1
|
Takada YK, Takada Y. Neuregulin-1 (NRG1) Binds to the Allosteric Binding Site (Site 2) and Suppresses Allosteric Integrin Activation by Inflammatory Cytokines: A Potential Mechanism of Anti-Inflammatory and Anti-Fibrosis Action of NRG1. Cells 2025; 14:617. [PMID: 40277942 PMCID: PMC12025393 DOI: 10.3390/cells14080617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
We showed that multiple inflammatory cytokines (e.g., CCL5, CXCL12, CX3CL1, CD40L, and FGF2) bind to the allosteric site (site 2) of integrins, distinct from the classical RGD-binding site (site 1), and allosterically activate integrins. A major inflammatory lipid mediator 25-hydroxycholesterol is known to bind to site 2 and allosterically activates integrins and induces inflammatory signals (e.g., IL-6 and TNF secretion). Thus, site 2 is involved in inflammatory signaling. Neuregulin-1 (NRG1) is known to suppresses the progression of inflammatory diseases, fibrosis, and insulin resistance. But, the mechanism of anti-inflammatory action of NRG1 is unclear. We previously showed that NRG1 binds to the classical RGD-binding site (site 1). Mutating the 3 Lys residues that are involved in site 1 binding (NRG1 3KE mutant) is defective in binding to site 1 and in ErbB3-mediated mitogenic signals. Docking simulation predicted that NRG1 binds to site 2. We hypothesized that NRG1 acts as an antagonist of site 2 and blocks allosteric activation by multiple cytokines. Here, we describe that NRG1 binds to site 2 but does not activate soluble αvβ3 or αIIbβ3 in 1 mM Ca2+, unlike inflammatory cytokines. Instead, NRG1 suppressed integrin activation by several inflammatory cytokines, suggesting that NRG1 acts as a competitive inhibitor of site 2. Wild-type NRG1 is not suitable for long-term treatment due to its mitogenicity. We showed that the non-mitogenic NRG1 3KE mutant still bound to site 2 and inhibited allosteric activation of soluble and cell-surface integrins, suggesting that NRG1 3KE may have potential as a therapeutic.
Collapse
Affiliation(s)
- Yoko K. Takada
- Department of Dermatology, University of California School of Medicine, Research III Suite 3300, 4645 Second Ave., Sacramento, CA 95817, USA
| | - Yoshikazu Takada
- Department of Dermatology, University of California School of Medicine, Research III Suite 3300, 4645 Second Ave., Sacramento, CA 95817, USA
- Department of Biochemistry and Molecular Medicine, University of California School of Medicine, Research III Suite 3300, 4645 Second Ave., Sacramento, CA 95817, USA
- VA Northern California Health Care System, 150 Muir Road, Martinez, CA 94553, USA
| |
Collapse
|
2
|
McDermott M, Mehta R, Roussos Torres ET, MacLean AL. Modeling the dynamics of EMT reveals genes associated with pan-cancer intermediate states and plasticity. NPJ Syst Biol Appl 2025; 11:31. [PMID: 40210876 PMCID: PMC11986130 DOI: 10.1038/s41540-025-00512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/28/2025] [Indexed: 04/12/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cell state transition co-opted by cancer that drives metastasis via stable intermediate states. Here we study EMT dynamics to identify marker genes of highly metastatic intermediate cells via mathematical modeling with single-cell RNA sequencing (scRNA-seq) data. Across multiple tumor types and stimuli, we identified genes consistently upregulated in EMT intermediate states, many previously unrecognized as EMT markers. Bayesian parameter inference of a simple EMT mathematical model revealed tumor-specific transition rates, providing a framework to quantify EMT progression. Consensus analysis of differential expression, RNA velocity, and model-derived dynamics highlighted SFN and NRG1 as key regulators of intermediate EMT. Independent validation confirmed SFN as an intermediate state marker. Our approach integrates modeling and inference to identify genes associated with EMT dynamics, offering biomarkers and therapeutic targets to modulate tumor-promoting cell state transitions driven by EMT.
Collapse
Affiliation(s)
- MeiLu McDermott
- Department of Quantitative and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Riddhee Mehta
- Department of Quantitative and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Evanthia T Roussos Torres
- Department of Medicine, Division of Medical Oncology, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Adam L MacLean
- Department of Quantitative and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Hussain SRA, Rohlfing M, Santoro J, Chen P, Muralidharan K, Bochter MS, Peeples ME, Grayson MH. Neuregulin-1 prevents death from a normally lethal respiratory viral infection. PLoS Pathog 2025; 21:e1013124. [PMID: 40267147 PMCID: PMC12052188 DOI: 10.1371/journal.ppat.1013124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 05/05/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025] Open
Abstract
Respiratory infections with RNA viruses such as respiratory syncytial virus (RSV) and influenza lead to significant morbidity and mortality. Using a natural rodent pathogen, Sendai virus (SeV), which is similar to RSV, mice made atopic with house dust mite survived a normally lethal SeV infection. One protein that we found markedly elevated in the lungs and bronchoalveolar lavage fluid of atopic mice was neuregulin-1 (NRG1). Administration of NRG1 protected naïve (non-atopic) mice from death with both SeV and mouse adapted influenza A virus (IAV). Survival was associated with reduced alveolar epithelium permeability and reduced phosphorylation of mixed lineage kinase domain-like (MLKL) protein indicating inhibition of necroptosis. In vitro, treatment of mouse lung epithelial cells with NRG1 inhibited SeV induced necroptosis, and NRG1 administration to differentiated human bronchial epithelial cells infected with RSV reduced transepithelial fluid leak and expression of necroptosis associated genes RIPK3 and MLKL, while regulating genes associated with homeostatic maintenance, suggesting stabilized epithelial integrity. In conclusion, our data demonstrate a unique function of NRG1 in respiratory viral infections by reducing alveolar leak, inhibiting epithelial necroptosis, and promoting homeostatic regulation of airway epithelium, all of which associate with markedly reduced mortality to the respiratory viral insult.
Collapse
Affiliation(s)
- Syed-Rehan A. Hussain
- Division of Allergy and Immunology, Nationwide Children’s Hospital - The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Michelle Rohlfing
- Division of Allergy and Immunology, Nationwide Children’s Hospital - The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Jennifer Santoro
- Division of Allergy and Immunology, Nationwide Children’s Hospital - The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Phylip Chen
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Kaushik Muralidharan
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Matthew S. Bochter
- Division of Allergy and Immunology, Nationwide Children’s Hospital - The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Mark E. Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Mitchell H. Grayson
- Division of Allergy and Immunology, Nationwide Children’s Hospital - The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
4
|
Takada YK, Takada Y. The EC2 domains of tetraspanins CD9, CD81, and CD151 bind to the allosteric site of integrins (site 2) and activate integrins αvβ3, α5β1 and α4β1 in a biphasic manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643145. [PMID: 40161700 PMCID: PMC11952522 DOI: 10.1101/2025.03.13.643145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Previous studies showed that tetraspanins activate integrins, but the mechanism of this action is unclear. We previously showed that the extracellular-2 (EC2) domains of CD9, CD81, and CD151 bind to the classical RGD-binding site (site 1) of integrin αvβ3, suggesting that they are integrin ligands. We showed that several inflammatory cytokines (e.g., CX3CL1, CXCL12, CCL5, and CD40L) bind to the allosteric site (site 2) of integrins, which is distinct from site 1, and activate integrins (allosteric activation). 25-hydroxycholesterol, a major inflammatory lipid mediator, is known to bind to site 2 and induce inflammatory signals, suggesting that site 2 plays a role in inflammatory signaling. We hypothesized that the EC2 domains activate integrins by binding to site 2. Here we describe that docking simulation predicted that CD81 EC2 binds to site 2 of αvβ3 and more strongly to site 2 of α5β1. Peptide from site 2 bound to isolated EC2 domains, suggesting that the EC2 domains bind to site 2. The EC2 domains only weakly activated αvβ3 but more efficiently activated cell surface integrins α5β1 and α4β1 on the cell surface. These results are consistent with the previous findings that these tetraspanins preferentially interact with β1 integrins. The integrin activation by the EC2 domains was increased at low EC2 concentrations and reduced as EC2 concentrations increased (biphasic), which is consistent with the findings that the EC2 domains bind to two sites (site 1 and 2). We propose that the EC2 binding to site 2 is a novel target for drug discovery.
Collapse
|
5
|
Miao X, Huang Z, Liu J, Zhang L, Feng Y, Zhang Y, Li D, Ning Z. Genomically Selected Genes Associated with a High Rate of Egg Production in Puan Panjiang Black-Bone Chickens. Animals (Basel) 2025; 15:363. [PMID: 39943134 PMCID: PMC11816201 DOI: 10.3390/ani15030363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Puan Panjiang black-bone chickens are renowned for their distinctive traits, deep black coloration, and high-quality protein content, making them a focus of genetic research due to their unique egg-laying abilities. In this study, 110 Puan Panjiang black-bone chickens were used to investigate the effects of natural and artificial selection influencing egg production. Whole-genome resequencing data from red junglefowl (RJF) and high-egg-production (HEP) and low-egg-production (LEP) groups of Puan Panjiang black-bone chickens revealed significant genetic variants associated with egg production traits. Additionally, transcriptome analysis of 47 samples from ovary stroma, small white follicles (SWFs), small yellow follicles (SYFs), and liver tissues from 6 HEP and 6 LEP groups identified differentially expressed genes. Notably, differences in egg production were linked to small yellow follicles rather than ovary stroma or SWFs. Key candidate genes, including TRIM7, CASR, SPTBN5, GAL1, ZP1, IL4I1, and CCL19, were identified as potential contributors to egg-laying performance. This study underscores the genetic diversity within this breed and provides valuable insights for future breeding programs to enhance egg production, supporting the sustainable development of this local resource.
Collapse
Affiliation(s)
- Xiaomeng Miao
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.M.)
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Zhiying Huang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030801, China
| | - Jia Liu
- Guizhou Province Livestock and Poultry Genetic Resources Management Station, Guizhou Provincial Department of Agriculture and Rural Affairs, Guiyang 550001, China
| | - Li Zhang
- Guizhou Province Livestock and Poultry Genetic Resources Management Station, Guizhou Provincial Department of Agriculture and Rural Affairs, Guiyang 550001, China
| | - Yulong Feng
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang 550005, China
| | - Yalan Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.M.)
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.M.)
| |
Collapse
|
6
|
Liu J, Lu Y, Zheng B, Huang D, Song J, Wang B, Zheng S. Talin1 promotes HCC progression by regulating NRG1/PI3K/AKT pathway. Discov Oncol 2024; 15:360. [PMID: 39162903 PMCID: PMC11335986 DOI: 10.1007/s12672-024-01243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/14/2024] [Indexed: 08/21/2024] Open
Abstract
OBJECTIVE OF THE STUDY Hepatocellular carcinoma (HCC) stands as the third leading cause of cancer-related mortality globally. Metastasis, responsible for treatment failures, underscores the urgency to comprehend molecular drivers of invasion and migration. Central to the invasive and migratory processes underlying metastasis is the protein Talin1. However, the role and underlying mechanisms governing Talin1's involvement in HCC have remained elusive. METHODS A total of 100 HCC specimens were collected from patients who underwent hepatectomy in our center. The expression level of talin1 was measured to evaluate the correlationship of talin1 and the development of HCC. In vitro and in vivo experiments were conducted to verify the characteristic of talin1 in HCC. RNA-seq and bioinformatics analysis were performed to identify the downstream signal pathway of talin1 and their impact on HCC development. RESULTS Here, we reported elevated levels of Talin1 mRNA and protein in HCC tissues. Meanwhile, downregulation of Talin1 significantly reduced the HCC cell proliferation and metastasis in vitro and in vivo. Furthermore, elevating NRG-1, a downstream target of Talin1, enhanced metastasis of HCC cells. More importantly, attenuation of Talin1 inhibited HCC progression through decreasing the stabilization of NRG1 mRNA, consequently regulating the expression of NRG1 and its involvement in mediating the PI3K/AKT pathway. CONCLUSION Taken together, Talin1 regulates cellular proliferation, metastasis, and invasiveness by modulating NRG1/PI3K/AKT axis, suggesting that Talin1 emerges as a promising candidate for treating HCC.
