1
|
Wijeweera S, Duncan O, Millar AH. Spatial and development responses in the wheat leaf highlight the loss of chloroplast protein homeostasis during salt stress. J Proteomics 2025; 316:105438. [PMID: 40189140 DOI: 10.1016/j.jprot.2025.105438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/20/2025]
Abstract
Salinity stress in wheat affects physiological and biochemical parameters in tissues that alter plant development and ultimately lower crop yield. Shoot tissues can accumulate high concentrations of sodium over time through the transpiration stream coming from the roots. This imposes physiological responses that align salt effects with the basipetal developmental gradient of the monocot leaf. The role of metabolic processes in generating and responding to these increases in sodium concentration over time was explored by linking changes in ion distributions to those of enzyme abundance from the base to the tip of leaves under salt stress. We found that enzymes for methionine synthesis and lipid degradation pathways increase, concomitantly with proteins in jasmonate synthesis, which are key players in plant stress-induced responses. Combining the use of Differential Abundance of Protein analysis and Weighted Correlation Network Analysis we have focused on identifying key protein hubs associated with responses to salt stress or salt susceptibility, shedding light on potential sites of salt sensitivity as targets for enhancing salt tolerance in wheat. We found chloroplast protein synthesis machinery, including the 30S and 50S ribosomal proteins, and plastid localised protein synthesis elongation factors, were significantly reduced in abundance and correlated with the altered K+/Na+ ratio along salt-stressed wheat leaves. Additionally, the plastid protease system including ATP-dependent caseinolytic protease and filamentous temperature-sensitive H proteases involved in chloroplast protein homeostasis, show decreased abundance with salt. The complex interplay of these processes in and across the leaf affects overall plant viability under salt stress mainly affecting the energy homeostasis in wheat shoot. Data are available via ProteomeXchange with identifier PXD059765. SIGNIFICANCE: Soil salinity is a major agricultural challenge that cause significant reduction in wheat yields, a staple crop vital for global food security. Despite extensive breeding efforts, developing salt-tolerant wheat remains challenging due to the complex, multi-genic nature of salinity tolerance. While numerous studies have explored molecular responses to salt stress making salt to control comparisons, there is little consensus on the primary points of metabolic disruptions that would determine the salt response in wheat. Our study addresses this gap by integrating proteomics with Weighted Correlation Network Analysis to examine metabolic responses along the developmental gradient of wheat leaves. By exploiting the natural base-to-tip progression of leaf maturation under salt stress, we identify key protein groups linked to salt response. These findings provide new insights into potential metabolic targets for enhancing wheat's resilience to salinity stress.
Collapse
Affiliation(s)
- Samalka Wijeweera
- The University of Western Australia, The ARC Centre of Excellence in Plants for Space and School of Molecular Sciences, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Owen Duncan
- The University of Western Australia, The ARC Centre of Excellence in Plants for Space and School of Molecular Sciences, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - A Harvey Millar
- The University of Western Australia, The ARC Centre of Excellence in Plants for Space and School of Molecular Sciences, 35 Stirling Highway, Crawley, Perth 6009, Australia.
| |
Collapse
|
2
|
Sun L, Zhang P, Xing M, Li R, Yu H, Ju Q, Yang J, Xu J. NAC32 alleviates magnesium toxicity-induced cell death through positive regulation of XIPOTL1 expression. PLANT PHYSIOLOGY 2023; 191:849-853. [PMID: 36477811 PMCID: PMC9922428 DOI: 10.1093/plphys/kiac562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Abscisic acid–inducible NAC32 alleviates magnesium toxicity-mediated cell death in roots through direct regulation of XIPOTL1 expression in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jin Xu
- Author for correspondence:
| |
Collapse
|
3
|
Ngo AH, Angkawijaya AE, Lin YC, Liu YC, Nakamura Y. The phospho-base N-methyltransferases PMT1 and PMT2 produce phosphocholine for leaf growth in phosphorus-starved Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2985-2994. [PMID: 35560207 DOI: 10.1093/jxb/erab436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/04/2021] [Indexed: 06/15/2023]
Abstract
Phosphorus (P) is an essential nutrient for plants. Membrane lipid remodeling is an adaptive mechanism for P-starved plants that replaces membrane phospholipids with non-P galactolipids, presumably to retrieve scarce P sources and maintain membrane integrity. Whereas metabolic pathways to convert phospholipids to galactolipids are well-established, the mechanism by which phospholipid biosynthesis is involved in this process remains elusive. Here, we report that phospho-base N-methyltransferases 1 and 2 (PMT1 and PMT2), which convert phosphoethanolamine to phosphocholine (PCho), are transcriptionally induced by P starvation. Shoots of seedlings of pmt1 pmt2 double mutant showed defective growth upon P starvation; however, membrane lipid profiles were unaffected. We found that P-starved pmt1 pmt2 with defective leaf growth had reduced PCho content, and the growth defect was rescued by exogenous supplementation of PCho. We propose that PMT1 and PMT2 are induced by P starvation to produce PCho mainly for leaf growth maintenance, rather than for phosphatidylcholine biosynthesis, in membrane lipid remodeling.
Collapse
Affiliation(s)
- Anh H Ngo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | - Ying-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Chi Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Japan
| |
Collapse
|
4
|
Kanehara K, Cho Y, Yu CY. A lipid viewpoint on the plant endoplasmic reticulum stress response. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2835-2847. [PMID: 35560195 DOI: 10.1093/jxb/erac063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/15/2022] [Indexed: 06/15/2023]
Abstract
Organisms, including humans, seem to be constantly exposed to various changes, which often have undesirable effects, referred to as stress. To keep up with these changes, eukaryotic cells may have evolved a number of relevant cellular processes, such as the endoplasmic reticulum (ER) stress response. Owing to presumably intimate links between human diseases and the ER function, the ER stress response has been extensively investigated in various organisms for a few decades. Based on these studies, we now have a picture of the molecular mechanisms of the ER stress response, one of which, the unfolded protein response (UPR), is highly conserved among yeasts, mammals, higher plants, and green algae. In this review, we attempt to highlight the plant UPR from the perspective of lipids, especially membrane phospholipids. Phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn) are the most abundant membrane phospholipids in eukaryotic cells. The ratio of PtdCho to PtdEtn and the unsaturation of fatty acyl tails in both phospholipids may be critical factors for the UPR, but the pathways responsible for PtdCho and PtdEtn biosynthesis are distinct in animals and plants. We discuss the plant UPR in comparison with the system in yeasts and animals in the context of membrane phospholipids.
