn2+ activation of ZnR/GPR39 and KCC3 are required to enhance formation of F-actin stress fibers and cellular protrusions. In addition, ZnR/GPR39 upregulation of KCC3-dependent transport increases the activity of matrix metalloproteases MMP2 and MMP9. Our study establishes a mechanism in which ZnR/GPR39 orchestrates localization and activation of KCC3, formation of F-actin rich cell protrusions and activation of MMPs, and thereby controls cell proliferation and migration.
Collapse
Affiliation(s)
- Moumita Chakraborty
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hila Asraf
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
26
|
Bai KJ, Ho SC, Tsai CY, Chen JK, Lee CN, Lee KY, Chang CC, Chen TT, Feng PH, Chen KY, Su CL, Chuang HC. Exposure to PM 2.5 is associated with malignant pleural effusion in lung cancer patients. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111618. [PMID: 33396138 DOI: 10.1016/j.ecoenv.2020.111618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/25/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Air pollution has been recognized to be a risk factor for lung cancer. The objective of this study was to investigate the effects of air pollution on heavy metal alterations in the pleural effusion of lung cancer patients. Pleural effusion was collected from patients with lung cancer and congestive heart failure (CHF). One-year average levels of particulate matter with an aerodynamic diameter of < 10 µm (PM10), PM2.5, NO2, and SO2 were linked to the exposure of these subjects. Traffic-related metals, included Al, Fe, Cu, Zn, and Pb, were determined in the pleural effusion. Logistic regression models were used to examine their associations. There were 63 lung cancer patients and 31 CHF patients enrolled in the current study. We found that PM10, PM2.5, and NO2 were negatively correlated with Al in the pleural effusion, whereas PM2.5 was positively correlated with Zn in the pleural effusion. Increases in 1 μg/m3 of PM2.5 and 1 ng/mL of Zn were associated with lung cancer (adjusted OR=2.394, 95% CI= 1.446-3.964 for PM2.5; adjusted OR=1.003, 95% CI=1.000-1.005 for Zn). Increases in PM2.5 and Zn in the pleural effusion increased the risk of malignant pleural effusion in lung cancer patients (adjusted OR=1.517; 95% CI=1.082-2.127 for PM2.5; adjusted OR=1.002, 95% CI=1.000-1.005 for Zn). Furthermore, we observed that adenocarcinomas increased in association with a 1-μg/m3 increase in PM2.5 (crude OR=1.683; 95% CI=1.006-2.817) in lung cancer patients. In conclusion, PM2.5 exposure and the possible resultant Zn in the pleural effusion associated with the development of malignant pleural effusion in lung cancer.
Collapse
Affiliation(s)
- Kuan-Jen Bai
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shu-Chuan Ho
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yu Tsai
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Jen-Kun Chen
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan; Graduate Institute of Life Sciences and School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Nin Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Cheng Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Tao Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chien-Ling Su
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
27
|
Nakanishi S, Kamezono R, Nakatani M, Denda M. Comprehensive analysis of elemental distribution in human skin using laser ablation inductively coupled plasma mass spectrometry. Skin Res Technol 2020; 27:576-581. [PMID: 33216424 DOI: 10.1111/srt.12986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/04/2020] [Accepted: 10/30/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Multiple chemical elements play roles in skin homeostasis. The distribution of elements in skin has been studied by X-ray microanalysis methods and fluorescence microscopy using chemical indicators, but the former requires complicated sample preparation steps, while the latter is limited by the availability of suitable chemical indicators. MATERIALS AND METHODS We applied laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to measure the distributions of thirty-eight elements in human skin. RESULTS Among the target elements, nine (calcium: 40 Ca, 44 Ca, zinc: 64 Zn, 66 Zn, phosphorus: 31 P, potassium: 39 K, sodium: 23 Na, sulfur: 34 S, copper: 63 Cu, magnesium: 24 Mg, and iron: 56 Fe) showed distribution patterns that were consistent with previous reports, and four others (iodine: 127 I, barium: 138 Ba, strontium: 88 Sr, and molybdenum: 95 Mo) were detected for the first time in human skin. CONCLUSION The method described here requires only slicing into sections to prepare a sample for measurement, so the elemental distributions are minimally disturbed, and comprehensive information can be obtained rapidly. The method is expected to be useful for research in a variety of fields, including skin diseases, aging, and allergenicity.
Collapse
Affiliation(s)
| | | | - Masashi Nakatani
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | | |
Collapse
|
28
|
Ahmed NS, Lopes-Pires M, Pugh N. Zinc: an endogenous and exogenous regulator of platelet function during hemostasis and thrombosis. Platelets 2020; 32:880-887. [DOI: 10.1080/09537104.2020.1840540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Niaz Shahed Ahmed
- Department of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | | | - Nicholas Pugh
- Department of Life Sciences, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
29
|
The Role of Zinc in Male Fertility. Int J Mol Sci 2020; 21:ijms21207796. [PMID: 33096823 PMCID: PMC7589359 DOI: 10.3390/ijms21207796] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Several studies proposed the importance of zinc ion in male fertility. Here, we describe the properties, roles and cellular mechanisms of action of Zn2+ in spermatozoa, focusing on its involvement in sperm motility, capacitation and acrosomal exocytosis, three functions that are crucial for successful fertilization. The impact of zinc supplementation on assisted fertilization techniques is also described. The impact of zinc on sperm motility has been investigated in many vertebrate and invertebrate species. It has been reported that Zn2+ in human seminal plasma decreases sperm motility and that Zn2+ removal enhances motility. Reduction in the intracellular concentration of Zn2+ during epididymal transit allows the development of progressive motility and the subsequent hyper activated motility during sperm capacitation. Extracellular Zn2+ affects intracellular signaling pathways through its interaction with the Zn2+ sensing receptor (ZnR), also named GPR39. This receptor was found in the sperm tail and the acrosome, suggesting the possible involvement of Zn2+ in sperm motility and acrosomal exocytosis. Our studies showed that Zn2+ stimulates bovine sperm acrosomal exocytosis, as well as human sperm hyper-activated motility, were both mediated by GPR39. Zn2+ binds and activates GPR39, which activates the trans-membrane-adenylyl-cyclase (tmAC) to catalyze cAMP production. The NHE (Na+/H+-exchanger) is activated by cAMP, leading in increased pHi and activation of the sperm-specific Ca2+ channel CatSper, resulting in an increase in [Ca2+]i, which, together with HCO3−, activates the soluble adenylyl-cyclase (sAC). The increase in [cAMP]i activates protein kinase A (PKA), followed by activation of the Src-epidermal growth factor receptor-Pphospholipase C (Src-EGFR-PLC) cascade, resulting in inositol-triphosphate (IP3) production, which mobilizes Ca2+ from the acrosome, causing a further increase in [Ca2+]i and the development of hyper-activated motility. PKA also activates phospholipase D1 (PLD1), leading to F-actin formation during capacitation. Prior to the acrosomal exocytosis, PLC induces phosphadidylinositol-4,5-bisphosphate (PIP2) hydrolysis, leading to the release of the actin-severing protein gelsolin to the cytosol, which is activated by Ca2+, resulting in F-actin breakdown and the occurrence of acrosomal exocytosis.