Collapse
Affiliation(s)
- Jialong Liu
- Insititute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yao Lu
- Insititute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Bowen Zheng
- Insititute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Deng Huang
- Department of Hepatobiliary, General Hospital of Tibet Military Command Area, Lhasa, Tibet, China
| | - Juxian Song
- Department of Hepatobiliary Surgery, The 925th Hospital of the PLA, Guiyang, Guizhou, China
| | - Baolin Wang
- Department of Surgery, The 63650th Troop Hospital of the Chinese People's Liberation Army, Korla, Xinjiang, China
| | - Shuguo Zheng
- Insititute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
7
|
Takada YK, Wu X, Wei D, Hwang S, Takada Y. FGF1 Suppresses Allosteric Activation of β3 Integrins by FGF2: A Potential Mechanism of Anti-Inflammatory and Anti-Thrombotic Action of FGF1. Biomolecules 2024; 14:888. [PMID: 39199276 PMCID: PMC11351609 DOI: 10.3390/biom14080888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Several inflammatory cytokines bind to the allosteric site (site 2) and allosterically activate integrins. Site 2 is also a binding site for 25-hydroxycholesterol, an inflammatory lipid mediator, and is involved in inflammatory signaling (e.g., TNF and IL-6 secretion) in addition to integrin activation. FGF2 is pro-inflammatory and pro-thrombotic, and FGF1, homologous to FGF2, has anti-inflammatory and anti-thrombotic actions, but the mechanism of these actions is unknown. We hypothesized that FGF2 and FGF1 bind to site 2 of integrins and regulate inflammatory signaling. Here, we describe that FGF2 is bound to site 2 and allosterically activated β3 integrins, suggesting that the pro-inflammatory action of FGF2 is mediated by binding to site 2. In contrast, FGF1 bound to site 2 but did not activate these integrins and instead suppressed integrin activation induced by FGF2, indicating that FGF1 acts as an antagonist of site 2 and that the anti-inflammatory action of FGF1 is mediated by blocking site 2. A non-mitogenic FGF1 mutant (R50E), which is defective in binding to site 1 of αvβ3, suppressed β3 integrin activation by FGF2 as effectively as WT FGF1.
Collapse
Affiliation(s)
- Yoko K. Takada
- Department of Dermatology, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA; (Y.K.T.); (X.W.); (D.W.); (S.H.)
| | - Xuesong Wu
- Department of Dermatology, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA; (Y.K.T.); (X.W.); (D.W.); (S.H.)
| | - David Wei
- Department of Dermatology, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA; (Y.K.T.); (X.W.); (D.W.); (S.H.)
| | - Samuel Hwang
- Department of Dermatology, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA; (Y.K.T.); (X.W.); (D.W.); (S.H.)
| | - Yoshikazu Takada
- Department of Dermatology, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA; (Y.K.T.); (X.W.); (D.W.); (S.H.)
- Department of Biochemistry and Molecular Medicine, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
8
|
Takada YK, Yu J, Ye X, Wu CY, Felding BH, Fujita M, Takada Y. The heparin-binding domain of VEGF165 directly binds to integrin αvβ3 and VEGFR2/KDR D1: a potential mechanism of negative regulation of VEGF165 signaling by αvβ3. Front Cell Dev Biol 2024; 12:1347616. [PMID: 38803393 PMCID: PMC11128890 DOI: 10.3389/fcell.2024.1347616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/04/2024] [Indexed: 05/29/2024] Open
Abstract
VEGF-A is a key cytokine in tumor angiogenesis and a major therapeutic target for cancer. VEGF165 is the predominant isoform of VEGF-A, and it is the most potent angiogenesis stimulant. VEGFR2/KDR domains 2 and 3 (D2D3) bind to the N-terminal domain (NTD, residues 1-110) of VEGF165. Since removal of the heparin-binding domain (HBD, residues 111-165) markedly reduced the mitogenic activity of the growth factor, it has been proposed that the HBD plays a critical role in the mitogenicity of VEGF165. Here, we report that αvβ3 specifically bound to the isolated VEGF165 HBD but not to VEGF165 NTD. Based on docking simulation and mutagenesis, we identified several critical amino acid residues within the VEGF165 HBD required for αvβ3 binding, i.e., Arg123, Arg124, Lys125, Lys140, Arg145, and Arg149. We discovered that VEGF165 HBD binds to the KDR domain 1 (D1) and identified that Arg123 and Arg124 are critical for KDR D1 binding by mutagenesis, indicating that the KDR D1-binding and αvβ3-binding sites overlap in the HBD. Full-length VEGF165 mutant (R123A/R124A/K125A/K140A/R145A/R149A) defective in αvβ3 and KDR D1 binding failed to induce ERK1/2 phosphorylation, integrin β3 phosphorylation, and KDR phosphorylation and did not support proliferation of endothelial cells, although the mutation did not affect the KDR D2D3 interaction with VEGF165. Since β3-knockout mice are known to show enhanced VEGF165 signaling, we propose that the binding of KDR D1 to the VEGF165 HBD and KDR D2D3 binding to the VEGF165 NTD are critically involved in the potent mitogenicity of VEGF165. We propose that binding competition between KDR and αvβ3 to the VEGF165 HBD endows integrin αvβ3 with regulatory properties to act as a negative regulator of VEGF165 signaling.
Collapse
Affiliation(s)
- Yoko K. Takada
- The Department of Dermatology, Sacramento, CA, United States
| | - Jessica Yu
- The Department of Dermatology, Sacramento, CA, United States
| | - Xiaojin Ye
- The Department of Dermatology, Sacramento, CA, United States
| | - Chun-Yi Wu
- The Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Brunie H. Felding
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, La Jolla, CA, United States
| | - Masaaki Fujita
- The Department of Dermatology, Sacramento, CA, United States
| | - Yoshikazu Takada
- The Department of Dermatology, Sacramento, CA, United States
- The Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
9
|
Li X, Lin H, Yu Y, Lu Y, He B, Liu M, Zhuang L, Xu Y, Li W. In Situ Rapid-Formation Sprayable Hydrogels for Challenging Tissue Injury Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400310. [PMID: 38298099 DOI: 10.1002/adma.202400310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/20/2024] [Indexed: 02/02/2024]
Abstract
Rapid-acting, convenient, and broadly applicable medical materials are in high demand for the treatment of extensive and intricate tissue injuries in extremely medical scarcity environment, such as battlefields, wilderness, and traffic accidents. Conventional biomaterials fail to meet all the high criteria simultaneously for emergency management. Here, a multifunctional hydrogel system capable of rapid gelation and in situ spraying, addressing clinical challenges related to hemostasis, barrier establishment, support, and subsequent therapeutic treatment of irregular, complex, and urgent injured tissues, is designed. This hydrogel can be fast formed in less than 0.5 s under ultraviolet initiation. The precursor maintains an impressively low viscosity of 0.018 Pa s, while the hydrogel demonstrates a storage modulus of 0.65 MPa, achieving the delicate balance between sprayable fluidity and the mechanical strength requirements in practice, allowing flexible customization of the hydrogel system for differentiated handling and treatment of various tissues. Notably, the interactions between the component of this hydrogel and the cell surface protein confer upon its inherently bioactive functionalities such as osteogenesis, anti-inflammation, and angiogenesis. This research endeavors to provide new insights and designs into emergency management and complex tissue injuries treatment.
Collapse
Affiliation(s)
- Xiaolei Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Fels Cancer Institute for Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Han Lin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Yilin Yu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Yukun Lu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Bin He
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Meng Liu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Lin Zhuang
- School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yue Xu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Weichang Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| |
Collapse
|
10
|
Hosni S, Kilian V, Klümper N, Gabbia D, Sieckmann K, Corvino D, Winkler A, Saponaro M, Wörsdörfer K, Schmidt D, Hahn O, Zanotto I, Bertlich M, Toma M, Bald T, Eckstein M, Hölzel M, Geyer M, Ritter M, Wachten D, De Martin S, Alajati A. Adipocyte Precursor-Derived NRG1 Promotes Resistance to FGFR Inhibition in Urothelial Carcinoma. Cancer Res 2024; 84:725-740. [PMID: 38175774 PMCID: PMC10911805 DOI: 10.1158/0008-5472.can-23-1398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/12/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Aberrations of the fibroblast growth factor receptor (FGFR) family members are frequently observed in metastatic urothelial cancer (mUC), and blocking the FGF/FGFR signaling axis is used as a targeted therapeutic strategy for treating patients. Erdafitinib is a pan-FGFR inhibitor, which has recently been approved by the FDA for mUC with FGFR2/3 alterations. Although mUC patients show initial response to erdafitinib, acquired resistance rapidly develops. Here, we found that adipocyte precursors promoted resistance to erdafitinib in FGFR-dependent bladder and lung cancer in a paracrine manner. Moreover, neuregulin 1 (NRG1) secreted from adipocyte precursors was a mediator of erdafitinib resistance by activating human epidermal growth factor receptor 3 (ERBB3; also known as HER3) signaling, and knockdown of NRG1 in adipocyte precursors abrogated the conferred paracrine resistance. NRG1 expression was significantly downregulated in terminally differentiated adipocytes compared with their progenitors. Pharmacologic inhibition of the NRG1/HER3 axis using pertuzumab reversed erdafitinib resistance in tumor cells in vitro and prolonged survival of mice bearing bladder cancer xenografts in vivo. Remarkably, data from single-cell RNA sequencing revealed that NRG1 was enriched in platelet-derived growth factor receptor-A (PDGFRA) expressing inflammatory cancer-associated fibroblasts, which is also expressed on adipocyte precursors. Together, this work reveals a paracrine mechanism of anti-FGFR resistance in bladder cancer, and potentially other cancers, that is amenable to inhibition using available targeted therapies. SIGNIFICANCE Acquired resistance to FGFR inhibition can be rapidly promoted by paracrine activation of the NRG1/HER3 axis mediated by adipocyte precursors and can be overcome by the combination of pertuzumab and erdafitinib treatment. See related commentary by Kolonin and Anastassiou, p. 648.
Collapse
Affiliation(s)
- Sana Hosni
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Viola Kilian
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Niklas Klümper
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
- Institute of Experimental Oncology, University Hospital Bonn (UKB), Bonn, Germany
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Katharina Sieckmann
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dillon Corvino
- Institute of Experimental Oncology, University Hospital Bonn (UKB), Bonn, Germany
| | - Anja Winkler
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Miriam Saponaro
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Karin Wörsdörfer
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Doris Schmidt
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Oliver Hahn
- Clinic of Urology, University Hospital Göttingen, Göttingen, Germany
- Clinic of Urology, University Hospital Würzburg, Würzburg, Germany
| | - Ilaria Zanotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Marina Bertlich
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Marieta Toma
- Institute of Pathology, University Hospital Bonn (UKB), Bonn, Germany
| | - Tobias Bald
- Institute of Experimental Oncology, University Hospital Bonn (UKB), Bonn, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn (UKB), Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Manuel Ritter
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Abdullah Alajati
- Department of Urology and Pediatric Urology, University Hospital Bonn (UKB), Bonn, Germany
| |
Collapse
|
11
|
Takada YK, Yu J, Ye X, Wu CY, Felding BH, Fujita M, Takada Y. The heparin-binding domain of VEGF165 directly binds to integrin αvβ3 and plays a critical role in signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567104. [PMID: 38014319 PMCID: PMC10680776 DOI: 10.1101/2023.11.14.567104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
VEGF-A is a key cytokine in tumor angiogenesis and a major therapeutic target for cancer. VEGF165 is the predominant isoform and is the most potent angiogenesis stimulant. VEGFR2/KDR domains 2 and 3 (D2D3) bind to the N-terminal domain (NTD, residues 1-110) of VEGF165. Since removal of the heparin-binding domain (HBD, residues 111-165) markedly reduced the mitogenic activity of VEGF165, it has been proposed that the HBD plays a critical role in the mitogenicity of VEGF165. Integrin αvβ3 has been shown to bind to VEGF165, but the role of integrin αvβ3 in VEGF165 signaling are unclear. Here we describe that αvβ3 specifically bound to the isolated HBD, but not to the NTD. We identified several critical amino acid residues in HBD for integrin binding (Arg-123, Arg-124, Lys-125, Lys-140, Arg-145, and Arg-149) by docking simulation and mutagenesis, and generated full-length VEGF165 that is defective in integrin binding by including mutations in the HBD. The full-length VEGF165 mutant defective in integrin binding (R123A/R124A/K125A/K140A/R145A/R149A) was defective in ERK1/2 phosphorylation, integrin β3 phosphorylation, and KDR phosphorylation, although the mutation did not affect KDR binding to VEGF165. We propose a model in which VEGF165 induces KDR (through NTD)-VEGF165 (through HBD)-integrin αvβ3 ternary complex formation on the cell surface and this process is critically involved in potent mitogenicity of VEGF165.