Collapse
Affiliation(s)
- Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yueh Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chao-Yuan Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
5
|
Liu YC, Tan YR, Chang CW, Nguyen VC, Kanehara K, Kobayashi K, Nakamura Y. Functional divergence of a pair of Arabidopsis phospho-base methyltransferases, PMT1 and PMT3, conferred by distinct N-terminal sequences. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1198-1212. [PMID: 35306708 DOI: 10.1111/tpj.15741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
In seed plants, phospho-base N-methyltransferase (PMT) catalyzes a key step in the biosynthesis pathway of phosphatidylcholine (PC), the most abundant phospholipid class. Arabidopsis thaliana possesses three copies of PMT, with PMT1 and PMT3 play a primary role because the pmt1 pmt3 double mutant shows considerably reduced PC content with a pale seedling phenotype. Although the function of PMT1 and PMT3 may be redundant because neither of the parental single mutants showed a similar mutant phenotype, major developmental defects and possible functional divergence of these PMTs underlying the pale pmt1 pmt3 seedling phenotype are unknown. Here, we show the major developmental defect of the pale seedlings in xylem of the hypocotyl with partial impairments in chloroplast development and photosynthetic activity in leaves. Although PMT1 and PMT3 are localized at the endoplasmic reticulum, their tissue-specific expression pattern was distinct in hypocotyls and roots. Intriguingly, the function of PMT3 but not PMT1 requires its characteristic N-terminal sequence in addition to the promoter because truncation of the N-terminal sequence of PMT3 or substitution with PMT1 driven by the PMT3 promoter failed to rescue the pale pmt1 pmt3 seedling phenotype. Thus, PMT3 function requires the N-terminal sequence in addition to its promoter, whereas the PMT1 function is defined by the promoter.
Collapse
Affiliation(s)
- Yu-Chi Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yue-Rong Tan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chin-Wen Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Van C Nguyen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Koichi Kobayashi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8531, Japan
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
| |
Collapse
|
6
|
Tannert M, Balcke GU, Tissier A, Köck M. At4g29530 is a phosphoethanolamine phosphatase homologous to PECP1 with a role in flowering time regulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1072-1083. [PMID: 34098589 DOI: 10.1111/tpj.15367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/28/2021] [Indexed: 05/25/2023]
Abstract
Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the most abundant phospholipids in membranes. The biosynthesis of phospholipids occurs mainly via the Kennedy pathway. Recent studies have shown that through this pathway, choline (Cho) moieties are synthesized through the methylation of phosphoethanolamine (PEtn) to phosphocholine (PCho) by phospho-base N-methyltransferase. In Arabidopsis thaliana, the phosphoethanolamine/phosphocholine phosphatase1 (PECP1) is described as an enzyme that regulates the synthesis of PCho by decreasing the PEtn level during phosphate starvation to avoid the energy-consuming methylation step. By homology search, we identified a gene (At4g29530) encoding a putative PECP1 homolog from Arabidopsis with a currently unknown biological function in planta. We found that At4g29530 is not induced by phosphate starvation, and is mainly expressed in leaves and flowers. The analysis of null mutants and overexpression lines revealed that PEtn, rather than PCho, is the substrate in vivo, as in PECP1. Hydrophilic interaction chromatography-coupled mass spectrometry analysis of head group metabolites shows an increased PEtn level and decreased ethanolamine level in null mutants. At4g29530 null mutants have an early flowering phenotype, which is corroborated by a higher PC/PE ratio. Furthermore, we found an increased PCho level. The choline level was not changed, so the results corroborate that the PEtn-dependent pathway is the main route for the generation of Cho moieties. We assume that the PEtn-hydrolyzing enzyme participates in fine-tuning the metabolic pathway, and helps prevent the energy-consuming biosynthesis of PCho through the methylation pathway.
Collapse
Affiliation(s)
- Martin Tannert
- Biocenter, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle (Saale), 06120, Germany
| | - Gerd Ulrich Balcke
- Department Cell and Metabolic Biology, Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), 06120, Germany
| | - Alain Tissier
- Department Cell and Metabolic Biology, Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), 06120, Germany
| | - Margret Köck
- Biocenter, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle (Saale), 06120, Germany
| |
Collapse
|
7
|
Ji X, Wu X, Chen W, Yuan Q, Shen Y, Chi Y. Cloning and Functional Identification of Phosphoethanolamine Methyltransferase in Soybean ( Glycine max). FRONTIERS IN PLANT SCIENCE 2021; 12:612158. [PMID: 34386021 PMCID: PMC8353235 DOI: 10.3389/fpls.2021.612158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Phosphoethanolamine methyltransferase (PEAMT), a kind of S-adenosylmethionine-dependent methyltransferases, plays an essential role in many biological processes of plants, such as cell metabolism, stress response, and signal transduction. It is the key rate-limiting enzyme that catalyzes the three-step methylation of ethanolamine-phosphate (P-EA) to phosphocholine (P-Cho). To understand the unique function of PEAMT in soybean (Glycine max) lipid synthesis, we cloned two phosphoethanolamine methyltransferase genes GmPEAMT1 and GmPEAMT2, and performed functional identification. Both GmPEAMT1 and GmPEAMT2 contain two methyltransferase domains. GmPEAMT1 has the closest relationship with MtPEAMT2, and GmPEAMT2 has the closest relationship with CcPEAMT. GmPEAMT1 and GmPEAMT2 are located in the nucleus and endoplasmic reticulum. There are many light response elements and plant hormone response elements in the promoters of GmPEAMT1 and GmPEAMT2, indicating that they may be involved in plant stress response. The yeast cho2 opi3 mutant, co-expressing Arabidopsis thaliana phospholipid methyltransferase (PLMT) and GmPEAMT1 or GmPEAMT2, can restore normal growth, indicating that GmPEAMTs can catalyze the methylation of phosphoethanolamine to phosphate monomethylethanolamine. The heterologous expression of GmPEAMT1 and GmPEAMT2 can partially restore the short root phenotype of the Arabidopsis thaliana peamt1 mutant, suggesting GmPEAMTs have similar but different functions to AtPEAMT1.
Collapse
|
8
|
Nakamura Y. Headgroup biosynthesis of phosphatidylcholine and phosphatidylethanolamine in seed plants. Prog Lipid Res 2021; 82:101091. [PMID: 33503494 DOI: 10.1016/j.plipres.2021.101091] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 12/23/2022]
Abstract
Phospholipid biosynthesis is crucial for plant growth and development. It involves attachment of fatty acids to a phospho-diacylglycerol backbone and modification of the phospho-group into an amino alcohol. The biochemistry and molecular biology of the former has been well established, but a number of enzymes responsible for the latter have only recently been cloned and functionally characterized in Arabidopsis and some other model plant species. The metabolism involving the polar head groups of phospholipids established by past biochemical studies can now be validated by available gene knockout models. Moreover, gene knockout studies have revealed emerging functions of phospholipids in regulating plant growth and development. This review aims to revisit the old questions of polar headgroup biosynthesis of plant phosphatidylcholine and phosphatidylethanolamine by giving an overview of recent advances in the field and beyond.
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
9
|
Zou Y, Zhang X, Tan Y, Huang JB, Zheng Z, Tao LZ. Phosphoethanolamine N-methyltransferase 1 contributes to maintenance of root apical meristem by affecting ROS and auxin-regulated cell differentiation in Arabidopsis. THE NEW PHYTOLOGIST 2019; 224:258-273. [PMID: 31246280 DOI: 10.1111/nph.16028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
The continuous growth of roots requires the balance between cell division and differentiation. Reactive oxygen species (ROS) and auxin are important regulators of root development by affecting cell division and differentiation. The mechanism controlling the coordination of cell division and differentiation is not well understood. Using a forward genetic screen, we isolated a mutant, defective primary root 2 (dpr2), defective in root apical meristem (RAM) maintenance. The DPR2 gene encodes phosphoethanolamine N-methyltransferase 1 (PEAMT1) that catalyzes phosphocholine biosynthesis in Arabidopsis. We characterized the primary root phenotypes of dpr2 using various marker lines, using histochemical and pharmacological analysis to probe early root development. Loss-of-function of DPR2/PEAMT1 resulted in RAM consumption by affecting root stem cell niche, division zone, elongation and differentiation zone (EDZ). PIN-FORMED (PIN) protein abundance, PIN2 polar distribution and general endocytosis were impaired in the root tip of dpr2. Excess hydrogen peroxide and auxin accumulate in the EDZ of dpr2, leading to RAM consumption by accelerating cell differentiation. Suppression of ROS over-accumulation or inhibition of auxin signalling partially prevent RAM differentiation in dpr2 after choline starvation. Taken together, we conclude that the EDZ of the root tip is most sensitive to choline shortage, leading to RAM consumption through an ROS-auxin regulation module.
