1
|
Wein T, Millman A, Lange K, Yirmiya E, Hadary R, Garb J, Melamed S, Amitai G, Dym O, Steinruecke F, Hill AB, Kranzusch PJ, Sorek R. CARD domains mediate anti-phage defence in bacterial gasdermin systems. Nature 2025; 639:727-734. [PMID: 39880956 DOI: 10.1038/s41586-024-08498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/05/2024] [Indexed: 01/31/2025]
Abstract
Caspase recruitment domains (CARDs) and pyrin domains are important facilitators of inflammasome activity and pyroptosis1. Following pathogen recognition by nucleotide binding-domain, leucine-rich, repeat-containing (NLR) proteins, CARDs recruit and activate caspases, which, in turn, activate gasdermin pore-forming proteins to induce pyroptotic cell death2. Here we show that CARD domains are present in defence systems that protect bacteria against phage. The bacterial CARD domain is essential for protease-mediated activation of certain bacterial gasdermins, which promote cell death once phage infection is recognized. We further show that multiple anti-phage defence systems use CARD domains to activate a variety of cell death effectors, and that CARD domains mediate protein-protein interactions in these systems. We find that these systems are triggered by a conserved immune-evasion protein used by phages to overcome the bacterial defence system RexAB3, demonstrating that phage proteins inhibiting one defence system can activate another. Our results suggest that CARD domains represent an ancient component of innate immune systems conserved from bacteria to humans, and that CARD-dependent activation of gasdermins is shared in organisms across the tree of life.
Collapse
Affiliation(s)
- Tanita Wein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Katharina Lange
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Erez Yirmiya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Romi Hadary
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jeremy Garb
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Melamed
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Dym
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Aidan B Hill
- Department of Microbiology, Harvard Medical School, Boston, Ma, USA
- Deparment of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, Ma, USA.
- Deparment of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Yao J, Sterling K, Wang Z, Zhang Y, Song W. The role of inflammasomes in human diseases and their potential as therapeutic targets. Signal Transduct Target Ther 2024; 9:10. [PMID: 38177104 PMCID: PMC10766654 DOI: 10.1038/s41392-023-01687-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 09/18/2023] [Accepted: 10/13/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammasomes are large protein complexes that play a major role in sensing inflammatory signals and triggering the innate immune response. Each inflammasome complex has three major components: an upstream sensor molecule that is connected to a downstream effector protein such as caspase-1 through the adapter protein ASC. Inflammasome formation typically occurs in response to infectious agents or cellular damage. The active inflammasome then triggers caspase-1 activation, followed by the secretion of pro-inflammatory cytokines and pyroptotic cell death. Aberrant inflammasome activation and activity contribute to the development of diabetes, cancer, and several cardiovascular and neurodegenerative disorders. As a result, recent research has increasingly focused on investigating the mechanisms that regulate inflammasome assembly and activation, as well as the potential of targeting inflammasomes to treat various diseases. Multiple clinical trials are currently underway to evaluate the therapeutic potential of several distinct inflammasome-targeting therapies. Therefore, understanding how different inflammasomes contribute to disease pathology may have significant implications for developing novel therapeutic strategies. In this article, we provide a summary of the biological and pathological roles of inflammasomes in health and disease. We also highlight key evidence that suggests targeting inflammasomes could be a novel strategy for developing new disease-modifying therapies that may be effective in several conditions.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Zhejiang Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
3
|
Hochheiser IV, Behrmann H, Hagelueken G, Rodríguez-Alcázar JF, Kopp A, Latz E, Behrmann E, Geyer M. Directionality of PYD filament growth determined by the transition of NLRP3 nucleation seeds to ASC elongation. SCIENCE ADVANCES 2022; 8:eabn7583. [PMID: 35559676 PMCID: PMC9106292 DOI: 10.1126/sciadv.abn7583] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/30/2022] [Indexed: 05/03/2023]
Abstract
Inflammasomes sense intrinsic and extrinsic danger signals to trigger inflammatory responses and pyroptotic cell death. Homotypic pyrin domain (PYD) interactions of inflammasome forming nucleotide-binding oligomerization domain (NOD)-like receptors with the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) mediate oligomerization into filamentous assemblies. We describe the cryo-electron microscopy (cryo-EM) structure of the human NLRP3PYD filament and identify a pattern of highly polar interface residues that form the homomeric interactions leading to characteristic filament ends designated as A- and B-ends. Coupling a titration polymerization assay to cryo-EM, we demonstrate that ASC adaptor protein elongation on NLRP3PYD nucleation seeds is unidirectional, associating exclusively to the B-end of the filament. Notably, NLRP3 and ASC PYD filaments exhibit the same symmetry in rotation and axial rise per subunit, allowing a continuous transition between NLRP3 and ASC. Integrating the directionality of filament growth, we present a molecular model of the ASC speck consisting of active NLRP3, ASC, and Caspase-1 proteins.
Collapse
Affiliation(s)
- Inga V. Hochheiser
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Heide Behrmann
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Gregor Hagelueken
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | | | - Anja Kopp
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 12 Parkville, VIC 3052, Australia
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Elmar Behrmann
- Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674 Cologne, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
4
|
Isazadeh M, Amandadi M, Haghdoust F, Lotfollazadeh S, Orzáez M, Hosseinkhani S. Split-luciferase complementary assay of NLRP3 PYD-PYD interaction indicates inflammasome formation during inflammation. Anal Biochem 2022; 638:114510. [PMID: 34863712 DOI: 10.1016/j.ab.2021.114510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023]
Abstract
The NLRP3 inflammasome is a key macromolecular complex of the innate immune system that activates the inflammatory signalling cascade in response to a wide range of stimuli. Structural studies have shown that the intracellular cytosolic receptor NLRP3 oligomerizes upon stimulation and serves as a scaffold to form the ASC filaments necessary for procaspase-1 activation. Despite the abundant structural evidences on NLRP3 inflammasome, the interactions of the NLRP3 Pyrin domain and its functional relevance are poorly understood. In this study, the split luciferase complementation assay is used as an alternative approach to investigate NLRP3PYD-NLRP3PYD interactions during inflammasome formation. Since the homotypic NLRP3 interaction is mainly based on electrostatic interactions, a phosphomimetic residue (S5) at the interface of the NLRP3PYDs interactions has been mutated to show a disruptive effect on luciferase activity. According to the results presented, the designed biosensor was able to monitor the NLRP3PYD-NLRP3PYD interaction in vitro. The current reporter assay not only provides a specific NLRP3PYD-NLRP3PYD assay to study the PYD-PYD interaction in vitro, but also provides a suitable system for screening chemicals and drugs to identify activators and inhibitors of NLRP3.
Collapse
Affiliation(s)
- Mohsen Isazadeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farnaz Haghdoust
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shima Lotfollazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mar Orzáez
- Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Arian S, Rubin J, Chakchouk I, Sharif M, Mahadevan SK, Erfani H, Shelly K, Liao L, Lorenzo I, Ramakrishnan R, Van den Veyver IB. Reproductive Outcomes from Maternal Loss of Nlrp2 Are Not Improved by IVF or Embryo Transfer Consistent with Oocyte-Specific Defect. Reprod Sci 2021; 28:1850-1865. [PMID: 33090377 PMCID: PMC8060370 DOI: 10.1007/s43032-020-00360-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/11/2020] [Indexed: 12/23/2022]
Abstract
Nlrp2 encodes a protein of the oocyte subcortical maternal complex (SCMC), required for embryo development. We previously showed that loss of maternal Nlrp2 in mice causes subfertility, smaller litters with birth defects, and growth abnormalities in offspring, indicating that Nlrp2 is a maternal effect gene and that all embryos from Nlrp2-deficient females that were cultured in vitro arrested before the blastocysts stage. Here, we used time-lapse microscopy to examine the development of cultured embryos from superovulated Nlrp2-deficient and wild-type mice after in vivo and in vitro fertilization. Embryos from Nlrp2-deficient females had similar abnormal cleavage and fragmentation and arrested by blastocyst stage, irrespective of fertilization mode. This indicates that in vitro fertilization does not further perturb or improve the development of cultured embryos. We also transferred embryos from superovulated Nlrp2-deficient and wild-type females to wild-type recipients to investigate if the abnormal reproductive outcomes of Nlrp2-deficient females are primarily driven by oocyte dysfunction or if a suboptimal intra-uterine milieu is a necessary factor. Pregnancies with transferred embryos from Nlrp2-deficient females produced smaller litters, stillbirths, and offspring with birth defects and growth abnormalities. This indicates that the reproductive phenotype is oocyte-specific and is not rescued by development in a wild-type uterus. We further found abnormal DNA methylation at two maternally imprinted loci in the kidney of surviving young adult offspring, confirming persistent DNA methylation disturbances in surviving offspring. These findings have implications for fertility treatments for women with mutations in NLRP2 and other genes encoding SCMC proteins.
Collapse
Affiliation(s)
- Sara Arian
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, USA
| | - Jessica Rubin
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, USA
- Reproductive Biology Associates, 1100 Johnson Ferry Road NE, Suite 200, Atlanta, GA, 30342, USA
| | - Imen Chakchouk
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, USA
| | - Momal Sharif
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, USA
| | | | - Hadi Erfani
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, USA
| | - Katharine Shelly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
| | - Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, USA
| | - Isabel Lorenzo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA
| | - Rajesh Ramakrishnan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, USA
- The Carol and Odis Peavy School of Nursing, University of St. Thomas, Houston, TX, 77006, USA
| | - Ignatia B Van den Veyver
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA.
