1
|
Ifuku S, Kaminaka H, Shams MI. Nanochitin From Crab Shells: Production, Chemical Modification, Composite Materials, and Physiological Functions. Macromol Rapid Commun 2025; 46:e2400765. [PMID: 39895236 DOI: 10.1002/marc.202400765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/18/2025] [Indexed: 02/04/2025]
Abstract
Large quantities of crab shells are generated in food-processing plants. In this review, the authors summarize a series of research findings on the production of nanochitin, its physical properties, chemical modifications, and functions, which have not been fully addressed in existing literature. Nanochitin, which has a width of 10 nm, is derived from chitin, the main component of crab shells, using a technology similar to that used to produce nanocellulose from wood. Unlike conventional chitin, nanochitin is well dispersed in water, making it easy to mold and process into various products for different applications. They can also be modified for specific uses through processes such as acylation and etherification to enhance their physical properties and add functionality. Nanochitin, which are known for their exceptional mechanical strength, can be blended with resins to create composite films with improved strength and elasticity. These films maintain the transparency of the resin, reduce its thermal expansion, and offer reinforcement. Chitin and its derivative chitosan are used as wound dressings, hemostatic agents, and health foods. Nanochitin and its deacetyl derivatives have diverse functions such as topical medicine for the skin, ingestion as a health food, and use as pesticides or fertilizers for plants.
Collapse
Affiliation(s)
- Shinsuke Ifuku
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori, 680-8552, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, 680-8553, Japan
| | - Md Iftekhar Shams
- Forestry and Wood Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
2
|
Zhao G, Qin S, Wei Z, Bai X, Guo J, Kang Z, Guo J. Evolutionary characteristics, expression patterns of wheat receptor-like kinases and functional analysis of TaCrRLK1L16. STRESS BIOLOGY 2025; 5:24. [PMID: 40178709 PMCID: PMC11968617 DOI: 10.1007/s44154-025-00215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 04/05/2025]
Abstract
Reverse genetics research in complex hexaploid wheat often encounters challenges in determining the priority of gene functional characterization. This study aims to systematically analyze the wheat (Triticum aestivum) receptor-like kinase (TaRLK) gene family and develop an effective strategy to identify key candidate genes for further investigation. We identified 3,424 TaRLKs using bioinformatics methods and analyzed the diverse and conserved evolutionary relationships of RLKs among Arabidopsis, rice and wheat. Based on publicly available and our laboratory's transcriptome data, we comprehensively analyzed the transcriptional expression patterns of TaRLKs in response to various stresses, particularly Puccinia striiformis f. sp. tritici (Pst). The TaCrRLK1L16, which is upregulated during Pst infection and triggered cell death in Nicotiana benthamiana, has been identified as a key candidate gene for further functional characterization. Furthermore, our results suggested that the transgenic wheat overexpressing TaCrRLK1L16 significantly enhanced resistance to Pst. This study will provide valuable insights into understanding the evolutionary characteristics and expression patterns of TaRLKs while offering a novel strategy for determining the priority of key candidate TaRLKs.
Collapse
Affiliation(s)
- Guosen Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shiao Qin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhimin Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xingxuan Bai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Mittendorf J, Haslam TM, Herrfurth C, Esnay N, Boutté Y, Feussner I, Lipka V. Identification of INOSITOL PHOSPHORYLCERAMIDE SYNTHASE 2 (IPCS2) as a new rate-limiting component in Arabidopsis pathogen entry control. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70159. [PMID: 40298354 PMCID: PMC12039476 DOI: 10.1111/tpj.70159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
INOSITOL PHOSPHORYLCERAMIDE SYNTHASE 2 (IPCS2) is involved in the biosynthesis of complex sphingolipids at the trans-Golgi network (TGN). Here, we demonstrate a role of IPCS2 in penetration resistance against non-adapted powdery mildew fungi. A novel ipcs2W205* mutant was recovered from a forward genetic screen for Arabidopsis plants with enhanced epidermal cell entry success of the non-adapted barley fungus Blumeria graminis f. sp. hordei (Bgh). A yeast complementation assay and a sphingolipidomic approach revealed that the ipcs2W205* mutant represents a knock-out and lacks IPCS2-specific enzymatic activity. Further mutant analyses suggested that IPCS2-derived glycosyl inositol phosphorylceramides (GIPCs) are required for cell entry control of non-adapted fungal intruders. Confocal laser scanning microscopy (CLSM) studies indicated that upon pathogen attack, IPCS2 remains at the TGN to produce GIPCs, while focal accumulation of the defense cargo PENETRATION 3 (PEN3) at Bgh penetration sites was reduced in the ipcs2W205* mutant background. Thus, we propose a model in which sorting events at the TGN are facilitated by complex sphingolipids, regulating polar secretion of PEN3 to host-pathogen contact sites to terminate fungal ingress.
Collapse
Affiliation(s)
- Josephine Mittendorf
- Department of Plant Cell Biology, Albrecht‐von‐Haller‐Institute for Plant SciencesGeorg‐August‐University GoettingenGoettingenD‐37077Germany
| | - Tegan M. Haslam
- Department of Plant Biochemistry, Albrecht‐von‐Haller‐Institute for Plant SciencesUniversity of GoettingenGoettingenD‐37077Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht‐von‐Haller‐Institute for Plant SciencesUniversity of GoettingenGoettingenD‐37077Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB)University of GoettingenGoettingenD‐37077Germany
| | - Nicolas Esnay
- Laboratoire de Biogenèse MembranaireUniversité de Bordeaux, UMR5200 CNRSVillenave d'OrnonFrance
| | - Yohann Boutté
- Laboratoire de Biogenèse MembranaireUniversité de Bordeaux, UMR5200 CNRSVillenave d'OrnonFrance
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht‐von‐Haller‐Institute for Plant SciencesUniversity of GoettingenGoettingenD‐37077Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB)University of GoettingenGoettingenD‐37077Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht‐von‐Haller‐Institute for Plant SciencesGeorg‐August‐University GoettingenGoettingenD‐37077Germany
- Central Microscopy Facility of the Faculty of Biology & PsychologyGeorg‐August‐University GoettingenGoettingen37077Germany
| |
Collapse
|
4
|
García-Ilizaliturri E, Ibarra-Laclette E, Pariona-Mendoza N, Espinoza-González C, Cárdenas-Flores A, Valenzuela-Soto JH, Pérez-Lira AJ, Pérez-Torres CA. Controlled-Release Phosphorus Fertilizers Manufactured with Chitosan Derivatives: An Effective Alternative for Enhanced Plant Development. PLANTS (BASEL, SWITZERLAND) 2025; 14:610. [PMID: 40006869 PMCID: PMC11858907 DOI: 10.3390/plants14040610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/02/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
In modern agriculture, fertilizers are commonly used to increase crop yields; however, their negligent use can lead to environmental pollution and the waste of essential nutrients such as inorganic phosphate (Pi). Encapsulated fertilizers are a feasible alternative that could prevent these issues, as they can protect Pi from leaching and extend the interval between applications. In this study, we developed and tested innovative fertilizers (IFs) manufactured with KH2PO4, encapsulated with chitosan modified via high-frequency ultrasound treatment. The characterization of these fertilizers consisted of Fourier-transform infrared spectroscopy analysis and scanning transmission electron microscopy to determine their sizes and forms. In addition, we evaluated the phosphate release profile using electrical conductivity. The IFs were spheroidal microcapsules with an average diameter of 0.5-2 μM and showed slow-release behavior. Their efficacy was assessed via in vivo and in vitro assays, using Arabidopsis thaliana as a study model. As expected, the IFs promoted the growth of seedlings. One of the IFs showed enhanced growth promotion, contrasting with the control. This phenotype was likely promoted by this fertilizer due to the synergistic effect of Pi and the modified chitosan used as an encapsulant matrix. Our results highlight the potential of these formulations, which have unique properties and could be used on a large scale.
Collapse
Affiliation(s)
- Eva García-Ilizaliturri
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (E.G.-I.); (E.I.-L.); (N.P.-M.); (A.J.P.-L.)
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (E.G.-I.); (E.I.-L.); (N.P.-M.); (A.J.P.-L.)
| | - Nicolaza Pariona-Mendoza
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (E.G.-I.); (E.I.-L.); (N.P.-M.); (A.J.P.-L.)
| | - Carlos Espinoza-González
- Departamento de Materiales Avanzados, Centro de Investigación en Química Aplicada (CIQA), Saltillo 25294, Coahuila, Mexico;
| | - Antonio Cárdenas-Flores
- Departamento de Biociencias y Agrotecnología, Centro de Investigación en Química Aplicada (CIQA), Saltillo 25294, Coahuila, Mexico; (A.C.-F.); (J.H.V.-S.)
| | - José Humberto Valenzuela-Soto
- Departamento de Biociencias y Agrotecnología, Centro de Investigación en Química Aplicada (CIQA), Saltillo 25294, Coahuila, Mexico; (A.C.-F.); (J.H.V.-S.)
| | - Alan Josué Pérez-Lira
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (E.G.-I.); (E.I.-L.); (N.P.-M.); (A.J.P.-L.)
| | - Claudia-Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados (REMAv), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (E.G.-I.); (E.I.-L.); (N.P.-M.); (A.J.P.-L.)