Collapse
Affiliation(s)
- Yi Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaojing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yunyi Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jia-Bao Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiqiong Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Li-Zhen Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
10
|
Sahashi K, Yamada-Kato N, Maeda T, Kito K, Cha-Um S, Rai V, Tanaka Y, Takabe T. Expression and functional characterization of sugar beet phosphoethanolamine/phosphocholine phosphatase under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:211-216. [PMID: 31302410 DOI: 10.1016/j.plaphy.2019.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Choline is a vital metabolite in plant and synthesized from phosphocholine by phosphocholine phosphatase. The Arabidopsis At1g17710 was identified as the first plant gene encoding the phosphatase for both phosphoethanolamine and phosphocholine (PECP) with much higher catalytic efficiency (>10-fold) for former. In betaine accumulating plants, choline is further required for betaine synthesis. In this report, we found three putative PECP genes in sugar beet, betaine accumulating plants. Two genes encode the proteins of 274 amino acid residues and designated as BvPECP1S and BvPECP2S. Another gene encodes the 331 amino acid protein (BvPECP2L) consisted of BvPECP2S with extra C-terminal amino acid. Enzymatic assays of BvPECP1S revealed that BvPECP1S exhibited the phosphatase activity for both phosphoethanolamine and phosphocholine with higher affinity (>1.8-fold) and catalytic efficiency (>2.64-fold) for phosphocholine. BvPECP2L exhibited low activity. RT-PCR experiments for BvPECP1S showed the increased expression in young leaf and root tip under salt-stress whereas the increased expression in all organs under phosphate deficiency. The expression level of BvPECP2L in salt stressed young leaf and root tip was induced by phosphate deficient. Physiological roles of BvPECP1S and BvPECP2L for the betaine synthesis were discussed.
Collapse
Affiliation(s)
- Kosuke Sahashi
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan
| | | | - Takumi Maeda
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan
| | - Kunihide Kito
- Research Institute, Meijo University, Nagoya, 468-8502, Japan
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Vandna Rai
- National Research Center on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Yoshito Tanaka
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan
| | - Teruhiro Takabe
- Research Institute, Meijo University, Nagoya, 468-8502, Japan.
| |
Collapse
|
11
|
Abstract
Chloroplasts contain high amounts of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) and low levels of the anionic lipids sulfoquinovosyldiacylglycerol (SQDG), phosphatidylglycerol (PG), and glucuronosyldiacylglycerol (GlcADG). The mostly extraplastidial lipid phosphatidylcholine is found only in the outer envelope. Chloroplasts are the major site for fatty acid synthesis. In Arabidopsis, a certain proportion of glycerolipids is entirely synthesized in the chloroplast (prokaryotic lipids). Fatty acids are also exported to the endoplasmic reticulum and incorporated into lipids that are redistributed to the chloroplast (eukaryotic lipids). MGDG, DGDG, SQDG, and PG establish the thylakoid membranes and are integral constituents of the photosynthetic complexes. Phosphate deprivation induces phospholipid degradation accompanied by the increase in DGDG, SQDG, and GlcADG. During freezing and drought stress, envelope membranes are stabilized by the conversion of MGDG into oligogalactolipids. Senescence and chlorotic stress lead to lipid and chlorophyll degradation and the deposition of acyl and phytyl moieties as fatty acid phytyl esters.
Collapse
Affiliation(s)
- Georg Hölzl
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany;
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany;
| |
Collapse
|
12
|
Liu YC, Lin YC, Kanehara K, Nakamura Y. A Methyltransferase Trio Essential for Phosphatidylcholine Biosynthesis and Growth. PLANT PHYSIOLOGY 2019; 179:433-445. [PMID: 30518673 PMCID: PMC6426410 DOI: 10.1104/pp.18.01408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/23/2018] [Indexed: 05/08/2023]
Abstract
Phosphatidylcholine (PC) is a primary class of membrane lipids in most eukaryotes. In plants, the primary PC biosynthetic pathway and its role in plant growth and development remain elusive due to lack of a mutant model with substantially decreased PC content. Recently, a double mutant of Arabidopsis (Arabidopsis thaliana) PHOSPHO-BASE N-METHYLTRANSFERASE 1 (PMT1) and PMT3 was reported with reduced PC content and defective plant growth. However, residual PC content as well as the nonlethal phenotype of the mutant suggests an additional enzyme contributes to PC biosynthesis. In this article, we report on the role of three PMTs in PC biosynthesis and plant development, with a focus on PMT2. PMT2 had the highest expression level among the three PMTs, and it was highly expressed in roots. The pmt1 pmt2 double mutant enhanced the defects in root growth, cell viability, and PC content of pmt1, suggesting that PMT2 functions together with PMT1 in roots. Chemical inhibition of PMT activity in wild-type roots reproduced the short root phenotype observed in pmt1 pmt2, suggesting that PMT1 and PMT2 are the major PMT isoforms in roots. In shoots, pmt1 pmt2 pmt3 enhanced the phenotype of pmt1 pmt3, showing seedling lethality and further reduced PC content without detectable de novo PC biosynthesis. These results suggest that PMTs catalyze an essential reaction step in PC biosynthesis and that the three PMTs have differential tissue-specific functions in PC biosynthesis and plant growth.
Collapse
Affiliation(s)
- Yu-Chi Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ying-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
13
|
Chen W, Taylor MC, Barrow RA, Croyal M, Masle J. Loss of Phosphoethanolamine N-Methyltransferases Abolishes Phosphatidylcholine Synthesis and Is Lethal. PLANT PHYSIOLOGY 2019; 179:124-142. [PMID: 30381317 PMCID: PMC6324220 DOI: 10.1104/pp.18.00694] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/19/2018] [Indexed: 05/21/2023]
Abstract
Plants use several pathways to synthesize phosphatidylcholine (PC), the major phospholipid of eukaryotic cells. PC has important structural and signaling roles. One pathway plants use for synthesis is the phospho-base methylation pathway, which forms the head-group phosphocholine through the triple methylation of phosphoethanolamine (PEA) catalyzed by phosphoethanolamine N-methyltransferases (PEAMTs). Our understanding of that pathway and its physiological importance remains limited. We recently reported that disruption of Arabidopsis thaliana PEAMT1/NMT1 and PEAMT3/NMT3 induces severe PC deficiency leading to dwarfism and impaired development. However, the double nmt1 nmt3 knock-out mutant is viable. Here, we show that this is enabled by residual PEAMT activity through a third family member, NMT2. The triple nmt1 nmt2 nmt3 knock-out mutant cannot synthesize PC from PEA and is lethal. This shows that, unlike mammals and yeast, Arabidopsis cannot form PC from phosphatidyl ethanolamine (PE), and demonstrates that methylation of PEA is the sole, and vital, entry point to PC synthesis. We further show that Arabidopsis has evolved an expanded family of four nonredundant PEAMTs through gene duplication and alternate use of the NMT2 promoter. NMT2 encodes two PEAMT variants, which greatly differ in their ability to perform the initial phospho-base methylation of PEA. Five amino acids at the N terminus of PEAMTs are shown to each be critical for the catalysis of that step committing to PC synthesis. As a whole, these findings open new avenues for enzymatic engineering and the exploration of ways to better tune phosphocholine and PC synthesis to environmental conditions for improved plant performance.