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, 1250 Moursund Street, room 1025.14, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Riaz M, Rehman AU, Shah SA, Rafiq H, Lu S, Qiu Y, Wadood A. Predicting Multi-Interfacial Binding Mechanisms of NLRP3 and ASC Pyrin Domains in Inflammasome Activation. ACS Chem Neurosci 2021; 12:603-612. [PMID: 33504150 DOI: 10.1021/acschemneuro.0c00519] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NLRP3-PYD inflammasome activates an inflammatory pathway in response to a wide variety of cell damage or infections. Dysregulated NLRP3 inflammatory signaling has many chronic inflammatory and autoimmune disorders. NLRP3 and ASC have a PYD, a superfamily member of the Death Domain, which plays a key role in inflammatory assembly. The ASC interacts with NLRP3 through a homotypic PYD and recruits the procaspase-1 through a homotypic caspase recruitment domain interaction. Here, we used several computational approaches to reveal the interactions of the NLRP3 and ASC PYD domains that lead to the activation of the inflammasome complex. We have characterized ASC and NLRP3-PYD intermolecular interactions by protein-protein docking, and further molecular dynamics (MD) simulations were conducted to evaluate the stability of NLRP3/ASC-PYD complex. Subsequently, we have identified several residues that stabilize the NLRP3/ASC-PYD complex in different faces (i.e., Face-1 to Face-4). The research framework offers new insights into the molecular mechanisms of inflammasome and apoptosis signaling as well as the ease of the drug discovery process.
Collapse
Affiliation(s)
- Muhammad Riaz
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Shahid Ali Shah
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar 25000, Pakistan
| | - Humaira Rafiq
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yingying Qiu
- Department of Neurology, Tiantai Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang 317200, China
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
7
|
Structure, Activation and Regulation of NLRP3 and AIM2 Inflammasomes. Int J Mol Sci 2021; 22:ijms22020872. [PMID: 33467177 PMCID: PMC7830601 DOI: 10.3390/ijms22020872] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
The inflammasome is a three-component (sensor, adaptor, and effector) filamentous signaling platform that shields from multiple pathogenic infections by stimulating the proteolytical maturation of proinflammatory cytokines and pyroptotic cell death. The signaling process initiates with the detection of endogenous and/or external danger signals by specific sensors, followed by the nucleation and polymerization from sensor to downstream adaptor and then to the effector, caspase-1. Aberrant activation of inflammasomes promotes autoinflammatory diseases, cancer, neurodegeneration, and cardiometabolic disorders. Therefore, an equitable level of regulation is required to maintain the equilibrium between inflammasome activation and inhibition. Recent advancement in the structural and mechanistic understanding of inflammasome assembly potentiates the emergence of novel therapeutics against inflammasome-regulated diseases. In this review, we have comprehensively discussed the recent and updated insights into the structure of inflammasome components, their activation, interaction, mechanism of regulation, and finally, the formation of densely packed filamentous inflammasome complex that exists as micron-sized punctum in the cells and mediates the immune responses.
Collapse
|
8
|
Sandall CF, Ziehr BK, MacDonald JA. ATP-Binding and Hydrolysis in Inflammasome Activation. Molecules 2020; 25:molecules25194572. [PMID: 33036374 PMCID: PMC7583971 DOI: 10.3390/molecules25194572] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023] Open
Abstract
The prototypical model for NOD-like receptor (NLR) inflammasome assembly includes nucleotide-dependent activation of the NLR downstream of pathogen- or danger-associated molecular pattern (PAMP or DAMP) recognition, followed by nucleation of hetero-oligomeric platforms that lie upstream of inflammatory responses associated with innate immunity. As members of the STAND ATPases, the NLRs are generally thought to share a similar model of ATP-dependent activation and effect. However, recent observations have challenged this paradigm to reveal novel and complex biochemical processes to discern NLRs from other STAND proteins. In this review, we highlight past findings that identify the regulatory importance of conserved ATP-binding and hydrolysis motifs within the nucleotide-binding NACHT domain of NLRs and explore recent breakthroughs that generate connections between NLR protein structure and function. Indeed, newly deposited NLR structures for NLRC4 and NLRP3 have provided unique perspectives on the ATP-dependency of inflammasome activation. Novel molecular dynamic simulations of NLRP3 examined the active site of ADP- and ATP-bound models. The findings support distinctions in nucleotide-binding domain topology with occupancy of ATP or ADP that are in turn disseminated on to the global protein structure. Ultimately, studies continue to reveal how the ATP-binding and hydrolysis properties of NACHT domains in different NLRs integrate with signaling modules and binding partners to control innate immune responses at the molecular level.
Collapse
|
9
|
Marleaux M, Anand K, Latz E, Geyer M. Crystal structure of the human NLRP9 pyrin domain suggests a distinct mode of inflammasome assembly. FEBS Lett 2020; 594:2383-2395. [PMID: 32542665 DOI: 10.1002/1873-3468.13865] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/17/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
Abstract
Inflammasomes are cytosolic multimeric signaling complexes of the innate immune system that induce activation of caspases. The NOD-like receptor NLRP9 recruits the adaptor protein ASC to form an ASC-dependent inflammasome to limit rotaviral replication in intestinal epithelial cells, but only little is known about the molecular mechanisms regulating and driving its assembly. Here, we present the crystal structure of the human NLRP9 pyrin domain (PYD). We show that NLRP9PYD is not able to self-polymerize nor to nucleate ASC specks in HEK293T cells. A comparison with filament-forming PYDs revealed that NLRP9PYD adopts a conformation compatible with filament formation, but several charge inversions of interfacing residues might cause repulsive effects that prohibit self-oligomerization. These results propose that inflammasome assembly of NLRP9 might differ largely from what we know of other inflammasomes.
Collapse
Affiliation(s)
- Michael Marleaux
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Kanchan Anand
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
10
|
Ha HJ, Park HH. Crystal structure of the human NLRP9 pyrin domain reveals a bent N-terminal loop that may regulate inflammasome assembly. FEBS Lett 2020; 594:2396-2405. [PMID: 32542766 DOI: 10.1002/1873-3468.13866] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
Members of the NLR family pyrin domain containing (NLRPs) are pattern recognition receptors that participate in innate immunity. They form inflammasomes, which are platforms for caspase-1 recruitment and activation. The NLRP pyrin domain (PYD) is critical for the assembly of inflammasomes due to its ability to mediate protein interactions. Despite intensive structural studies on inflammasomes with PYDs, the structure of the PYD of NLRP9-the least studied member of the family-remains unknown. Herein, we report the crystal structure of the human NLRP9 PYD at 2.1 Å resolution, which reveals a kinked N-terminal loop oriented toward the interior of the helical bundle. Based on our findings, we propose a regulatory role for the kinked N-terminal loop of NLRP9 PYD in inflammasome assembly.
Collapse
Affiliation(s)
- Hyun Ji Ha
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| |
Collapse
|
11
|
Abrahamse H, Houreld NN. Genetic Aberrations Associated with Photodynamic Therapy in Colorectal Cancer Cells. Int J Mol Sci 2019; 20:ijms20133254. [PMID: 31269724 PMCID: PMC6651415 DOI: 10.3390/ijms20133254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment modality that utilizes three components: light (λ 650-750 nm), a photosensitizer (PS) and molecular oxygen, which upon activation renders the modality effective. Colorectal cancer has one of the highest incident rates as well as a high mortality rate worldwide. In this study, a zinc (Zn) metal-based phthalocyanine (ZnPcSmix) PS was used to determine its efficacy for the treatment of colon adenocarcinoma cells (DLD-1 and Caco-2). Photoactivation of the PS was achieved by laser irradiation at a wavelength of 680 nm. Dose responses were performed to establish optimal PS concentration and irradiation fluence. A working combination of 20 µM ZnPcSmix and 5 J/cm2 was used. Biochemical responses were determined after 1 or 24 h incubation post-treatment. Since ZnPcSmix is localized in lysosomes and mitochondria, mitochondrial destabilization analysis was performed monitoring mitochondrial membrane potential (MMP). Cytosolic acidification was determined measuring hydrogen peroxide (H2O2) levels in the cytoplasm. Having established apoptotic cell death induction, an apoptosis PCR array was performed to establish the apoptotic mechanism. In DLD-1 cells, expression of genes included 3 up-regulated and 20 down-regulated genes while in Caco-2 cells, there were 16 up-regulated and 22 down-regulated genes. In both cell lines, in up-regulated genes, there was a combination of pro- and anti-apoptotic genes that were significantly expressed. Gene expression results showed that more tumorigenic cells (DLD-1) went through apoptosis; however, they exhibit increased risk of resistance and recurrence, while less tumorigenic Caco-2 cells responded better to PDT, thus being suggestive of a better prognosis post-PDT treatment. In addition, the possible apoptotic mechanisms of cell death were deduced based on the genetic expression profiling of regulatory apoptotic inducing factors.
Collapse
Affiliation(s)
- Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa.
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
12
|
Animal NLRs continue to inform plant NLR structure and function. Arch Biochem Biophys 2019; 670:58-68. [PMID: 31071301 DOI: 10.1016/j.abb.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/10/2019] [Accepted: 05/01/2019] [Indexed: 12/22/2022]
Abstract
Plant NLRs share many of the structural hallmarks of their animal counterparts. At a functional level, the central nucleotide-binding pocket appears to have binding and hydrolysis activities, similar to that of animal NLRs. The TIR domains of plant NLRs have been shown to self-associate, and there is emerging evidence that full-length plant NLRs may do so as well. It is therefore tempting to speculate that plant NLRs may form higher-order complexes similar to those of the mammalian inflammasome. Here we review the available knowledge on structure-function relationships in plant NLRs, focusing on how the information available on animal NLRs informs the mechanism of plant NLR function, and highlight the evidence that innate immunity signalling pathways in multicellular organisms often require the formation of higher-order protein complexes.
Collapse
|
13
|
Abstract
Inflammasomes are large protein complexes that trigger host defense in cells by activating inflammatory caspases for cytokine maturation and pyroptosis. NLRP6 is a sensor protein in the nucleotide-binding domain (NBD) and leucine-rich repeat (LRR)-containing (NLR) inflammasome family that has been shown to play multiple roles in regulating inflammation and host defenses. Despite the significance of the NLRP6 inflammasome, little is known about the molecular mechanism behind its assembly and activation. Here we present cryo-EM and crystal structures of NLRP6 pyrin domain (PYD). We show that NLRP6 PYD alone is able to self-assemble into filamentous structures accompanied by large conformational changes and can recruit the ASC adaptor using PYD-PYD interactions. Using molecular dynamics simulations, we identify the surface that the NLRP6 PYD filament uses to recruit ASC PYD. We further find that full-length NLRP6 assembles in a concentration-dependent manner into wider filaments with a PYD core surrounded by the NBD and the LRR domain. These findings provide a structural understanding of inflammasome assembly by NLRP6 and other members of the NLR family.