- Investigador por México-SECIHTI (before CONAHCyT) en el Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico
| |
Collapse
|
5
|
Richter C, Cord-Landwehr S, Singh R, Ryll J, Moerschbacher BM. Dissecting and optimizing bioactivities of chitosans by enzymatic modification. Carbohydr Polym 2025; 349:122958. [PMID: 39638513 DOI: 10.1016/j.carbpol.2024.122958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Chitosans are versatile biopolymers with antimicrobial and plant-strengthening properties relevant to agriculture. However, a limited understanding of molecular structure-function relationships and cellular modes of action of chitosans hampers the development of effective chitosan-based agro-biologics. We partially hydrolyzed a chitosan polymer (degree of polymerization DP 800, fraction of acetylation FA 0.2) using acetic acid, a GH18 chitinase, or a GH8 chitosanase. All hydrolysates contained mixtures of chitosan oligomers and small polymers, but their composition in terms of DP, FA, and pattern of acetylation (PA) differed greatly. Importantly, chitinase products had mostly deacetylated residues at their ends, flanking mostly deacetylated residues, and vice versa for chitosanase products, while the products of acid hydrolysis had random PA. Acid hydrolysis did not significantly change antifungal and antibacterial activities. In contrast, chitinase hydrolysis slightly increased antibacterial, and chitosanase almost abolished antifungal activity. Elicitor and priming activities in the plant Arabidopsis were unchanged by acid, destroyed by chitinase, and increased by chitosanase hydrolysis. Transcriptomic analysis revealed that the chitosan polymer strongly induced genes involved in photosynthesis, while the chitosanase hydrolysate strongly induced genes involved in disease resistance. Clearly, different bioactivities require different chitosans, and enzymatic modification can fine-tune these activities as required for different agricultural products.
Collapse
Affiliation(s)
- Carolin Richter
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Stefan Cord-Landwehr
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Ratna Singh
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Judith Ryll
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Bruno M Moerschbacher
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| |
Collapse
|
6
|
Zheng Y, Zhao D, Lu Y, Chen Z, Liu Z, Sun E, Yu H, Mao X, Cai M, Zuo C. The Malectin-like kinase gene MdMDS1 negatively regulates the resistance of Pyrus betulifolia to Valsa canker by promoting the expression of PbePME1. PHYSIOLOGIA PLANTARUM 2025; 177:e70032. [PMID: 39727038 DOI: 10.1111/ppl.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024]
Abstract
Valsa canker, caused by fungal pathogens in Valsa species, is a fungal disease of apple and pear growing in China and even in Asia. Malectin-like kinases play crucial roles in plant recognition of the pathogen-induced signals and subsequent activation of partially host immune responses. However, the role of MEDOS1 (MDS1), a Malectin-like kinase, in plant immunity has not yet been extensively explored. Here, we found that the expression of the Malus domestica MDS (MdMDS1) gene, a homologous gene of the Catharanthus roseus Receptor-Like Kinase 1-like (CrRLK1L) family member MDS1 in Arabidopsis, could be inhibited by Valsa canker signals. Over-expression of MdMDS1 decreased Valsa canker resistance of apple and pear fruits, as well as 'Duli-G03' (Pyrus betulifolia) suspension cells. In response to Valsa pyri (Vp) signals in suspension cells, the up-regulation of MdMDS1 caused the inhibition of defense-related genes but activated the expression of cell wall-related genes. Among these, the pectin methylesterase gene PbePME1 was robustly induced. Further analysis confirmed that PbePME1, a negative regulator of Valsa canker resistance, was indispensable for MdMDS1's function. Our results enriched the recognization of the functions of CrRLK1L genes in host resistance against necrotrophics. We also provided a theoretical reference for the resistance breeding and comprehensive control of Valsa canker in both apples and pears.
Collapse
Affiliation(s)
- Yan Zheng
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Dan Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yuan Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongjian Chen
- Agro-Biological Gene Research Center, Guangdong Academy of Agriculture, Guangzhou, China
| | - Zhihong Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - E Sun
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Hongqiang Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xia Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Minrui Cai
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Cunwu Zuo
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
| |
Collapse
|
7
|
Mooney BC, van der Hoorn RAL. Novel structural insights at the extracellular plant-pathogen interface. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102629. [PMID: 39299144 DOI: 10.1016/j.pbi.2024.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
Plant pathogens represent a critical threat to global agriculture and food security, particularly under the pressures of climate change and reduced agrochemical use. Most plant pathogens initially colonize the extracellular space or apoplast and understanding the host-pathogen interactions that occur here is vital for engineering sustainable disease resistance in crops. Structural biology has played important roles in elucidating molecular mechanisms underpinning plant-pathogen interactions but only few studies have reported structures of extracellular complexes. This article highlights these resolved extracellular complexes by describing the insights gained from the solved structures of complexes consisting of CERK1-chitin, FLS2-flg22-BAK1, RXEG1-XEG1-BAK1 and PGIP2-FpPG. Finally, we discuss the potential of AI-based structure prediction platforms like AlphaFold as an alternative hypothesis generator to rapidly advance our molecular understanding of plant pathology and develop novel strategies to increase crop resilience against disease.
Collapse
|
8
|
Komarova T, Shipounova I, Kalinina N, Taliansky M. Application of Chitosan and Its Derivatives Against Plant Viruses. Polymers (Basel) 2024; 16:3122. [PMID: 39599213 PMCID: PMC11598201 DOI: 10.3390/polym16223122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Chitosan is a natural biopolymer that is industrially produced from chitin via deacetylation. Due to its unique properties and a plethora of biological activities, chitosan has found application in diverse areas from biomedicine to agriculture and the food sector. Chitosan is regarded as a biosafe, biodegradable, and biocompatible compound that was demonstrated to stimulate plant growth and to induce a general plant defense response, enhancing plant resistance to various pathogens, including bacteria, fungi, nematodes, and viruses. Here, we focus on chitosan application as an antiviral agent for plant protection. We review both the pioneer studies and recent research that report the effect of plant treatment with chitosan and its derivatives on viral infection. Special attention is paid to aspects that affect the biological activity of chitosan: polymer length and, correspondingly, its molecular weight; concentration; deacetylation degree and charge; application protocol; and experimental set-up. Thus, we compare the reported effects of various forms and derivatives of chitosan as well as chitosan-based nanomaterials, focusing on the putative mechanisms underlying chitosan-induced plant resistance to plant viruses.
Collapse
Affiliation(s)
- Tatiana Komarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (N.K.); (M.T.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Irina Shipounova
- National Medical Research Center for Hematology, 125167 Moscow, Russia
| | - Natalia Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (N.K.); (M.T.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (N.K.); (M.T.)
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
9
|
Mittendorf J, Niebisch JM, Pierdzig L, Sun S, Petutschnig EK, Lipka V. Differential contribution of Arabidopsis chitin receptor complex components to defense signaling and ubiquitination-dependent endocytotic removal from the plasma membrane. THE NEW PHYTOLOGIST 2024; 244:934-948. [PMID: 39187921 DOI: 10.1111/nph.20074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
In Arabidopsis, the enzymatically active lysin motif-containing receptor-like kinase (LysM-RLK) CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) and the pseudokinases LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE 5 (LYK5) and LYK4 are the core components of the canonical chitin receptor complex. CERK1 dimerizes and autophosphorylates upon chitin binding, resulting in activation of chitin signaling. In this study, we clarified and further elucidated the individual contributions of LYK4 and LYK5 to chitin-dependent signaling using mutant (combination)s and stably transformed Arabidopsis plants expressing fluorescence-tagged LYK5 and LYK4 variants from their endogenous promoters. Our analyses revealed that LYK5 interacts with CERK1 upon chitin treatment, independently of LYK4 and vice versa. We show that chitin-induced autophosphorylation of CERK1 is predominantly dependent on LYK5, whereas chitin-triggered ROS generation is almost exclusively mediated by LYK4. This suggests specific signaling functions of these two co-receptor proteins apart from their redundant function in mitogen-activated protein kinase (MAPK) signaling and transcriptional reprogramming. Moreover, we demonstrate that LYK5 is subject to chitin-induced and CERK1-dependent ubiquitination, which serves as a signal for chitin-induced internalization of LYK5. Our experiments provide evidence that a combination of phosphorylation and ubiquitination events controls LYK5 removal from the plasma membrane via endocytosis, which likely contributes to receptor complex desensitization.
Collapse
Affiliation(s)
- Josephine Mittendorf
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, Göttingen, D-37077, Germany
| | - Jule Meret Niebisch
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, Göttingen, D-37077, Germany
| | - Leon Pierdzig
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, Göttingen, D-37077, Germany
| | - Siqi Sun
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, Göttingen, D-37077, Germany
| | - Elena Kristin Petutschnig
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, Göttingen, D-37077, Germany
- Central Microscopy Facility of the Faculty of Biology & Psychology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, Göttingen, D-37077, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, Göttingen, D-37077, Germany
- Central Microscopy Facility of the Faculty of Biology & Psychology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, Göttingen, D-37077, Germany
| |
Collapse
|
10
|
Meresa BK, Ayimut KM, Weldemichael MY, Geberemedhin KH, Kassegn HH, Geberemikael BA, Egigu EM. Carbohydrate elicitor-induced plant immunity: Advances and prospects. Heliyon 2024; 10:e34871. [PMID: 39157329 PMCID: PMC11327524 DOI: 10.1016/j.heliyon.2024.e34871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
The perceived negative impacts of synthetic agrochemicals gave way to alternative, biological plant protection strategies. The deployment of induced resistance, comprising boosting the natural defense responses of plants, is one of those. Plants developed multi-component defense mechanisms to defend themselves against biotic and abiotic stresses. These are activated upon recognition of stress signatures via membrane-localized receptors. The induced immune responses enable plants to tolerate and limit the impact of stresses. A systemic cascade of signals enables plants to prime un-damaged tissues, which is crucial during secondary encounters with stress. Comparable stress tolerance mechanisms can be induced in plants by the application of carbohydrate elicitors such as chitin/chitosan, β-1,3-glucans, oligogalacturonides, cellodextrins, xyloglucans, alginates, ulvans, and carrageenans. Treating plants with carbohydrate-derived elicitors enable the plants to develop resistance appliances against diverse stresses. Some carbohydrates are also known to have been involved in promoting symbiotic signaling. Here, we review recent progresses on plant resistance elicitation effect of various carbohydrate elicitors and the molecular mechanisms of plant cell perception, cascade signals, and responses to cascaded cues. Besides, the molecular mechanisms used by plants to distinguish carbohydrate-induced immunity signals from symbiotic signals are discussed. The structure-activity relationships of the carbohydrate elicitors are also described. Furthermore, we forwarded future research outlooks that might increase the utilization of carbohydrate elicitors in agriculture in order to improve the efficacy of plant protection strategies.