Collapse
Affiliation(s)
- Weihua Chen
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Matthew C Taylor
- Land and Water Flagship, Commonwealth Scientific and Industrial Research Organization, Canberra, Australian Capital Territory 2601, Australia
| | - Russell A Barrow
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Mikaël Croyal
- CRNH Nantes, Mass Spectrometry Core facility, 8 Quai Moncousu BP-70721, Nantes cedex 1, France
| | - Josette Masle
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
14
|
Liu YC, Lin YC, Kanehara K, Nakamura Y. A pair of phospho-base methyltransferases important for phosphatidylcholine biosynthesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1064-1075. [PMID: 30218542 DOI: 10.1111/tpj.14090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 05/25/2023]
Abstract
Phosphatidylcholine (PtdCho) is a predominant membrane lipid class in eukaryotes. Phospho-base N-methyltransferase (PMT) catalyzes a critical step in PtdCho biosynthesis. However, in Arabidopsis thaliana, the discovery of involvement of the specific PMT isoform in PtdCho biosynthesis remains elusive. Here, we show that PMT1 and PMT3 redundantly play an essential role in phosphocholine (PCho) biosynthesis, a prerequisite for PtdCho production. A pmt1 pmt3 double mutant was devoid of PCho, which affected PtdCho biosynthesis in vivo, showing severe growth defects in post-embryonic development. PMT1 and PMT3 were both highly expressed in the vasculature. The pmt1 pmt3 mutants had specifically affected leaf vein development and showed pale-green seedlings that were rescued by exogenous supplementation of PCho. We suggest that PMT1 and PMT3 are the primary enzymes for PCho biosynthesis and are involved in PtdCho biosynthesis and vascular development in Arabidopsis seedlings.
Collapse
Affiliation(s)
- Yu-Chi Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ying-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Academia Sinica, Taiwan International Graduate Program, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
15
|
Chen W, Salari H, Taylor MC, Jost R, Berkowitz O, Barrow R, Qiu D, Branco R, Masle J. NMT1 and NMT3 N-Methyltransferase Activity Is Critical to Lipid Homeostasis, Morphogenesis, and Reproduction. PLANT PHYSIOLOGY 2018; 177:1605-1628. [PMID: 29777000 PMCID: PMC6084668 DOI: 10.1104/pp.18.00457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/10/2018] [Indexed: 05/24/2023]
Abstract
Phosphatidylcholine (PC) is a major membrane phospholipid and a precursor for major signaling molecules. Understanding its synthesis is important for improving plant growth, nutritional value, and resistance to stress. PC synthesis is complex, involving several interconnected pathways, one of which proceeds from serine-derived phosphoethanolamine to form phosphocholine through three sequential phospho-base methylations catalyzed by phosphoethanolamine N-methyltransferases (PEAMTs). The contribution of this pathway to the production of PC and plant growth has been a matter of some debate. Although a handful of individual PEAMTs have been described, there has not been any in planta investigation of a PEAMT family. Here, we provide a comparative functional analysis of two Arabidopsis (Arabidopsis thaliana) PEAMTs, NMT1 and the little known NMT3. Analysis of loss-of-function mutants demonstrates that NMT1 and NMT3 synergistically regulate PC homeostasis, phase transition at the shoot apex, coordinated organ development, and fertility through overlapping but also specific functions. The nmt1 nmt3 double mutant shows extensive sterility, drastically reduced PC concentrations, and altered lipid profiles. These findings demonstrate that the phospho-base methylation pathway makes a major contribution to PC synthesis in Arabidopsis and that NMT1 and NMT3 play major roles in its catalysis and the regulation of PC homeostasis as well as in plant growth and reproduction.
Collapse
Affiliation(s)
- Weihua Chen
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Hooman Salari
- Agronomy and Plant Breeding Department, Razi University, Kermanshah 67155, Iran
| | - Matthew C Taylor
- Land and Water Flagship, Commonwealth Scientific and Industrial Research Organisation, Canberra, Australian Capital Territory 2601, Australia
| | - Ricarda Jost
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Oliver Berkowitz
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Russell Barrow
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Deyun Qiu
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Rémi Branco
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Josette Masle
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
16
|
Shiri Y, Solouki M, Ebrahimie E, Emamjomeh A, Zahiri J. Unraveling the transcriptional complexity of compactness in sistan grape cluster. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:198-208. [PMID: 29576073 DOI: 10.1016/j.plantsci.2018.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
Yaghooti grape of Sistan is the earliest ripening grape in Iran, harvested every May annually. It is adapted to dry conditions in Sistan region and its water requirement is less than the other grape cultivars. The transcriptional complexity of this grape was studied in three stages of cluster development. Totally, 24121 genes were expressed in different cluster development steps (step 1: cluster formation, step 2: berry formation, step 3: final size of cluster) of which 3040 genes in the first stage, 2381 genes in the second stage and 2400 genes in the third stage showed a significant increase in expression. GO analysis showed that when the clusters are ripening, the activity of the nucleus, cytoplasmic, cytosol, membrane and chloroplast genes in the cluster architecture cells decreases. In contrast, the activity of the endoplasmic reticulum, vacuole and extracellular region genes enhances. When Yaghooti grape is growing and developing, some of metabolic pathways were activated in the response to biotic and abiotic stresses. Gene co-expression network reconstruction showed that AGAMOUS is a key gene in compactness of Sistan grape cluster, because it influences on expression of GA gene which leads to increase cluster length and berries size.
Collapse
Affiliation(s)
- Yasoub Shiri
- PhD student of biotechnology, Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Mahmood Solouki
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran.
| | - Esmaeil Ebrahimie
- School of Medicine, The University of Adelaide, SA, Australia; School of Information Technology and Mathematical Sciences, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, Australia; Institute of Biotechnology, Shiraz University, Shiraz, Iran; School of Biological Sciences, Faculty of Science and Engineering, Flinders University, Adelaide, Australia
| | - Abbasali Emamjomeh
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Javad Zahiri
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
17
|
Membrane glycerolipid equilibrium under endoplasmic reticulum stress in Arabidopsis thaliana. Biochem Biophys Res Commun 2018. [PMID: 29524407 DOI: 10.1016/j.bbrc.2018.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endoplasmic reticulum (ER) is an indispensable organelle for secretory protein synthesis as well as metabolism of phospholipids and their derivatives in eukaryotic cells. Various external and internal factors may cause an accumulation of aberrant proteins in the ER, which causes ER stress and activates cellular ER stress responses to cope with the stress. In animal research, molecular mechanisms for protein quality control upon ER stress are well documented; however, how cells maintain lipid homeostasis under ER stress is an emerging issue. The ratio of phosphatidylcholine (PC) to phosphatidylethanolamine (PE), two major phospholipid classes, is important under ER stress in animal cells. However, in seed plants, no study has reported on the changes in membrane lipid content under ER stress, although a number of physiologically important environmental stresses, such as heat and salinity, induce ER stress. Here, we investigated membrane glycerolipid metabolism under ER stress in Arabidopsis. ER stress transcriptionally affected PC and PE biosynthesis pathways differentially, with no significant changes in membrane glycerolipid content. Our results suggest that higher plants maintain membrane lipid equilibrium during active transcription of phospholipid biosynthetic genes under ER stress.