Collapse
|
12
|
Rokavec M, Jaeckel S, Hermeking H. Nidogen-1/NID1 Function and Regulation during Progression and Metastasis of Colorectal Cancer. Cancers (Basel) 2023; 15:5316. [PMID: 38001576 PMCID: PMC10670298 DOI: 10.3390/cancers15225316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
We have previously shown that the extracellular matrix and basement membrane protein Nidogen1 (NID1) is secreted by more malignant, mesenchymal-like CRC cells and induces the epithelial-mesenchymal transition (EMT) and promotes the migration and invasion of less malignant, epithelial-like CRC cells. Here, we performed a comprehensive bioinformatics analysis of multiple datasets derived from CRC patients and showed that elevated expression of NID1 and the genes ITGA3, ITGB1, and ITGAV, which encode NID1 receptors, is associated with poor prognosis and advanced tumor stage. Accordingly, the expression of NID1, ITGA3, ITGB1, and ITGAV was associated with an EMT signature, which included SNAIL/SNAI1, an EMT-inducing transcription factor. In CRC cells, ectopic SNAIL expression induced NID1 and SNAIL occupancy was detected at an E-box upstream of the NID1 transcription start site. Therefore, NID1 represents a direct target of SNAIL. Ectopic expression of NID1 or treatment with NID1-containing medium endowed non-metastatic CRC cells with the capacity to form lung metastases after xenotransplantation into mice. Suppression of the NID1 receptor ITGAV decreased cell viability, particularly in CMS/consensus molecular subtype 4 CRC cells. Taken together, our results show that NID1 is a direct target of EMT-TF SNAIL and is associated with and promotes CRC progression and metastasis. Furthermore, the NID1 receptor ITGAV represents a candidate therapeutic target in CMS4 colorectal tumors.
Collapse
Affiliation(s)
- Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Medical Faculty, Ludwig-Maximilians-Universität München, D-80337 Munich, Germany
| | - Stephanie Jaeckel
- Experimental and Molecular Pathology, Institute of Pathology, Medical Faculty, Ludwig-Maximilians-Universität München, D-80337 Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Medical Faculty, Ludwig-Maximilians-Universität München, D-80337 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, D-80336 Munich, Germany
- German Cancer Research Center (DKFZ), D-69129 Heidelberg, Germany
| |
Collapse
|
13
|
Wang Y, Hotz A, Esser PR, Fischer J, Has C. Amino Acid Substitution in the Cysteine-Rich Region of the Integrin β4 Subunit Causes Late-Onset Mild Junctional Epidermolysis Bullosa without Extracutaneous Involvement. J Invest Dermatol 2023; 143:2233-2242.e3. [PMID: 37211201 DOI: 10.1016/j.jid.2023.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
Integrin α6β4, encoded by ITGA6 and ITGB4, is a transmembrane component of hemidesmosomes and plays an important role in connecting keratinocytes with extracellular matrix proteins. ITGB4 or ITGA6 biallelic pathogenic variants cause junctional epidermolysis bullosa (JEB) with pyloric atresia, which is associated with high lethality. Patients who survive usually develop JEB of intermediate severity and urorenal manifestations. In this study, we report a very rare subtype of late-onset, nonsyndromic JEB associated with a recurrent amino acid substitution in the highly conserved cysteine-rich tandem repeats of the integrin β4 subunit. Literature review shows that among the patients diagnosed with ITGB4 mutations, only two had no extracutaneous manifestations, and only two patients with JEB with pyloric atresia carried missense mutations located in cysteine-rich tandem repeats. We analyzed the consequences of the novel ITGB4 variant c.1642G>A, p.Gly548Arg, on the clinical phenotype, the predicted protein structure, cellular phenotype, and gene expression pattern to show its pathogenicity. The results indicated that the p.Gly548Arg amino acid substitution affected the protein structure of integrin β4 subunits and disrupted the stability of hemidesmosomes and in turn impaired the adhesion of keratinocytes. RNA-sequencing results indicated similar changes in extracellular matrix structure organization and differentiation in keratinocytes completely devoid of integrin β4 and with the amino acid substitution p.Gly548Arg, which further supports the dysregulation of the function of the integrin β4 subunit caused by p.Gly548Arg. Our results provided evidence for a late-onset, mild JEB subtype without extracutaneous manifestations and extend the ITGB4-related genotype-phenotype correlations.
Collapse
Affiliation(s)
- Yao Wang
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Alrun Hotz
- Institute of Human Genetics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Philipp R Esser
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Judith Fischer
- Institute of Human Genetics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Cristina Has
- Department of Dermatology, Medical Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
14
|
Takada Y, Fujita M, Takada YK. Virtual Screening of Protein Data Bank via Docking Simulation Identified the Role of Integrins in Growth Factor Signaling, the Allosteric Activation of Integrins, and P-Selectin as a New Integrin Ligand. Cells 2023; 12:2265. [PMID: 37759488 PMCID: PMC10527219 DOI: 10.3390/cells12182265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Integrins were originally identified as receptors for extracellular matrix (ECM) and cell-surface molecules (e.g., VCAM-1 and ICAM-1). Later, we discovered that many soluble growth factors/cytokines bind to integrins and play a critical role in growth factor/cytokine signaling (growth factor-integrin crosstalk). We performed a virtual screening of protein data bank (PDB) using docking simulations with the integrin headpiece as a target. We showed that several growth factors (e.g., FGF1 and IGF1) induce a integrin-growth factor-cognate receptor ternary complex on the surface. Growth factor/cytokine mutants defective in integrin binding were defective in signaling functions and act as antagonists of growth factor signaling. Unexpectedly, several growth factor/cytokines activated integrins by binding to the allosteric site (site 2) in the integrin headpiece, which is distinct from the classical ligand (RGD)-binding site (site 1). Since 25-hydroxycholesterol, a major inflammatory mediator, binds to site 2, activates integrins, and induces inflammatory signaling (e.g., IL-6 and TNFα secretion), it has been proposed that site 2 is involved in inflammatory signaling. We showed that several inflammatory factors (CX3CL1, CXCL12, CCL5, sPLA2-IIA, and P-selectin) bind to site 2 and activate integrins. We propose that site 2 is involved in the pro-inflammatory action of these proteins and a potential therapeutic target. It has been well-established that platelet integrin αIIbβ3 is activated by signals from the inside of platelets induced by platelet agonists (inside-out signaling). In addition to the canonical inside-out signaling, we showed that αIIbβ3 can be allosterically activated by inflammatory cytokines/chemokines that are stored in platelet granules (e.g., CCL5, CXCL12) in the absence of inside-out signaling (e.g., soluble integrins in cell-free conditions). Thus, the allosteric activation may be involved in αIIbβ3 activation, platelet aggregation, and thrombosis. Inhibitory chemokine PF4 (CXCL4) binds to site 2 but did not activate integrins, Unexpectedly, we found that PF4/anti-PF4 complex was able to activate integrins, indicating that the anti-PF4 antibody changed the phenotype of PF4 from inhibitory to inflammatory. Since autoantibodies to PF4 are detected in vaccine-induced thrombocytopenic thrombosis (VIPP) and autoimmune diseases (e.g., SLE, and rheumatoid arthritis), we propose that this phenomenon is related to the pathogenesis of these diseases. P-selectin is known to bind exclusively to glycans (e.g., sLex) and involved in cell-cell interaction by binding to PSGL-1 (CD62P glycoprotein ligand-1). Unexpectedly, through docking simulation, we discovered that the P-selectin C-type lectin domain functions as an integrin ligand. It is interesting that no one has studied whether P-selectin binds to integrins in the last few decades. The integrin-binding site and glycan-binding site were close but distinct. Also, P-selectin lectin domain bound to site 2 and allosterically activated integrins.
Collapse
Affiliation(s)
- Yoshikazu Takada
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA 95817, USA; (M.F.); (Y.K.T.)
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Masaaki Fujita
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA 95817, USA; (M.F.); (Y.K.T.)
| | - Yoko K. Takada
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA 95817, USA; (M.F.); (Y.K.T.)
| |
Collapse
|
15
|
Wang X, Hong F, Li H, Wang Y, Zhang M, Lin S, Liang H, Zhou H, Liu Y, Chen YG. Cross-species single-cell transcriptomic analysis of animal gastric antrum reveals intense porcine mucosal immunity. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:27. [PMID: 37525021 PMCID: PMC10390400 DOI: 10.1186/s13619-023-00171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023]
Abstract
As an important part of the stomach, gastric antrum secretes gastrin which can regulate acid secretion and gastric emptying. Although most cell types in the gastric antrum are identified, the comparison of cell composition and gene expression in the gastric antrum among different species are not explored. In this study, we collected antrum epithelial tissues from human, pig, rat and mouse for scRNA-seq and compared cell types and gene expression among species. In pig antral epithelium, we identified a novel cell cluster, which is marked by high expression of AQP5, F3, CLCA1 and RRAD. We also discovered that the porcine antral epithelium has stronger immune function than the other species. Further analysis revealed that this may be due to the insufficient function of porcine immune cells. Together, our results replenish the information of multiple species of gastric antral epithelium at the single cell level and provide resources for understanding the homeostasis maintenance and regeneration of gastric antrum epithelium.
Collapse
Affiliation(s)
- Xiaodan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fan Hong
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Haonan Li
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yalong Wang
- Guangzhou Laboratory, Guangzhou, 510005, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Mengxian Zhang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shibo Lin
- The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Hui Liang
- The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Hongwen Zhou
- The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Guangzhou Laboratory, Guangzhou, 510005, China.
- School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
16
|
Takada YK, Shimoda M, Takada Y. CD40L Activates Platelet Integrin αIIbβ3 by Binding to the Allosteric Site (Site 2) in a KGD-Independent Manner and HIGM1 Mutations Are Clustered in the Integrin-Binding Sites of CD40L. Cells 2023; 12:1977. [PMID: 37566056 PMCID: PMC10416995 DOI: 10.3390/cells12151977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
CD40L is expressed in activated T cells, and it plays a major role in immune response and is a major therapeutic target for inflammation. High IgM syndrome type 1 (HIGM1) is a congenital functional defect in CD40L/CD40 signaling due to defective CD40L. CD40L is also stored in platelet granules and transported to the surface upon platelet activation. Platelet integrin αIIbβ3 is known to bind to fibrinogen and activation of αIIbβ3 is a key event that triggers platelet aggregation. Also, the KGD motif is critical for αIIbβ3 binding and the interaction stabilizes thrombus. Previous studies showed that CD40L binds to and activates integrins αvβ3 and α5β1 and that HIGM1 mutations are clustered in the integrin-binding sites. However, the specifics of CD40L binding to αIIbβ3 were unclear. Here, we show that CD40L binds to αIIbβ3 in a KGD-independent manner using CD40L that lacks the KGD motif. Two HIGM1 mutants, S128E/E129G and L155P, reduced the binding of CD40L to the classical ligand-binding site (site 1) of αIIbβ3, indicating that αIIbβ3 binds to the outer surface of CD40L trimer. Also, CD40L bound to the allosteric site (site 2) of αIIbβ3 and allosterically activated αIIbβ3 without inside-out signaling. Two HIMG1 mutants, K143T and G144E, on the surface of trimeric CD40L suppressed CD40L-induced αIIbβ3 activation. These findings suggest that CD40L binds to αIIbβ3 in a manner different from that of αvβ3 and α5β1 and induces αIIbβ3 activation. HIGM1 mutations are clustered in αIIbβ3 binding sites in CD40L and are predicted to suppress thrombus formation and immune responses through αIIbβ3.
Collapse
Affiliation(s)
- Yoko K. Takada
- Department of Dermatology, School of Medicine, UC Davis, Sacramento, CA 95817, USA (M.S.)
| | - Michiko Shimoda
- Department of Dermatology, School of Medicine, UC Davis, Sacramento, CA 95817, USA (M.S.)
| | - Yoshikazu Takada
- Department of Dermatology, School of Medicine, UC Davis, Sacramento, CA 95817, USA (M.S.)
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| |
Collapse
|
17
|
Takada YK, Simon SI, Takada Y. The C-type lectin domain of CD62P (P-selectin) functions as an integrin ligand. Life Sci Alliance 2023; 6:e202201747. [PMID: 37184585 PMCID: PMC10130748 DOI: 10.26508/lsa.202201747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Recognition of integrins by CD62P has not been reported and this motivated a docking simulation using integrin αvβ3 as a target. We predicted that the C-type lectin domain of CD62P functions as a potential integrin ligand and observed that it specifically bound to soluble β3 and β1 integrins. Known inhibitors of the interaction between CD62P-PSGL-1 did not suppress the binding, whereas the disintegrin domain of ADAM-15, a known integrin ligand, suppressed recognition by the lectin domain. Furthermore, an R16E/K17E mutation in the predicted integrin-binding interface located outside of the glycan-binding site within the lectin domain, strongly inhibited CD62P binding to integrins. In contrast, the E88D mutation that strongly disrupts glycan binding only slightly affected CD62P-integrin recognition, indicating that the glycan and integrin-binding sites are distinct. Notably, the lectin domain allosterically activated integrins by binding to the allosteric site 2. We conclude that CD62P-integrin binding may function to promote a diverse set of cell-cell adhesive interactions given that β3 and β1 integrins are more widely expressed than PSGL-1 that is limited to leukocytes.