Collapse
|
14
|
Mu X, Yin R, Wang D, Song L, Ma Y, Zhao X, Li Q. Hepatic toxicity following actinomycin D chemotherapy in treatment of familial gestational trophoblastic neoplasia: A case report. Medicine (Baltimore) 2018; 97:e12424. [PMID: 30235719 PMCID: PMC6160083 DOI: 10.1097/md.0000000000012424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
RATIONALE Familial hydatidiform mole is extremely rare while familial gestational trophoblastic neoplasia (GTN) has never been reported. Inspired by 2 biological sisters with postmolar GTN and liver toxicity, we reviewed susceptible maternal-effect genes and explored the role of possible drug transporter genes in the development of GTN. PATIENT CONCERNS We reported one Chinese family where the two sisters developed postmolar GTN while experiencing fast remission and significant hepatic toxicity from actinomycin D chemotherapy. DIAGNOSES The index pregnancy was diagnosed with curettage. The following GTN was confirmed when there was a rise in beta-hCG for three consecutive weekly measurements over at least a period of 2 weeks. Computed tomography was used to identify lung metastasis. The elder sister was diagnosed with gestational trophoblastic neoplasia (III: 2) while the younger sister was diagnosed as III: 3 according to WHO scoring system. INTERVENTIONS Patients were treated with actinomycin D of 10 μg/kg intravenously for 5 days every 2 weeks. When hepatic toxicity was indicated, polyene phosphatidyl choline and magnesium isoglycyrrhizinate were prescribed. OUTCOMES Both patients responded extremely well to the 5-day actinomycin D regimen. Beta-hCG remained less than 2 mIU/ml after 5 cycles while computed tomography scan showed downsized pulmonary nodules. Both experienced significant rise in ALT and AST levels that could be ameliorated with corresponding medication. Monthly followed-up showed negative beta-hCG levels and normal liver enzyme levels. LESSONS We speculated that the known or unknown NLRP7 and KHDC3L mutations might be correlated with drug disposition in liver while liver drug transporters such as P-glycoprotein family that are also expressed in trophoblasts might be correlated to GTN susceptibility. Future genomic profiles of large samples alike using next generation sequencing are needed to confirm our hypothesis and discover yet unknown genes.
Collapse
Affiliation(s)
- Xiyan Mu
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China
| | - Rutie Yin
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China
| | - Danqing Wang
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China
| | - Liang Song
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China
| | - Yu Ma
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China
| | - Xia Zhao
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China
| | - Qingli Li
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China
| |
Collapse
|
15
|
Jin T, Huang M, Jiang J, Smith P, Xiao TS. Crystal structure of human NLRP12 PYD domain and implication in homotypic interaction. PLoS One 2018; 13:e0190547. [PMID: 29293680 PMCID: PMC5749810 DOI: 10.1371/journal.pone.0190547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/15/2017] [Indexed: 11/23/2022] Open
Abstract
NLRP12 is a NOD-like receptor that plays multiple roles in both inflammation and tumorigenesis. Despite the importance, little is known about its mechanism of action at the molecular level. Here, we report the crystal structure of NLRP12 PYD domain at 1.70 Å fused with an maltose-binding protein (MBP) tag. Interestingly, the PYD domain forms a dimeric configuration through a disulfide bond in the crystal. The possible biological significance is discussed in the context of ROS induced NF-κB activation.
Collapse
Affiliation(s)
- Tengchuan Jin
- Laboratory of structural immunology, CAS Key Laboratory of innate immunity and chronic diseases, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, PRC
- Structural Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (TJ); (TSX)
| | - Mo Huang
- Structural Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jiansheng Jiang
- Structural Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Patrick Smith
- Structural Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tsan Sam Xiao
- Structural Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (TJ); (TSX)
| |
Collapse
|
16
|
Huang JY, Yu PH, Li YC, Kuo PL. NLRP7 contributes to in vitro decidualization of endometrial stromal cells. Reprod Biol Endocrinol 2017; 15:66. [PMID: 28810880 PMCID: PMC5558772 DOI: 10.1186/s12958-017-0286-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/09/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Nucleotide-binding oligomerization domain (NACHT), leucine rich repeat (LRR) and pyrin domain (PYD) 7 containing protein, NLRP7, is a member of the NLR family which serves as innate immune sensors. Mutations and genetic variants of NLRP7 have been found in women with infertility associated conditions, such as recurrent hydatidiform mole, recurrent miscarriage, and preeclampsia. Decidualization of endometrial stromal cells is a hallmark of tissue remodeling to support embryo implantation and proper placental development. Given defective decidualization has been implicated in miscarriage as well as preeclampsia, we aimed to explore the link between the NLRP7 gene and decidualization. METHODS Endometrial samples obtained from pregnant women in the first trimester and non-pregnant women were used to study NLRP7 expression pattern. The human telomerase reverse transcriptase (hTERT)-immortalized human endometrial stromal cells (T-HESCs) were used to study the effect of NLRP7 on decidualization. Decidualization of T-HESCs was induced with 1 μM medroxyprogesterone acetate (MPA) and 0.5 mM 8-bromoadenosine 3':5'-cyclic monophosphate (8-Br-cAMP). siRNA was used to knock down NLRP7 while lentiviral vectors were used to overexpress NLRP7 in cells. NLRP7 expression was detected by immunofluorescence, qRT-PCR, and Western blotting. Decidualization markers, Insulin-like growth factor-binding protein 1 (IGFBP-1) and prolactin (PRL), were detected by qRT-PCR and ELISA. Nuclear translocation of NLRP7 was detected by the subcellular fractionation and confocal microscopy. The effect of NLRP7 on progesterone receptor (PR) activity was evaluated by a reporter system. RESULTS NLRP7 was up-regulated in the decidual stromal cells of human first-trimester endometrium. After in vitro decidualization, T-HESCs presented with the swollen phenotype and increased expressions of IGFBP-1 and PRL. Knockdown or over-expression of NLRP7 reduced or enhanced the decidualization, respectively, according to the expression level of IGFBP-1. NLRP7 was found to translocate in the nucleus of decidualized T-HESCs and able to promote PR activity. CONCLUSIONS NLRP7 was upregulated and translocated to the nucleus of the endometrial stromal cells in an in vitro decidualization model. Overexpressed NLRP7 promoted the IGFBP-1 expression and PR reporter activation. IGFBP-1 expression decreased with the knockdown of NLRP7. Therefore, we suggest that NLRP7 contributes to in vitro decidualization of endometrial stromal cells.
Collapse
Affiliation(s)
- Jyun-Yuan Huang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, 138 Sheng-Li Road, Tainan, 704, Taiwan
| | - Pei-Hsiu Yu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, 138 Sheng-Li Road, Tainan, 704, Taiwan
| | - Yueh-Chun Li
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Jianguo N. Rd., South Dist, Taichung City, 402, Taiwan.
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, 138 Sheng-Li Road, Tainan, 704, Taiwan.
| |
Collapse
|
17
|
Abstract
The inflammasome is a large multimeric protein complex comprising an effector protein that demonstrates specificity for a variety of activators or ligands; an adaptor molecule; and procaspase-1, which is converted to caspase-1 upon inflammasome activation. Inflammasomes are expressed primarily by myeloid cells and are located within the cell. The macromolecular inflammasome structure can be visualized by cryo-electron microscopy. This complex has been found to play a role in a variety of disease models in mice, and several have been genetically linked to human diseases. In most cases, the effector protein is a member of the NLR (nucleotide-binding domain leucine-rich repeat-containing) or NOD (nucleotide oligomerization domain)-like receptor protein family. However, other effectors have also been described, with the most notable being AIM-2 (absent in melanoma 2), which recognizes DNA to elicit inflammasome function. This review will focus on the role of the inflammasome in myeloid cells and its role in health and disease.
Collapse
|
18
|
Hoss F, Rodriguez-Alcazar JF, Latz E. Assembly and regulation of ASC specks. Cell Mol Life Sci 2017; 74:1211-1229. [PMID: 27761594 PMCID: PMC11107573 DOI: 10.1007/s00018-016-2396-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
The inflammasome adapter ASC links activated inflammasome sensors to the effector molecule pro-caspase-1. Recruitment of pro-caspase-1 to ASC promotes the autocatalytic activation of caspase-1, which leads to the release of pro-inflammatory cytokines, such as IL-1β. Upon triggering of inflammasome sensors, ASC assembles into large helical fibrils that interact with each other serving as a supramolecular signaling platform termed the ASC speck. Alternative splicing, post-translational modifications of ASC, as well as interaction with other proteins can perturb ASC function. In several inflammatory diseases, ASC specks can be found in the extracellular space and its presence correlates with poor prognosis. Here, we review the role of ASC in inflammation, and focus on the structural mechanisms that lead to ASC speck formation, the regulation of ASC function during inflammasome assembly, and the importance of ASC specks in disease.
Collapse
Affiliation(s)
- Florian Hoss
- Institute of Innate Immunity, University Hospitals, University of Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | - Juan F Rodriguez-Alcazar
- Institute of Innate Immunity, University Hospitals, University of Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospitals, University of Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
- German Center for Neurodegenerative Diseases, Bonn, Germany.
- Department of Cancer Research and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
19
|
Park YH, Jeong MS, Jang SB. Structural insights of homotypic interaction domains in the ligand-receptor signal transduction of tumor necrosis factor (TNF). BMB Rep 2017; 49:159-66. [PMID: 26615973 PMCID: PMC4915230 DOI: 10.5483/bmbrep.2016.49.3.205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Indexed: 11/21/2022] Open
Abstract
Several members of tumor necrosis factor receptor (TNFR) superfamily that these
members activate caspase-8 from death-inducing signaling complex (DISC) in TNF
ligand-receptor signal transduction have been identified. In the extrinsic
pathway, apoptotic signal transduction is induced in death domain (DD)
superfamily; it consists of a hexahelical bundle that contains 80 amino acids.