Collapse
|
18
|
Carrera DÁ, Oddsson S, Grossmann J, Trachsel C, Streb S. Comparative Proteomic Analysis of Plant Acclimation to Six Different Long-Term Environmental Changes. PLANT & CELL PHYSIOLOGY 2018; 59:510-526. [PMID: 29300930 DOI: 10.1093/pcp/pcx206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
Plants are constantly challenged in their natural environment by a range of changing conditions. We investigated the acclimation processes and adaptive plant responses to various long-term mild changes and compared them directly within one experimental set-up. Arabidopsis thaliana plants were grown in hydroponic culture for 10 d under controlled abiotic stress (15°C, 25°C, salt and osmotic) and in nutrient deficiency (nitrate and phosphate). Plant growth was monitored and proteomic experiments were performed. Resource allocation between tissues altered during the plants' response. The growth patterns and induced changes of the proteomes indicated that the underlying mechanisms of the adaptation processes are highly specific to the respective environmental condition. Our results indicated differential regulation of response to salt and osmotic treatment, while the proteins in the changed temperature regime showed an inverse, temperature-sensitive control. There was a high correlation of protein level between the nutrient-deficient treatments, but the enriched pathways varied greatly. The proteomic analysis also revealed new insights into the regulation of proteins specific to the shoot and the root. Our investigation revealed unique strategies of plant acclimation to the different applied treatments on a physiological and proteome level, and these strategies are quite distinct in tissues below and above ground.
Collapse
Affiliation(s)
- Dániel Á Carrera
- Institute for Agricultural Sciences, Plant Biochemistry, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Sebastian Oddsson
- Institute for Agricultural Sciences, Plant Biochemistry, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Center Zürich, ETH Zürich/University of Zürich, CH-8057 Zürich, Switzerland
| | - Christian Trachsel
- Functional Genomics Center Zürich, ETH Zürich/University of Zürich, CH-8057 Zürich, Switzerland
| | - Sebastian Streb
- Institute for Agricultural Sciences, Plant Biochemistry, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
19
|
Tannert M, May A, Ditfe D, Berger S, Balcke GU, Tissier A, Köck M. Pi starvation-dependent regulation of ethanolamine metabolism by phosphoethanolamine phosphatase PECP1 in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:467-481. [PMID: 29294054 PMCID: PMC5853852 DOI: 10.1093/jxb/erx408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/30/2017] [Indexed: 05/10/2023]
Abstract
A universal plant response to phosphorus deprivation is the up-regulation of a diverse array of phosphatases. As reported recently, the AtPECP1 gene encodes a phosphatase with in vitro substrate specificity for phosphoethanolamine and phosphocholine. The putative substrates suggested that AtPECP1 is related to phospholipid metabolism; however, the biological function of AtPECP1 is as yet not understood. In addition, whereas lipid remodelling processes as part of the phosphorus starvation response have been extensively studied, knowledge of the polar head group metabolism and its regulation is lacking. We found that AtPECP1 is expressed in the cytosol and exerts by far its strongest activity in roots of phosphate-starved plants. We established a novel LC-MS/MS-based method for the quantitative and simultaneous measurement of the head group metabolites. The analysis of Atpecp1 null mutants and overexpression lines revealed that phosphoethanolamine, but not phosphocholine is the substrate of AtPECP1 in vivo. The impact on head group metabolite levels is greatest in roots of both loss-of-function and gain-of-function transgenic lines, indicating that the biological role of AtPECP1 is mainly restricted to roots. We suggest that phosphoethanolamine hydrolysis by AtPECP1 during Pi starvation is required to down-regulate the energy-consuming biosynthesis of phosphocholine through the methylation pathway.
Collapse
Affiliation(s)
- Martin Tannert
- Martin Luther University Halle-Wittenberg, Biocenter, Weinbergweg, Halle (Saale), Germany
| | - Anett May
- Martin Luther University Halle-Wittenberg, Biocenter, Weinbergweg, Halle (Saale), Germany
| | - Daniela Ditfe
- Martin Luther University Halle-Wittenberg, Biocenter, Weinbergweg, Halle (Saale), Germany
| | - Sigrid Berger
- Martin Luther University Halle-Wittenberg, Biocenter, Weinbergweg, Halle (Saale), Germany
| | - Gerd Ulrich Balcke
- Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, Weinberg, Halle (Saale), Germany
| | - Alain Tissier
- Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, Weinberg, Halle (Saale), Germany
| | - Margret Köck
- Martin Luther University Halle-Wittenberg, Biocenter, Weinbergweg, Halle (Saale), Germany
- Correspondence:
| |
Collapse
|
20
|
Cloning and Functional Analysis of Phosphoethanolamine Methyltransferase Promoter from Maize (Zea mays L.). Int J Mol Sci 2018; 19:ijms19010191. [PMID: 29316727 PMCID: PMC5796140 DOI: 10.3390/ijms19010191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 02/07/2023] Open
Abstract
Betaine, a non-toxic osmoprotectant, is believed to accumulate considerably in plants under stress conditions to maintain the osmotic pressure and promote a variety of processes involved in growth and development. Phosphoethanolamine N-methyltransferase (PEAMT), a key enzyme for betaine synthesis, is reported to be regulated by its upstream promoter. In the present investigation, by using the transgenic approach, a 1048 bp long promoter region of ZmPEAMT gene from Zea mays was cloned and functionally characterized in tobacco. Computational analysis affirmed the existence of abiotic stress responsive cis-elements like ABRE, MYC, HST, LST etc., as well as pathogen, wound and phytohormone responsive motifs. For transformation in tobacco, four 5′-deletion constructs of 826 bp (P2), 642 bp (P3), 428 bp (P4) and 245 bp (P5) were constructed from the 1048 bp (P1) promoter fragment. The transgenic plants generated through a single event exhibited a promising expression of GUS reporter protein in the leaf tissues of treated with salt, drought, oxidative and cold stress as well as control plants. The GUS expression level progressively reduced from P1 to P5 in the leaf tissues, whereas a maximal expression was observed with the P3 construct in the leaves of control plants. The expression of GUS was noted to be higher in the leaves of osmotically- or salt-treated transgenic plants than that in the untreated (control) plants. An effective expression of GUS in the transgenic plants manifests that this promoter can be employed for both stress-inducible and constitutive expression of gene(s). Due to this characteristic, this potential promoter can be effectively used for genetic engineering of several crops.