Collapse
Affiliation(s)
- Yoko K Takada
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA, USA
| | - Scott I Simon
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA, USA
- Department of Biomedical Engineering, UC Davis, Davis, CA, USA
| | - Yoshikazu Takada
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
18
|
Novacescu D, Nesiu A, Bardan R, Latcu SC, Dema VF, Croitor A, Raica M, Cut TG, Walter J, Cumpanas AA. Rats, Neuregulins and Radical Prostatectomy: A Conceptual Overview. J Clin Med 2023; 12:jcm12062208. [PMID: 36983210 PMCID: PMC10051646 DOI: 10.3390/jcm12062208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
In the contemporary era of early detection, with mostly curative initial treatment for prostate cancer (PC), mortality rates have significantly diminished. In addition, mean age at initial PC diagnosis has decreased. Despite technical advancements, the probability of erectile function (EF) recovery post radical prostatectomy (RP) has not significantly changed throughout the last decade. Due to virtually unavoidable intraoperative cavernous nerve (CN) lesions and operations with younger patients, post-RP erectile dysfunction (ED) has now begun affecting these younger patients. To address this pervasive limitation, a plethora of CN lesion animal model investigations have analyzed the use of systemic/local treatments for EF recovery post-RP. Most promisingly, neuregulins (NRGs) have demonstrated neurotrophic effects in both neurodegenerative disease and peripheral nerve injury models. Recently, glial growth factor 2 (GGF2) has demonstrated far superior, dose-dependent, neuroprotective/restorative effects in the CN injury rat model, as compared to previous therapeutic counterparts. Although potentially impactful, these initial findings remain limited and under-investigated. In an effort to aid clinicians, our paper reviews post-RP ED pathogenesis and currently available therapeutic tools. To stimulate further experimentation, a standardized preparation protocol and in-depth analysis of applications for the CN injury rat model is provided. Lastly, we report on NRGs, such as GGF2, and their potentially revolutionary clinical applications, in hopes of identifying relevant future research directions.
Collapse
Affiliation(s)
- Dorin Novacescu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Alexandru Nesiu
- Department Medicine, Discipline of Urology, Vasile Goldiş Western University, Liviu Rebreanu Boulevard, Nr. 86, 310414 Arad, Romania
- Correspondence: ; Tel.: +40-753521488
| | - Razvan Bardan
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Silviu Constantin Latcu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Vlad Filodel Dema
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Alexei Croitor
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Marius Raica
- Department II, Discipline of Histology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Talida Georgiana Cut
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Center for Ethics in Human Genetic Identifications, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - James Walter
- Emeritus, Department of Urology, Loyola Medical Center, Maywood, IL 60153, USA
| | - Alin Adrian Cumpanas
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| |
Collapse
|
19
|
Siriwardena D, Boroviak TE. Evolutionary divergence of embryo implantation in primates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210256. [PMID: 36252209 DOI: 10.1098/rstb.2021.0256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Implantation of the conceptus into the uterus is absolutely essential for successful embryo development. In humans, our understanding of this process has remained rudimentary owing to the inaccessibility of early implantation stages. Non-human primates recapitulate many aspects of human embryo development and provide crucial insights into trophoblast development, uterine receptivity and embryo invasion. Moreover, primate species exhibit a variety of implantation strategies and differ in embryo invasion depths. This review examines conservation and divergence of the key processes required for embryo implantation in different primates and in comparison with the canonical rodent model. We discuss trophectoderm compartmentalization, endometrial remodelling and embryo adhesion and invasion. Finally, we propose that studying the mechanism controlling invasion depth between different primate species may provide new insights and treatment strategies for placentation disorders in humans. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Dylan Siriwardena
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| |
Collapse
|
20
|
Shiosaka S. Kallikrein 8: A key sheddase to strengthen and stabilize neural plasticity. Neurosci Biobehav Rev 2022; 140:104774. [PMID: 35820483 DOI: 10.1016/j.neubiorev.2022.104774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022]
Abstract
Neural networks are modified and reorganized throughout life, even in the matured brain. Synapses in the networks form, change, or disappear dynamically in the plasticity state. The pre- and postsynaptic signaling, transmission, and structural dynamics have been studied considerably well. However, not many studies have shed light on the events in the synaptic cleft and intercellular space. Neural activity-dependent protein shedding is a phenomenon in which (1) presynaptic excitation evokes secretion or activation of sheddases, (2) sheddases are involved not only in cleavage of membrane- or matrix-bound proteins but also in mechanical modulation of cell-to-cell connectivity, and (3) freed activity domains of protein factors play a role in receptor-mediated or non-mediated biological actions. Kallikrein 8/neuropsin (KLK8) is a kallikrein family serine protease rich in the mammalian limbic brain. Accumulated evidence has suggested that KLK8 is an important modulator of neural plasticity and consequently, cognition. Insufficiency, as well as excess of KLK8 may have detrimental effects on limbic functions.
Collapse
Affiliation(s)
- Sadao Shiosaka
- Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka Prefectural Hospital Organization, Miyanosaka 3-16-21, Hirakata-shi, Osaka 573-0022, Japan.
| |
Collapse
|
21
|
Abstract
Charcot-Marie-Tooth type 4D (CMT4D) is an autosomal recessive demyelinating form of CMT characterized by progressive motor and sensory neuropathy. N-myc downstream regulated gene 1 (NDRG1) is the causative gene for CMT4D. Although more CMT4D cases have been reported, the comprehensive molecular mechanism underlying CMT4D remains elusive. Here, we generated a novel knockout mouse model in which the fourth and fifth exons of the Ndrg1 gene were removed. Ndrg1-deficient mice develop early progressive demyelinating neuropathy and limb muscle weakness. The expression pattern of myelination-related transcriptional factors, including SOX10, OCT6, and EGR2, was abnormal in Ndrg1-deficient mice. We further investigated the activation of the ErbB2/3 receptor tyrosine kinases in Ndrg1-deficient sciatic nerves, as these proteins play essential roles in Schwann cell myelination. In the absence of NDRG1, although the total ErbB2/3 receptors expressed by Schwann cells were significantly increased, levels of the phosphorylated forms of ErbB2/3 and their downstream signaling cascades were decreased. This change was not associated with the level of the neuregulin 1 ligand, which was increased in Ndrg1-deficient mice. In addition, the integrin β4 receptor, which interacts with ErbB2/3 and positively regulates neuregulin 1/ErbB signaling, was significantly reduced in the Ndrg1-deficient nerve. In conclusion, our data suggest that the demyelinating phenotype of CMT4D disease is at least in part a consequence of molecular defects in neuregulin 1/ErbB signaling.
Collapse
|
22
|
Single-Cell RNA Sequencing Reveals the Interaction of Injected ADSCs with Lung-Originated Cells in Mouse Pulmonary Fibrosis. Stem Cells Int 2022; 2022:9483166. [PMID: 35450342 PMCID: PMC9017459 DOI: 10.1155/2022/9483166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/10/2022] [Indexed: 12/04/2022] Open
Abstract
Pulmonary fibrosis (PF) is a severe chronic lung disease with little effective treatment options other than lung transplantation. Adipose-derived mesenchymal stem cells (ADSCs) have been shown to exert therapeutic effects on PF, but the underlying mechanisms remain to be further elucidated. Here, we show the interaction of ADSCs and lung-originated cells at the single-cell level, using bleomycin- (BLM-) induced mice PF model and green fluorescent protein– (GFP–) labeled mouse ADSCs. The intratracheally injected ADSCs were successfully recollected with flow cytometry and, together with lung-originated cells, were subjected to single-cell RNA sequencing (scRNA-seq). The ADSC treatment drastically changed the transcriptomic profile and composition of lung cells, especially macrophages. We explored the signal pathway interactions between ADSCs and lung-originated cells, showing potentially regulative pathways including NGR, ANNEXIN, HGF, and PERIOSTIN. Our data indicate that the injected ADSCs increased the number of Trem2+ antiinflammatory lung macrophages and lowered further inflammation and fibrosis in the lung. Our work realized the direct analysis of injected ADSCs to explore its in vivo interaction with the lung environment under PF and may provide critical information for future engineering of ADSCs to achieve better therapeutic effects in PF.
Collapse
|
23
|
Meng DH, Zou JP, Xu QT, Wang JY, Yu JQ, Yuan Y, Chen ZG, Zhang MH, Jiang LB, Zhang J. Endothelial cells promote the proliferation and migration of Schwann cells. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:78. [PMID: 35282045 PMCID: PMC8848405 DOI: 10.21037/atm-22-81] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 11/23/2022]
Abstract
Background After peripheral nerve injury, Schwann cells proliferate and migrate to the injured site, thereby promoting peripheral nerve regeneration. The process is regulated by various factors. Endothelial cells participate in the process via angiogenesis. However, the effects of endothelial cells on Schwann cells are not yet known. The present study sought to evaluate whether endothelial cells accelerate Schwann cell proliferation and migration. Methods We established a co-culture model of rat Schwann cells (RSC96s) and rat aortic endothelial cells (RAOECs), and studied the effects of endothelial cells on Schwann cells by evaluating changes in Schwann cell proliferation and migration and related multiple genes and their protein expressions in the co-culture model. Results The results showed that increasing the proportion of endothelial cells in the co-culture model enhanced the proliferation. At days 1 and 3 following the co-culturing, the relative growth rates of the co-cultured cells were 122.87% and 127.37%, respectively, which showed a significant increase in the viability compared to that of the RSC96s (P<0.05). In this process, the expression of Ki67 increased. The migration ability of Schwann cells was also enhanced. The migration capacity of Schwann cells was detected by wound-healing and Transwell assays. The results of the group with 15% of endothelial cells was significantly higher than the results of the other groups (P<0.0001 and P<0.05, respectively). Further, neuregulin 1 and glial fibrillary acidic protein increased the process of Schwann cell migration. Conclusions The results showed that endothelial cells can promote the proliferation and migration of Schwann cells and participate in peripheral nerve regeneration.
Collapse
Affiliation(s)
- De-Hua Meng
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Peng Zou
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qin-Tong Xu
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Yi Wang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie-Qin Yu
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ya Yuan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zeng-Gan Chen
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming-He Zhang
- Department of Orthopedics, The 455th Hospital of Chinese People's Liberation Army, Shanghai, China
| | - Li-Bo Jiang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Zepeda-Batista JL, Núñez-Domínguez R, Ramírez-Valverde R, Jahuey-Martínez FJ, Herrera-Ojeda JB, Parra-Bracamonte GM. Discovering of Genomic Variations Associated to Growth Traits by GWAS in Braunvieh Cattle. Genes (Basel) 2021; 12:genes12111666. [PMID: 34828272 PMCID: PMC8618990 DOI: 10.3390/genes12111666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/20/2021] [Indexed: 01/01/2023] Open
Abstract
A genome-wide association study (GWAS) was performed to elucidate genetic architecture of growth traits in Braunvieh cattle. Methods: The study included 300 genotyped animals by the GeneSeek® Genomic Profiler Bovine LDv.4 panel; after quality control, 22,734 SNP and 276 animals were maintained in the analysis. The examined phenotypic data considered birth (BW), weaning (WW), and yearling weights. The association analysis was performed using the principal components method via the egscore function of the GenABEL version 1.8-0 package in the R environment. The marker rs133262280 located in BTA 22 was associated with BW, and two SNPs were associated with WW, rs43668789 (BTA 11) and rs136155567 (BTA 27). New QTL associated with these liveweight traits and four positional and functional candidate genes potentially involved in variations of the analyzed traits were identified. The most important genes in these genomic regions were MCM2 (minichromosome maintenance complex component 2), TPRA1 (transmembrane protein adipocyte associated 1), GALM (galactose mutarotase), and NRG1 (neuregulin 1), related to embryonic cleavage, bone and tissue growth, cell adhesion, and organic development. This study is the first to present a GWAS conducted in Braunvieh cattle in Mexico providing evidence for genetic architecture of assessed growth traits. Further specific analysis of found associated genes and regions will clarify its contribution to the genetic basis of growth-related traits.