The DD superfamily includes about 100 members that belong to four subfamilies:
death domain (DD), caspase recruitment domain (CARD), pyrin domain (PYD), and
death effector domain (DED). This superfamily contains key building blocks: with
these blocks, multimeric complexes are formed through homotypic interactions.
Furthermore, each DD-binding event occurs exclusively. The DD superfamily
regulates the balance between death and survival of cells. In this study, the
structures, functions, and unique features of DD superfamily members are
compared with their complexes. By elucidating structural insights of DD
superfamily members, we investigate the interaction mechanisms of DD domains;
these domains are involved in TNF ligand-receptor signaling. These DD
superfamily members play a pivotal role in the development of more specific
treatments of cancer. [BMB Reports 2016; 49(3): 159-166]
Collapse
Affiliation(s)
- Young-Hoon Park
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| | - Mi Suk Jeong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University; Genetic Engineering Institute, Pusan National University, Busan 46241, Korea
| |
Collapse
|
20
|
Oroz J, Barrera-Vilarmau S, Alfonso C, Rivas G, de Alba E. ASC Pyrin Domain Self-associates and Binds NLRP3 Protein Using Equivalent Binding Interfaces. J Biol Chem 2016; 291:19487-501. [PMID: 27432880 PMCID: PMC5016686 DOI: 10.1074/jbc.m116.741082] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/08/2016] [Indexed: 11/06/2022] Open
Abstract
Death domain superfamily members typically act as adaptors mediating in the assembly of supramolecular complexes with critical apoptosis and inflammation functions. These modular proteins consist of death domains, death effector domains, caspase recruitment domains, and pyrin domains (PYD). Despite the high structural similarity among them, only homotypic interactions participate in complex formation, suggesting that subtle factors differentiate each interaction type. It is thus critical to identify these factors as an essential step toward the understanding of the molecular basis of apoptosis and inflammation. The proteins apoptosis-associated speck-like protein containing a CARD (ASC) and NLRP3 play key roles in the regulation of apoptosis and inflammation through self-association and protein-protein interactions mediated by their PYDs. To better understand the molecular basis of their function, we have characterized ASC and NLRP3 PYD self-association and their intermolecular interaction by solution NMR spectroscopy and analytical ultracentrifugation. We found that ASC self-associates and binds NLRP3 PYD through equivalent protein regions, with higher binding affinity for the latter. These regions are located at opposite sides of the protein allowing multimeric complex formation previously shown in ASC PYD fibril assemblies. We show that NLRP3 PYD coexists in solution as a monomer and highly populated large-order oligomerized species. Despite this, we determined its monomeric three-dimensional solution structure by NMR and characterized its binding to ASC PYD. Using our novel structural data, we propose molecular models of ASC·ASC and ASC·NLRP3 PYD early supramolecular complexes, providing new insights into the molecular mechanisms of inflammasome and apoptosis signaling.
Collapse
Affiliation(s)
- Javier Oroz
- From the Centro de Investigaciones Biológicas, Departments of Chemical and Physical Biology and the German Center for Neurodegenerative Diseases (DZNE), ℅Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen-37077, Germany, and
| | - Susana Barrera-Vilarmau
- From the Centro de Investigaciones Biológicas, Departments of Chemical and Physical Biology and
| | | | | | - Eva de Alba
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9 Madrid-28040, Spain, the Health Sciences Research Institute, University of California at Merced, Merced, California 95343
| |
Collapse
|
21
|
Abstract
Inflammasomes are protein complexes that promote the maturation and release of pro-inflammatory cytokines and danger signals as well as pyroptosis in response to infections and cellular stress. Inflammasomes consist of a sensor, an adapter, and the effector caspase-1, which interact through homotypic interactions of caspase recruitment domains (CARDs) or PYRIN domains (PYDs). Hence, decoy proteins encoding only a CARD or PYD, COPs and POPs, respectively, are assumed to inhibit inflammasome assembly. Sensors encoding a PYD belong to the families of NOD-like receptors containing a PYD (NLRPs) or AIM2-like receptors (ALRs), which interact with the PYD- and CARD-containing adapter ASC through homotypic PYD interactions. Subsequently, ASC undergoes PYD-dependent oligomerization, which promotes CARD-mediated interactions between ASC and caspase-1, resulting in caspase-1 activation. POPs are suggested to interfere with the interaction between NLRPs/ALRs and ASC to prevent nucleation of ASC and therefore prevent an oligomeric platform for caspase-1 activation. Similarly, COPs are suggested to bind to the CARD of caspase-1 to prevent its recruitment to the oligomeric ASC platform and its activation. Alternatively, the adapter ASC may regulate inflammasome activity by expressing different isoforms, which are either capable or incapable of assembling an oligomeric ASC platform. The molecular mechanism of inflammasome assembly has only recently been elucidated, but the effects of most COPs and POPs on inflammasome assembly have not been investigated. Here, we discuss our model of COP- and POP-mediated inflammasome regulation.
Collapse
Affiliation(s)
- Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | |
Collapse
|
22
|
Abstract
The PYRIN domain (PYD) is a protein-protein interaction domain, which belongs to the death domain fold (DDF) superfamily. It is best known for its signaling function in innate immune responses and particularly in the assembly of inflammasomes, which are large protein complexes that allow the induced proximity-mediated activation of caspase-1 and subsequently the release of pro-inflammatory cytokines. The molecular mechanism of inflammasome assembly was only recently elucidated and specifically requires PYD oligomerization. Here we discuss the recent advances in our understanding of PYD signaling and its regulation by PYD-only proteins.
Collapse
|
23
|
Jin T, Xiao TS. Activation and assembly of the inflammasomes through conserved protein domain families. Apoptosis 2015; 20:151-6. [PMID: 25398536 DOI: 10.1007/s10495-014-1053-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inflammasomes are oligomeric protein complexes assembled through interactions among the death domain superfamily members, in particular the CARD and PYD domains. Recent progress has shed lights on how the ASC PYD can polymerize to form filaments using multiple domain:domain interfaces, and how the caspase4 CARD can recognize LPS to activate the non-classical inflammasome pathway. Comprehensive understanding of the molecular mechanisms of inflammasome activation and assembly require more extensive structural and biophysical dissection of the inflammasome components and complexes, in particular additional CARD or PYD filaments. Because of the variations in death domain structures and complexes observed so far, future work will undoubtedly shed lights on the mechanisms of inflammasome assembly as well as more surprises on the versatile structure and function of the death domain superfamily.
Collapse
Affiliation(s)
- Tengchuan Jin
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
24
|
The hierarchical structural architecture of inflammasomes, supramolecular inflammatory machines. Curr Opin Struct Biol 2015; 31:75-83. [PMID: 25881155 DOI: 10.1016/j.sbi.2015.03.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/12/2015] [Accepted: 03/31/2015] [Indexed: 12/22/2022]
Abstract
Inflammasomes are caspase-1 activating, molecular inflammatory machines that proteolytically mature pro-inflammatory cytokines and induce pyroptotic cell death during innate immune responses. Recent structural studies of proteins that constitute inflammasomes have yielded fresh insights into their assembly mechanisms. In particular, these include a crystal structure of the CARD-containing NOD-like receptor NLRC4, the crystallographic and electron microscopy (EM) studies of the dsDNA sensors AIM2 and IFI16, and of the regulatory protein p202, and the cryo-EM filament structure of the PYD domain of the inflammasome adapter ASC. These data suggest inflammasome assembly that starts with ligand recognition and release of autoinhibition followed by step-wise rounds of nucleated polymerization from the sensors to the adapters, then to caspase-1. In this elegant manner, inflammasomes form by an 'all-or-none' cooperative mechanism, thereby amplifying the activation of caspase-1. The dense network of filamentous structures predicted by this model has been observed in cells as micron-sized puncta.
Collapse
|
25
|
Choi JY, Kim CM, Seo EK, Bhat EA, Jang TH, Lee JH, Park HH. Crystal structure of human POP1 and its distinct structural feature for PYD domain. Biochem Biophys Res Commun 2015; 460:957-63. [PMID: 25839653 DOI: 10.1016/j.bbrc.2015.03.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/24/2015] [Indexed: 01/20/2023]
Abstract
Inflammatory caspases, such as caspase-1, which is critical for the innate immune response, are activated upon the formation of a molecular complex called the inflammasome. The inflammasome is composed of three proteins, the Nod-like receptor (NLRP, NLRC or AIM2), apoptosis associated speck-loke protein containing a caspase-recruitment domain (ASC), and caspase-1. ASC is an adaptor molecule that contains an N-terminal PYD domain and a C-terminal CARD domain for interaction with other proteins. Upon activation, the N-terminal PYD of ASC homotypically interacts with the PYD domain of the Nod-like receptor, while its C-terminal CARD homotypically interacts with the CARD domain of caspase-1. PYD only protein 1 (POP1) negatively regulates inflammatory response by blocking the formation of the inflammasome. POP1 directly binds to ASC via a PYD:PYD interaction, thereby preventing ASC recruitment to Nod-like receptor NLRPs. POP1-mediated regulation of inflammation is of great biological importance. Here, we report the crystal structure of human POP1 and speculate about the inhibitory mechanism of POP1-mediated inflammasome formation based on the current structure.