Collapse
Affiliation(s)
- Birhanu Kahsay Meresa
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kiros-Meles Ayimut
- Department of Crop and Horticultural Sciences, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Micheale Yifter Weldemichael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kalayou Hiluf Geberemedhin
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Hagos Hailu Kassegn
- Department of Food Science and Postharvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Bruh Asmelash Geberemikael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Etsay Mesele Egigu
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| |
Collapse
|
11
|
Yu X, Niu H, Liu C, Wang H, Yin W, Xia X. PTI-ETI synergistic signal mechanisms in plant immunity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2113-2128. [PMID: 38470397 PMCID: PMC11258992 DOI: 10.1111/pbi.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Plants face a relentless onslaught from a diverse array of pathogens in their natural environment, to which they have evolved a myriad of strategies that unfold across various temporal scales. Cell surface pattern recognition receptors (PRRs) detect conserved elicitors from pathogens or endogenous molecules released during pathogen invasion, initiating the first line of defence in plants, known as pattern-triggered immunity (PTI), which imparts a baseline level of disease resistance. Inside host cells, pathogen effectors are sensed by the nucleotide-binding/leucine-rich repeat (NLR) receptors, which then activate the second line of defence: effector-triggered immunity (ETI), offering a more potent and enduring defence mechanism. Moreover, PTI and ETI collaborate synergistically to bolster disease resistance and collectively trigger a cascade of downstream defence responses. This article provides a comprehensive review of plant defence responses, offering an overview of the stepwise activation of plant immunity and the interactions between PTI-ETI synergistic signal transduction.
Collapse
Affiliation(s)
- Xiao‐Qian Yu
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Hao‐Qiang Niu
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Chao Liu
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Hou‐Ling Wang
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Weilun Yin
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| |
Collapse
|
12
|
Fan Z, Gao K, Wang L, Qin Y, Liu S, Xing R, Yu H, Li K, Li P. Sulfonamide modified chitosan oligosaccharide with high nematicidal activity against Meloidogyne incognita. Int J Biol Macromol 2024; 269:132131. [PMID: 38719017 DOI: 10.1016/j.ijbiomac.2024.132131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/02/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Chitosan oligosaccharide (COS) modification is a feasible way to develop novel green nematicides. This study involved the synthesis of various COS sulfonamide derivatives via hydroxylated protection and deprotection, which were then characterized using NMR, FTIR, MS, elemental analysis, XRD, and TG/DTG. In vitro experiments found that COS-alkyl sulfonamide derivatives (S6 and S11-S13) exhibited high mortality (>98 % at 1 mg/mL) against Meloidogyne incognita second-instar larvaes (J2s) among the derivatives. S6 can cause vacuole-like structures in the middle and tail regions of the nematode body and effectively inhibit egg hatching. In vivo tests have found that S6 has well control effects and low plant toxicity. Additionally, the structure-activity studies revealed that S6 with a high degree of substitution, a low molecular weight, and a sulfonyl bond on the amino group of the COS backbone exhibited increased nematicidal activity. The sulfonamide group is a potential active group for developing COS-based nematicides.
Collapse
Affiliation(s)
- Zhaoqian Fan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Kun Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Linsong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
13
|
Molina A, Jordá L, Torres MÁ, Martín-Dacal M, Berlanga DJ, Fernández-Calvo P, Gómez-Rubio E, Martín-Santamaría S. Plant cell wall-mediated disease resistance: Current understanding and future perspectives. MOLECULAR PLANT 2024; 17:699-724. [PMID: 38594902 DOI: 10.1016/j.molp.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
Beyond their function as structural barriers, plant cell walls are essential elements for the adaptation of plants to environmental conditions. Cell walls are dynamic structures whose composition and integrity can be altered in response to environmental challenges and developmental cues. These wall changes are perceived by plant sensors/receptors to trigger adaptative responses during development and upon stress perception. Plant cell wall damage caused by pathogen infection, wounding, or other stresses leads to the release of wall molecules, such as carbohydrates (glycans), that function as damage-associated molecular patterns (DAMPs). DAMPs are perceived by the extracellular ectodomains (ECDs) of pattern recognition receptors (PRRs) to activate pattern-triggered immunity (PTI) and disease resistance. Similarly, glycans released from the walls and extracellular layers of microorganisms interacting with plants are recognized as microbe-associated molecular patterns (MAMPs) by specific ECD-PRRs triggering PTI responses. The number of oligosaccharides DAMPs/MAMPs identified that are perceived by plants has increased in recent years. However, the structural mechanisms underlying glycan recognition by plant PRRs remain limited. Currently, this knowledge is mainly focused on receptors of the LysM-PRR family, which are involved in the perception of various molecules, such as chitooligosaccharides from fungi and lipo-chitooligosaccharides (i.e., Nod/MYC factors from bacteria and mycorrhiza, respectively) that trigger differential physiological responses. Nevertheless, additional families of plant PRRs have recently been implicated in oligosaccharide/polysaccharide recognition. These include receptor kinases (RKs) with leucine-rich repeat and Malectin domains in their ECDs (LRR-MAL RKs), Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE group (CrRLK1L) with Malectin-like domains in their ECDs, as well as wall-associated kinases, lectin-RKs, and LRR-extensins. The characterization of structural basis of glycans recognition by these new plant receptors will shed light on their similarities with those of mammalians involved in glycan perception. The gained knowledge holds the potential to facilitate the development of sustainable, glycan-based crop protection solutions.
Collapse
Affiliation(s)
- Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain.
| | - Lucía Jordá
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain.
| | - Miguel Ángel Torres
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
| | - Marina Martín-Dacal
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
| | - Diego José Berlanga
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
| | - Patricia Fernández-Calvo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain
| | - Elena Gómez-Rubio
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Sonsoles Martín-Santamaría
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
14
|
Lu Y, Mao X, Wang C, Zheng Y, Duo H, Sun E, Yu H, Chen Z, Zuo C. Inhibition of PbeXTH1 and PbeSEOB1 is required for the Valsa canker resistance contributed by Wall-associated kinase gene MbWAK1. PHYSIOLOGIA PLANTARUM 2024; 176:e14330. [PMID: 38698648 DOI: 10.1111/ppl.14330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 05/05/2024]
Abstract
Wall-associated kinases (WAKs) have been determined to recognize pathogenic signals and initiate plant immune responses. However, the roles of the family members in host resistance against Valsa canker, a serious fungal disease of apples and pears, are largely unknown. Here, we identified MbWAK1 in Malus baccata, a resistant germplasm differentially expressed during infection by Valsa mali (Vm). Over-expression of MbWAK1 enhanced the Valsa canker resistance of apple and pear fruits and 'Duli-G03' (Pyrus betulifolia) suspension cells. A large number of phloem, cell wall, and lipid metabolic process-related genes were differentially expressed in overexpressed suspension cell lines in response to Valsa pyri (Vp) signals. Among these, the expression of xyloglucan endotransglucosylase/hydrolase (XTH) gene PbeXTH1 and sieve element occlusion B-like (SEOB) gene PbeSEOB1 were significantly inhibited. Transient expression of PbeXTH1 or PbeSEOB1 compromised the expressional induction of MbWAK1 and the resistance contributed by MbWAK1. In addition, PbeXTH1 and PbeSEOB1 suppressed the immune response induced by MbWAK1. Our results enriched the molecular mechanisms for MbWAK1 against Valsa canker and resistant breeding.
Collapse
Affiliation(s)
- Yuan Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xia Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Chao Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yan Zheng
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Hu Duo
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - E Sun
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Hongqiang Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongjian Chen
- Agro-Biological Gene Research Center, Guangdong Academy of Agriculture, China
| | - Cunwu Zuo
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Lanzhou, China
| |
Collapse
|
15
|
Mei Y, Hu T, Wang Y, Lozano-Durán R, Yang X, Zhou X. Two viral proteins translated from one open reading frame target different layers of plant defense. PLANT COMMUNICATIONS 2024; 5:100788. [PMID: 38160257 PMCID: PMC11009156 DOI: 10.1016/j.xplc.2023.100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Multilayered defense responses are activated upon pathogen attack. Viruses utilize a number of strategies to maximize the coding capacity of their small genomes and produce viral proteins for infection, including suppression of host defense. Here, we reveal translation leakage as one of these strategies: two viral effectors encoded by tomato golden mosaic virus, chloroplast-localized C4 (cC4) and membrane-associated C4 (mC4), are translated from two in-frame start codons and function cooperatively to suppress defense. cC4 localizes in chloroplasts, to which it recruits NbPUB4 to induce ubiquitination of the outer membrane; as a result, this organelle is degraded, and chloroplast-mediated defenses are abrogated. However, chloroplast-localized cC4 induces the production of singlet oxygen (1O2), which in turn promotes translocation of the 1O2 sensor NbMBS1 from the cytosol to the nucleus, where it activates expression of the CERK1 gene. Importantly, an antiviral effect exerted by CERK1 is countered by mC4, localized at the plasma membrane. mC4, like cC4, recruits NbPUB4 and promotes the ubiquitination and subsequent degradation of CERK1, suppressing membrane-based, receptor-like kinase-dependent defenses. Importantly, this translation leakage strategy seems to be conserved in multiple viral species and is related to host range. This finding suggests that stacking of different cellular antiviral responses could be an effective way to abrogate viral infection and engineer sustainable resistance to major crop viral diseases in the field.