Collapse
|
21
|
Barycki JJ. Covering their bases: The phosphobase methylation pathway in plants. J Biol Chem 2017; 292:21703-21704. [PMID: 29288241 DOI: 10.1074/jbc.h117.000712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoethanolamine methyltransferases add three methyl groups successively to their substrate to produce phosphocholine, an important precursor for phospholipid biosynthesis in diverse organisms. New work from Lee and Jez reveals critical domain movements that explain how multiple methylation reactions are uniquely coordinated by plant methyltransferases and provides insights into the evolution of this class of enzymes. As opposed to closely related family members, the intermediates in this pathway are likely shuttled between two tethered domains to ensure complete methylation.
Collapse
Affiliation(s)
- Joseph J Barycki
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
22
|
Nakamura Y. Plant Phospholipid Diversity: Emerging Functions in Metabolism and Protein-Lipid Interactions. TRENDS IN PLANT SCIENCE 2017; 22:1027-1040. [PMID: 28993119 DOI: 10.1016/j.tplants.2017.09.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/26/2017] [Accepted: 09/07/2017] [Indexed: 05/22/2023]
Abstract
Phospholipids are essential components of biological membranes and signal transduction cascades in plants. In recent years, plant phospholipid research was greatly advanced by the characterization of numerous mutants affected in phospholipid biosynthesis and the discovery of a number of functionally important phospholipid-binding proteins. It is now accepted that most phospholipids to some extent have regulatory functions, including those that serve as constituents of biological membranes. Phospholipids are more than an inert end product of lipid biosynthesis. This review article summarizes recent advances on phospholipid biosynthesis with a particular focus on polar head group synthesis, followed by a short overview on protein-phospholipid interactions as an emerging regulatory mechanism of phospholipid function in arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taiwan 11529, Taiwan; http://ipmb.sinica.edu.tw/index.html/?q=node/972&language=en.
| |
Collapse
|
23
|
Lee SG, Jez JM. Conformational changes in the di-domain structure of Arabidopsis phosphoethanolamine methyltransferase leads to active-site formation. J Biol Chem 2017; 292:21690-21702. [PMID: 29084845 DOI: 10.1074/jbc.ra117.000106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/20/2017] [Indexed: 01/05/2023] Open
Abstract
Phosphocholine (pCho) is a precursor for phosphatidylcholine and osmoprotectants in plants. In plants, de novo synthesis of pCho relies on the phosphobase methylation pathway. Phosphoethanolamine methyltransferase (PMT) catalyzes the triple methylation of phosphoethanolamine (pEA) to pCho. The plant PMTs are di-domain methyltransferases that divide the methylation of pEA in one domain from subsequent methylations in the second domain. To understand the molecular basis of this architecture, we examined the biochemical properties of three Arabidopsis thaliana PMTs (AtPMT1-3) and determined the X-ray crystal structures of AtPMT1 and AtPMT2. Although each isoform synthesizes pCho from pEA, their physiological roles differ with AtPMT1 essential for normal growth and salt tolerance, whereas AtPMT2 and AtPMT3 overlap functionally. The structures of AtPMT1 and AtPMT2 reveal unique features in each methyltransferase domain, including active sites that use different chemical mechanisms for phosphobase methylation. These structures also show how rearrangements in both the active sites and the di-domain linker form catalytically competent active sites and provide insight on the evolution of the PMTs in plants, nematodes, and apicomplexans. Connecting conformational changes with catalysis in modular enzymes, like the PMT, provides new insights on interdomain communication in biosynthetic systems.
Collapse
Affiliation(s)
- Soon Goo Lee
- From the Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Joseph M Jez
- From the Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| |
Collapse
|
24
|
Michaud M, Prinz WA, Jouhet J. Glycerolipid synthesis and lipid trafficking in plant mitochondria. FEBS J 2017; 284:376-390. [PMID: 27406373 PMCID: PMC6224293 DOI: 10.1111/febs.13812] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/22/2016] [Accepted: 07/11/2016] [Indexed: 11/27/2022]
Abstract
Lipid trafficking between mitochondria and other organelles is required for mitochondrial membrane biogenesis and signaling. This lipid exchange occurs by poorly understood nonvesicular mechanisms. In yeast and mammalian cells, this lipid exchange is thought to take place at contact sites between mitochondria and the ER or vacuolar membranes. Some proteins involved in the tethering between membranes or in the transfer of lipids in mitochondria have been identified. However, in plants, little is known about the synthesis of mitochondrial membranes. Mitochondrial membrane biogenesis is particularly important and noteworthy in plants as the lipid composition of mitochondrial membranes is dramatically changed during phosphate starvation and other stresses. This review focuses on the principal pathways involved in the synthesis of the most abundant mitochondrial glycerolipids in plants and the lipid trafficking that is required for plant mitochondria membrane biogenesis.
Collapse
Affiliation(s)
- Morgane Michaud
- Laboratory of Cell and Molecular Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS-CEA-INRA-Université Grenoble Alpes, Grenoble, France
| | - William A Prinz
- Laboratory of Cell and Molecular Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS-CEA-INRA-Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
25
|
Sato N, Mori N, Hirashima T, Moriyama T. Diverse pathways of phosphatidylcholine biosynthesis in algae as estimated by labeling studies and genomic sequence analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:281-92. [PMID: 27133435 DOI: 10.1111/tpj.13199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 04/07/2016] [Accepted: 04/15/2016] [Indexed: 05/03/2023]
Abstract
Phosphatidylcholine (PC) is an almost ubiquitous phospholipid in eukaryotic algae and plants but is not found in a few species, for example Chlamydomonas reinhardtii. We recently found that some species of the genus Chlamydomonas possess PC. In the universal pathway, PC is synthesized de novo by methylation of phosphatidylethanolamine (PE) or transfer of phosphocholine from cytidine diphosphate (CDP)-choline to diacylglycerol. Phosphocholine, the direct precursor to CDP-choline, is synthesized either by methylation of phosphoethanolamine or phosphorylation of choline. Here we analyzed the mechanism of PC biosynthesis in two species of Chlamydomonas (asymmetrica and sphaeroides) as well as in a red alga, Cyanidioschyzon merolae. Comparative genomic analysis of enzymes involved in PC biosynthesis indicated that C. merolae possesses only the PE methylation pathway. Radioactive tracer experiments using [(32) P]phosphate showed delayed labeling of PC with respect to PE, which was consistent with the PE methylation pathway. In Chlamydomonas asymmetrica, labeling of PC was detected from the early time of incubation with [(32) P]phosphate, suggesting the operation of phosphoethanolamine methylation pathway. Genomic analysis indeed detected the genes for the phosphoethanolamine methylation pathway. In contrast, the labeling of PC in C. sphaeroides was slow, suggesting that the PE methylation pathway was at work. These results as well as biochemical and computational results uncover an unexpected diversity of the mechanisms for PC biosynthesis in algae. Based on these results, we will discuss plausible mechanisms for the scattered distribution of the ability to biosynthesize PC in the genus Chlamydomonas.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
- JST, CREST, K's Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan.