Collapse
Affiliation(s)
- Jae Young Choi
- School of Biotechnology and Graduate School of Biochemistry at Yeungnam University, Gyeongsan 712-749, South Korea
| | - Chang Min Kim
- School of Biotechnology and Graduate School of Biochemistry at Yeungnam University, Gyeongsan 712-749, South Korea
| | - Eun Kyung Seo
- School of Biotechnology and Graduate School of Biochemistry at Yeungnam University, Gyeongsan 712-749, South Korea
| | - Eijaz Ahmed Bhat
- School of Biotechnology and Graduate School of Biochemistry at Yeungnam University, Gyeongsan 712-749, South Korea
| | - Tae-Ho Jang
- School of Biotechnology and Graduate School of Biochemistry at Yeungnam University, Gyeongsan 712-749, South Korea
| | - Jun Hyuck Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea; Department of Polar Sciences, Korea University of Science and Technology, Incheon 406-840, Republic of Korea
| | - Hyun Ho Park
- School of Biotechnology and Graduate School of Biochemistry at Yeungnam University, Gyeongsan 712-749, South Korea.
| |
Collapse
|
26
|
Bryant CE, Orr S, Ferguson B, Symmons MF, Boyle JP, Monie TP. International Union of Basic and Clinical Pharmacology. XCVI. Pattern recognition receptors in health and disease. Pharmacol Rev 2015; 67:462-504. [PMID: 25829385 PMCID: PMC4394686 DOI: 10.1124/pr.114.009928] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since the discovery of Toll, in the fruit fly Drosophila melanogaster, as the first described pattern recognition receptor (PRR) in 1996, many families of these receptors have been discovered and characterized. PRRs play critically important roles in pathogen recognition to initiate innate immune responses that ultimately link to the generation of adaptive immunity. Activation of PRRs leads to the induction of immune and inflammatory genes, including proinflammatory cytokines and chemokines. It is increasingly clear that many PRRs are linked to a range of inflammatory, infectious, immune, and chronic degenerative diseases. Several drugs to modulate PRR activity are already in clinical trials and many more are likely to appear in the near future. Here, we review the different families of mammalian PRRs, the ligands they recognize, the mechanisms of activation, their role in disease, and the potential of targeting these proteins to develop the anti-inflammatory therapeutics of the future.
Collapse
Affiliation(s)
- Clare E Bryant
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Selinda Orr
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Brian Ferguson
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Martyn F Symmons
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Joseph P Boyle
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Tom P Monie
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| |
Collapse
|
27
|
Huber RG, Eibl C, Fuchs JE. Intrinsic flexibility of NLRP pyrin domains is a key factor in their conformational dynamics, fold stability, and dimerization. Protein Sci 2014; 24:174-81. [PMID: 25403012 DOI: 10.1002/pro.2601] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/09/2014] [Indexed: 01/12/2023]
Abstract
Nucleotide-binding domain leucine-rich repeat-containing receptors (NLRs) are key proteins in the innate immune system. The 14 members of the NLRP family of NLRs contain an N-terminal pyrin domain which is central for complex formation and signal transduction. Recently, X-ray structures of NLRP14 revealed an unexpected rearrangement of the α5/6 stem-helix of the pyrin domain allowing a novel symmetric dimerization mode. We characterize the conformational transitions underlying NLRP oligomerization using molecular dynamics simulations. We describe conformational stability of native NLRP14 and mutants in their monomeric and dimeric states and compare them to NLRP4, a representative of a native pyrin domain fold. Thereby, we characterize the interplay of conformational dynamics, fold stability, and dimerization in NLRP pyrin domains. We show that intrinsic flexibility of NLRP pyrin domains is a key factor influencing their behavior in physiological conditions. Additionally, we provide further evidence for the crucial importance of a charge relay system within NLRPs that critically influences their conformational ensemble in solution.
Collapse
Affiliation(s)
- Roland G Huber
- Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain, 80/82, Innsbruck, Austria; Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01 Matrix, Singapore, 138671
| | | | | |
Collapse
|
28
|
Singer H, Biswas A, Zimmer N, Messaed C, Oldenburg J, Slim R, El-Maarri O. NLRP7 inter-domain interactions: the NACHT-associated domain is the physical mediator for oligomeric assembly. Mol Hum Reprod 2014; 20:990-1001. [PMID: 25082979 DOI: 10.1093/molehr/gau060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations in NLRP7 (NOD-like-receptor family, pyrin domain containing 7) are responsible for a type of recurrent pregnancy loss known as recurrent hydatidiform mole (HYDM1). This condition is characterized by abnormal growth of the placenta, a lack of proper embryonic development and abnormal methylation patterns at multiple imprinted loci in diploid biparental molar tissues. The role of NLRP7 protein in the disease manifestation is currently not clear. In order to better understand how the effects of HYDM1 are associated with mutations on the structure of NLRP7, we performed an inter-domain interaction screen using a yeast two-hybrid system. Additionally, we generated in silico structural models of NLRP7 in its non-activated and activated forms. Our observations from the yeast two-hybrid screen and modeling suggest that the NACHT-associated domain (NAD) of the NLRP7 protein is central to its oligomeric assembly. Upon activation, the NAD and a small part of the leucine rich repeat (LRR) of one molecule emerged out of the protective LRR domain and interact with the NACHT domain of the second molecule to form an oligomer. Furthermore, we investigated the molecular basis for the pathophysiological effect of four missense mutations, three HYDM1-causing and one rare non-synonymous variant, on the protein using confocal microscopy of transiently transfected NLRP7 in HEK293T cells and in silico structural analysis. We found that with the two clinically severe missense mutations, L398R and R693W, the normal molecule to molecule interaction was apparently affected thus decreasing their oligomerization potential while aggresome formation was increased; these changes could disturb the normal downstream functions of NLRP7 and therefore be a possible molecular effect underlying their pathophysiological impact.
Collapse
Affiliation(s)
- Heike Singer
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Nicole Zimmer
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Christiane Messaed
- Department of Human Genetics, McGill University Health Centre Research Institute, Montreal, Canada Department of Obstetrics and Gynecology, McGill University Health Centre Research Institute, Montreal, Canada
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Rima Slim
- Department of Human Genetics, McGill University Health Centre Research Institute, Montreal, Canada Department of Obstetrics and Gynecology, McGill University Health Centre Research Institute, Montreal, Canada
| | - Osman El-Maarri
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
29
|
Reubold TF, Hahne G, Wohlgemuth S, Eschenburg S. Crystal structure of the leucine-rich repeat domain of the NOD-like receptor NLRP1: implications for binding of muramyl dipeptide. FEBS Lett 2014; 588:3327-32. [PMID: 25064844 DOI: 10.1016/j.febslet.2014.07.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 12/20/2022]
Abstract
The NOD-like receptor NLRP1 (NLR family, pyrin domain containing 1) senses the presence of the bacterial cell wall component l-muramyl dipeptide (MDP) inside the cell. We determined the crystal structure of the LRR domain of human NLRP1 in the absence of MDP to a resolution of 1.65Å. The fold of the structure can be assigned to the ribonuclease inhibitor-like class of LRR proteins. We compared our structure with X-ray models of the LRR domains of NLRX1 and NLRC4 and a homology model of the LRR domain of NOD2. We conclude that the MDP binding site of NLRP1 is not located in the LRR domain.
Collapse
Affiliation(s)
- Thomas F Reubold
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Gernot Hahne
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Sabine Wohlgemuth
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Susanne Eschenburg
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany.
| |
Collapse
|
30
|
Vajjhala PR, Kaiser S, Smith SJ, Ong QR, Soh SL, Stacey KJ, Hill JM. Identification of multifaceted binding modes for pyrin and ASC pyrin domains gives insights into pyrin inflammasome assembly. J Biol Chem 2014; 289:23504-19. [PMID: 25006247 DOI: 10.1074/jbc.m114.553305] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inflammasomes are macromolecular complexes that mediate inflammatory and cell death responses to pathogens and cellular stress signals. Dysregulated inflammasome activation is associated with autoinflammatory syndromes and several common diseases. During inflammasome assembly, oligomerized cytosolic pattern recognition receptors recruit procaspase-1 and procaspase-8 via the adaptor protein ASC. Inflammasome assembly is mediated by pyrin domains (PYDs) and caspase recruitment domains, which are protein interaction domains of the death fold superfamily. However, the molecular details of their interactions are poorly understood. We have studied the interaction between ASC and pyrin PYDs that mediates ASC recruitment to the pyrin inflammasome, which is implicated in the pathogenesis of familial Mediterranean fever. We demonstrate that both the ASC and pyrin PYDs have multifaceted binding modes, involving three sites on pyrin PYD and two sites on ASC PYD. Molecular docking of pyrin-ASC PYD complexes showed that pyrin PYD can simultaneously interact with up to three ASC PYDs. Furthermore, ASC PYD can self-associate and interact with pyrin, consistent with previous reports that pyrin promotes ASC clustering to form a proinflammatory complex. Finally, the effects of familial Mediterranean fever-associated mutations, R42W and A89T, on structural and functional properties of pyrin PYD were investigated. The R42W mutation had a significant effect on structure and increased stability. Although the R42W mutant exhibited reduced interaction with ASC, it also bound less to the pyrin B-box domain responsible for autoinhibition and hence may be constitutively active. Our data give new insights into the binding modes of PYDs and inflammasome architecture.
Collapse
Affiliation(s)
| | | | - Sarah J Smith
- From the School of Chemistry and Molecular Biosciences and
| | - Qi-Rui Ong
- From the School of Chemistry and Molecular Biosciences and
| | | | | | - Justine M Hill
- From the School of Chemistry and Molecular Biosciences and Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
31
|
Eibl C, Hessenberger M, Wenger J, Brandstetter H. Structures of the NLRP14 pyrin domain reveal a conformational switch mechanism regulating its molecular interactions. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2007-18. [PMID: 25004977 PMCID: PMC4089490 DOI: 10.1107/s1399004714010311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 05/06/2014] [Indexed: 11/21/2022]
Abstract
The cytosolic tripartite NLR receptors serve as important signalling platforms in innate immunity. While the C-terminal domains act as sensor and activation modules, the N-terminal death-like domain, e.g. the CARD or pyrin domain, is thought to recruit downstream effector molecules by homotypic interactions. Such homotypic complexes have been determined for all members of the death-domain superfamily except for pyrin domains. Here, crystal structures of human NLRP14 pyrin-domain variants are reported. The wild-type protein as well as the clinical D86V mutant reveal an unexpected rearrangement of the C-terminal helix α6, resulting in an extended α5/6 stem-helix. This reordering mediates a novel symmetric pyrin-domain dimerization mode. The conformational switching is controlled by a charge-relay system with a drastic impact on protein stability. How the identified charge relay allows classification of NLRP receptors with respect to distinct recruitment mechanisms is discussed.