Collapse
|
30
|
Sarkar T, Mandal T. Preoperative oral zinc tablet decreases incidence of postoperative sore throat. Indian J Anaesth 2020; 64:409-414. [PMID: 32724250 PMCID: PMC7286391 DOI: 10.4103/ija.ija_959_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/26/2020] [Accepted: 04/09/2020] [Indexed: 11/04/2022] Open
Abstract
Background and Aims Postoperative sore throat (POST) is very frequently reported after endotracheal intubation. Zinc lozenge has been shown to reduce POST. The aim of this study was to evaluate the effect of dispersible zinc tablet on POST. Methods Eighty-eight patients undergoing surgery with endotracheal intubation were randomly allocated into two groups, to either receive dispersible zinc tablet 40 mg (zinc group) or placebo tablet (control group), 30 min preoperatively. Assessment for incidence and severity was performed for POST, on a 4-point scale (0-3) at 0, 30 min, 2, 4, and 24 h postoperatively. The primary outcome was incidence of POST at 4 h postoperatively. Secondary outcome was severity of POST at the 5 evaluation time points postoperatively. Mann-Whitney U test, Fisher's exact, and Chi-square test were used as applicable. Results At 4 h, there was a significantly lower incidence of POST in zinc group (6.8%) than the control group (31.8%) with a P value of 0.003. Three patients in placebo group complained of severe POST compared to none in the zinc group. The severity of POST was significantly lower in Zinc group than Placebo group at 0 min (P = 0.003), 30 min (P = 0.002), 2 h (P < 0.001), and 4 h (P = 0.001). Conclusion Preoperative administration of 40 mg dispersible zinc tablet effectively reduces the incidence and severity of POST in the immediate postoperative period.
Collapse
Affiliation(s)
- Tanmay Sarkar
- Department of Anaesthesiology, North Bengal Medical College, Darjeeling, West Bengal, India
| | - Tanuka Mandal
- Department of Anaesthesiology, North Bengal Medical College, Darjeeling, West Bengal, India
| |
Collapse
|
31
|
Farbood Y, Sarkaki A, Mahdavinia M, Ghadiri A, Teimoori A, Seif F, Dehghani MA, Navabi SP. Protective Effects of Co-administration of Zinc and Selenium Against Streptozotocin-Induced Alzheimer's Disease: Behavioral, Mitochondrial Oxidative Stress, and GPR39 Expression Alterations in Rats. Neurotox Res 2020; 38:398-407. [PMID: 32504391 DOI: 10.1007/s12640-020-00226-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 12/18/2022]
Abstract
Changes in the concentrations of trace metals such as zinc (Zn) and selenium (Se) can pathologically lead to neurodegenerative conditions such as the Alzheimer's disease (AD). Previous studies have shown that mitochondrial dysfunction plays an important role in the pathogenesis of AD. Several male Wistar rats were randomly divided into five groups: sham group, AD group that received 3 mg/kg of streptozotocin (STZ) intracerebroventricularly, AD + Zn group that received 10 mg/kg of Zn intraperitoneally (i.p.) for 1 week, AD + Se group that received 0.1 mg/kg of Se i.p. for 1 week, and AD + Zn + Se group that received 10 mg/kg of Zn i.p. plus 0.1 mg/kg of Se i.p. for 1 week. At end of the study, behavioral tests and mitochondrial oxidative stress and GPR39 gene expression evaluations were carried out. Co-administration of Zn and Se significantly decreased the potential collapse of mitochondrial membrane, reactive oxygen species levels, and lipid peroxidation levels while significantly increased cognitive performance, superoxide dismutase (SOD), glutathione peroxidase, and catalase activity in the brain mitochondria compared with the STZ group. In addition, no significant changes were observed in GPR39 expression in the co-treated group. Findings of the current study showed that ZnR/GPR39 receptor, mitochondrial dysfunction, and oxidative stress play important roles in the pathogenesis of AD. Co-treatment of Zn and Se improved the cognitive performance, mitochondrial dysfunction, and oxidative stress caused by STZ-induced AD. Therefore, therapeutic approaches to improve mitochondrial function could be effective in preventing the initiation and progression of AD.