| | - Natsumi Mori
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- JST, CREST, K's Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Takashi Hirashima
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- JST, CREST, K's Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Takashi Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- JST, CREST, K's Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| |
Collapse
|
26
|
Meï CE, Cussac M, Haslam RP, Beaudoin F, Wong YS, Maréchal E, Rébeillé F. C1 Metabolism Inhibition and Nitrogen Deprivation Trigger Triacylglycerol Accumulation in Arabidopsis thaliana Cell Cultures and Highlight a Role of NPC in Phosphatidylcholine-to-Triacylglycerol Pathway. FRONTIERS IN PLANT SCIENCE 2016; 7:2014. [PMID: 28101097 PMCID: PMC5209388 DOI: 10.3389/fpls.2016.02014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/19/2016] [Indexed: 05/20/2023]
Abstract
Triacylglycerol (TAG) accumulation often occurs in growth limiting conditions such as nutrient deprivations. We analyzed and compared the lipid contents of Arabidopsis cells grown under two conditions that inhibited growth as a way to study interactions between membrane and storage lipids. In order to inhibit C1 metabolism, the first condition utilized methotrexate (MTX), a drug that inhibits methyl transfer reactions and potentially reduces Pi-choline synthesis, the polar head of phosphatidylcholine (PC). MTX-treated cells displayed a 10- to 15-fold increase in TAG compared to that found in control cells. This corresponded to a net increase of lipids as the total amount of membrane glycerolipids was minimally affected. Under this condition, PC homeostasis appeared tightly regulated and not strictly dependent on the rate of Pi-choline synthesis. The second condition we investigated involved nitrogen deprivation. Here, we observed a 40-fold increase of TAG. In these cells, the overall lipid content remained unchanged, but membrane lipids decreased by a factor of two suggesting a reduction of the membrane network and a rerouting of membrane lipids to storage lipids. Under all conditions, fatty acid (FA) analyses showed that the FA composition of TAG was comparable to that in PC, but different from that in acyl-CoA, suggesting that TAG accumulation involved PC-derived DAG moieties. In agreement, analyses by qPCR of genes coding for TAG synthesis showed a strong increase of non-specific phospholipase C (NPC) expressions, and experiments using labeled (fluorescent) PC indicated higher rates of PC-to-TAG conversion under both situations. These results highlight a role for NPC in plant cell oil production.
Collapse
Affiliation(s)
- Coline E. Meï
- Laboratoire de Physiologie Cellulaire Végétale, UMR 5168 CNRS – CEA – INRA – Université Grenoble Alpes, Bioscience and Biotechnologies Institute of GrenobleCEA-Grenoble, Grenoble, France
| | - Mathilde Cussac
- Laboratoire de Physiologie Cellulaire Végétale, UMR 5168 CNRS – CEA – INRA – Université Grenoble Alpes, Bioscience and Biotechnologies Institute of GrenobleCEA-Grenoble, Grenoble, France
| | - Richard P. Haslam
- Department of Biological Chemistry and Crop Protection, Rothamsted ResearchHarpenden, UK
| | - Frédéric Beaudoin
- Department of Biological Chemistry and Crop Protection, Rothamsted ResearchHarpenden, UK
| | - Yung-Sing Wong
- Département de Pharmacochimie Moléculaire, UMR 5063 CNRS – Université Grenoble AlpesGrenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, UMR 5168 CNRS – CEA – INRA – Université Grenoble Alpes, Bioscience and Biotechnologies Institute of GrenobleCEA-Grenoble, Grenoble, France
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, UMR 5168 CNRS – CEA – INRA – Université Grenoble Alpes, Bioscience and Biotechnologies Institute of GrenobleCEA-Grenoble, Grenoble, France
- *Correspondence: Fabrice Rébeillé,
| |
Collapse
|
27
|
Nakamura Y. Function of polar glycerolipids in flower development in Arabidopsis thaliana. Prog Lipid Res 2015; 60:17-29. [DOI: 10.1016/j.plipres.2015.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 11/28/2022]
|
28
|
Craddock CP, Adams N, Bryant FM, Kurup S, Eastmond PJ. PHOSPHATIDIC ACID PHOSPHOHYDROLASE Regulates Phosphatidylcholine Biosynthesis in Arabidopsis by Phosphatidic Acid-Mediated Activation of CTP:PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE Activity. THE PLANT CELL 2015; 27:1251-64. [PMID: 25862304 PMCID: PMC4558698 DOI: 10.1105/tpc.15.00037] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/19/2015] [Indexed: 05/04/2023]
Abstract
Regulation of membrane lipid biosynthesis is critical for cell function. We previously reported that disruption of PHOSPHATIDIC ACID PHOSPHOHYDROLASE1 (PAH1) and PAH2 stimulates net phosphatidylcholine (PC) biosynthesis and proliferation of the endoplasmic reticulum (ER) in Arabidopsis thaliana. Here, we show that this response is caused specifically by a reduction in the catalytic activity of the protein and positively correlates with an accumulation of its substrate, phosphatidic acid (PA). The accumulation of PC in pah1 pah2 is suppressed by disruption of CTP:PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE1 (CCT1), which encodes a key enzyme in the nucleotide pathway for PC biosynthesis. The activity of recombinant CCT1 is stimulated by lipid vesicles containing PA. Truncation of CCT1, to remove the predicted C-terminal amphipathic lipid binding domain, produced a constitutively active enzyme. Overexpression of native CCT1 in Arabidopsis has no significant effect on PC biosynthesis or ER morphology, but overexpression of the truncated constitutively active version largely replicates the pah1 pah2 phenotype. Our data establish that membrane homeostasis is regulated by lipid composition in Arabidopsis and reveal a mechanism through which the abundance of PA, mediated by PAH activity, modulates CCT activity to govern PC content.
Collapse
Affiliation(s)
- Christian P Craddock
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Nicolette Adams
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Fiona M Bryant
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Smita Kurup
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Peter J Eastmond
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| |
Collapse
|
29
|
Kuppusamy T, Giavalisco P, Arvidsson S, Sulpice R, Stitt M, Finnegan PM, Scheible WR, Lambers H, Jost R. Lipid biosynthesis and protein concentration respond uniquely to phosphate supply during leaf development in highly phosphorus-efficient Hakea prostrata. PLANT PHYSIOLOGY 2014; 166:1891-911. [PMID: 25315604 PMCID: PMC4256859 DOI: 10.1104/pp.114.248930] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/10/2014] [Indexed: 05/20/2023]
Abstract
Hakea prostrata (Proteaceae) is adapted to severely phosphorus-impoverished soils and extensively replaces phospholipids during leaf development. We investigated how polar lipid profiles change during leaf development and in response to external phosphate supply. Leaf size was unaffected by a moderate increase in phosphate supply. However, leaf protein concentration increased by more than 2-fold in young and mature leaves, indicating that phosphate stimulates protein synthesis. Orthologs of known lipid-remodeling genes in Arabidopsis (Arabidopsis thaliana) were identified in the H. prostrata transcriptome. Their transcript profiles in young and mature leaves were analyzed in response to phosphate supply alongside changes in polar lipid fractions. In young leaves of phosphate-limited plants, phosphatidylcholine/phosphatidylethanolamine and associated transcript levels were higher, while phosphatidylglycerol and sulfolipid levels were lower than in mature leaves, consistent with low photosynthetic rates and delayed chloroplast development. Phosphate reduced galactolipid and increased phospholipid concentrations in mature leaves, with concomitant changes in the expression of only four H. prostrata genes, GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE1, N-METHYLTRANSFERASE2, NONSPECIFIC PHOSPHOLIPASE C4, and MONOGALACTOSYLDIACYLGLYCEROL3. Remarkably, phosphatidylglycerol levels decreased with increasing phosphate supply and were associated with lower photosynthetic rates. Levels of polar lipids with highly unsaturated 32:x (x = number of double bonds in hydrocarbon chain) and 34:x acyl chains increased. We conclude that a regulatory network with a small number of central hubs underpins extensive phospholipid replacement during leaf development in H. prostrata. This hard-wired regulatory framework allows increased photosynthetic phosphorus use efficiency and growth in a low-phosphate environment. This may have rendered H. prostrata lipid metabolism unable to adjust to higher internal phosphate concentrations.