Collapse
Affiliation(s)
- Clarissa Eibl
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Manuel Hessenberger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Julia Wenger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Hans Brandstetter
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| |
Collapse
|
32
|
Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK, Vos MR, Schröder GF, Fitzgerald KA, Wu H, Egelman EH. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 2014; 156:1193-1206. [PMID: 24630722 DOI: 10.1016/j.cell.2014.02.008] [Citation(s) in RCA: 1034] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/04/2013] [Accepted: 02/03/2014] [Indexed: 12/27/2022]
Abstract
Inflammasomes elicit host defense inside cells by activating caspase-1 for cytokine maturation and cell death. AIM2 and NLRP3 are representative sensor proteins in two major families of inflammasomes. The adaptor protein ASC bridges the sensor proteins and caspase-1 to form ternary inflammasome complexes, achieved through pyrin domain (PYD) interactions between sensors and ASC and through caspase activation and recruitment domain (CARD) interactions between ASC and caspase-1. We found that PYD and CARD both form filaments. Activated AIM2 and NLRP3 nucleate PYD filaments of ASC, which, in turn, cluster the CARD of ASC. ASC thus nucleates CARD filaments of caspase-1, leading to proximity-induced activation. Endogenous NLRP3 inflammasome is also filamentous. The cryoelectron microscopy structure of ASC(PYD) filament at near-atomic resolution provides a template for homo- and hetero-PYD/PYD associations, as confirmed by structure-guided mutagenesis. We propose that ASC-dependent inflammasomes in both families share a unified assembly mechanism that involves two successive steps of nucleation-induced polymerization. PAPERFLICK:
Collapse
Affiliation(s)
- Alvin Lu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Venkat Giri Magupalli
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jianbin Ruan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Qian Yin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maninjay K Atianand
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Matthijn R Vos
- FEI Company, Nanoport Europe, 5651 GG Eindhoven, the Netherlands
| | - Gunnar F Schröder
- Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany; Physics Department, Heinrich-Heine Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Katherine A Fitzgerald
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
33
|
MacDonald JA, Wijekoon CP, Liao KC, Muruve DA. Biochemical and structural aspects of the ATP-binding domain in inflammasome-forming human NLRP proteins. IUBMB Life 2014; 65:851-62. [PMID: 24078393 DOI: 10.1002/iub.1210] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/22/2013] [Indexed: 01/01/2023]
Abstract
Nucleotide-binding domain and leucine-rich repeat-containing receptors (NLRs) regulate innate immunity by activating inflammatory responses in a variety of biological systems following the recognition of pathogen- or disease-associated molecular patterns. NLRs are characterized by a central nucleotide-binding and oligomerization (NACHT) domain found in P-loop NTPases. In this review, we detail the functional and structural properties of the NACHT domain of a subfamily of NLRs, the NLRPs (NLR containing a pyrin domain), based on previous studies, sequence analysis, homology modeling, and structure predictions. Several NLRPs have been found to regulate inflammatory responses through the assembly of oligomeric caspase 1-activating platforms known as inflammasomes, the 3-dimensional structure of the NLRP NACHT domain has still not been solved. Homology modeling suggests that sequence variability within the NACHT domains of different NLRP family members may alter the topology of the ATP-binding pocket. Based on this finding, we discuss the potential therapeutic prospects aligned with the NACHT domain and the development of selective inhibitors of inflammasome activity.
Collapse
Affiliation(s)
- Justin A MacDonald
- Libin Cardiovascular Institute and Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | | | | | | |
Collapse
|
34
|
Lu A, Kabaleeswaran V, Fu T, Magupalli VG, Wu H. Crystal structure of the F27G AIM2 PYD mutant and similarities of its self-association to DED/DED interactions. J Mol Biol 2014; 426:1420-7. [PMID: 24406744 DOI: 10.1016/j.jmb.2013.12.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/19/2013] [Accepted: 12/23/2013] [Indexed: 02/05/2023]
Abstract
Absent in melanoma 2 (AIM2) is a cytoplasmic double-stranded DNA sensor involved in innate immunity. It uses its C-terminal HIN domain for recognizing double-stranded DNA and its N-terminal pyrin domain (PYD) for eliciting downstream effects through recruitment and activation of apoptosis-associated Speck-like protein containing CARD (ASC). ASC in turn recruits caspase-1 and/or caspase-11 to form the AIM2 inflammasome. The activated caspases process proinflammatory cytokines IL-1β and IL-18 and induce the inflammatory form of cell death pyroptosis. Here we show that AIM PYD (AIM2(PYD)) self-oligomerizes. We notice significant sequence homology of AIM2(PYD) with the hydrophobic patches of death effector domain (DED)-containing proteins and confirm that mutations on these residues disrupt AIM2(PYD) self-association. The crystal structure at 1.82Å resolution of such a mutant, F27G of AIM2(PYD), shows the canonical six-helix (H1-H6) bundle fold in the death domain superfamily. In contrast to the wild-type AIM2(PYD) structure crystallized in fusion with the large maltose-binding protein tag, the H2-H3 region of the AIM2(PYD) F27G is well defined with low B-factors. Structural analysis shows that the conserved hydrophobic patches engage in a type I interaction that has been observed in DED/DED and other death domain superfamily interactions. While previous mutagenesis studies of PYDs point to the involvement of charged interactions, our results reveal the importance of hydrophobic interactions in the same interfaces. These centrally localized hydrophobic residues within fairly charged patches may form the hot spots in AIM2(PYD) self-association and may represent a common mode of PYD/PYD interactions in general.
Collapse
Affiliation(s)
- Alvin Lu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Venkataraman Kabaleeswaran
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Tianmin Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Venkat Giri Magupalli
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Ratsimandresy RA, Dorfleutner A, Stehlik C. An Update on PYRIN Domain-Containing Pattern Recognition Receptors: From Immunity to Pathology. Front Immunol 2013; 4:440. [PMID: 24367371 PMCID: PMC3856626 DOI: 10.3389/fimmu.2013.00440] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/25/2013] [Indexed: 12/11/2022] Open
Abstract
Cytosolic pattern recognition receptors (PRRs) sense a wide range of endogenous danger-associated molecular patterns as well as exogenous pathogen-associated molecular patterns. In particular, Nod-like receptors containing a pyrin domain (PYD), called NLRPs, and AIM2-like receptors (ALRs) have been shown to play a critical role in host defense by facilitating clearance of pathogens and maintaining a healthy gut microflora. NLRPs and ALRs both encode a PYD, which is crucial for relaying signals that result in an efficient innate immune response through activation of several key innate immune signaling pathways. However, mutations in these PRRs have been linked to the development of auto-inflammatory and autoimmune diseases. In addition, they have been implicated in metabolic diseases. In this review, we summarize the function of PYD-containing NLRPs and ALRs and address their contribution to innate immunity, host defense, and immune-linked diseases.
Collapse
Affiliation(s)
- Rojo A Ratsimandresy
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA ; Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University , Chicago, IL , USA
| |
Collapse
|
36
|
Abstract
The PYRIN domain (PYD) is a well known protein interaction module and a prime mediator of the protein interactions necessary for apoptosis, inflammation and innate immune signaling pathway. Because PYD-mediated apoptosis, inflammation and innate immune processes are associated with many human diseases, studies in these areas are of great biological importance. Intensive biochemical and structural studies of PYD have been conducted in the past decade to elucidate PYD-mediated signaling events, and evaluations of the molecular structure of PYDs have shown the underlying molecular basis for the assembly of PYD-mediated complexes and for the regulation of inflammation and innate immunity. This review summarizes the structure and function of various PYDs and proposes a PYD:PYD interaction for assembly of the complexes involved in those signaling pathways.
Collapse
|
37
|
Su MY, Kuo CI, Chang CF, Chang CI. Three-dimensional structure of human NLRP10/PYNOD pyrin domain reveals a homotypic interaction site distinct from its mouse homologue. PLoS One 2013; 8:e67843. [PMID: 23861819 PMCID: PMC3701624 DOI: 10.1371/journal.pone.0067843] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/21/2013] [Indexed: 12/31/2022] Open
Abstract
NLRPs (Nucleotide-binding domain, leucine-rich repeat and pyrin domain containing proteins) are a family of pattern-recognition receptors (PRRs) that sense intracellular microbial components and endogenous stress signals. NLRP10 (also known as PYNOD) is a unique NLRP member characterized by a lack of the putative ligand-binding leucine-rich repeat domain. Recently, human NLRP10 has been shown to inhibit the self-association of ASC into aggregates and ASC-mediated procaspase-1 processing. However, such activities are not found in mouse NLRP10. Here we report the solution structure and dynamics of human NLRP10 pyrin domain (PYD), whose helix H3 and loop H2-H3 adopt a conformation distinct from those of mouse NLRP10. Docking studies show that human and mouse NLRP10 PYDs may interact differently with ASC PYD. These results provide a possible structural explanation for the contrasting effect of NLRP10 on ASC aggregation in human cells versus mouse models. Finally, we also provide evidence that in human NLRP10 the PYD domain may not interact with the NOD domain to regulate its intrinsic nucleotide hydrolysis activity.
Collapse
Affiliation(s)
- Ming-Yuan Su
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chiao-I Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chung-I Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| |
Collapse
|
38
|
Radian AD, de Almeida L, Dorfleutner A, Stehlik C. NLRP7 and related inflammasome activating pattern recognition receptors and their function in host defense and disease. Microbes Infect 2013; 15:630-9. [PMID: 23618810 PMCID: PMC3722249 DOI: 10.1016/j.micinf.2013.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/09/2013] [Accepted: 04/09/2013] [Indexed: 12/16/2022]
Abstract
Host defense requires the maturation and release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and the induction of pyroptotic cell death, which depends on the activation of inflammatory Caspases within inflammasomes by innate immune cells. Several cytosolic pattern recognition receptors (PRRs) have been implicated in this process in response to infectious and sterile agonists. Here we summarize the current knowledge on inflammasome-organizing PRRs, emphasizing the recently described NLRP7, and their implications in human disease.