Collapse
Affiliation(s)
- Yaghoob Farbood
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ata Ghadiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Teimoori
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Faezeh Seif
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Amin Dehghani
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyedeh Parisa Navabi
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
32
|
A G-protein coupled receptor 39 agonist stimulates proliferation of keratinocytes via an ERK-dependent pathway. Biomed Pharmacother 2020; 127:110160. [PMID: 32371316 DOI: 10.1016/j.biopha.2020.110160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 12/27/2022] Open
Abstract
Keratinocyte proliferation serves as a crucial process in skin wound healing. The zinc-sensing G-protein coupled receptor 39 (GPR39), which is highly expressed in keratinocytes, has been shown to promote skin wound healing. The aim of this study was to investigate the effect of GPR39 activation on proliferation of keratinocytes and its underlying mechanism using immortalized human keratinocytes (HaCaT) as an in vitro model. GPR39 was functionally expressed in HaCaT cells. BrdU proliferation assays showed that treatment with GPR39 agonist TC-G 1008 (100 nM and 1 μM) increased cell proliferation. TC-G 1008 also enhanced ERK phosphorylation in time- and concentration-dependent manners. This effect was suppressed by co-treatment with wortmannin (PI3K inhibitor) and U0126 (MKK inhibitor). Of note, neither inhibition of Gαq-phospholipase C (PLC)-[Ca2+]i nor Gαs-PKA pathway affected GPR39 stimulation-induced ERK phosphorylation. Similarly, barbadin, an inhibitor of G-protein-independent β-arrestin pathway, did not suppress ERK phosphorylation induced by GPR39 activation. Of particular importance, wortmannin, U0126, and FR180204 (ERK inhibitor) abrogated the effect of TC-G 1008-induced cell proliferation. Taken together, this study reveals novel insights into the role of GPR39 in regulating keratinocyte proliferation via a PI3K-MKK-ERK-dependent mechanism. GPR39 agonists may be used in enhancing keratinocyte proliferation, which may be beneficial for the cutaneous wound treatment.
Collapse
|
33
|
Hadisi Z, Farokhi M, Bakhsheshi-Rad HR, Jahanshahi M, Hasanpour S, Pagan E, Dolatshahi-Pirouz A, Zhang YS, Kundu SC, Akbari M. Hyaluronic Acid (HA)-Based Silk Fibroin/Zinc Oxide Core-Shell Electrospun Dressing for Burn Wound Management. Macromol Biosci 2020; 20:e1900328. [PMID: 32077252 DOI: 10.1002/mabi.201900328] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/11/2020] [Indexed: 01/17/2023]
Abstract
Burn injuries represent a major life-threatening event that impacts the quality of life of patients, and places enormous demands on the global healthcare systems. This study introduces the fabrication and characterization of a novel wound dressing made of core-shell hyaluronic acid-silk fibroin/zinc oxide (ZO) nanofibers for treatment of burn injuries. The core-shell configuration enables loading ZO-an antibacterial agent-in the core of nanofibers, which in return improves the sustained release of the drug and maintains its bioactivity. Successful formation of core-shell nanofibers and loading of zinc oxide are confirmed by transmission electron microscopy, Fourier-transform infrared spectroscopy, and energy dispersive X-ray. The antibacterial activity of the dressings are examined against Escherichia coli and Staphylococcus aureus and it is shown that addition of ZO improves the antibacterial property of the dressing in a dose-dependent fashion. However, in vitro cytotoxicity studies show that high concentration of ZO (>3 wt%) is toxic to the cells. In vivo studies indicate that the wound dressings loaded with ZO (3 wt%) substantially improves the wound healing procedure and significantly reduces the inflammatory response at the wound site. Overall, the dressing introduced herein holds great promise for the management of burn injuries.
Collapse
Affiliation(s)
- Zhina Hadisi
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada.,Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, PO Box 1316943551, Iran
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Maryam Jahanshahi
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada.,Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Sadegh Hasanpour
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada.,Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Erik Pagan
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada.,Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Alireza Dolatshahi-Pirouz
- Radboud university medical center, Radboud Institute for Molecular Life Sciences, Department of Dentistry-Regenerative Biomaterials, Philips van Leydenlaan 25, 6525EX, Nijmegen, The Netherlands.,Department of Health Technology, Institute of Biotherapeutic Engineering and Drug Targeting, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA, 02139, USA
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Institute on Biomaterials, biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Guimaraes, 4805-017, Portugal
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada.,Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC, V8P 5C2, Canada
| |
Collapse
|
34
|
Holmes AM, Mackenzie L, Roberts MS. Disposition and measured toxicity of zinc oxide nanoparticles and zinc ions against keratinocytes in cell culture and viable human epidermis. Nanotoxicology 2020; 14:263-274. [PMID: 32003270 DOI: 10.1080/17435390.2019.1692382] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Suspensions of the UV filter, zinc oxide nanoparticles (ZnO NP), are widely used in sunscreen products. This paper compared the relative disposition and local cytotoxicity of ZnO NP, and zinc ions formed on its dissolution, against keratinocyte cultures and in the human epidermis (ex vivo) after application of suspensions of ZnO NP. HaCaT keratinocyte cytotoxicities were found to be related to labile intra-cellular zinc but also total zinc and extra-cellular concentrations in cell culture media and to a degree ameliorated by the presence of a zinc chelating agent. Secondly, the zinc species were then dosed onto exposed ex vivo viable human epidermis and it was found that an increase in labile zinc level correlated with a shift in the metabolic state of the viable epidermis. This study highlights that excised viable skin acts as a more relevant model for determining cutaneous toxicity over keratinocyte monolayers in vitro.