Collapse
Affiliation(s)
- José Luis Zepeda-Batista
- Facultad de Medicina Veterinaria y Zootecnia, Universidad de Colima, Kilometro 40 Autopista Colima-Manzanillo, Tecomán 28100, Colima, Mexico;
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Km. 38.5 Carretera México-Texcoco, Chapingo 56230, Texcoco, Mexico; (R.N.-D.); (R.R.-V.)
| | - Rafael Núñez-Domínguez
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Km. 38.5 Carretera México-Texcoco, Chapingo 56230, Texcoco, Mexico; (R.N.-D.); (R.R.-V.)
| | - Rodolfo Ramírez-Valverde
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Km. 38.5 Carretera México-Texcoco, Chapingo 56230, Texcoco, Mexico; (R.N.-D.); (R.R.-V.)
| | - Francisco Joel Jahuey-Martínez
- Facultad de Zootecnia y Ecologa, Universidad Autónoma de Chihuahua, Periférico Francisco R. Almada, Km 1, Chihuahua 33820, Chihuahua, Mexico;
| | - Jessica Beatriz Herrera-Ojeda
- Departamento de Ciencias Básicas, Instituto Tecnológico del Valle de Morelia, Instituto Tecnológico Nacional, Morelia 58100, Michoacán, Mexico;
| | - Gaspar Manuel Parra-Bracamonte
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro S/N esq. Elías Piña, Col. Narciso Mendoza, Ciudad Reynosa 88710, Tamaulipas, Mexico
- Correspondence: ; Tel.: +52-899-924-3627 (ext. 87709)
| |
Collapse
|
25
|
Sepúlveda V, Maurelia F, González M, Aguayo J, Caprile T. SCO-spondin, a giant matricellular protein that regulates cerebrospinal fluid activity. Fluids Barriers CNS 2021; 18:45. [PMID: 34600566 PMCID: PMC8487547 DOI: 10.1186/s12987-021-00277-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/11/2021] [Indexed: 12/28/2022] Open
Abstract
Cerebrospinal fluid is a clear fluid that occupies the ventricular and subarachnoid spaces within and around the brain and spinal cord. Cerebrospinal fluid is a dynamic signaling milieu that transports nutrients, waste materials and neuroactive substances that are crucial for the development, homeostasis and functionality of the central nervous system. The mechanisms that enable cerebrospinal fluid to simultaneously exert these homeostatic/dynamic functions are not fully understood. SCO-spondin is a large glycoprotein secreted since the early stages of development into the cerebrospinal fluid. Its domain architecture resembles a combination of a matricellular protein and the ligand-binding region of LDL receptor family. The matricellular proteins are a group of extracellular proteins with the capacity to interact with different molecules, such as growth factors, cytokines and cellular receptors; enabling the integration of information to modulate various physiological and pathological processes. In the same way, the LDL receptor family interacts with many ligands, including β-amyloid peptide and different growth factors. The domains similarity suggests that SCO-spondin is a matricellular protein enabled to bind, modulate, and transport different cerebrospinal fluid molecules. SCO-spondin can be found soluble or polymerized into a dynamic threadlike structure called the Reissner fiber, which extends from the diencephalon to the caudal tip of the spinal cord. Reissner fiber continuously moves caudally as new SCO-spondin molecules are added at the cephalic end and are disaggregated at the caudal end. This movement, like a conveyor belt, allows the transport of the bound molecules, thereby increasing their lifespan and action radius. The binding of SCO-spondin to some relevant molecules has already been reported; however, in this review we suggest more than 30 possible binding partners, including peptide β-amyloid and several growth factors. This new perspective characterizes SCO-spondin as a regulator of cerebrospinal fluid activity, explaining its high evolutionary conservation, its apparent multifunctionality, and the lethality or severe malformations, such as hydrocephalus and curved body axis, of knockout embryos. Understanding the regulation and identifying binding partners of SCO-spondin are crucial for better comprehension of cerebrospinal fluid physiology.
Collapse
Affiliation(s)
- Vania Sepúlveda
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Maurelia
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Maryori González
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jaime Aguayo
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Teresa Caprile
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
26
|
Moghbeli M. Molecular interactions of miR-338 during tumor progression and metastasis. Cell Mol Biol Lett 2021; 26:13. [PMID: 33827418 PMCID: PMC8028791 DOI: 10.1186/s11658-021-00257-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023] Open
Abstract
Background Cancer, as one of the main causes of human deaths, is currently a significant global health challenge. Since the majority of cancer-related deaths are associated with late diagnosis, it is necessary to develop minimally invasive early detection markers to manage and reduce mortality rates. MicroRNAs (miRNAs), as highly conserved non-coding RNAs, target the specific mRNAs which are involved in regulation of various fundamental cellular processes such as cell proliferation, death, and signaling pathways. MiRNAs can also be regulated by long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). They are highly stable in body fluids and have tumor-specific expression profiles, which suggest their suitability as efficient non-invasive diagnostic and prognostic tumor markers. Aberrant expression of miR-338 has been widely reported in different cancers. It regulates cell proliferation, migration, angiogenesis, and apoptosis in tumor cells. Main body In the present review, we have summarized all miR-338 interactions with other non-coding RNAs (ncRNAs) and associated signaling pathways to clarify the role of miR-338 during tumor progression. Conclusions It was concluded that miR-338 mainly functions as a tumor suppressor in different cancers. There were also significant associations between miR-338 and other ncRNAs in tumor cells. Moreover, miR-338 has a pivotal role during tumor progression using the regulation of WNT, MAPK, and PI3K/AKT signaling pathways. This review highlights miR-338 as a pivotal ncRNA in biology of tumor cells.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Analysis of ADAM12-Mediated Ephrin-A1 Cleavage and Its Biological Functions. Int J Mol Sci 2021; 22:ijms22052480. [PMID: 33804570 PMCID: PMC7957476 DOI: 10.3390/ijms22052480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence indicates that an elevated ephrin-A1 expression is positively correlated with a worse prognosis in some cancers such as colon and liver cancer. The detailed mechanism of an elevated ephrin-A1 expression in a worse prognosis still remains to be fully elucidated. We previously reported that ADAM12-cleaved ephrin-A1 enhanced lung vascular permeability and thereby induced lung metastasis. However, it is still unclear whether or not cleaved forms of ephrin-A1 are derived from primary tumors and have biological activities. We identified the ADAM12-mediated cleavage site of ephrin-A1 by a Matrix-assisted laser desorption ionization mass spectrometry and checked levels of ephrin-A1 in the serum and the urine derived from the primary tumors by using a mouse model. We found elevated levels of tumor-derived ephrin-A1 in the serum and the urine in the tumor-bearing mice. Moreover, inhibition of ADAM-mediated cleavage of ephrin-A1 or antagonization of the EphA receptors resulted in a significant reduction of lung metastasis. The results suggest that tumor-derived ephrin-A1 is not only a potential biomarker to predict lung metastasis from the primary tumor highly expressing ephrin-A1 but also a therapeutic target of lung metastasis.
Collapse
|
28
|
Soluble CD40L activates soluble and cell-surface integrin αvβ3, α5β1, and α4β1 by binding to the allosteric ligand-binding site (site 2). J Biol Chem 2021; 296:100399. [PMID: 33571526 PMCID: PMC7960543 DOI: 10.1016/j.jbc.2021.100399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 11/20/2022] Open
Abstract
CD40L is a member of the TNF superfamily that participates in immune cell activation. It binds to and signals through several integrins, including αvβ3 and α5β1, which bind to the trimeric interface of CD40L. We previously showed that several integrin ligands can bind to the allosteric site (site 2), which is distinct from the classical ligand-binding site (site 1), raising the question of if CD40L activates integrins. In our explorations of this question, we determined that integrin α4β1, which is prevalently expressed on the same CD4+ T cells as CD40L, is another receptor for CD40L. Soluble (s)CD40L activated soluble integrins αvβ3, α5β1, and α4β1 in cell-free conditions, indicating that this activation does not require inside-out signaling. Moreover, sCD40L activated cell-surface integrins in CHO cells that do not express CD40. To learn more about the mechanism of binding, we determined that sCD40L bound to a cyclic peptide from site 2. Docking simulations predicted that the residues of CD40L that bind to site 2 are located outside of the CD40L trimer interface, at a site where four HIGM1 (hyper-IgM syndrome type 1) mutations are clustered. We tested the effect of these mutations, finding that the K143T and G144E mutants were the most defective in integrin activation, providing support that this region interacts with site 2. We propose that allosteric integrin activation by CD40L also plays a role in CD40L signaling, and defective site 2 binding may be related to the impaired CD40L signaling functions of these HIGM1 mutants.
Collapse
|
29
|
Ou GY, Lin WW, Zhao WJ. Neuregulins in Neurodegenerative Diseases. Front Aging Neurosci 2021; 13:662474. [PMID: 33897409 PMCID: PMC8064692 DOI: 10.3389/fnagi.2021.662474] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/16/2021] [Indexed: 02/05/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), are typically characterized by progressive neuronal loss and neurological dysfunctions in the nervous system, affecting both memory and motor functions. Neuregulins (NRGs) belong to the epidermal growth factor (EGF)-like family of extracellular ligands and they play an important role in the development, maintenance, and repair of both the central nervous system (CNS) and peripheral nervous system (PNS) through the ErbB signaling pathway. They also regulate multiple intercellular signal transduction and participate in a wide range of biological processes, such as differentiation, migration, and myelination. In this review article, we summarized research on the changes and roles of NRGs in neurodegenerative diseases, especially in AD. We elaborated on the structural features of each NRG subtype and roles of NRG/ErbB signaling networks in neurodegenerative diseases. We also discussed the therapeutic potential of NRGs in the symptom remission of neurodegenerative diseases, which may offer hope for advancing related treatment.
Collapse
Affiliation(s)
- Guan-yong Ou
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Wen-wen Lin
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Wei-jiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Wei-jiang Zhao
| |
Collapse
|
30
|
Catignas KK, Frick LR, Pellegatta M, Hurley E, Kolb Z, Addabbo K, McCarty JH, Hynes RO, van der Flier A, Poitelon Y, Wrabetz L, Feltri ML. α V integrins in Schwann cells promote attachment to axons, but are dispensable in vivo. Glia 2021; 69:91-108. [PMID: 32744761 PMCID: PMC8491627 DOI: 10.1002/glia.23886] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
Abstract
In the developing peripheral nervous system, Schwann cells (SCs) extend their processes to contact, sort, and myelinate axons. The mechanisms that contribute to the interaction between SCs and axons are just beginning to be elucidated. Using a SC-neuron coculture system, we demonstrate that Arg-Gly-Asp (RGD) peptides that inhibit αV -containing integrins delay the extension of SCs elongating on axons. αV integrins in SC localize to sites of contact with axons and are expressed early in development during radial sorting and myelination. Short interfering RNA-mediated knockdown of the αV integrin subunit also delays SC extension along axons in vitro, suggesting that αV -containing integrins participate in axo-glial interactions. However, mice lacking the αV subunit in SCs, alone or in combination with the potentially compensating α5 subunit, or the αV partners β3 or β8 , myelinate normally during development and remyelinate normally after nerve crush, indicating that overlapping or compensatory mechanisms may hide the in vivo role of RGD-binding integrins.
Collapse
Affiliation(s)
- Kathleen K. Catignas
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Biochemistry, University at Buffalo, Buffalo, New York
| | - Luciana R. Frick
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Marta Pellegatta
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, Milan, Italy
| | - Edward Hurley
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Zachary Kolb
- Department of Biochemistry, University at Buffalo, Buffalo, New York
| | - Kathryn Addabbo
- Department of Biochemistry, University at Buffalo, Buffalo, New York
| | - Joseph H. McCarty
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Richard O. Hynes
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Boston, Massachusetts
| | - Arjan van der Flier
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Boston, Massachusetts
- Sanofi, Boston, Massachusetts
| | - Yannick Poitelon
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Biochemistry, University at Buffalo, Buffalo, New York
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Biochemistry, University at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Maria Laura Feltri
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Biochemistry, University at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
31
|
Common variants of NRG1 and ITGB4 confer risk of Hirschsprung disease in Han Chinese population. J Pediatr Surg 2020; 55:2758-2765. [PMID: 32418639 DOI: 10.1016/j.jpedsurg.2020.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Hirschsprung disease (HSCR) is a neurodevelopmental disorder with a strong genetic component. Common variants of NRG1 contributed to HSCR risk in Asians, and rare variants of ERBB2 and ITGB4 were found to be associated with HSCR. ERBB2 and ITGB4 are partners of Nrg1/ErbB pathway, which is important in HSCR pathogenesis. We aimed to investigate whether common variants in NRG1, ERBB2 and ITGB4 were associated with HSCR in Chinese Han population. METHODS We genotype 17 single nucleotide polymorphisms (SNPs) of NRG1, ERBB2 and ITGB4 in 420 HSCR patients and 1665 controls, and performed association analysis. RESULTS We validated associations of two NRG1 SNPs rs7835688 (PAllelic = 2.2 × 10-20, OR = 2.21, 95%CI = 1.86-2.62) and rs16879552 (PAllelic = 5.6 × 10-9, OR = 1.57, 95%CI = 1.35-1.83) with risk to HSCR. SNP rs3744000 located 5' upstream of ITGB4 showed association with HSCR (PAllelic = 2.4 × 10-3, OR = 1.27, 95%CI = 1.09-1.49). Four SNPs of ERBB2 exhibited no association. CONCLUSIONS Our results suggested that common variation of ITGB4 and NRG1 conferred risk to HSCR in Chinese Han population, which further highlighted Nrg-1/ErbB pathway involving in the pathogenesis of HSCR.