Collapse
Affiliation(s)
- Alexander D. Radian
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Driskill Graduate Program in Life Sciences (DGP), Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lucia de Almeida
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
39
|
Jin T, Perry A, Smith P, Jiang J, Xiao TS. Structure of the absent in melanoma 2 (AIM2) pyrin domain provides insights into the mechanisms of AIM2 autoinhibition and inflammasome assembly. J Biol Chem 2013; 288:13225-35. [PMID: 23530044 DOI: 10.1074/jbc.m113.468033] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND AIM2 binds dsDNA and associates with ASC through their PYDs to form an inflammasome. RESULTS The AIM2 PYD structure illustrates distinct charge distribution and a unique hydrophobic patch. CONCLUSION The AIM2 PYD may bind the ASC PYD and the AIM2 HIN domain through overlapping surface. SIGNIFICANCE These findings provide insights into the mechanisms of AIM2 autoinhibition and inflammasome assembly. Absent in melanoma 2 (AIM2) is a cytosolic double-stranded (dsDNA) sensor essential for innate immune responses against DNA viruses and bacteria such as Francisella and Listeria. Upon dsDNA engagement, the AIM2 amino-terminal pyrin domain (PYD) is responsible for downstream signaling to the adapter protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) through homotypic PYD-PYD interactions and the assembly of an inflammasome. Toward a better understanding of the AIM2 signaling mechanism, we determined the crystal structure of the human AIM2 PYD. The structure reveals a death domain fold with a short α3 helix that is buttressed by a highly conserved lysine residue at the α2 helix, which may stabilize the α3 helix for potential interaction with partner domains. The surface of the AIM2 PYD exhibits distinct charge distribution with highly acidic α1-α2 helices and highly basic α5-α6 helices. A prominent solvent-exposed hydrophobic patch formed by residues Phe-27 and Phe-28 at the α2 helix resembles a similar surface involved in the death effector domain homotypic interactions. Docking studies suggest that the AIM2 PYD may bind the AIM2 hematopoietic interferon-inducible nuclear (HIN) domain or ASC PYD using overlapping surface near the α2 helix. This may ensure that AIM2 interacts with the downstream adapter ASC only upon release of the autoinhibition by the dsDNA ligand. Our work thus unveils novel structural features of the AIM2 PYD and provides insights into the potential mechanisms of the PYD-HIN and PYD-PYD interactions important for AIM2 autoinhibition and inflammasome assembly.
Collapse
Affiliation(s)
- Tengchuan Jin
- Structural Immunobiology Unit, Laboratory of Immunology, NIAID, National Institutes of Health, Bethesda, MD 20892-0430, USA
| | | | | | | | | |
Collapse
|
40
|
Huang JY, Su M, Lin SH, Kuo PL. A genetic association study of NLRP2 and NLRP7 genes in idiopathic recurrent miscarriage. Hum Reprod 2013; 28:1127-34. [PMID: 23360675 DOI: 10.1093/humrep/det001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Do gene polymorphisms of two members of the human innate immune sensor nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing proteins (NLRP) family, NLRP2 and NLRP7, confer susceptibility to idiopathic recurrent miscarriage (RM)? SUMMARY ANSWER We found a significant association of a tag single-nucleotide polymorphism (SNP) of NLRP7 (rs26949) with idiopathic RM, while a tag SNP of NLRP2 (rs127868) showed a marginally significant association. WHAT IS KNOWN ALREADY Human NLRP2 and NLRP7 have been suggested to be maternal effect genes, regulating early embryonic development and establishment of maternal imprints. Anecdotal evidence showed women who had experienced at least three consecutive miscarriages without hydatidiform mole carried non-synonymous NLRP7 variants. Whether these two genes are associated with idiopathic RM remains obscure. STUDY DESIGN, SIZE AND DURATION In this case-controlled study, 143 women who had experienced at least two consecutive spontaneous miscarriages (n = 91 women with two miscarriages, n = 52 with three or more) and 149 controls were included between 2004 and 2010. MATERIALS, SETTING, METHODS A total of five tag SNPs of NLRP2 and eight tag SNPs of NLRP7 were genotyped using the primer extension analysis. The deviation from the Hardy-Weinberg equilibrium was checked using χ(2) analysis. The logistic odds ratios (ORs) of RM were estimated with a 95% confidence interval (CI) in multivariate analysis after maternal age adjustment. The false discovery rate (FDR) was used to adjust for multiple testing. Tests for haplotype association with RM were performed. Gene-gene interactions among loci of the two genes were evaluated by using the multifactor dimensionality reduction (MDR) method. MAIN RESULTS AND THE ROLE OF CHANCE One tag SNP rs269949 of NLRP7 showed significant difference between patients and controls in a recessive model (FDR P = 0.0456, age-adjusted OR (AOR) = 16.49, 95% CI = 2.00-136.11 for the GG genotype). The difference was significant in patients with two consecutive miscarriages and also in those with three or more consecutive miscarriages. Meanwhile, one tag SNP of NLRP2 (rs12768) showed marginal significance between patients and controls in a co-dominant model (FDR P = 0.0505, AOR = 2.15, 95% CI = 1.29-3.58 for the AC genotype). In the haplotype analysis, NLRP2 and NLRP7 did not show any significant difference between the patients and controls. MDR test revealed that there is no significant gene-gene interaction among loci of NLRP2 and NLRP7. LIMITATIONS, REASONS FOR CAUTION The results may be biased by heterogeneous ethnicities of the Taiwanese Han and a small sample size. The genetic loci responsible for the disease as well as their functional significance also await further investigation. WIDER IMPLICATIONS OF THE FINDINGS Our study suggests the role of the NLRP family proteins in RM. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by grants from the National Science Council of the Republic of China (NSC-100-2314-B-006-011-MY3). None of the authors have any conflicts of interest.
Collapse
Affiliation(s)
- Jyun-Yuan Huang
- Division of Genetics, Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, 138 Sheng-Li Road, Tainan 704, Taiwan
| | | | | | | |
Collapse
|
41
|
Ng TM, Kortmann J, Monack DM. Policing the cytosol--bacterial-sensing inflammasome receptors and pathways. Curr Opin Immunol 2012; 25:34-9. [PMID: 23261344 DOI: 10.1016/j.coi.2012.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/22/2012] [Accepted: 11/28/2012] [Indexed: 02/06/2023]
Abstract
Pattern recognition receptors recognize signals originating from pathogens and comprise a large part of the arsenal in innate immune responses. The NOD-like receptors (NLRs) are one particular class of these receptors that survey the cytoplasm for signs of pathogen invasion. Upon detection, they trigger the formation of a macromolecular complex called the inflammasome that is required for elimination of the pathogen, as well as amplifying a pro-inflammatory response. Although the core machinery has been defined, recent data emphasize the complexity of how NLR inflammasomes function. Here, we highlight new discoveries that reveal how precisely fine-tuned NLR inflammasome functions are, and how that may be modulated by antagonistic effects of concomitant inflammasome activation as well as novel regulatory factors.
Collapse
Affiliation(s)
- Tessie M Ng
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford University, 299 Campus Drive, Mail Code 5124, Stanford, CA 94305, United States
| | | | | |
Collapse
|
42
|
Vajjhala PR, Mirams RE, Hill JM. Multiple binding sites on the pyrin domain of ASC protein allow self-association and interaction with NLRP3 protein. J Biol Chem 2012; 287:41732-43. [PMID: 23066025 DOI: 10.1074/jbc.m112.381228] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A key process underlying an innate immune response to pathogens or cellular stress is activation of members of the NOD-like receptor family, such as NLRP3, to assemble caspase-1-activating inflammasome complexes. Activated caspase-1 processes proinflammatory cytokines into active forms that mediate inflammation. Activation of the NLRP3 inflammasome is also associated with common diseases including cardiovascular disease, diabetes, chronic kidney disease, and Alzheimer disease. However, the molecular details of NLRP3 inflammasome assembly are not established. The adaptor protein ASC plays a key role in inflammasome assembly. It is composed of an N-terminal pyrin domain (PYD) and a C-terminal caspase recruitment domain, which are protein interaction domains of the death fold superfamily. ASC interacts with NLRP3 via a homotypic PYD interaction and recruits procaspase-1 via a homotypic caspase recruitment domain interaction. Here we demonstrate that ASC PYD contains two distinct binding sites important for self-association and interaction with NLRP3 and the modulatory protein POP1. Modeling of the homodimeric ASC PYD complex formed via an asymmetric interaction using both sites resembles a type I interaction found in other death fold domain complexes. This interaction mode also permits assembly of ASC PYDs into filaments. Furthermore, a type I binding mode is likely conserved in interactions with NLRP3 and POP1, because residues critical for interaction of ASC PYD are conserved in these PYDs. We also demonstrate that ASC PYD can simultaneously self-associate and interact with NLRP3, rationalizing the model whereby ASC self-association upon recruitment to NLRP3 promotes clustering and activation of procaspase-1.
Collapse
Affiliation(s)
- Parimala R Vajjhala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
43
|
Eibl C, Grigoriu S, Hessenberger M, Wenger J, Puehringer S, Pinheiro AS, Wagner RN, Proell M, Reed JC, Page R, Diederichs K, Peti W. Structural and functional analysis of the NLRP4 pyrin domain. Biochemistry 2012; 51:7330-41. [PMID: 22928810 PMCID: PMC3445046 DOI: 10.1021/bi3007059] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
NLRP4 is a member of the nucleotide-binding and leucine-rich
repeat
receptor (NLR) family of cytosolic receptors and a member of an inflammation
signaling cascade. Here, we present the crystal structure of the NLRP4
pyrin domain (PYD) at 2.3 Å resolution. The NLRP4 PYD is a member
of the death domain (DD) superfamily and adopts a DD fold consisting
of six α-helices tightly packed around a hydrophobic core, with
a highly charged surface that is typical of PYDs. Importantly, however,
we identified several differences between the NLRP4 PYD crystal structure
and other PYD structures that are significant enough to affect NLRP4
function and its interactions with binding partners. Notably, the
length of helix α3 and the α2−α3 connecting
loop in the NLRP4 PYD are unique among PYDs. The apoptosis-associated
speck-like protein containing a CARD (ASC) is an adaptor protein whose
interactions with a number of distinct PYDs are believed to be critical
for activation of the inflammatory response. Here, we use co-immunoprecipitation,
yeast two-hybrid, and nuclear magnetic resonance chemical shift perturbation
analysis to demonstrate that, despite being important for activation
of the inflammatory response and sharing several similarities with
other known ASC-interacting PYDs (i.e., ASC2), NLRP4 does not interact
with the adaptor protein ASC. Thus, we propose that the factors governing
homotypic PYD interactions are more complex than the currently accepted
model, which states that complementary charged surfaces are the main
determinants of PYD–PYD interaction specificity.