Collapse
Affiliation(s)
- Yuzhen Mei
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Hu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Rosa Lozano-Durán
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, 72076 Tübingen, Germany
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
16
|
Zhu F, Cao MY, Zhang QP, Mohan R, Schar J, Mitchell M, Chen H, Liu F, Wang D, Fu ZQ. Join the green team: Inducers of plant immunity in the plant disease sustainable control toolbox. J Adv Res 2024; 57:15-42. [PMID: 37142184 PMCID: PMC10918366 DOI: 10.1016/j.jare.2023.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Crops are constantly attacked by various pathogens. These pathogenic microorganisms, such as fungi, oomycetes, bacteria, viruses, and nematodes, threaten global food security by causing detrimental crop diseases that generate tremendous quality and yield losses worldwide. Chemical pesticides have undoubtedly reduced crop damage; however, in addition to increasing the cost of agricultural production, the extensive use of chemical pesticides comes with environmental and social costs. Therefore, it is necessary to vigorously develop sustainable disease prevention and control strategies to promote the transition from traditional chemical control to modern green technologies. Plants possess sophisticated and efficient defense mechanisms against a wide range of pathogens naturally. Immune induction technology based on plant immunity inducers can prime plant defense mechanisms and greatly decrease the occurrence and severity of plant diseases. Reducing the use of agrochemicals is an effective way to minimize environmental pollution and promote agricultural safety. AIM OF REVIEW The purpose of this workis to offer valuable insights into the current understanding and future research perspectives of plant immunity inducers and their uses in plant disease control, ecological and environmental protection, and sustainable development of agriculture. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we have introduced the concepts of sustainable and environment-friendly concepts of green disease prevention and control technologies based on plant immunity inducers. This article comprehensively summarizes these recent advances, emphasizes the importance of sustainable disease prevention and control technologies for food security, and highlights the diverse functions of plant immunity inducers-mediated disease resistance. The challenges encountered in the potential applications of plant immunity inducers and future research orientation are also discussed.
Collapse
Affiliation(s)
- Feng Zhu
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Meng-Yao Cao
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qi-Ping Zhang
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | | | - Jacob Schar
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | - Huan Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
17
|
Petutschnig EK, Pierdzig L, Mittendorf J, Niebisch JM, Lipka V. A novel fluorescent protein pair facilitates FLIM-FRET analysis of plant immune receptor interaction under native conditions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:746-759. [PMID: 37878766 DOI: 10.1093/jxb/erad418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/24/2023] [Indexed: 10/27/2023]
Abstract
Elucidating protein-protein interactions is crucial for our understanding of molecular processes within living organisms. Microscopy-based techniques can detect protein-protein interactions in vivo at the single-cell level and provide information on their subcellular location. Fluorescence lifetime imaging microscopy (FLIM)-Förster resonance energy transfer (FRET) is one of the most robust imaging approaches, but it is still very challenging to apply this method to proteins which are expressed under native conditions. Here we describe a novel combination of fluorescence proteins (FPs), mCitrine and mScarlet-I, which is ideally suited for FLIM-FRET studies of low abundance proteins expressed from their native promoters in stably transformed plants. The donor mCitrine displays excellent brightness in planta, near-mono-exponential fluorescence decay, and a comparatively long fluorescence lifetime. Moreover, the FRET pair has a good spectral overlap and a large Förster radius. This allowed us to detect constitutive as well as ligand-induced interaction of the Arabidopsis chitin receptor components CERK1 and LYK5 in a set of proof-of-principle experiments. Due to the good brightness of the acceptor mScarlet-I, the FP combination can be readily utilized for co-localization studies. The FP pair is also suitable for co-immunoprecipitation experiments and western blotting, facilitating a multi-method approach for studying and confirming protein-protein interactions.
Collapse
Affiliation(s)
- Elena Kristin Petutschnig
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, D-37077 Göttingen, Germany
- Central Microscopy Facility of the Faculty of Biology & Psychology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, D-37077 Göttingen, Germany
| | - Leon Pierdzig
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, D-37077 Göttingen, Germany
| | - Josephine Mittendorf
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, D-37077 Göttingen, Germany
| | - Jule Meret Niebisch
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, D-37077 Göttingen, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, D-37077 Göttingen, Germany
- Central Microscopy Facility of the Faculty of Biology & Psychology, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, D-37077 Göttingen, Germany
| |
Collapse
|
18
|
Zhang C, Xie Y, He P, Shan L. Unlocking Nature's Defense: Plant Pattern Recognition Receptors as Guardians Against Pathogenic Threats. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:73-83. [PMID: 38416059 DOI: 10.1094/mpmi-10-23-0177-hh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Embedded in the plasma membrane of plant cells, receptor kinases (RKs) and receptor proteins (RPs) act as key sentinels, responsible for detecting potential pathogenic invaders. These proteins were originally characterized more than three decades ago as disease resistance (R) proteins, a concept that was formulated based on Harold Flor's gene-for-gene theory. This theory implies genetic interaction between specific plant R proteins and corresponding pathogenic effectors, eliciting effector-triggered immunity (ETI). Over the years, extensive research has unraveled their intricate roles in pathogen sensing and immune response modulation. RKs and RPs recognize molecular patterns from microbes as well as dangers from plant cells in initiating pattern-triggered immunity (PTI) and danger-triggered immunity (DTI), which have intricate connections with ETI. Moreover, these proteins are involved in maintaining immune homeostasis and preventing autoimmunity. This review showcases seminal studies in discovering RKs and RPs as R proteins and discusses the recent advances in understanding their functions in sensing pathogen signals and the plant cell integrity and in preventing autoimmunity, ultimately contributing to a robust and balanced plant defense response. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Yingpeng Xie
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A
| |
Collapse
|
19
|
Bhagat N, Mansotra R, Patel K, Ambardar S, Vakhlu J. Molecular warfare between pathogenic Fusarium oxysporum R1 and host Crocus sativus L. unraveled by dual transcriptomics. PLANT CELL REPORTS 2024; 43:42. [PMID: 38246927 DOI: 10.1007/s00299-023-03101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/25/2023] [Indexed: 01/23/2024]
Abstract
KEY MESSAGE Phenylpropanoid biosynthesis and plant-pathogen interaction pathways in saffron and cell wall degrading enzymes in Fusarium oxysporum R1 are key players involved in the interaction. Fusarium oxysporum causes corm rot in saffron (Crocus sativus L.), which is one of the most devastating fungal diseases impacting saffron yield globally. Though the corm rot agent and its symptoms are known widely, little is known about the defense mechanism of saffron in response to Fusarium oxysporum infection at molecular level. Therefore, the current study reports saffron-Fusarium oxysporum R1 (Fox R1) interaction at the molecular level using dual a transcriptomics approach. The results indicated the activation of various defense related pathways such as the mitogen activated protein kinase pathway (MAPK), plant-hormone signaling pathways, plant-pathogen interaction pathway, phenylpropanoid biosynthesis pathway and PR protein synthesis in the host during the interaction. The activation of pathways is involved in the hypersensitive response, production of various secondary metabolites, strengthening of the host cell wall, systemic acquired resistance etc. Concurrently, in the pathogen, 60 genes reported to be linked to pathogenicity and virulence has been identified during the invasion. The expression of genes encoding plant cell wall degrading enzymes, various transcription factors and effector proteins indicated the strong pathogenicity of Fusarium oxysporum R1. Based on the results obtained, the putative molecular mechanism of the saffron-Fox R1 interaction was identified. As saffron is a male sterile plant, and can only be improved by genetic manipulation, this work will serve as a foundation for identifying genes that can be used to create saffron varieties, resistant to Fusarium oxysporum infection.
Collapse
Affiliation(s)
- Nancy Bhagat
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - Ritika Mansotra
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - Karan Patel
- DNA Xperts Private Limited, Noida, 201301, India
| | - Sheetal Ambardar
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - Jyoti Vakhlu
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India.
| |
Collapse
|
20
|
Wang H, Zhang R, Hu J, Fu R, Li J. In vitro and in silico analyses reveal the interaction between LysM receptor-like kinase3 of Solanum tuberosum and the carbohydrate elicitor Riclin octaose. Biotechnol J 2024; 19:e2300385. [PMID: 37903287 DOI: 10.1002/biot.202300385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023]
Abstract
As a carbohydrate elicitor, Riclin octaose (Rioc) activates the pattern-triggered immunity of Solanum tuberosum L., while how the plant perceives Rioc is unknown. Here, a pattern recognition receptor StLYK3 (LysM receptor-like kinase3) whose transcription level was significantly up-regulated after Rioc elicitation was investigated in vitro and in silico. The nucleotide that encoded the ectodomain of StLYK3 (StLYK3-ECD) was heterologously expressed in the Pichia pastoris strain GS115. The purified StLYK3-ECD had the molecular weight of 25.08 kDa and pI of 5.69. Afterwards interaction between StLYK3-ECD and Rioc was analyzed by isothermal titration calorimetry. The molar ratio of ligand to receptor, dissociation constant, and enthalpy were 1.28 ± 0.04, 26.7 ± 3.1 μM, and -45.0 ± 1.8 kJ mol-1 , respectively. Besides, molecular dynamics results indicated that StLYK3-ECD contained three carbohydrate-binding motifs and the first two motifs probably contributed to the interaction with Rioc via hydrogen bond and van de Waals' forces. Amino acids containing hydroxyl, amidic, and sulfhydryl groups took the main portion in the docking site. Moreover, replacing the 92nd threonyl (T) of StLYK3-ECD with valyl (V) resulted in the alteration of the preferred docking site. The dissociation constant drastically increased to 841.6 ± 232.4 μM. In conclusion, StLYK3 was a potential receptor of Rioc.