Collapse
|
32
|
Genes dysregulated in the blood of people with Williams syndrome are enriched in protein-coding genes positively selected in humans. Eur J Med Genet 2020; 63:103828. [DOI: 10.1016/j.ejmg.2019.103828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/09/2019] [Accepted: 12/21/2019] [Indexed: 12/29/2022]
|
33
|
Li N, Xu Y, Zhang Y, Li G, Yu T, Yao R, Zhou Y, Shen Y, Yin L, Wang X, Wang J. Biallelic ERBB3 loss-of-function variants are associated with a novel multisystem syndrome without congenital contracture. Orphanet J Rare Dis 2019; 14:265. [PMID: 31752936 PMCID: PMC6868814 DOI: 10.1186/s13023-019-1241-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/29/2019] [Indexed: 02/03/2023] Open
Abstract
Background Gain-of-function pathogenic variants of the Erb-B2 receptor tyrosine kinase 3 (ERBB3) gene contribute to the occurrence and development of a variety of human carcinomas through activation of phosphatidylinositol 3-kinase (PI3K)/AKT and extracellular signal-regulated kinase (ERK) signaling. ERBB3 gene homozygous germline variants, whose loss of function may cause autosomal recessive congenital contractural syndrome, were recently identified. This study aims to identify the disease-causing gene in a Chinese pedigree with variable phenotypes involving multiple systems, including developmental delay, postnatal growth retardation, transient lower limb asymmetry, facial malformations, atrioventricular canal malformation, bilateral nystagmus and amblyopia, feeding difficulties, immunodeficiency, anemia, and liver damage, but without congenital contracture. Methods Trio-whole exome sequencing (WES) was performed to identify the disease-causing gene in a 24-month-old Chinese female patient. The pathogenicity of the identified variants was evaluated using in silico tools and in vitro functional studies. Results Trio-WES revealed compound heterozygous variants of c.1253 T > C (p.I418T) and c.3182dupA (p.N1061Kfs*16) in the ERBB3 gene. Functional studies showed that p.I418T resulted in normal expression of ERBB3, which was capable of interacting with ERBB2. However, the variant impaired ERBB3 phosphorylation, consequently blocking ERBB2 phosphorylation and AKT and ERK activation. The truncated protein resulting from the c.3182dupA variant also lacked the capacity to activate downstream signaling pathways. Conclusions We report the first patient with a novel multisystem syndrome disorder without congenital contracture resulting from biallelic loss-of-function variants of ERBB3.
Collapse
Affiliation(s)
- Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China. .,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.
| | - Yufei Xu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Yi Zhang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Guoqiang Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - YunFang Zhou
- Department of Pediatrics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Yiping Shen
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lei Yin
- Department of Pediatrics, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China. .,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
34
|
Takada YK, Yu J, Shimoda M, Takada Y. Integrin Binding to the Trimeric Interface of CD40L Plays a Critical Role in CD40/CD40L Signaling. THE JOURNAL OF IMMUNOLOGY 2019; 203:1383-1391. [PMID: 31331973 DOI: 10.4049/jimmunol.1801630] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/24/2019] [Indexed: 01/07/2023]
Abstract
CD40L plays a major role in immune response and is a major therapeutic target for inflammation. Integrin α5β1 and CD40 simultaneously bind to CD40L. It is unclear if α5β1 and CD40 work together in CD40/CD40L signaling or how α5β1 binds to CD40L. In this article, we describe that the integrin-binding site of human CD40L is predicted to be located in the trimeric interface by docking simulation. Mutations in the predicted integrin-binding site markedly reduced the binding of α5β1 to CD40L. Several CD40L mutants defective in integrin binding were defective in NF-κB activation and B cell activation and suppressed CD40L signaling induced by wild-type CD40L; however, they still bound to CD40. These findings suggest that integrin α5β1 binds to monomeric CD40L through the binding site in the trimeric interface of CD40L, and this plays a critical role in CD40/CD40L signaling. Integrin αvβ3, a widely distributed vascular integrin, bound to CD40L in a KGD-independent manner, suggesting that αvβ3 is a new CD40L receptor. Several missense mutations in CD40L that induce immunodeficiency with hyper-IgM syndrome type 1 (HIGM1) are clustered in the integrin-binding site of the trimeric interface. These HIGM1 CD40L mutants were defective in binding to α5β1 and αvβ3 (but not to CD40), suggesting that the defect in integrin binding may be a causal factor of HIGM1. These findings suggest that α5β1 and αvβ3 bind to the overlapping binding site in the trimeric interface of monomeric CD40L and generate integrin-CD40L-CD40 ternary complex. CD40L mutants defective in integrins have potential as antagonists of CD40/CD40L signaling.
Collapse
Affiliation(s)
- Yoko K Takada
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817; and.,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Jessica Yu
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817; and
| | - Michiko Shimoda
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817; and
| | - Yoshikazu Takada
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817; and .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817
| |
Collapse
|
35
|
Ieguchi K, Maru Y. Roles of EphA1/A2 and ephrin-A1 in cancer. Cancer Sci 2019; 110:841-848. [PMID: 30657619 PMCID: PMC6398892 DOI: 10.1111/cas.13942] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 12/22/2022] Open
Abstract
The biological functions of the Eph/ephrin system have been intensively investigated and well documented so far since its discovery in 1987. Although the Eph/ephrin system has been implicated in pathological settings such as Alzheimer's disease and cancer, the molecular mechanism of the Eph/ephrin system in those diseases is not well understood. Especially in cancer, recent studies have demonstrated that most of Eph and ephrin are up‐ or down‐regulated in various types of cancer, and have been implicated in tumor progression, tumor malignancy, and prognosis. However, they lack consistency and are in controversy. The localization patterns of EphA1 and EphA2 in mouse lungs are very similar, and both knockout mice showed similar phenotypes in the lungs. Ephrin‐A1 that is a membrane‐anchored ligand for EphAs was co‐localized with EphA1 and EphA2 in lung vascular endothelial cells. We recently uncovered the molecular mechanism of ephrin‐A1‐induced lung metastasis by understanding the physiological function of ephrin‐A1 in lungs. This review focuses on the function of EphA1, EphA2, and ephrin‐A1 in tumors and an establishment of pre‐metastatic microenvironment in the lungs.
Collapse
Affiliation(s)
- Katsuaki Ieguchi
- Department of Pharmacology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Yoshiro Maru
- Department of Pharmacology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| |
Collapse
|
36
|
Cespedes JC, Liu M, Harbuzariu A, Nti A, Onyekaba J, Cespedes HW, Bharti PK, Solomon W, Anyaoha P, Krishna S, Adjei A, Botchway F, Ford B, Stiles JK. Neuregulin in Health and Disease. INTERNATIONAL JOURNAL OF BRAIN DISORDERS AND TREATMENT 2018; 4:024. [PMID: 31032468 PMCID: PMC6483402 DOI: 10.23937/2469-5866/1410024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Juan Carlos Cespedes
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, USA
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, USA
| | - Adriana Harbuzariu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, USA
| | - Annette Nti
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, USA
| | - John Onyekaba
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, USA
| | - Hanna Watson Cespedes
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, USA
| | | | - Wesley Solomon
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, USA
| | - Precious Anyaoha
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, USA
| | - Sri Krishna
- ICMR-National Institute for Research in Tribal Health, India
| | - Andrew Adjei
- Department of Pathology, Korle-Bu Teaching Hospital, University of Ghana Medical School, Ghana
| | - Felix Botchway
- Department of Pathology, Korle-Bu Teaching Hospital, University of Ghana Medical School, Ghana
| | - Byron Ford
- Division of Biomedical Sciences, University of California-Riverside School of Medicine, USA
| | - Jonathan K Stiles
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, USA
| |
Collapse
|
37
|
O'Brien NL, Fiorentino A, Curtis D, Rayner C, Petrosellini C, Al Eissa M, Bass NJ, McQuillin A, Sharp SI. Rare variant analysis in multiply affected families, association studies and functional analysis suggest a role for the ITGΒ4 gene in schizophrenia and bipolar disorder. Schizophr Res 2018; 199:181-188. [PMID: 29526452 PMCID: PMC6179966 DOI: 10.1016/j.schres.2018.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/22/2018] [Accepted: 03/01/2018] [Indexed: 11/29/2022]
Abstract
Recent results imply that rare variants contribute to the risk of schizophrenia. Exome sequence data from the UK10K project was used to identify three rare, amino acid changing variants in the ITGB4 gene which segregated with schizophrenia in two families: rs750367954, rs147480547 and rs145976111. Association analysis was carried out in the exome-sequenced Swedish schizophrenia study and in UCL schizophrenia and bipolar cases and controls genotyped for these variants. A gene-wise weighted burden test was performed on a trio sample of schizophrenia cases and their parents. rs750367954 was seen in two Swedish cases and in no controls. The other two variants were commoner in cases than controls in both Swedish and UCL cohort samples and an overall burden test was significant at p=0.0000031. The variants were not observed in the trio sample but ITGB4 was most highly ranked out of 14,960 autosomal genes in a gene-wise weighted burden test. The effect of rs147480547 and rs145976111 was studied in human neuroblastoma SH-SY5Y cells. Cells transfected with both variants had increased proliferation at both 24 and 48h (p=0.013 and p=0.05 respectively) compared to those with wild-type ITGB4. Taken together, these results suggest that rare variants in ITGB4 which affect function may contribute to the aetiology of schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- N L O'Brien
- UCL Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - A Fiorentino
- UCL Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - D Curtis
- UCL Genetics Institute, University College London, London, UK; Centre for Psychiatry, Barts and the London School of Medicine and Dentistry, London, UK
| | - C Rayner
- UCL Genetics Institute, University College London, London, UK
| | - C Petrosellini
- UCL Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - M Al Eissa
- UCL Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - N J Bass
- UCL Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - A McQuillin
- UCL Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK.
| | - S I Sharp
- UCL Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| |
Collapse
|
38
|
Shin DH, Jo JY, Han JY. Dual Targeting of ERBB2/ERBB3 for the Treatment of SLC3A2-NRG1-Mediated Lung Cancer. Mol Cancer Ther 2018; 17:2024-2033. [PMID: 29959202 DOI: 10.1158/1535-7163.mct-17-1178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/22/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
We characterized the SLC3A2-NRG1 fusion gene in non-small cell lung cancer (NSCLC) and established an effective therapy for patients with SLC3A2-NRG1 fusion-positive cancer. The SLC3A2-NRG1 fusion product was composed of the SLC3A2 transmembrane domain and the EGF-like domain of the neuregulin 1 (NRG1) protein. The NRG1 family is classified as a ligand of the ERBB family. We identified ERBB3 and ERBB4 in the ERBB family as binding partners of the SLC3A2-NRG1 fusion protein via ligand and receptor binding assays. We confirmed that SLC3A2-NRG1 increased formation of a heterocomplex of ERBB3 with ERBB2. Activation of the ERBB2-ERBB3 heterocomplex by SLC3A2-NRG1 increased colony formation and tumor growth through PI3K-AKT and MAP kinase. The specific siRNAs for ERBB2 and ERBB3, pertuzumab, lumretuzumab, and afatinib all decreased ERBB2-ERBB3 heterocomplex formation, phosphorylation of each protein, and their downstream signaling. In addition, single treatment with pertuzumab, lumretuzumab, or afatinib decreased tumor volume and weight, whereas combination treatment with these drugs and taxol enhanced generation of cleaved caspase 3, PARP, and TUNEL-positive cells compared with each single treatment. Thus, the SLC3A2-NRG1 fusion gene plays an important role in lung cancer cell proliferation and tumor growth by promoting generation of the ERBB2-ERBB3 heterocomplex, its phosphorylation, and activation of the PI3K/ERK/mTOR signaling pathway. Inhibition of either ERBB2 or ERBB3 alone did not completely shut down downstream signaling of ERBB2 and ERBB3; however, inhibition of both ERBB2 and ERBB3 blocked downstream signaling activated by SLC3A2-NRG1 fusion. ERBB2 and ERBB3 might be promising targets for treatment of SLC3A2-NRG1-positive tumors. Mol Cancer Ther; 17(9); 2024-33. ©2018 AACR.