Collapse
Affiliation(s)
- Thirumurugen Kuppusamy
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Patrick Giavalisco
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Samuel Arvidsson
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Ronan Sulpice
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Mark Stitt
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Patrick M Finnegan
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Wolf-Rüdiger Scheible
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Hans Lambers
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| | - Ricarda Jost
- School of Plant Biology (T.K., P.M.F., H.L., R.J.) and Institute of Agriculture (P.M.F., H.L.), University of Western Australia, Crawley (Perth), Western Australia 6009, Australia;Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany (P.G., S.A., R.S., M.S.); andSamuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401 (W.-R.S.)
| |
Collapse
|
30
|
Nakamura Y, Teo NZW, Shui G, Chua CHL, Cheong WF, Parameswaran S, Koizumi R, Ohta H, Wenk MR, Ito T. Transcriptomic and lipidomic profiles of glycerolipids during Arabidopsis flower development. THE NEW PHYTOLOGIST 2014; 203:310-322. [PMID: 24684726 DOI: 10.1111/nph.12774] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 02/19/2014] [Indexed: 06/03/2023]
Abstract
Flower glycerolipids are the yet-to-be discovered frontier of the lipidome. Although ample evidence suggests important roles for glycerolipids in flower development, stage-specific lipid profiling in tiny Arabidopsis flowers is challenging. Here, we utilized a transgenic system to synchronize flower development in Arabidopsis. The transgenic plant PAP1::AP1-GR ap1-1 cal-5 showed synchronized flower development upon dexamethasone treatment, which enabled massive harvesting of floral samples of homogenous developmental stages for glycerolipid profiling. Glycerolipid profiling revealed a decrease in concentrations of phospholipids involved in signaling during the early development stages, such as phosphatidic acid and phosphatidylinositol, and a marked increase in concentrations of nonphosphorous galactolipids during the late stage. Moreover, in the midstage, phosphatidylinositol 4,5-bisphosphate concentration was increased transiently, which suggests the stimulation of the phosphoinositide metabolism. Accompanying transcriptomic profiling of relevant glycerolipid metabolic genes revealed simultaneous induction of multiple phosphoinositide biosynthetic genes associated with the increased phosphatidylinositol 4,5-bisphosphate concentration, with a high degree of differential expression patterns for genes encoding other glycerolipid-metabolic genes. The phosphatidic acid phosphatase mutant pah1 pah2 showed flower developmental defect, suggesting a role for phosphatidic acid in flower development. Our concurrent profiling of glycerolipids and relevant metabolic gene expression revealed distinct metabolic pathways stimulated at different stages of flower development in Arabidopsis.
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, 128 sec.2 Academia Rd, Nankang, Taipei, 11529, Taiwan; PRESTO, Japan Science and Technology Agency, A-1-8 Honcho Kawaguchi, Saitama, Japan; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore city, 117456, Singapore; Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore city, 117604, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Alatorre-Cobos F, Cruz-Ramírez A, Hayden CA, Pérez-Torres CA, Chauvin AL, Ibarra-Laclette E, Alva-Cortés E, Jorgensen RA, Herrera-Estrella L. Translational regulation of Arabidopsis XIPOTL1 is modulated by phosphocholine levels via the phylogenetically conserved upstream open reading frame 30. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5203-21. [PMID: 22791820 DOI: 10.1093/jxb/ers180] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In Arabidopsis thaliana, XIPOTL1 encodes a phosphoethanolamine N-methyltransferase with a central role in phosphatidylcholine biosynthesis via the methylation pathway. To gain further insights into the mechanisms that regulate XIPOTL1 expression, the effect of upstream open reading frame 30 (uORF30) on the translation of the major ORF (mORF) in the presence or absence of endogenous choline (Cho) or phosphocholine (PCho) was analysed in Arabidopsis seedlings. Dose-response assays with Cho or PCho revealed that both metabolites at physiological concentrations are able to induce the translational repression of a mORF located downstream of the intact uORF30, without significantly altering its mRNA levels. PCho profiles showed a correlation between increased endogenous PCho levels and translation efficiency of a uORF30-containing mORF, while no correlation was detectable with Cho levels. Enhanced expression of a uORF30-containing mORF and decreased PCho levels were observed in the xipotl1 mutant background relative to wild type, suggesting that PCho is the true mediator of uORF30-driven translational repression. In Arabidopsis, endogenous PCho content increases during plant development and affects root meristem size, cell division, and cell elongation. Because XIPOTL1 is preferentially expressed in Arabidopsis root tips, higher PCho levels are found in roots than shoots, and there is a higher sensitivity of this tissue to translational uORF30-mediated control, it is proposed that root tips are the main site for PCho biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Fulgencio Alatorre-Cobos
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Irapuato, Irapuato, Guanajuato, México
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhao J, Huang J, Chen F, Xu F, Ni X, Xu H, Wang Y, Jiang C, Wang H, Xu A, Huang R, Li D, Meng J. Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:407-21. [PMID: 21993634 DOI: 10.1007/s00122-011-1716-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/24/2011] [Indexed: 05/04/2023]
Abstract
Quantitative Trait Loci (QTL) for oil content has been previously analyzed in a SG-DH population from a cross between a Chinese cultivar and a European cultivar of Brassica napus. Eight QTL with additive and epistatic effects, and with environmental interactions were evaluated. Here we present an integrated linkage map of this population predominantly based on informative markers derived from Brassica sequences, including 249 orthologous A. thaliana genes, where nearly half (112) are acyl lipid metabolism related genes. Comparative genomic analysis between B. napus and A. thaliana revealed 33 colinearity regions. Each of the conserved A. thaliana segments is present two to six times in the B. napus genome. Approximately half of the mapped lipid-related orthologous gene loci (76/137) were assigned in these conserved colinearity regions. QTL analysis for seed oil content was performed using the new map and phenotypic data from 11 different field trials. Nine significant QTL were identified on linkage groups A1, A5, A7, A9, C2, C3, C6 and C8, together explaining 57.79% of the total phenotypic variation. A total of 14 lipid related candidate gene loci were located in the confidence intervals of six of these QTL, of which ten were assigned in the conserved colinearity regions and felled in the most frequently overlapped QTL intervals. The information obtained from this study demonstrates the potential role of the suggested candidate genes in rapeseed kernel oil accumulation.
Collapse
Affiliation(s)
- Jianyi Zhao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|