Collapse
Affiliation(s)
- Hongyang Wang
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Ruixin Zhang
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Junpeng Hu
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Renjie Fu
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Jing Li
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
21
|
Wang D, Zheng J, Sarsaiya S, Jin L, Chen J. Unveiling terahertz wave stress effects and mechanisms in Pinellia ternata: Challenges, insights, and future directions. PHYSIOLOGIA PLANTARUM 2024; 176:e14195. [PMID: 38332400 DOI: 10.1111/ppl.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
This review aims to elucidate the intricate effects and mechanisms of terahertz (THz) wave stress on Pinellia ternata, providing valuable insights into plant responses. The primary objective is to highlight the imperative for future research dedicated to comprehending THz wave impacts across plant structures, with a specific focus on the molecular intricacies governing root system structure and function, from shoots to roots. Notably, this review highlights the accelerated plant growth induced by THz waves, especially in conjunction with other environmental stressors, and the subsequent alterations in cellular homeostasis, resulting in the generation of reactive oxygen species (ROS) and an increase in brassinosteroids. Brassinosteroids are explored for their dual role as toxic by-products of stress metabolism and vital signal transduction molecules in plant responses to abiotic stresses. The paper further investigates the spatio-temporal regulation and long-distance transport of phytohormones, including growth hormone, cytokinin, and abscisic acid (ABA), which significantly influence the growth and development of P. ternata under THz wave stress. With a comprehensive review of Reactive oxygen species (ROS) and Brassinosteroid Insensitive (BRI) homeostasis and signalling under THz wave stress, the article elucidates the current understanding of BRI involvement in stress perception, stress signalling, and domestication response regulation. Additionally, it underscores the importance of spatio-temporal regulation and long-distance transport of key plant hormones, such as growth hormone, cytokinin, and ABA, in determining root growth and development under THz wave stress. The study of how plants perceive and respond to environmental stresses holds fundamental biological significance, and enhancing plant stress tolerance is crucial for promoting sustainable agricultural practices and mitigating the environmental burdens associated with low-tolerance crop cultivation.
Collapse
Affiliation(s)
- Dongdong Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Jiatong Zheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Surendra Sarsaiya
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Leilei Jin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Jishuang Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
22
|
Chen Q, Dong H, Li Q, Sun X, Qiao X, Yin H, Xie Z, Qi K, Huang X, Zhang S. PbrChiA: a key chitinase of pear in response to Botryosphaeria dothidea infection by interacting with PbrLYK1b2 and down-regulating ROS accumulation. HORTICULTURE RESEARCH 2023; 10:uhad188. [PMID: 37899950 PMCID: PMC10611555 DOI: 10.1093/hr/uhad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023]
Abstract
Pear ring rot, caused by the pathogenic fungi Botryosphaeria dothidea, seriously affects pear production. While the infection-induced reactive oxygen species (ROS) burst of infected plants limits the proliferation of B. dothidea during the early infection stage, high ROS levels can also contribute to their growth during the later necrotrophic infection stage. Therefore, it is important to understand how plants balance ROS levels and resistance to pathogenic B. dothidea during the later stage. In this study, we identified PbrChiA, a glycosyl hydrolases 18 (GH18) chitinase-encoding gene with high infection-induced expression, through a comparative transcriptome analysis. Artificial substitution, stable overexpression, and virus induced gene silencing (VIGS) experiments demonstrated that PbrChiA can positively regulate pear resistance as a secreted chitinase to break down B. dothidea mycelium in vitro and that overexpression of PbrChiA suppressed infection-induced ROS accumulation. Further analysis revealed that PbrChiA can bind to the ectodomain of PbrLYK1b2, and this interaction suppressed PbrLYK1b2-mediated chitin-induced ROS accumulation. Collectively, we propose that the combination of higher antifungal activity from abundant PbrChiA and lower ROS levels during later necrotrophic infection stage confer resistance of pear against B. dothidea.
Collapse
Affiliation(s)
- Qiming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Huizhen Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Qionghou Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Xun Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Qiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaosan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
23
|
Liu S, Xiao M, Fang A, Tian B, Yu Y, Bi C, Ma D, Yang Y. LysM Proteins TaCEBiP and TaLYK5 are Involved in Immune Responses Mediated by Chitin Coreceptor TaCERK1 in Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13535-13545. [PMID: 37665660 DOI: 10.1021/acs.jafc.3c02686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Plant lysin motif (LysM) ectodomain receptors interact with pathogen-associated molecular patterns (PAMPs) and have critical functions in plant-microbe interactions. In this study, 65 LysM family genes were identified using the recent version of the reference sequence of bread wheat (Triticum aestivum), in which 23, 16, 20, and 6 members belonged to LysM-containing receptor-like kinases (LYKs), LysM-containing receptor-like proteins (LYPs), extracellular LysM proteins (LysMes), and intracellular nonsecretory LysM proteins (LysMns), respectively. The study found that TaCEBiP, TaLYK5, and TaCERK1 were highly responsive to PAMP elicitors and phytopathogens, with TaCEBiP and TaLYK5 binding directly to chitin. TaCERK1 acted as a coreceptor with TaCEBiP and TaLYK5 at the plasma membrane. Overexpression of TaCEBiP, TaLYK5, and TaCERK1 in Nicotiana benthamiana leaves exhibited enhanced resistance to Sclerotinia sclerotiorum. Subsequently, knocking down TaCEBiP, TaLYK5, and TaCERK1 genes with barley stripe mosaic virus-VIGS compromised the wheat defense response to an avirulent strain of Puccinia striiformis. The study concluded that wheat has two synergistic chitin perception systems for detecting pathogen elicitors, with the activated CERK1 intracellular kinase domain leading to signaling transduction. This research provides valuable insights into the functional roles and regulatory mechanisms of wheat LysM members under biotic stress.
Collapse
Affiliation(s)
- Saifei Liu
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Muye Xiao
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Dongfang Ma
- Hubei Collaborative Innovation Center for Grain Industry/College of Agriculture, Yangtze University, Jingzhou, Hubei 434025, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| |
Collapse
|
24
|
Bender KW, Zipfel C. Paradigms of receptor kinase signaling in plants. Biochem J 2023; 480:835-854. [PMID: 37326386 PMCID: PMC10317173 DOI: 10.1042/bcj20220372] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Plant receptor kinases (RKs) function as key plasma-membrane localized receptors in the perception of molecular ligands regulating development and environmental response. Through the perception of diverse ligands, RKs regulate various aspects throughout the plant life cycle from fertilization to seed set. Thirty years of research on plant RKs has generated a wealth of knowledge on how RKs perceive ligands and activate downstream signaling. In the present review, we synthesize this body of knowledge into five central paradigms of plant RK signaling: (1) RKs are encoded by expanded gene families, largely conserved throughout land plant evolution; (2) RKs perceive many different kinds of ligands through a range of ectodomain architectures; (3) RK complexes are typically activated by co-receptor recruitment; (4) post-translational modifications fulfill central roles in both the activation and attenuation of RK-mediated signaling; and, (5) RKs activate a common set of downstream signaling processes through receptor-like cytoplasmic kinases (RLCKs). For each of these paradigms, we discuss key illustrative examples and also highlight known exceptions. We conclude by presenting five critical gaps in our understanding of RK function.
Collapse
Affiliation(s)
- Kyle W. Bender
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, 8008 Zürich, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, 8008 Zürich, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, U.K
| |
Collapse
|
25
|
Shrestha H, Yao T, Qiao Z, Muchero W, Hettich RL, Chen JG, Abraham PE. Lectin Receptor-like Kinase Signaling during Engineered Ectomycorrhiza Colonization. Cells 2023; 12:cells12071082. [PMID: 37048154 PMCID: PMC10093077 DOI: 10.3390/cells12071082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mutualistic association can improve a plant’s health and productivity. G-type lectin receptor-like kinase (PtLecRLK1) is a susceptibility factor in Populus trichocarpa that permits root colonization by a beneficial fungus, Laccaria bicolor. Engineering PtLecRLK1 also permits L. bicolor root colonization in non-host plants similar to Populus trichocarpa. The intracellular signaling reprogramed by PtLecRLK1 upon recognition of L. bicolor to allow for the development and maintenance of symbiosis is yet to be determined. In this study, phosphoproteomics was utilized to identify phosphorylation-based relevant signaling pathways associated with PtLecRLK1 recognition of L. bicolor in transgenic switchgrass roots. Our finding shows that PtLecRLK1 in transgenic plants modifies the chitin-triggered plant defense and MAPK signaling along with a significant adjustment in phytohormone signaling, ROS balance, endocytosis, cytoskeleton movement, and proteasomal degradation in order to facilitate the establishment and maintenance of L. bicolor colonization. Moreover, protein–protein interaction data implicate a cGMP-dependent protein kinase as a potential substrate of PtLecRLK1.