Collapse
Affiliation(s)
- Dong Hoon Shin
- Research Institute, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea. .,Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jeong Yeon Jo
- Research Institute, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea.,Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Ji-Youn Han
- Research Institute, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
39
|
Heining C, Horak P, Uhrig S, Codo PL, Klink B, Hutter B, Fröhlich M, Bonekamp D, Richter D, Steiger K, Penzel R, Endris V, Ehrenberg KR, Frank S, Kleinheinz K, Toprak UH, Schlesner M, Mandal R, Schulz L, Lambertz H, Fetscher S, Bitzer M, Malek NP, Horger M, Giese NA, Strobel O, Hackert T, Springfeld C, Feuerbach L, Bergmann F, Schröck E, von Kalle C, Weichert W, Scholl C, Ball CR, Stenzinger A, Brors B, Fröhling S, Glimm H. NRG1 Fusions in KRAS Wild-Type Pancreatic Cancer. Cancer Discov 2018; 8:1087-1095. [PMID: 29802158 DOI: 10.1158/2159-8290.cd-18-0036] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/24/2018] [Accepted: 05/24/2018] [Indexed: 11/16/2022]
Abstract
We used whole-genome and transcriptome sequencing to identify clinically actionable genomic alterations in young adults with pancreatic ductal adenocarcinoma (PDAC). Molecular characterization of 17 patients with PDAC enrolled in a precision oncology program revealed gene fusions amenable to pharmacologic inhibition by small-molecule tyrosine kinase inhibitors in all patients with KRAS wild-type (KRASWT) tumors (4 of 17). These alterations included recurrent NRG1 rearrangements predicted to drive PDAC development through aberrant ERBB receptor-mediated signaling, and pharmacologic ERBB inhibition resulted in clinical improvement and remission of liver metastases in 2 patients with NRG1-rearranged tumors that had proved resistant to standard treatment. Our findings demonstrate that systematic screening of KRASWT tumors for oncogenic fusion genes will substantially improve the therapeutic prospects for a sizeable fraction of patients with PDAC.Significance: Advanced PDAC is a malignancy with few treatment options that lacks molecular mechanism-based therapies. Our study uncovers recurrent gene rearrangements such as NRG1 fusions as disease-driving events in KRASwt tumors, thereby providing novel insights into oncogenic signaling and new therapeutic options in this entity. Cancer Discov; 8(9); 1087-95. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 1047.
Collapse
Affiliation(s)
- Christoph Heining
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany.,University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| | - Peter Horak
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg and DKFZ, Heidelberg, Germany.,Section for Personalized Oncology, Heidelberg University Hospital, Heidelberg, Germany.,DKTK, Heidelberg, Germany
| | - Sebastian Uhrig
- DKTK, Heidelberg, Germany.,Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Paula L Codo
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Barbara Klink
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Dresden, Germany.,Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Barbara Hutter
- DKTK, Heidelberg, Germany.,Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, Germany
| | - Martina Fröhlich
- DKTK, Heidelberg, Germany.,Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, Germany
| | | | - Daniela Richter
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University Munich, Munich, Germany.,DKTK, Munich, Germany
| | - Roland Penzel
- DKTK, Heidelberg, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Volker Endris
- DKTK, Heidelberg, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Karl Roland Ehrenberg
- Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.,Department of Medical Oncology, NCT, Heidelberg, Germany
| | - Stephanie Frank
- Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Kortine Kleinheinz
- Division of Theoretical Bioinformatics, DKFZ, Heidelberg, Germany.,Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Umut H Toprak
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Division of Theoretical Bioinformatics, DKFZ, Heidelberg, Germany.,Bioinformatics and Omics Data Analytics, DKFZ, Heidelberg, Germany
| | | | - Ranadip Mandal
- Division of Applied Functional Genomics, DKFZ, Heidelberg, Germany
| | - Lothar Schulz
- Department of Oncology, Klinikum Garmisch-Partenkirchen, Garmisch-Partenkirchen, Germany
| | - Helmut Lambertz
- Department of Oncology, Klinikum Garmisch-Partenkirchen, Garmisch-Partenkirchen, Germany
| | | | - Michael Bitzer
- Department of Gastroenterology, Hepatology and Infectious Diseases, Tübingen University Hospital, Tübingen, Germany.,DKTK, Tübingen, Germany
| | - Nisar P Malek
- Department of Gastroenterology, Hepatology and Infectious Diseases, Tübingen University Hospital, Tübingen, Germany.,DKTK, Tübingen, Germany
| | - Marius Horger
- DKTK, Tübingen, Germany.,Department of Radiology, Tübingen University Hospital, Tübingen, Germany
| | - Nathalia A Giese
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Strobel
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Lars Feuerbach
- DKTK, Heidelberg, Germany.,Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, Germany
| | - Frank Bergmann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Evelin Schröck
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Dresden, Germany.,Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg and DKFZ, Heidelberg, Germany.,Section for Personalized Oncology, Heidelberg University Hospital, Heidelberg, Germany.,DKTK, Heidelberg, Germany.,DKFZ-Heidelberg Center for Personalized Oncology (HIPO), Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University Munich, Munich, Germany.,DKTK, Munich, Germany
| | - Claudia Scholl
- DKTK, Heidelberg, Germany.,Division of Applied Functional Genomics, DKFZ, Heidelberg, Germany
| | - Claudia R Ball
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Albrecht Stenzinger
- DKTK, Heidelberg, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Benedikt Brors
- DKTK, Heidelberg, Germany.,Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, Germany
| | - Stefan Fröhling
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg and DKFZ, Heidelberg, Germany. .,Section for Personalized Oncology, Heidelberg University Hospital, Heidelberg, Germany.,DKTK, Heidelberg, Germany.,Department of Medical Oncology, NCT, Heidelberg, Germany
| | - Hanno Glimm
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany. .,University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| |
Collapse
|
40
|
Bengtsson T, Zhang B, Selegård R, Wiman E, Aili D, Khalaf H. Dual action of bacteriocin PLNC8 αβ through inhibition of Porphyromonas gingivalis infection and promotion of cell proliferation. Pathog Dis 2018; 75:3866614. [PMID: 28605543 PMCID: PMC5808647 DOI: 10.1093/femspd/ftx064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/09/2017] [Indexed: 12/04/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease that is characterised by accumulation of pathogenic bacteria, including Porphyromonas gingivalis, in periodontal pockets. The lack of effective treatments has emphasised in an intense search for alternative methods to prevent bacterial colonisation and disease progression. Bacteriocins are bacterially produced antimicrobial peptides gaining increased consideration as alternatives to traditional antibiotics. We show rapid permeabilisation and aggregation of P. gingivalis by the two-peptide bacteriocin PLNC8 αβ. In a cell culture model, P. gingivalis was cytotoxic against gingival fibroblasts. The proteome profile of fibroblasts is severely affected by P. gingivalis, including induction of the ubiquitin-proteasome pathway. PLNC8 αβ enhanced the expression of growth factors and promoted cell proliferation, and suppressed proteins associated with apoptosis. PLNC8 αβ efficiently counteracted P. gingivalis-mediated cytotoxicity, increased expression of a large number of proteins and restored the levels of inflammatory mediators. In conclusion, we show that bacteriocin PLNC8 αβ displays dual effects by acting as a potent antimicrobial agent killing P. gingivalis and as a stimulatory factor promoting cell proliferation. We suggest preventive and therapeutical applications of PLNC8 αβ in periodontitis to supplement the host immune defence against P. gingivalis infection and support wound healing processes.
Collapse
Affiliation(s)
| | - Boxi Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Robert Selegård
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden.,Division of Molecular Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| | - Emanuel Wiman
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - Daniel Aili
- Division of Molecular Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| | - Hazem Khalaf
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
| |
Collapse
|
41
|
Cardiovascular Risk Factors and Markers. BIOMATHEMATICAL AND BIOMECHANICAL MODELING OF THE CIRCULATORY AND VENTILATORY SYSTEMS 2018. [PMCID: PMC7123062 DOI: 10.1007/978-3-319-89315-0_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cardiovascular risk is assessed for the prediction and appropriate management of patients using collections of identified risk markers obtained from clinical questionnaire information, concentrations of certain blood molecules (e.g., N-terminal proB-type natriuretic peptide fragment and soluble receptors of tumor-necrosis factor-α and interleukin-2), imaging data using various modalities, and electrocardiographic variables, in addition to traditional risk factors.
Collapse
|
42
|
Takada YK, Yu J, Fujita M, Saegusa J, Wu CY, Takada Y. Direct binding to integrins and loss of disulfide linkage in interleukin-1β (IL-1β) are involved in the agonistic action of IL-1β. J Biol Chem 2017; 292:20067-20075. [PMID: 29030430 PMCID: PMC5723996 DOI: 10.1074/jbc.m117.818302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Indexed: 11/06/2022] Open
Abstract
There is a strong link between integrins and interleukin-1β (IL-1β), but the specifics of the role of integrins in IL-1β signaling are unclear. We describe that IL-1β specifically bound to integrins αvβ3 and α5β1. The E128K mutation in the IL1R-binding site enhanced integrin binding. We studied whether direct integrin binding is involved in IL-1β signaling. We compared sequences of IL-1β and IL-1 receptor antagonist (IL1RN), which is an IL-1β homologue but has no agonistic activity. Several surface-exposed Lys residues are present in IL-1β, but not in IL1RN. A disulfide linkage is present in IL1RN, but is not in IL-1β because of natural C117F mutation. Substitution of the Lys residues to Glu markedly reduced integrin binding of E128K IL-1β, suggesting that the Lys residues mediate integrin binding. The Lys mutations reduced, but did not completely abrogate, agonistic action of IL-1β. We studied whether the disulfide linkage plays a role in agonistic action of IL-1β. Reintroduction of the disulfide linkage by the F117C mutation did not affect agonistic activity of WT IL-1β, but effectively reduced the remaining agonistic activity of the Lys mutants. Also, deletion of the disulfide linkage in IL1RN by the C116F mutation did not make it agonistic. We propose that the direct binding to IL-1β to integrins is primarily important for agonistic IL-1β signaling, and that the disulfide linkage indirectly affects signaling by blocking conformational changes induced by weak integrin binding to the Lys mutants. The integrin-IL-1β interaction is a potential target for drug discovery.
Collapse
Affiliation(s)
- Yoko K Takada
- Departments of Dermatology, Sacramento, California 95817; Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, California 95817
| | - Jessica Yu
- Departments of Dermatology, Sacramento, California 95817; Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, California 95817; Institute of Biological Chemistry at Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 11529 Taiwan; PhD program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | - Masaaki Fujita
- Departments of Dermatology, Sacramento, California 95817; Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, California 95817
| | - Jun Saegusa
- Departments of Dermatology, Sacramento, California 95817
| | - Chun-Yi Wu
- Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, California 95817
| | - Yoshikazu Takada
- Departments of Dermatology, Sacramento, California 95817; Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, California 95817.
| |
Collapse
|
43
|
Nectin-like molecule-4/cell adhesion molecule 4 inhibits the ligand-induced dimerization of ErbB3 with ErbB2. Sci Rep 2017; 7:11375. [PMID: 28900130 PMCID: PMC5595929 DOI: 10.1038/s41598-017-10107-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/04/2017] [Indexed: 01/08/2023] Open
Abstract
The ligand-induced dimerization of cell surface single-transmembrane receptors is essential for their activation. However, physiological molecules that inhibit their dimerization and activation have not been identified. ErbB3 dimerizes with ErbB2 upon binding of heregulin (HRG) to ErbB3, causing the ErbB2-catalyzed tyrosine phosphorylation of ErbB3, which leads to the activation of the signalling pathways for cell movement and survival. Genetic disorders of this receptor cause tumorigenesis and metastasis of cancers. We show here that nectin-like molecule-4/cell adhesion molecule 4, known to serve as a tumour suppressor, interacts with ErbB3 in the absence of HRG and inhibits the HRG-induced dimerization of ErbB3 with ErbB2 and its activation. The third immunoglobulin-like domain of nectin-like molecule-4 cis-interacts with the extracellular domain 3 of ErbB3. We describe here a novel regulatory mechanism for the activation and signalling of cell surface single-transmembrane receptors.