Collapse
Affiliation(s)
- Amy M Holmes
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, Australia.,Quality Medication Care Pty Ltd, Basil Hetzel Institute for Translational Medical Research, The Queen Elizabeth Hospital, Adelaide, Australia
| | - Lorraine Mackenzie
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, Australia.,Quality Medication Care Pty Ltd, Basil Hetzel Institute for Translational Medical Research, The Queen Elizabeth Hospital, Adelaide, Australia
| | - Michael S Roberts
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, Australia.,Therapeutics Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
35
|
Nishida K, Hasegawa A, Yamasaki S, Uchida R, Ohashi W, Kurashima Y, Kunisawa J, Kimura S, Iwanaga T, Watarai H, Hase K, Ogura H, Nakayama M, Kashiwakura JI, Okayama Y, Kubo M, Ohara O, Kiyono H, Koseki H, Murakami M, Hirano T. Mast cells play role in wound healing through the ZnT2/GPR39/IL-6 axis. Sci Rep 2019; 9:10842. [PMID: 31346193 PMCID: PMC6658492 DOI: 10.1038/s41598-019-47132-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/11/2019] [Indexed: 01/08/2023] Open
Abstract
Zinc (Zn) is an essential nutrient and its deficiency causes immunodeficiency and skin disorders. Various cells including mast cells release Zn-containing granules when activated; however, the biological role of the released Zn is currently unclear. Here we report our findings that Zn transporter ZnT2 is required for the release of Zn from mast cells. In addition, we found that Zn and mast cells induce IL-6 production from inflammatory cells such as skin fibroblasts and promote wound healing, a process that involves inflammation. Zn induces the production of a variety of pro-inflammatory cytokines including IL-6 through signaling pathways mediated by the Zn receptor GPR39. Consistent with these findings, wound healing was impaired in mice lacking IL-6 or GPR39. Thus, our results show that Zn and mast cells play a critical role in wound healing through activation of the GPR39/IL-6 signaling axis.
Collapse
Affiliation(s)
- Keigo Nishida
- Laboratory of Immune Regulation, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka, Mie, 513-8670, Japan. .,Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| | - Aiko Hasegawa
- Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.,Department of Pediatrics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Satoru Yamasaki
- Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.,Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Ryota Uchida
- Laboratory of Immune Regulation, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka, Mie, 513-8670, Japan
| | - Wakana Ohashi
- Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.,Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, 930-0194, Japan
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, the Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan.,Department of Mucosal Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Division of Clinical Vaccinology, International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan.,Institute for Global Prominent Research, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), University of California San Diego, 9500 Gilman Dr. MC 0063, San Diego, CA, 92093-0063, United States.,Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085, Japan.,Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Shunsuke Kimura
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan.,Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Hiroshi Watarai
- Department of Immunology and Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan.,International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo (IMSUT), 108-8639, Tokyo, Japan
| | - Hideki Ogura
- Department of Microbiology, Hyogo College of Medicine 1-1, Mukogawa-cho, Nishinomiya, 663-8501, Japan
| | - Manabu Nakayama
- Laboratory of Medical Omics Research, Department of Frontier Research and Development, Kazusa DNA Research Institute,2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Jun-Ichi Kashiwakura
- Laboratory of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yoshimichi Okayama
- Allergy and Immunology Project Team, Center for Allergy, Center for Medical Education, Nihon University School of Medicine, 30-1 Oyaguchi Kamicho Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Masato Kubo
- Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.,Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba, 278-0022, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, the Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan.,Division of Clinical Vaccinology, International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan.,Institute for Global Prominent Research, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), University of California San Diego, 9500 Gilman Dr. MC 0063, San Diego, CA, 92093-0063, United States.,Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 060-815, Japan
| | - Toshio Hirano
- Headquarters, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
36
|
Mero M, Asraf H, Sekler I, Taylor KM, Hershfinkel M. ZnR/GPR39 upregulation of K +/Cl --cotransporter 3 in tamoxifen resistant breast cancer cells. Cell Calcium 2019; 81:12-20. [PMID: 31146164 DOI: 10.1016/j.ceca.2019.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023]
Abstract
Expression of the zinc receptor, ZnR/GPR39, is increased in higher grade breast cancer tumors and cells. Zinc, its ligand, is accumulated at larger concentrations in the tumor tissue and can therefore activate ZnR/GPR39-dependent Ca2+ signaling leading to tumor progression. The K+/Cl- co-transporters (KCC), activated by intracellular signaling, enhance breast cancer cell migration and invasion. We asked if ZnR/GPR39 enhances breast cancer cell malignancy by activating KCC. Activation of ZnR/GPR39 by Zn2+ upregulated K+/Cl- co-transport activity, measured using NH4+ as a surrogate to K+ while monitoring intracellular pH. Upregulation of NH4+ transport was monitored in tamoxifen resistant cells with functional ZnR/GPR39-dependent Ca2+ signaling but not in MCF-7 cells lacking this response. The NH4+ transport was Na+-independent, and we therefore focused on KCC family members. Silencing of KCC3, but not KCC4, expression abolished Zn2+-dependent K+/Cl- co-transport, suggesting that KCC3 is mediating upregulated NH4+ transport. The ZnR/GPR39-dependent KCC3 activation accelerated scratch closure rate, which was abolished by inhibiting KCC transport with [(DihydroIndenyl) Oxy] Alkanoic acid (DIOA). Importantly, silencing of either ZnR/GPR39 or KCC3 attenuated Zn2+-dependent scratch closure. Thus, a novel link between KCC3 and Zn2+, via ZnR/GPR39, promotes breast cancer cell migration and proliferation.
Collapse
Affiliation(s)
- Maayan Mero
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hila Asraf
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Kathryn M Taylor
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
37
|
Ahmed NS, Lopes Pires ME, Taylor KA, Pugh N. Agonist-Evoked Increases in Intra-Platelet Zinc Couple to Functional Responses. Thromb Haemost 2018; 119:128-139. [PMID: 30597507 PMCID: PMC6327715 DOI: 10.1055/s-0038-1676589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background
Zinc (Zn
2+
) is an essential trace element that regulates intracellular processes in multiple cell types. While the role of Zn
2+
as a platelet agonist is known, its secondary messenger activity in platelets has not been demonstrated.
Objectives
This article determines whether cytosolic Zn
2+
concentrations ([Zn
2+
]
i
) change in platelets in response to agonist stimulation, in a manner consistent with a secondary messenger, and correlates the effects of [Zn
2+
]
i
changes on activation markers.