Collapse
Affiliation(s)
- Him Shrestha
- Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zhenzhen Qiao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Robert L. Hettich
- Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Paul E. Abraham
- Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
26
|
Chen L, Xiao J, Huang Z, Zhou Q, Liu B. Quantitative phosphoproteomic analysis of chitin-triggered immune responses in the plasma membrane of Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:219-229. [PMID: 36396124 DOI: 10.1071/fp22045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Plant diseases seriously damage crop production, and most plant diseases are caused by fungi. Fungal cell walls contain chitin, a highly conserved component that is widely recognised by plants as a PAMP (pathogen-associated molecular pattern) to induce defence responses. The molecular mechanisms that function downstream of chitin-triggered intracellular phosphorylation remain largely unknown. In this study, we performed quantitative phosphoproteomics analysis to study protein phosphorylation changes in the plasma membrane after chitin treatment in Arabidopsis thaliana L. seedlings. Proteins with altered phosphorylation status after chitin treatment participated in biological processes ranging from signalling, localisation, and transport, to biogenesis, processing, and metabolism, suggesting that PAMP signalling targets multiple processes to coordinate the immune response. These results provide important insights into the molecular mechanism of chitin-induced plant immunity.
Collapse
Affiliation(s)
- Lijuan Chen
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jiahui Xiao
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Zhanhao Huang
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Qi Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
27
|
Ruman H, Kawaharada Y. A New Classification of Lysin Motif Receptor-Like Kinases in Lotus japonicus. PLANT & CELL PHYSIOLOGY 2023; 64:176-190. [PMID: 36334262 DOI: 10.1093/pcp/pcac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Lysin motif receptor-like kinases (LysM-RLKs) are a plant-specific receptor protein family that sense components from soil microorganisms, regulating innate immunity and symbiosis. Every plant species possesses multiple LysM-RLKs in order to interact with a variety of soil microorganisms; however, most receptors have not been characterized yet. Therefore, we tried to identify LysM-RLKs from diverse plant species and proposed a new classification to indicate their evolution and characteristics, as well as to predict new functions. In this study, we have attempted to explore and update LysM-RLKs in Lotus japonicus using the latest genome sequencing and divided 20 LysM-RLKs into 11 clades based on homolog identity and phylogenetic analysis. We further identified 193 LysM-RLKs from 16 Spermatophyta species including L. japonicus and divided these receptors into 14 clades and one out-group special receptor based on the classification of L. japonicus LysM-RLKs. All plant species not only have clade I receptors such as Nod factor or chitin receptors but also have clade III receptors where most of the receptors are uncharacterized. We also identified dicotyledon- and monocotyledon-specific clades and predicted evolutionary trends in LysM-RLKs. In addition, we found a strong correlation between plant species that did not possess clade II receptors and those that lost symbiosis with arbuscular mycorrhizal fungi. A clade II receptor in L. japonicus Lys8 was predicted to express during arbuscular mycorrhizal symbiosis. Our proposed new inventory classification suggests the evolutionary pattern of LysM-RLKs and might help in elucidating novel receptor functions in various plant species.
Collapse
Affiliation(s)
- Hafijur Ruman
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8, Ueda, Morioka, Iwate, 020-8550 Japan
| | - Yasuyuki Kawaharada
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8, Ueda, Morioka, Iwate, 020-8550 Japan
- Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8, Ueda, Morioka, Iwate, 020-8550 Japan
| |
Collapse
|
28
|
Roudaire T, Marzari T, Landry D, Löffelhardt B, Gust AA, Jermakow A, Dry I, Winckler P, Héloir MC, Poinssot B. The grapevine LysM receptor-like kinase VvLYK5-1 recognizes chitin oligomers through its association with VvLYK1-1. FRONTIERS IN PLANT SCIENCE 2023; 14:1130782. [PMID: 36818830 PMCID: PMC9932513 DOI: 10.3389/fpls.2023.1130782] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The establishment of defense reactions to protect plants against pathogens requires the recognition of invasion patterns (IPs), mainly detected by plasma membrane-bound pattern recognition receptors (PRRs). Some IPs, also termed elicitors, are used in several biocontrol products that are gradually being developed to reduce the use of chemicals in agriculture. Chitin, the major component of fungal cell walls, as well as its deacetylated derivative, chitosan, are two elicitors known to activate plant defense responses. However, recognition of chitooligosaccharides (COS) in Vitis vinifera is still poorly understood, hampering the improvement and generalization of protection tools for this important crop. In contrast, COS perception in the model plant Arabidopsis thaliana is well described and mainly relies on a tripartite complex formed by the cell surface lysin motif receptor-like kinases (LysM-RLKs) AtLYK1/CERK1, AtLYK4 and AtLYK5, the latter having the strongest affinity for COS. In grapevine, COS perception has for the moment only been demonstrated to rely on two PRRs VvLYK1-1 and VvLYK1-2. Here, we investigated additional players by overexpressing in Arabidopsis the two putative AtLYK5 orthologs from grapevine, VvLYK5-1 and VvLYK5-2. Expression of VvLYK5-1 in the atlyk4/5 double mutant background restored COS sensitivity, such as chitin-induced MAPK activation, defense gene expression, callose deposition and conferred non-host resistance to grapevine downy mildew (Erysiphe necator). Protein-protein interaction studies conducted in planta revealed a chitin oligomer-triggered interaction between VvLYK5-1 and VvLYK1-1. Interestingly, our results also indicate that VvLYK5-1 mediates the perception of chitin but not chitosan oligomers showing a part of its specificity.
Collapse
Affiliation(s)
- Thibault Roudaire
- Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Tania Marzari
- Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - David Landry
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Birgit Löffelhardt
- Department of Plant Biochemistry, University of Tübingen, Center for Plant Molecular Biology, Tübingen, Germany
| | - Andrea A. Gust
- Department of Plant Biochemistry, University of Tübingen, Center for Plant Molecular Biology, Tübingen, Germany
| | - Angelica Jermakow
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia
| | - Ian Dry
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia
| | - Pascale Winckler
- Dimacell Imaging Facility, PAM UMR A 02.102, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Marie-Claire Héloir
- Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Benoit Poinssot
- Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
29
|
Zhang L, Li S, Fang X, An H, Zhang X. Genome-wide analysis of LysM gene family members and their expression in response to Colletotrichum fructicola infection in Octoploid strawberry( Fragaria × ananassa). FRONTIERS IN PLANT SCIENCE 2023; 13:1105591. [PMID: 36756233 PMCID: PMC9900028 DOI: 10.3389/fpls.2022.1105591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
The cultivated octoploid strawberry (Fragaria × ananassa) is an economically important fruit that is planted worldwide. The lysin motif (LysM) protein family is composed of the major class of plant pattern recognition receptors, which play important roles in sensing pathogen-associated molecular patterns (PAMPs), and subsequently triggers downstream plant immunity. In the present study, a comprehensive, genome-wide analysis of F. × ananassa LysM (FaLysM) genes was performed to investigate gene structures, phylogenic relationships, chromosome location, collinear relationships, transcription factor binding sites, and protein model analysis. We aimed to identify the LysM genes involved in the defense against plant pathogens. A total of 14 FaLysM genes were identified in the F. × ananassa genome and divided into 2 subgroups (LYP and LYK) on the basis of the phylogenetic analysis. The Ka/Ks ratio for the duplicated pair of most FaLysM genes was less than 1, which indicates that the selection pressure was mostly subject to the purifying selection during evolution. The protein model analysis revealed that FaLysM2-10 contain conserved mode of chitin binding, which suggest the potential role of FaLysM2-10 in pathogen perception and plant immunity. The RNA-Seq results showed the differential regulation of 14 FaLysM genes in response to Colletotrichum fructicola infection, implying the complex interaction between C. fructicola and strawberry. Knockout of candidate effector gene CfLysM2, which was previously proved to be highly expressed during C. fructicola infection, resulted in the up-regulation of six FaLysM genes (FaLysM1, FaLysM2, FaLysM3, FaLysM7, FaLysM8, and FaLysM12), indicating the competitive relations between CfLysM2 and FaLysM genes. Overall, this study provides fundamental information on the roles of LysM proteins in octoploid strawberry and its interaction with C. fructicola, laying useful information for further investigation on the C. fructicola-strawberry interaction and strawberry resistance breeding.
Collapse
Affiliation(s)
| | | | | | - Haishan An
- *Correspondence: Haishan An, ; Xueying Zhang,
| | | |
Collapse
|
30
|
Xu L, Wang J, Xiao Y, Han Z, Chai J. Structural insight into chitin perception by chitin elicitor receptor kinase 1 of Oryza sativa. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:235-248. [PMID: 35568972 DOI: 10.1111/jipb.13279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Plants have developed innate immune systems to fight against pathogenic fungi by monitoring pathogenic signals known as pathogen-associated molecular patterns (PAMP) and have established endo symbiosis with arbuscular mycorrhizal (AM) fungi through recognition of mycorrhizal (Myc) factors. Chitin elicitor receptor kinase 1 of Oryza sativa subsp. Japonica (OsCERK1) plays a bifunctional role in mediating both chitin-triggered immunity and symbiotic relationships with AM fungi. However, it remains unclear whether OsCERK1 can directly recognize chitin molecules. In this study, we show that OsCERK1 binds to the chitin hexamer ((NAG)6 ) and tetramer ((NAG)4 ) directly and determine the crystal structure of the OsCERK1-(NAG)6 complex at 2 Å. The structure shows that one OsCERK1 is associated with one (NAG)6 . Upon recognition, chitin hexamer binds OsCERK1 by interacting with the shallow groove on the surface of LysM2. These structural findings, complemented by mutational analyses, demonstrate that LysM2 is crucial for recognition of both (NAG)6 and (NAG)4 . Altogether, these findings provide structural insights into the ability of OsCERK1 in chitin perception, which will lead to a better understanding of the role of OsCERK1 in mediating both immunity and symbiosis in rice.