Collapse
|
44
|
Direct integrin binding to insulin-like growth factor-2 through the C-domain is required for insulin-like growth factor receptor type 1 (IGF1R) signaling. PLoS One 2017; 12:e0184285. [PMID: 28873464 PMCID: PMC5584928 DOI: 10.1371/journal.pone.0184285] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/21/2017] [Indexed: 11/19/2022] Open
Abstract
We have reported that integrins crosstalk with growth factors through direct binding to growth factors (e.g., fibroblast growth factor-1, insulin-like growth factor 1 (IGF1), neuregulin-1, fractalkine) and subsequent ternary complex formation with cognate receptor [e.g., integrin/IGF1/IGF1 receptor (IGF1R)]. IGF1 and IGF2 are overexpressed in cancer and major therapeutic targets. We previously reported that IGF1 binds to integrins ανβ3 and α6β4, and the R36E/R37E mutant in the C-domain of IGF1 is defective integrin binding and signaling functions of IGF1, and acts as an antagonist of IGF1R. We studied if integrins play a role in the signaling functions of IGF2, another member of the IGF family. Here we describe that IGF2 specifically binds to integrins ανβ3 and α6β4, and induced proliferation of CHO cells (IGF1R+) that express ανβ3 or α6β4 (β3- or α6β4-CHO cells). Arg residues to Glu at positions 24, 34, 37 and/or 38 in or close to the C-domain of IGF2 play a critical role in binding to integrins and signaling functions. The R24E/R37E/R38E, R34E/R37E/R38E, and R24E/R34E/R37E/R38E mutants were defective in integrin binding and IGF2 signaling. These mutants suppressed proliferation induced by WT IGF2, suggesting that they are dominant-negative antagonists of IGF1R. These results suggest that IGF2 also requires integrin binding for signaling functions, and the IGF2 mutants that cannot bind to integrins act as antagonists of IGF1R. The present study defines the role of the C-domain in integrin binding and signaling.
Collapse
|
45
|
Takada Y, Takada YK, Fujita M. Crosstalk between insulin-like growth factor (IGF) receptor and integrins through direct integrin binding to IGF1. Cytokine Growth Factor Rev 2017; 34:67-72. [PMID: 28190785 DOI: 10.1016/j.cytogfr.2017.01.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/15/2016] [Accepted: 01/09/2017] [Indexed: 01/25/2023]
Abstract
It has been generally accepted that integrin cell adhesion receptors are involved in growth factor signaling (integrin-growth factor crosstalk), since antagonists to integrins often suppress growth factor signaling. Partly because integrins have been originally identified as cell adhesion receptors to extracellular matrix (ECM) proteins, current models of the crosstalk between IGF1 and integrins propose that ECM ligands (e.g., vitronectin) bind to integrins and IGF1 binds to IGF receptor type 1 (IGF1R), and two separate signals merge inside the cells. Our research proves otherwise. We discovered that IGF1 interacts directly with integrins, and induces integrin-IGF-IGF1R complex formation on the cell surface. IGF1 signaling can be detected in the absence of ECM (anchorage-independent conditions). Integrin antagonists block both ECM-integrin interaction and IGF-integrin interaction, and do not distinguish the two. This is one possible reason why integrin-IGF1 interaction has not been detected. With these new discoveries, we believe that the direct IGF-integrin interaction should be incorporated into models of IGF1 signaling. The integrin-binding defective mutant of IGF1 is defective in inducing IGF signaling, although the mutant still binds to IGF1R. Notably, the IGF1 mutant is dominant-negative and suppresses cell proliferation induced by wt IGF1, and suppresses tumorigenesis in vivo, and thus the IGF1 mutant has potential as a therapeutic.
Collapse
Affiliation(s)
- Yoshikazu Takada
- Departments of Dermatology, Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, United States; Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan, ROC.
| | - Yoko K Takada
- Departments of Dermatology, Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, United States; Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan, ROC
| | - Masaaki Fujita
- Department of Clinical Immunology and Rheumatology, The Tazuke-Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| |
Collapse
|
46
|
Zhang C, Xin H, Zhang W, Yazaki PJ, Zhang Z, Le K, Li W, Lee H, Kwak L, Forman S, Jove R, Yu H. CD5 Binds to Interleukin-6 and Induces a Feed-Forward Loop with the Transcription Factor STAT3 in B Cells to Promote Cancer. Immunity 2016; 44:913-923. [PMID: 27096320 DOI: 10.1016/j.immuni.2016.04.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 11/16/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022]
Abstract
The participation of a specific subset of B cells and how they are regulated in cancer is unclear. Here, we demonstrate that the proportion of CD5(+) relative to interleukin-6 receptor α (IL-6Rα)-expressing B cells was greatly increased in tumors. CD5(+) B cells responded to IL-6 in the absence of IL-6Rα. IL-6 directly bound to CD5, leading to activation of the transcription factor STAT3 via gp130 and its downstream kinase JAK2. STAT3 upregulated CD5 expression, thereby forming a feed-forward loop in the B cells. In mouse tumor models, CD5(+) but not CD5(-) B cells promoted tumor growth. CD5(+) B cells also showed activation of STAT3 in multiple types of human tumor tissues. Thus, our findings demonstrate a critical role of CD5(+) B cells in promoting cancer.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Hong Xin
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Wang Zhang
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Paul J Yazaki
- Department of Immunology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Zhifang Zhang
- Department of Immunology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Keith Le
- Department of Immunology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Wenzhao Li
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Heehyoung Lee
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Larry Kwak
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Stephen Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Richard Jove
- Cell Therapy Institute, Nova Southeastern University, Ft Lauderdale, FL. 33314, USA
| | - Hua Yu
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.,Center for Translational Medicine, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| |
Collapse
|
47
|
O'Neill P, Lindsay SL, Pantiru A, Guimond SE, Fagoe N, Verhaagen J, Turnbull JE, Riddell JS, Barnett SC. Sulfatase-mediated manipulation of the astrocyte-Schwann cell interface. Glia 2016; 65:19-33. [PMID: 27535874 PMCID: PMC5244676 DOI: 10.1002/glia.23047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 12/29/2022]
Abstract
Schwann cell (SC) transplantation following spinal cord injury (SCI) may have therapeutic potential. Functional recovery is limited however, due to poor SC interactions with host astrocytes and the induction of astrogliosis. Olfactory ensheathing cells (OECs) are closely related to SCs, but intermix more readily with astrocytes in culture and induce less astrogliosis. We previously demonstrated that OECs express higher levels of sulfatases, enzymes that remove 6-O-sulfate groups from heparan sulphate proteoglycans, than SCs and that RNAi knockdown of sulfatase prevented OEC-astrocyte mixing in vitro. As human OECs are difficult to culture in large numbers we have genetically engineered SCs using lentiviral vectors to express sulfatase 1 and 2 (SC-S1S2) and assessed their ability to interact with astrocytes. We demonstrate that SC-S1S2s have increased integrin-dependent motility in the presence of astrocytes via modulation of NRG and FGF receptor-linked PI3K/AKT intracellular signaling and do not form boundaries with astrocytes in culture. SC-astrocyte mixing is dependent on local NRG concentration and we propose that sulfatase enzymes influence the bioavailability of NRG ligand and thus influence SC behavior. We further demonstrate that injection of sulfatase expressing SCs into spinal cord white matter results in less glial reactivity than control SC injections comparable to that of OEC injections. Our data indicate that sulfatase-mediated modification of the extracellular matrix can influence glial interactions with astrocytes, and that SCs engineered to express sulfatase may be more OEC-like in character. This approach may be beneficial for cell transplant-mediated spinal cord repair. GLIA 2016 GLIA 2017;65:19-33.
Collapse
Affiliation(s)
- Paul O'Neill
- Institute of Infection, Inflammation and Immunity, 120 University Place, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Susan L Lindsay
- Institute of Infection, Inflammation and Immunity, 120 University Place, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Andreea Pantiru
- Institute of Infection, Inflammation and Immunity, 120 University Place, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Scott E Guimond
- Department of Biochemistry, Centre for Glycobiology, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Nitish Fagoe
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, BA, 1105, the Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, BA, 1105, the Netherlands
| | - Jeremy E Turnbull
- Department of Biochemistry, Centre for Glycobiology, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - John S Riddell
- Institute of Neuroscience and Psychology, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Susan C Barnett
- Institute of Infection, Inflammation and Immunity, 120 University Place, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| |
Collapse
|
48
|
Takada Y, Fujita M. Secreted Phospholipase A2 Type IIA (sPLA2-IIA) Activates Integrins in an Allosteric Manner. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 925:103-115. [PMID: 27864802 DOI: 10.1007/5584_2016_95] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Secreted phospholipase A2 type IIA (sPLA2-IIA) is a well-established pro-inflammatory protein and has been a major target for drug discovery. However, the mechanism of its signaling action has not been fully understood. We previously found that sPLA2-IIA binds to integrins αvβ3 and α4β1 in human and that this interaction plays a role in sPLA2-IIA's signaling action. Our recent studies found that sPLA2-IIA activates integrins in an allosteric manner through direct binding to a newly identified binding site of integrins (site 2), which is distinct from the classical RGD-binding site (site 1). The sPLA2-IIA-induced integrin activation may be related to the signaling action of sPLA2-IIA. Since sPLA2-IIA is present in normal human tears in addition to rheumatoid synovial fluid at high concentrations the sPLA2-IIA-mediated integrin activation on leukocytes may be involved in immune responses in normal and pathological conditions.
Collapse
Affiliation(s)
- Yoshikazu Takada
- Department of Dermatology, Biochemistry and Molecular Medicine, UC Davis School of Medicine, Research III Suite 3300, 4645 Second Avenue, Sacramento, CA, 95817, USA. .,The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan, Republic of China.
| | - Masaaki Fujita
- Department of Clinical Immunology and Rheumatology, The Tazuke-Kofukai Medical Research Institute, Kitano Hospital, 2-4-20 Ohgimachi, Kita-ku, Osaka, 530-8480, Japan
| |
Collapse
|
49
|
Gilbert MA, Lin B, Peterson J, Jang W, Schwob JE. Neuregulin1 and ErbB expression in the uninjured and regenerating olfactory mucosa. Gene Expr Patterns 2015; 19:108-19. [PMID: 26474499 DOI: 10.1016/j.gep.2015.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 12/23/2022]
Abstract
Neuregulin1, a protein involved in signaling through the ErbB receptors, is required for the proper development of multiple organ systems. A complete understanding of the expression profile of Neuregulin1 is complicated by the presence of multiple isoform variants that result from extensive alternative splicing. Remarkably, these numerous protein products display a wide range of divergent functional roles, making the characterization of tissue-specific isoforms critical to understanding signaling. Recent evidence suggests an important role for Neuregulin1 signaling during olfactory epithelium development and regeneration. In order to understand the physiological consequences of this signaling, we sought to identify the isoform-specific and cell type-specific expression pattern of Neuregulin1 in the adult olfactory mucosa using a combination of RT-qPCR, FACS, and immunohistochemistry. To complement this information, we also analyzed the cell-type specific expression patterns of the ErbB receptors using immunohistochemistry. We found that multiple Neuregulin1 isoforms, containing predominantly the Type I and Type III N-termini, are expressed in the uninjured olfactory mucosa. Specifically, we found that Type III Neuregulin1 is highly expressed in mature olfactory sensory neurons and Type I Neuregulin1 is highly expressed in duct gland cells. Surprisingly, the divergent localization of these Neuregulin isoforms and their corresponding ErbB receptors does not support a role for active signaling during normal turnover and maintenance of the olfactory mucosa. Conversely, we found that injury to the olfactory epithelium specifically upregulates the Neuregulin1 Type I isoform bringing the expression pattern adjacent to cells expressing both ErbB2 and ErbB3 which is compatible with active signaling, supporting a functional role for Neuregulin1 specifically during regeneration.
Collapse
Affiliation(s)
- M A Gilbert
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Genetics Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - B Lin
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - J Peterson
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - W Jang
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - J E Schwob
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
50
|
Kallikreins - The melting pot of activity and function. Biochimie 2015; 122:270-82. [PMID: 26408415 DOI: 10.1016/j.biochi.2015.09.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/21/2015] [Indexed: 12/20/2022]
Abstract
The human tissue kallikrein and kallikrein-related peptidases (KLKs), encoded by the largest contiguous cluster of protease genes in the human genome, are secreted serine proteases with diverse expression patterns and physiological roles. Because of the broad spectrum of processes that are modulated by kallikreins, these proteases are the subject of extensive investigations. This review brings together basic information about the biochemical properties affecting enzymatic activity, with highlights on post-translational modifications, especially glycosylation. Additionally, we present the current state of knowledge regarding the physiological functions of KLKs in major human organs and outline recent discoveries pertinent to the involvement of kallikreins in cell signaling and in viral infections. Despite the current depth of knowledge of these enzymes, many questions regarding the roles of kallikreins in health and disease remain unanswered.
Collapse
|