Methods
Changes in [Zn
2+
]
i
were quantified in Fluozin-3 (Fz-3)-loaded washed, human platelets using fluorometry. Increases in [Zn
2+
]
i
were modelled using Zn
2+
-specific chelators and ionophores. The influence of [Zn
2+
]
i
on platelet function was assessed using platelet aggregometry, flow cytometry and Western blotting.
Results
Increases of intra-platelet Fluozin-3 (Fz-3) fluorescence occurred in response to stimulation by cross-linked collagen-related peptide (CRP-XL) or U46619, consistent with a rise of [Zn
2+
]
i
. Fluoresence increases were blocked by Zn
2+
chelators and modulators of the platelet redox state, and were distinct from agonist-evoked [Ca
2+
]
i
signals. Stimulation of platelets with the Zn
2+
ionophores clioquinol (Cq) or pyrithione (Py) caused sustained increases of [Zn
2+
]
i
, resulting in myosin light chain phosphorylation, and cytoskeletal re-arrangements which were sensitive to cytochalasin-D treatment. Cq stimulation resulted in integrin α
IIb
β
3
activation and release of dense, but not α, granules. Furthermore, Zn
2+
-ionophores induced externalization of phosphatidylserine.
Conclusion
These data suggest that agonist-evoked fluctuations in intra-platelet Zn
2+
couple to functional responses, in a manner that is consistent with a role as a secondary messenger. Increased intra-platelet Zn
2+
regulates signalling processes, including shape change, α
IIb
β
3
up-regulation and dense granule release, in a redox-sensitive manner.
Collapse
Affiliation(s)
- Niaz S Ahmed
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Maria E Lopes Pires
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Kirk A Taylor
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nicholas Pugh
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| |
Collapse
|
38
|
Sobczak AIS, Pitt SJ, Stewart AJ. Influence of zinc on glycosaminoglycan neutralisation during coagulation. Metallomics 2018; 10:1180-1190. [PMID: 30132486 PMCID: PMC6148461 DOI: 10.1039/c8mt00159f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/24/2018] [Indexed: 12/31/2022]
Abstract
Heparan sulfate (HS), dermatan sulfate (DS) and heparin are glycosaminoglycans (GAGs) that serve as key natural and pharmacological anticoagulants. During normal clotting such agents require to be inactivated or neutralised. Several proteins have been reported to facilitate their neutralisation, which reside in platelet α-granules and are released following platelet activation. These include histidine-rich-glycoprotein (HRG), fibrinogen and high-molecular-weight kininogen (HMWK). Zinc ions (Zn2+) are also present in α-granules at a high concentration and participate in the propagation of coagulation by influencing the binding of neutralising proteins to GAGs. Zn2+ in many cases increases the affinity of these proteins to GAGs, and is thus an important regulator of GAG neutralisation and haemostasis. Binding of Zn2+ to HRG, HMWK and fibrinogen is mediated predominantly through coordination to histidine residues but the mechanisms by which Zn2+ increases the affinity of the proteins for GAGs are not yet completely clear. Here we will review current knowledge of how Zn2+ binds to and influences the neutralisation of GAGs and describe the importance of this process in both normal and pathogenic clotting.
Collapse
Affiliation(s)
- Amélie I. S. Sobczak
- School of Medicine
, University of St Andrews
,
Medical and Biological Sciences Building
, St Andrews
, Fife
, UK
.
; Fax: +44 (0)1334 463482
; Tel: +44 (0)1334 463546
| | - Samantha J. Pitt
- School of Medicine
, University of St Andrews
,
Medical and Biological Sciences Building
, St Andrews
, Fife
, UK
.
; Fax: +44 (0)1334 463482
; Tel: +44 (0)1334 463546
| | - Alan J. Stewart
- School of Medicine
, University of St Andrews
,
Medical and Biological Sciences Building
, St Andrews
, Fife
, UK
.
; Fax: +44 (0)1334 463482
; Tel: +44 (0)1334 463546
| |
Collapse
|
39
|
Ventura-Bixenshpaner H, Asraf H, Chakraborty M, Elkabets M, Sekler I, Taylor KM, Hershfinkel M. Enhanced ZnR/GPR39 Activity in Breast Cancer, an Alternative Trigger of Signaling Leading to Cell Growth. Sci Rep 2018; 8:8119. [PMID: 29802348 PMCID: PMC5970167 DOI: 10.1038/s41598-018-26459-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/20/2018] [Indexed: 12/14/2022] Open
Abstract
Acquired resistance to the estrogen receptor (ER) antagonist tamoxifen, is a major obstacle in treatment of breast cancer. Changes in Zn2+ accumulation and distribution are associated with tamoxifen-resistance and breast cancer progression. The Zn2+-sensing G-protein coupled receptor, ZnR/GPR39, triggers signaling leading to cell growth, but a role for this receptor in breast cancer in unknown. Using fluorescence imaging, we found Zn2+-dependent Ca2+ release, mediated by ZnR/GPR39 activity, in TAMR tamoxifen-resistant cells derived from MCF-7 cells, but not in ER-expressing MCF-7 or T47D cells. Furthermore, ZnR/GPR39 signaling was monitored in ER negative BT20, MDA-MB-453 and JIMT-1 cells. Expression of ZnR/GPR39 was increased in grade 3 human breast cancer biopsies compared to grade 2. Consistently, analysis of two breast cancer patient cohorts, GDS4057 and TCGA, indicated that in ER-negative tumors higher ZnR/GPR39 mRNA levels are associated with more aggressive tumors. Activation of ZnR/GPR39 in TAMR cells triggered MAPK, mTOR and PI3K signaling. Importantly, enhanced cell growth and invasiveness was observed in the ER negative breast cancer cells, TAMR, MDA-MB-453 and BT20 cells but not in the ER expressing MCF-7 cells. Thus, we suggest ZnR/GPR39 as a potential therapeutic target for combination treatment in breast cancer, particularly relevant in ER negative tumors.