Collapse
Affiliation(s)
- Clarissa Eibl
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bae JY, Park HH. Crystallization and preliminary X-ray crystallographic studies of the PYD domain of human NALP3. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1421-4. [PMID: 22102247 DOI: 10.1107/s1744309111035937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/03/2011] [Indexed: 11/10/2022]
Abstract
The NALP3 inflammasome is a macromolecular complex that is responsible for the innate immune response against infection by bacterial and viral pathogens. The NALP3 inflammasome is composed of three protein components: NALP3, ASC and caspase 1. Interaction between NALP3 and ASC via PYD domains is critical for the assembly of the NALP3 inflammasome. In this study, human NALP3 PYD, corresponding to amino acids 3-110, was overexpressed in Escherichia coli using engineered C-terminal His tags. NALP3 PYD was then purified to homogeneity and crystallized at 293 K. Finally, X-ray diffraction data were collected to a resolution of 1.7 Å from a crystal belonging to the primitive monoclinic space group P2(1), with unit-cell parameters a = 42.03, b = 60.14, c = 51.61 Å, β = 107.40°.
Collapse
Affiliation(s)
- Ju Young Bae
- School of Biotechnology and Graduate School of Biochemistry, Yeungnam University, Gyeongsan, Republic of Korea
| | | |
Collapse
|
45
|
Atianand MK, Harton JA. Uncoupling of Pyrin-only protein 2 (POP2)-mediated dual regulation of NF-κB and the inflammasome. J Biol Chem 2011; 286:40536-47. [PMID: 21976665 DOI: 10.1074/jbc.m111.274290] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Activation of transcription factor NF-κB and inflammasome-directed caspase-1 cleavage of IL-1β are key processes in the inflammatory response to pathogen or host-derived signals. Pyrin-only proteins (POPs) are restricted to Old World monkeys, apes, and humans and have previously been shown to impair inflammasome assembly and/or NF-κB p65 transcriptional activity in transfected epithelial cells. However, the biological role of POP2 and the molecular basis for its observed functions are not well understood. In this report we demonstrate that POP2 regulates TNFα and IL-1β responses in human monocytic THP-1 cells and in stable transfectants of mouse J774A.1 macrophages. Deletion analysis of POP2 revealed that the first α-helix (residues 1-19) is necessary and sufficient for both inflammasome and NF-κB inhibitory functions. Further, key acidic residues Glu(6), Asp(8), and Glu(16), believed critical for Pyrin/Pyrin domain interaction, are important for inflammasome inhibition. Moreover, these mutations did not reduce the effect of POP2 upon NF-κB, indicating that the inflammasome and NF-κB inhibitory properties of POP2 can be uncoupled mechanistically. Collectively, these data demonstrate that POP2 acts as a regulator of inflammatory signals and exerts its two known functions through distinct modalities employed by its first α-helix.
Collapse
Affiliation(s)
- Maninjay K Atianand
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208, USA
| | | |
Collapse
|
46
|
Pinheiro AS, Eibl C, Ekman-Vural Z, Schwarzenbacher R, Peti W. The NLRP12 pyrin domain: structure, dynamics, and functional insights. J Mol Biol 2011; 413:790-803. [PMID: 21978668 DOI: 10.1016/j.jmb.2011.09.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/12/2011] [Accepted: 09/14/2011] [Indexed: 01/12/2023]
Abstract
The initial line of defense against infection is sustained by the innate immune system. Together, membrane-bound Toll-like receptors and cytosolic nucleotide-binding domain and leucine-rich repeat-containing receptors (NLR) play key roles in the innate immune response by detecting bacterial and viral invaders as well as endogenous stress signals. NLRs are multi-domain proteins with varying N-terminal effector domains that are responsible for regulating downstream signaling events. Here, we report the structure and dynamics of the N-terminal pyrin domain of NLRP12 (NLRP12 PYD) determined using NMR spectroscopy. NLRP12 is a non-inflammasome NLR that has been implicated in the regulation of Toll-like receptor-dependent nuclear factor-κB activation. NLRP12 PYD adopts a typical six-helical bundle death domain fold. By direct comparison with other PYD structures, we identified hydrophobic residues that are essential for the stable fold of the NLRP PYD family. In addition, we report the first in vitro confirmed non-homotypic PYD interaction between NLRP12 PYD and the pro-apoptotic protein Fas-associated factor 1 (FAF-1), which links the innate immune system to apoptotic signaling. Interestingly, all residues that participate in this protein:protein interaction are confined to the α2-α3 surface, a region of NLRP12 PYD that differs most between currently reported NLRP PYD structures. Finally, we experimentally highlight a significant role for tryptophan 45 in the interaction between NLRP12 PYD and the FAF-1 UBA domain.
Collapse
Affiliation(s)
- Anderson S Pinheiro
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02903, USA
| | | | | | | | | |
Collapse
|
47
|
Bae JY, Park HH. Crystal structure of NALP3 protein pyrin domain (PYD) and its implications in inflammasome assembly. J Biol Chem 2011; 286:39528-36. [PMID: 21880711 DOI: 10.1074/jbc.m111.278812] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NALP3 inflammasome, composed of the three proteins NALP3, ASC, and Caspase-1, is a macromolecular complex responsible for the innate immune response against infection with bacterial and viral pathogens. Formation of the inflammasome can lead to the activation of inflammatory caspases, such as Caspase-1, which then activate pro-inflammatory cytokines by proteolytic cleavage. The assembly of the NALP3 inflammasome depends on the protein-interacting domain known as the death domain superfamily. NALP3 inflammasome is assembled via a pyrin domain (PYD)/PYD interaction between ASC and NALP3 and a caspase recruitment domain/caspase recruitment domain interaction between ASC and Caspase-1. As a first step toward elucidating the molecular mechanisms of inflammatory caspase activation by formation of inflammasome, we report the crystal structure of the PYD from NALP3 at 1.7-Å resolution. Although NALP3 PYD has the canonical six-helical bundle structural fold similar to other PYDs, the high resolution structure reveals the possible biologically important homodimeric interface and the dynamic properties of the fold. Comparison with other PYD structures shows both similarities and differences that may be functionally relevant. Structural and sequence analyses further implicate conserved surface residues in NALP3 PYD for ASC interaction and inflammasome assembly. The most interesting aspect of the structure was the unexpected disulfide bond between Cys-8 and Cys-108, which might be important for regulation of the activity of NALP3 by redox potential.
Collapse
Affiliation(s)
- Ju Young Bae
- Graduate School of Biochemistry, and Research Institute of Protein Sensor, Yeungnam University, Gyeongsan, South Korea
| | | |
Collapse
|
48
|
Kersse K, Verspurten J, Vanden Berghe T, Vandenabeele P. The death-fold superfamily of homotypic interaction motifs. Trends Biochem Sci 2011; 36:541-52. [PMID: 21798745 DOI: 10.1016/j.tibs.2011.06.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/19/2011] [Accepted: 06/22/2011] [Indexed: 11/16/2022]
Abstract
The death-fold superfamily encompasses four structurally homologous subfamilies that engage in homotypic, subfamily-restricted interactions. The Death Domains (DDs), the Death Effector Domains (DEDs), the CAspase Recruitment Domains (CARDs) and the PYrin Domains (PYDs) constitute key building blocks involved in the assembly of multimeric complexes implicated in signaling cascades leading to inflammation and cell death. We review the molecular basis of these homotypic domain-domain interactions in light of their structure, function and evolution. In addition, we elaborate on three distinct types of asymmetric interactions that were recently identified from the crystal structures of three multimeric, death-fold complexes: the MyDDosome, the PIDDosome and the Fas/FADD-DISC. Insights into the mechanisms of interaction of death-fold domains will be useful to design strategies for specific modulation of complex formation and might lead to novel therapeutic applications.
Collapse
Affiliation(s)
- Kristof Kersse
- Department for Molecular Biomedical Research, VIB, B-9052 Ghent (Zwijnaarde), Belgium
| | | | | | | |
Collapse
|
49
|
Conforti-Andreoni C, Ricciardi-Castagnoli P, Mortellaro A. The inflammasomes in health and disease: from genetics to molecular mechanisms of autoinflammation and beyond. Cell Mol Immunol 2011; 8:135-45. [PMID: 21258359 PMCID: PMC4003142 DOI: 10.1038/cmi.2010.81] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 12/09/2010] [Indexed: 02/07/2023] Open
Abstract
Nucleotide-binding oligomerization domain (NOD)-containing protein-like receptors (NLRs) are a recently discovered class of innate immune receptors that play a crucial role in initiating the inflammatory response following pathogen recognition. Some NLRs form the framework for cytosolic platforms called inflammasomes, which orchestrate the early inflammatory process via IL-1β activation. Mutations and polymorphisms in NLR-coding genes or in genetic loci encoding inflammasome-related proteins correlate with a variety of autoinflammatory diseases. Moreover, the activity of certain inflammasomes is associated with susceptibility to infections as well as autoimmunity and tumorigenesis. In this review, we will discuss how identifying the genetic characteristics of inflammasomes is assisting our understanding of both autoinflammatory diseases as well as other immune system-driven disorders.
Collapse
Affiliation(s)
- Cristina Conforti-Andreoni
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Immunos, Singapore
| | | | | |
Collapse
|