Collapse
Affiliation(s)
- Li Xu
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jizong Wang
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yu Xiao
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhifu Han
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jijie Chai
- Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Institute of Biochemistry, University of Cologne, Cologne, 50674, Germany
- Cluster of Excellence in Plant Sciences (CEPLAS), Düsseldorf, 40225, Germany
| |
Collapse
|
31
|
Soares B, Barbosa C, Oliveira MJ. Chitosan application towards the improvement of grapevine performance and wine quality. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2023. [DOI: 10.1051/ctv/ctv20233801043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Intensification of agrochemicals application in vineyards has raised several concerns in Viticulture and Oenology value chain. Efforts have been developed to optimize grapevine health and productivity, assuring that viticulture is sustainable and competitive in today’s wine market. Viticulture practices have constantly been improved for a more sustainable and environment-friendly production, reducing the application of agrochemicals, replacing them by natural compounds that can have a double effect: protect grapevine against pathogens and improve compounds related to grape organoleptic quality. In this context, the development and optimization of alternative strategies to improve and enhance plant defences and grape/wine quality is becoming a necessity. Since the 1980s, chitosan has become a compound of special interest due to its double effect as elicitor and grapevine biostimulant, representing a complement to soil fertilisation, and reducing the negative effects nutrients leaching into the groundwater. The present review aims to present the wide possibilities of chitosan applications on grapevines to prevent and combat the main diseases and to improve wine quality. In this way, relevant studies about chitosan application will be presented as well as some concerns and limitations in order to cover the knowledge gaps inherent to its application in vineyard and wine as well.
Collapse
|
32
|
Giraldo JD, Garrido-Miranda KA, Schoebitz M. Chitin and its derivatives: Functional biopolymers for developing bioproducts for sustainable agriculture-A reality? Carbohydr Polym 2023; 299:120196. [PMID: 36876809 DOI: 10.1016/j.carbpol.2022.120196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Chitinous materials (chitin and its derivatives) are obtained from renewable sources, mainly shellfish waste, having a great potential for the development of bioproducts as alternatives to synthetic agrochemicals. Recent studies have provided evidence that the use of these biopolymers can help control postharvest diseases, increase the content of nutrients available to plants, and elicit positive metabolic changes that lead to higher plant resistance against pathogens. However, agrochemicals are still widely and intensively used in agriculture. This perspective addresses the gap in knowledge and innovation to make bioproducts based on chitinous materials more competitive in the market. It also provides the readers with background to understand why these products are scarcely used and the aspects that need to be considered to increase their use. Finally, information on the development and commercialization of agricultural bioproducts containing chitin or its derivatives in the Chilean market is also provided.
Collapse
Affiliation(s)
- Juan D Giraldo
- Escuela de Ingeniería Ambiental, Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Balneario Pelluco, Los Pinos s/n, Chile.
| | - Karla A Garrido-Miranda
- Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de la Frontera, P.O. Box 54-D, Temuco, Chile; Agriaquaculture Nutritional Genomic Center (CGNA), Temuco 4780000, Chile.
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Campus Concepción, Casilla 160-C, Universidad de Concepción, Chile; Laboratory of Biofilms and Environmental Microbiology, Center of Biotechnology, University of Concepción, Barrio Universitario s/n, Concepción, Chile.
| |
Collapse
|
33
|
Yu G, Derkacheva M, Rufian JS, Brillada C, Kowarschik K, Jiang S, Derbyshire P, Ma M, DeFalco TA, Morcillo RJL, Stransfeld L, Wei Y, Zhou J, Menke FLH, Trujillo M, Zipfel C, Macho AP. The Arabidopsis E3 ubiquitin ligase PUB4 regulates BIK1 and is targeted by a bacterial type-III effector. EMBO J 2022; 41:e107257. [PMID: 36314733 PMCID: PMC9713774 DOI: 10.15252/embj.2020107257] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 12/03/2022] Open
Abstract
Plant immunity is tightly controlled by a complex and dynamic regulatory network, which ensures optimal activation upon detection of potential pathogens. Accordingly, each component of this network is a potential target for manipulation by pathogens. Here, we report that RipAC, a type III-secreted effector from the bacterial pathogen Ralstonia solanacearum, targets the plant E3 ubiquitin ligase PUB4 to inhibit pattern-triggered immunity (PTI). PUB4 plays a positive role in PTI by regulating the homeostasis of the central immune kinase BIK1. Before PAMP perception, PUB4 promotes the degradation of non-activated BIK1, while after PAMP perception, PUB4 contributes to the accumulation of activated BIK1. RipAC leads to BIK1 degradation, which correlates with its PTI-inhibitory activity. RipAC causes a reduction in pathogen-associated molecular pattern (PAMP)-induced PUB4 accumulation and phosphorylation. Our results shed light on the role played by PUB4 in immune regulation, and illustrate an indirect targeting of the immune signalling hub BIK1 by a bacterial effector.
Collapse
Affiliation(s)
- Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Maria Derkacheva
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
- Present address:
The Earlham InstituteNorwich Research ParkNorwichUK
| | - Jose S Rufian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Carla Brillada
- Faculty of Biology, Institute of Biology IIAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | | | - Shushu Jiang
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
- Present address:
Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Paul Derbyshire
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Miaomiao Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Thomas A DeFalco
- Institute of Plant and Microbial Biology, Zurich‐Basel Plant Science CenterUniversity of ZurichZurichSwitzerland
| | - Rafael J L Morcillo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Lena Stransfeld
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
- Institute of Plant and Microbial Biology, Zurich‐Basel Plant Science CenterUniversity of ZurichZurichSwitzerland
| | - Yali Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jian‐Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Frank L H Menke
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Marco Trujillo
- Faculty of Biology, Institute of Biology IIAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Leibniz Institute for Plant BiochemistryHalle (Saale)Germany
| | - Cyril Zipfel
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
- Institute of Plant and Microbial Biology, Zurich‐Basel Plant Science CenterUniversity of ZurichZurichSwitzerland
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
34
|
Takagi M, Hotamori K, Naito K, Matsukawa S, Egusa M, Nishizawa Y, Kanno Y, Seo M, Ifuku S, Mine A, Kaminaka H. Chitin-induced systemic disease resistance in rice requires both OsCERK1 and OsCEBiP and is mediated via perturbation of cell-wall biogenesis in leaves. FRONTIERS IN PLANT SCIENCE 2022; 13:1064628. [PMID: 36518504 PMCID: PMC9742455 DOI: 10.3389/fpls.2022.1064628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Chitin is a well-known elicitor of disease resistance and its recognition by plants is crucial to perceive fungal infections. Chitin can induce both a local immune response and a systemic disease resistance when provided as a supplement in soils. Unlike local immune responses, it is poorly explored how chitin-induced systemic disease resistance is developed. In this study, we report the systemic induction of disease resistance against the fungal pathogen Bipolaris oryzae by chitin supplementation of soils in rice. The transcriptome analysis uncovered genes related to cell-wall biogenesis, cytokinin signaling, regulation of phosphorylation, and defence priming in the development of chitin-induced systemic response. Alterations of cell-wall composition were observed in leaves of rice plants grown in chitin-supplemented soils, and the disease resistance against B. oryzae was increased in rice leaves treated with a cellulose biosynthesis inhibitor. The disruption of genes for lysin motif (LysM)-containing chitin receptors, OsCERK1 (Chitin elicitor receptor kinase 1) and OsCEBiP (Chitin elicitor-binding protein), compromised chitin-induced systemic disease resistance against B. oryzae and differential expression of chitin-induced genes found in wild-type rice plants. These findings suggest that chitin-induced systemic disease resistance in rice is caused by a perturbation of cell-wall biogenesis in leaves through long-distance signalling after local recognition of chitins by OsCERK1 and OsCEBiP.
Collapse
Affiliation(s)
- Momoko Takagi
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kei Hotamori
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Keigo Naito
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Sumire Matsukawa
- Department of Agricultural Science, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Mayumi Egusa
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yoko Nishizawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Shinsuke Ifuku
- Graduate School of Engineering, Tottori University, Tottori, Japan
- Unused Bioresource Utilization Center, Tottori University, Tottori, Japan
| | - Akira Mine
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Hironori Kaminaka
- Faculty of Agriculture, Tottori University, Tottori, Japan
- Unused Bioresource Utilization Center, Tottori University, Tottori, Japan
| |
Collapse
|
35
|
Sreekumar S, Wattjes J, Niehues A, Mengoni T, Mendes AC, Morris ER, Goycoolea FM, Moerschbacher BM. Biotechnologically produced chitosans with nonrandom acetylation patterns differ from conventional chitosans in properties and activities. Nat Commun 2022; 13:7125. [PMID: 36418307 PMCID: PMC9684148 DOI: 10.1038/s41467-022-34483-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Chitosans are versatile biopolymers with multiple biological activities and potential applications. They are linear copolymers of glucosamine and N-acetylglucosamine defined by their degree of polymerisation (DP), fraction of acetylation (FA), and pattern of acetylation (PA). Technical chitosans produced chemically from chitin possess defined DP and FA but random PA, while enzymatically produced natural chitosans probably have non-random PA. This natural process has not been replicated using biotechnology because chitin de-N-acetylases do not efficiently deacetylate crystalline chitin. Here, we show that such enzymes can partially N-acetylate fully deacetylated chitosan in the presence of excess acetate, yielding chitosans with FA up to 0.7 and an enzyme-dependent non-random PA. The biotech chitosans differ from technical chitosans both in terms of physicochemical and nanoscale solution properties and biological activities. As with synthetic block co-polymers, controlling the distribution of building blocks within the biopolymer chain will open a new dimension of chitosan research and exploitation.