Collapse
Affiliation(s)
- Hila Ventura-Bixenshpaner
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hila Asraf
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Moumita Chakraborty
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Kathryn M Taylor
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
40
|
Zhu D, Su Y, Zheng Y, Fu B, Tang L, Qin YX. Zinc regulates vascular endothelial cell activity through zinc-sensing receptor ZnR/GPR39. Am J Physiol Cell Physiol 2018; 314:C404-C414. [PMID: 29351417 PMCID: PMC5966790 DOI: 10.1152/ajpcell.00279.2017] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/28/2017] [Accepted: 12/11/2017] [Indexed: 01/20/2023]
Abstract
Zn2+ is an essential element for cell survival/growth, and its deficiency is linked to many disorders. Extracellular Zn2+ concentration changes participate in modulating fundamental cellular processes such as proliferation, secretion, ion transport, and cell signal transduction in a mechanism that is not well understood. Here, we hypothesize that the Zn2+-sensing receptor ZnR/G protein-coupled receptor 39 (GPR39), found in tissues where dynamic Zn2+ homeostasis takes place, enables extracellular Zn2+ to trigger intracellular signaling pathways regulating key cell functions in vascular cells. Thus, we investigated how extracellular Zn2+ regulates cell viability, proliferation, motility, angiogenesis, vascular tone, and inflammation through ZnR/GPR39 in endothelial cells. Knockdown of GPR39 through siRNA largely abolished Zn2+-triggered cellular activity changes, Ca2+ responses, as well as the downstream activation of Gαq-PLC pathways. Extracellular Zn2+ promoted vascular cell survival/growth through activation of cAMP and Akt as well as overexpressing of platelet-derived growth factor-α receptor and vascular endothelial growth factor A. It also enhanced cell adhesion and mobility, endothelial tubule formation, and cytoskeletal reorganization. Such effects from extracellular Zn2+ were not observed in GPR39-/- endothelial cells. Zn2+ also regulated inflammation-related key molecules such as heme oxygenase-1, selectin L, IL-10, and platelet endothelial cell adhesion molecule 1, as well as vascular tone-related prostaglandin I2 synthase and nitric oxide synthase-3. In sum, extracellular Zn2+ regulates endothelial cell activity in a ZnR/GPR39-dependent manner and through the downstream Gαq-PLC pathways. Thus, ZnR/GPR39 may be a therapeutic target for regulating endothelial activity.
Collapse
Affiliation(s)
- Donghui Zhu
- Department of Biomedical Engineering, University of North Texas , Denton, Texas
| | - Yingchao Su
- Department of Biomedical Engineering, University of North Texas , Denton, Texas
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University , Beijing , China
| | - Bingmei Fu
- Department of Biomedical Engineering, The City College of the City University of New York , New York, New York
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington , Arlington, Texas
| | - Yi-Xian Qin
- Department of Biomedical Engineering, State University of New York at Stony Brook , Stony Brook, New York
| |
Collapse
|
41
|
Critical Role of Zinc as Either an Antioxidant or a Prooxidant in Cellular Systems. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9156285. [PMID: 29743987 PMCID: PMC5884210 DOI: 10.1155/2018/9156285] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 01/11/2023]
Abstract
Zinc is recognized as an essential trace metal required for human health; its deficiency is strongly associated with neuronal and immune system defects. Although zinc is a redox-inert metal, it functions as an antioxidant through the catalytic action of copper/zinc-superoxide dismutase, stabilization of membrane structure, protection of the protein sulfhydryl groups, and upregulation of the expression of metallothionein, which possesses a metal-binding capacity and also exhibits antioxidant functions. In addition, zinc suppresses anti-inflammatory responses that would otherwise augment oxidative stress. The actions of zinc are not straightforward owing to its numerous roles in biological systems. It has been shown that zinc deficiency and zinc excess cause cellular oxidative stress. To gain insights into the dual action of zinc, as either an antioxidant or a prooxidant, and the conditions under which each role is performed, the oxidative stresses that occur in zinc deficiency and zinc overload in conjunction with the intracellular regulation of free zinc are summarized. Additionally, the regulatory role of zinc in mitochondrial homeostasis and its impact on oxidative stress are briefly addressed.
Collapse
|
42
|
The Role of the Slc39a Family of Zinc Transporters in Zinc Homeostasis in Skin. Nutrients 2018; 10:nu10020219. [PMID: 29462920 PMCID: PMC5852795 DOI: 10.3390/nu10020219] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/27/2018] [Accepted: 02/11/2018] [Indexed: 12/20/2022] Open
Abstract
The first manifestations that appear under zinc deficiency are skin defects such as dermatitis, alopecia, acne, eczema, dry, and scaling skin. Several genetic disorders including acrodermatitis enteropathica (also known as Danbolt-Closs syndrome) and Brandt's syndrome are highly related to zinc deficiency. However, the zinc-related molecular mechanisms underlying normal skin development and homeostasis, as well as the mechanism by which disturbed zinc homeostasis causes such skin disorders, are unknown. Recent genomic approaches have revealed the physiological importance of zinc transporters in skin formation and clarified their functional impairment in cutaneous pathogenesis. In this review, we provide an overview of the relationships between zinc deficiency and skin disorders, focusing on the roles of zinc transporters in the skin. We also discuss therapeutic outlooks and advantages of controlling zinc levels via zinc transporters to prevent cutaneous disorganization.
Collapse
|
43
|
Larsen HF, Ahlström MG, Gjerdrum LMR, Mogensen M, Ghathian K, Calum H, Sørensen AL, Forman JL, Vandeven M, Holerca MN, Du-Thumm L, Jorgensen LN, Ågren MS. Noninvasive measurement of reepithelialization and microvascularity of suction-blister wounds with benchmarking to histology. Wound Repair Regen 2018; 25:984-993. [DOI: 10.1111/wrr.12605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Heidi F. Larsen
- Department of Dermatology and Copenhagen Wound Healing Center, Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| | - Malin G. Ahlström
- Department of Dermatology and Copenhagen Wound Healing Center, Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| | | | - Mette Mogensen
- Department of Dermatology and Copenhagen Wound Healing Center, Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| | - Khaled Ghathian
- Department of Clinical Microbiology, Hvidovre Hospital; University of Copenhagen; Copenhagen Denmark
| | - Henrik Calum
- Department of Clinical Microbiology, Hvidovre Hospital; University of Copenhagen; Copenhagen Denmark
| | - Anne L. Sørensen
- Section of Biostatistics, Department of Public Health; University of Copenhagen; Copenhagen Denmark
| | - Julie L. Forman
- Section of Biostatistics, Department of Public Health; University of Copenhagen; Copenhagen Denmark
| | | | | | | | - Lars N. Jorgensen
- Digestive Disease Center, Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| | - Magnus S. Ågren
- Department of Dermatology and Copenhagen Wound Healing Center, Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
- Digestive Disease Center, Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
44
|
Abstract
The skin is the third most zinc (Zn)-abundant tissue in the body. The skin consists of the epidermis, dermis, and subcutaneous tissue, and each fraction is composed of various types of cells. Firstly, we review the physiological functions of Zn and Zn transporters in these cells. Several human disorders accompanied with skin manifestations are caused by mutations or dysregulation in Zn transporters; acrodermatitis enteropathica (Zrt-, Irt-like protein (ZIP)4 in the intestinal epithelium and possibly epidermal basal keratinocytes), the spondylocheiro dysplastic form of Ehlers-Danlos syndrome (ZIP13 in the dermal fibroblasts), transient neonatal Zn deficiency (Zn transporter (ZnT)2 in the secretory vesicles of mammary glands), and epidermodysplasia verruciformis (ZnT1 in the epidermal keratinocytes). Additionally, acquired Zn deficiency is deeply involved in the development of some diseases related to nutritional deficiencies (acquired acrodermatitis enteropathica, necrolytic migratory erythema, pellagra, and biotin deficiency), alopecia, and delayed wound healing. Therefore, it is important to associate the existence of mutations or dysregulation in Zn transporters and Zn deficiency with skin manifestations.
Collapse
|
45
|
González-Mariscal L, Raya-Sandino A, González-González L, Hernández-Guzmán C. Relationship between G proteins coupled receptors and tight junctions. Tissue Barriers 2018; 6:e1414015. [PMID: 29420165 DOI: 10.1080/21688370.2017.1414015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tight junctions (TJs) are sites of cell-cell adhesion, constituted by a cytoplasmic plaque of molecules linked to integral proteins that form a network of strands around epithelial and endothelial cells at the uppermost portion of the lateral membrane. TJs maintain plasma membrane polarity and form channels and barriers that regulate the transit of ions and molecules through the paracellular pathway. This structure that regulates traffic between the external milieu and the organism is affected in numerous pathological conditions and constitutes an important target for therapeutic intervention. Here, we describe how a wide array of G protein-coupled receptors that are activated by diverse stimuli including light, ions, hormones, peptides, lipids, nucleotides and proteases, signal through heterotrimeric G proteins, arrestins and kinases to regulate TJs present in the blood-brain barrier, the blood-retinal barrier, renal tubular cells, keratinocytes, lung and colon, and the slit diaphragm of the glomerulus.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| | - Arturo Raya-Sandino
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| | - Laura González-González
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| | - Christian Hernández-Guzmán
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| |
Collapse
|
46
|
Hershfinkel M. The Zinc Sensing Receptor, ZnR/GPR39, in Health and Disease. Int J Mol Sci 2018; 19:ijms19020439. [PMID: 29389900 PMCID: PMC5855661 DOI: 10.3390/ijms19020439] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
A distinct G-protein coupled receptor that senses changes in extracellular Zn2+, ZnR/GPR39, was found in cells from tissues in which Zn2+ plays a physiological role. Most prominently, ZnR/GPR39 activity was described in prostate cancer, skin keratinocytes, and colon epithelial cells, where zinc is essential for cell growth, wound closure, and barrier formation. ZnR/GPR39 activity was also described in neurons that are postsynaptic to vesicular Zn2+ release. Activation of ZnR/GPR39 triggers Gαq-dependent signaling and subsequent cellular pathways associated with cell growth and survival. Furthermore, ZnR/GPR39 was shown to regulate the activity of ion transport mechanisms that are essential for the physiological function of epithelial and neuronal cells. Thus, ZnR/GPR39 provides a unique target for therapeutically modifying the actions of zinc in a specific and selective manner.
Collapse
Affiliation(s)
- Michal Hershfinkel
- Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, POB 653, Ben-Gurion Ave. Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
47
|
Sunuwar L, Medini M, Cohen L, Sekler I, Hershfinkel M. The zinc sensing receptor, ZnR/GPR39, triggers metabotropic calcium signalling in colonocytes and regulates occludin recovery in experimental colitis. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0420. [PMID: 27377730 DOI: 10.1098/rstb.2015.0420] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2016] [Indexed: 12/22/2022] Open
Abstract
Impaired epithelial barrier function is a hallmark of inflammatory bowel diseases, such as colitis, contributing to diarrhoea and perpetuating inflammation. We show that the zinc sensing receptor, ZnR/GPR39, triggers intracellular Ca(2+) signalling in colonocytes thereby inducing occludin expression. Moreover, ZnR/GPR39 is essential for epithelial barrier recovery in the dextran sodium sulfate (DSS) ulcerative colitis model. Loss of ZnR/GPR39 results in increased susceptibility to DSS-induced inflammation, owing to low expression of the tight junction protein occludin and impaired epithelial barrier. Recovery of wild-type (WT) mice from the DSS insult was faster than that of ZnR/GPR39 knockout (KO) mice. Enhanced recovery of the epithelial layer and increased crypt regeneration were observed in WT mice compared with ZnR/GPR39 KO, suggesting that ZnR/GPR39 is promoting epithelial barrier integrity following DSS insult. Indeed, cell proliferation and apical expression of occludin, following the DSS-induced epithelial erosion, were increased in WT tissue but not in ZnR/GPR39 KO tissue. Importantly, survival following DSS treatment was higher in WT mice compared with ZnR/GPR39 KO mice. Our results support a direct role for ZnR/GPR39 in promoting epithelial renewal and barrier function following DSS treatment, thereby affecting the severity of the disease. We suggest ZnR/GPR39 as a novel therapeutic target that can improve epithelial barrier function in colitis.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Laxmi Sunuwar
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Michal Medini
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Limor Cohen
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
48
|
Justiniano R, Perer J, Hua A, Fazel M, Krajisnik A, Cabello CM, Wondrak GT. A Topical Zinc Ionophore Blocks Tumorigenic Progression in UV-exposed SKH-1 High-risk Mouse Skin. Photochem Photobiol 2017; 93:1472-1482. [PMID: 28503778 DOI: 10.1111/php.12794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023]
Abstract
Nonmelanoma skin cancer (NMSC) is the most common malignancy in the United States representing a considerable public health burden. Pharmacological suppression of skin photocarcinogenesis has shown promise in preclinical and clinical studies, but more efficacious photochemopreventive agents are needed. Here, we tested feasibility of harnessing pharmacological disruption of intracellular zinc homeostasis for photochemoprevention in vitro and in vivo. Employing the zinc ionophore and FDA-approved microbicidal agent zinc pyrithione (ZnPT), used worldwide in over-the-counter (OTC) topical consumer products, we first demonstrated feasibility of achieving ZnPT-based intracellular Zn2+ overload in cultured malignant keratinocytes (HaCaT-ras II-4; SCC-25) employing membrane-permeable fluorescent probes. Zinc overload was accompanied by induction of intracellular oxidative stress, associated with mitochondrial superoxide release as substantiated by MitoSOX Red™ fluorescence microscopy. ZnPT-induced cell death observable in malignant keratinocytes was preceded by induction of metal (MT2A), proteotoxic (HSPA6, HSPA1A, DDIT3, HMOX1) and genotoxic stress response (GADD45A, XRCC2) gene expression at the mRNA and protein levels. Comet analysis revealed introduction of formamidopyrimidine-DNA glycosylase (Fpg)-sensitive oxidative DNA lesions. In a photocarcinogenesis model (UV-exposed SKH-1 high-risk mouse skin), topical ZnPT administration post-UV caused epidermal zinc overload and stress response gene expression with pronounced blockade of tumorigenesis. Taken together, these data suggest feasibility of repurposing a topical OTC drug for zinc-directed photochemoprevention of solar UV-induced NMSC.
Collapse
Affiliation(s)
- Rebecca Justiniano
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ
| | - Jessica Perer
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ
| | - Anh Hua
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ
| | - Mohammad Fazel
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ
| | - Andrea Krajisnik
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ
| | - Christopher M Cabello
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ
| |
Collapse
|
49
|
Shimizu Y, Koyama R, Kawamoto T. Rho kinase-dependent desensitization of GPR39; a unique mechanism of GPCR downregulation. Biochem Pharmacol 2017; 140:105-114. [PMID: 28619258 DOI: 10.1016/j.bcp.2017.06.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/09/2017] [Indexed: 12/14/2022]
Abstract
GPR39, a G-protein-coupled receptor activated by zinc, reportedly activates multiple intracellular signaling pathways via Gs, Gq, G12/13, and β-arrestin, but little is known about downregulation of the receptor upon its activation. To our knowledge, this is the first report on the mechanism of feedback regulation of GPR39 function determined in GPR39-expressing HEK293 cells (HEK293-GPR39) as a model cell system. In HEK293-GPR39 cells, GPR39-C3, which is a positive allosteric modulator, activated cAMP production (downstream of Gs), IP1 accumulation (downstream of Gq), SRF-RE-dependent transcription (downstream of G12/13), and β-arrestin recruitment. GPR39-C3 induced dose- and time-dependent loss of response in cAMP production by second challenge of the compound. This functional desensitization was blocked by the Rho kinase (ROCK) inhibitor, Y-27632, but not by Gq or Gs-pathway inhibitors or inhibition of β-arrestin recruitment. In the receptor localization assay, GPR39-C3 induced internalization of GFP-tagged GPR39. This internalization was also inhibited by Y-27632, which suggested that ROCK activation is critical for internalization and desensitization of GPR39. A novel biased GPR39 positive allosteric modulator, 5-[2-[(2,4-dichlorophenyl)methoxy]phenyl]-2,2-dimethyl-1,3,5,6-tetrahydrobenzo[a]phenanthridin-4-one (GSB-118), which activated cAMP responses and β-arrestin recruitment but showed no effect on SRF-RE-dependent transcription, did not induce desensitization. These results revealed a unique mechanism of desensitization of GPR39.
Collapse
Affiliation(s)
- Yuji Shimizu
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Ryokichi Koyama
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomohiro Kawamoto
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
50
|
Zavoshti FR, Andrews FM. Therapeutics for Equine Gastric Ulcer Syndrome. Vet Clin North Am Equine Pract 2017; 33:141-162. [PMID: 28325176 DOI: 10.1016/j.cveq.2016.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Equine gastric ulcer syndrome (EGUS) is an umbrella term used to describe ulcers in the nonglandular squamous and glandular mucosa, terminal esophagus, and proximal duodenum. Gastric ulcers in the squamous and glandular regions occur more often than esophageal or duodenal ulcers and likely have a different pathogenesis. At present, omeprazole is accepted globally as the best pharmacologic therapy for both regions of the stomach; however, the addition of coating agents and synthetic prostaglandins could add to its effectiveness in treatment of EGUS. Dietary and environmental management are necessary for prevention of recurrence.
Collapse
Affiliation(s)
| | - Frank M Andrews
- Equine Health Studies Program, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Skip Bertman Drive, LA 70803, USA.
| |
Collapse
|