Collapse
Affiliation(s)
- Sruthi Sreekumar
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark ,grid.9909.90000 0004 1936 8403School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Jasper Wattjes
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Anna Niehues
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| | - Tamara Mengoni
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| | - Ana C. Mendes
- grid.5170.30000 0001 2181 8870Research Group for Food Production Engineering, Laboratory of Nano-BioScience, National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Edwin R. Morris
- grid.7872.a0000000123318773School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Francisco M. Goycoolea
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany ,grid.9909.90000 0004 1936 8403School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Bruno M. Moerschbacher
- grid.5949.10000 0001 2172 9288Institute for Biology and Biotechnology of Plants, University of Münster, 48143 Münster, Germany
| |
Collapse
|
36
|
Chavanke SN, Penna S, Dalvi SG. β-Glucan and its nanocomposites in sustainable agriculture and environment: an overview of mechanisms and applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80062-80087. [PMID: 35641741 DOI: 10.1007/s11356-022-20938-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/15/2022] [Indexed: 05/23/2023]
Abstract
β-Glucan is an eco-friendly, biodegradable, and economical biopolymer with important roles for acquiring adaptations to mitigate climate change in crop plants. β-Glucan plays a crucial role in the activation of functional plant innate immune system by triggering the downward signaling cascade/s, resulting in the accumulation of different pathogenesis-related proteins (PR-proteins), reactive oxygen species (ROS), antioxidant defense enzymes, Ca2+-influx as well as activation of mitogen-activated protein kinase (MAPK) pathway. Recent experimental studies have shown that β-glucan recognition is mediated by co-receptor LysMPRR (lysin motif pattern recognition receptor)-CERK1 (chitin elicitor receptor kinase 1), LYK4, and LYK5 (LysM-containing receptor-like kinase), as well as different receptor systems in plants that could be plant species-specific and/or age and/or tissue-dependent. Transgenic overexpression of β-glucanase, chitinase, and/or in combination with other PR-proteins like cationic peroxidase, AP24,thaumatin-likeprotein 1 (TLP-1) has also been achieved for improving plant disease resistance in crop plants, but the transgenic methods have some ethical and environmental concerns. In this regard, elicitation of plant immunity using biopolymer like β-glucan and chitosan offers an economical, safe, and publicly acceptable method. The β-glucan and chitosan nanocomposites have proven to be useful for the activation of plant defense pathways and to enhance plant response/systemic acquired resistance (SAR) against broad types of plant pathogens and mitigating multiple stresses under the changing climate conditions.
Collapse
Affiliation(s)
- Somnath N Chavanke
- Tissue Culture Section, Agri. Sci. & Tech. Dept., Vasantdada Sugar Institute, Pune, India
| | | | - Sunil Govind Dalvi
- Tissue Culture Section, Agri. Sci. & Tech. Dept., Vasantdada Sugar Institute, Pune, India.
| |
Collapse
|
37
|
Tian H, Fiorin GL, Kombrink A, Mesters JR, Thomma BPHJ. Fungal dual-domain LysM effectors undergo chitin-induced intermolecular, and not intramolecular, dimerization. PLANT PHYSIOLOGY 2022; 190:2033-2044. [PMID: 35997573 PMCID: PMC9614474 DOI: 10.1093/plphys/kiac391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Chitin is a homopolymer of β-(1,4)-linked N-acetyl-D-glucosamine (GlcNAc) and a major structural component of fungal cell walls. In plants, chitin acts as a microbe-associated molecular pattern (MAMP) that is recognized by lysin motif (LysM)-containing plant cell surface-localized pattern recognition receptors (PRRs) that activate a plethora of downstream immune responses. To deregulate chitin-induced plant immunity and successfully establish infection, many fungal pathogens secrete LysM domain-containing effector proteins during host colonization. The LysM effector Ecp6 from the tomato (Solanum lycopersicum) leaf mold fungus Cladosporium fulvum can outcompete plant PRRs for chitin binding because two of its three LysM domains cooperate to form a composite groove with ultra-high (pM) chitin-binding affinity. However, most functionally characterized LysM effectors contain only two LysMs, including Magnaporthe oryzae MoSlp1, Verticillium dahliae Vd2LysM, and Colletotrichum higginsianum ChElp1 and ChElp2. Here, we performed modeling, structural, and functional analyses to investigate whether such dual-domain LysM effectors can also form ultra-high chitin-binding affinity grooves through intramolecular LysM dimerization. However, our study suggests that intramolecular LysM dimerization does not occur. Rather, our data support the occurrence of intermolecular LysM dimerization for these effectors, associated with a substantially lower chitin binding affinity than monitored for Ecp6. Interestingly, the intermolecular LysM dimerization allows for the formation of polymeric complexes in the presence of chitin. Possibly, such polymers may precipitate at infection sites to eliminate chitin oligomers, and thus suppress the activation of chitin-induced plant immunity.
Collapse
Affiliation(s)
- Hui Tian
- University of Cologne, Institute for Plant Sciences, 50674 Cologne, Germany
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Gabriel L Fiorin
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Anja Kombrink
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | | | | |
Collapse
|
38
|
Pongprayoon W, Panya A, Jaresitthikunchai J, Phaonakrop N, Roytrakul S. Phosphoprotein Profile of Rice ( Oryza sativa L.) Seedlings under Osmotic Stress after Pretreatment with Chitosan. PLANTS (BASEL, SWITZERLAND) 2022; 11:2729. [PMID: 36297750 PMCID: PMC9611960 DOI: 10.3390/plants11202729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
This study aims to identify novel chitosan (CTS)-responsive phosphoproteins in Leung Pratew 123 (LPT123) and Khao Dawk Mali 105 (KDML105) as drought-sensitive rice cultivars and differences in the CTS response. Rice seeds were soaked in CTS solution before germination, and 2- and 4-week-old rice seedlings sprayed with CTS before osmotic stress comprised the following four groups: (1) seedlings treated with distilled water; (2) seedlings treated with CTS; (3) seedlings pretreated with distilled water and subjected to osmotic stress; and (4) seedlings pretreated with CTS and subjected to osmotic stress. Phosphoproteins of leaf tissues were enriched using immobilized metal affinity chromatography (IMAC) before tryptic digestion and analysis via LC-MS. Phosphoprotein profiling analyses led to the identification of 4721 phosphoproteins representing 1052 and 1040 unique phosphoproteins in the LPT123 and KDML105 seedlings, respectively. In response to CTS pretreatment before osmotic stress, 22 differently expressed proteins were discovered, of which 10 and 12 were identified in the LPT123 and KDML105, respectively. These proteins are typically involved in signaling, transport, protein folding, protein degradation, and metabolism. This study provides fruitful data to understand the signal transduction mechanisms of rice seedlings pretreated with CTS before exposure to osmotic stress.
Collapse
Affiliation(s)
- Wasinee Pongprayoon
- Department of Biology, Faculty of Science, Burapha University, 169 Longhaad Bangsaen Rd, Saensook, Mueang, Chonburi 20131, Thailand
| | - Atikorn Panya
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Rd., Klong Luang, Pathum Thani 12120, Thailand
| | - Janthima Jaresitthikunchai
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Rd., Klong Luang, Pathum Thani 12120, Thailand
| | - Narumon Phaonakrop
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Rd., Klong Luang, Pathum Thani 12120, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Rd., Klong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
39
|
Silva JCF, Ferreira MA, Carvalho TFM, Silva FF, de A. Silveira S, Brommonschenkel SH, Fontes EPB. RLPredictiOme, a Machine Learning-Derived Method for High-Throughput Prediction of Plant Receptor-like Proteins, Reveals Novel Classes of Transmembrane Receptors. Int J Mol Sci 2022; 23:12176. [PMID: 36293031 PMCID: PMC9603095 DOI: 10.3390/ijms232012176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Cell surface receptors play essential roles in perceiving and processing external and internal signals at the cell surface of plants and animals. The receptor-like protein kinases (RLK) and receptor-like proteins (RLPs), two major classes of proteins with membrane receptor configuration, play a crucial role in plant development and disease defense. Although RLPs and RLKs share a similar single-pass transmembrane configuration, RLPs harbor short divergent C-terminal regions instead of the conserved kinase domain of RLKs. This RLP receptor structural design precludes sequence comparison algorithms from being used for high-throughput predictions of the RLP family in plant genomes, as has been extensively performed for RLK superfamily predictions. Here, we developed the RLPredictiOme, implemented with machine learning models in combination with Bayesian inference, capable of predicting RLP subfamilies in plant genomes. The ML models were simultaneously trained using six types of features, along with three stages to distinguish RLPs from non-RLPs (NRLPs), RLPs from RLKs, and classify new subfamilies of RLPs in plants. The ML models achieved high accuracy, precision, sensitivity, and specificity for predicting RLPs with relatively high probability ranging from 0.79 to 0.99. The prediction of the method was assessed with three datasets, two of which contained leucine-rich repeats (LRR)-RLPs from Arabidopsis and rice, and the last one consisted of the complete set of previously described Arabidopsis RLPs. In these validation tests, more than 90% of known RLPs were correctly predicted via RLPredictiOme. In addition to predicting previously characterized RLPs, RLPredictiOme uncovered new RLP subfamilies in the Arabidopsis genome. These include probable lipid transfer (PLT)-RLP, plastocyanin-like-RLP, ring finger-RLP, glycosyl-hydrolase-RLP, and glycerophosphoryldiester phosphodiesterase (GDPD, GDPDL)-RLP subfamilies, yet to be characterized. Compared to the only Arabidopsis GDPDL-RLK, molecular evolution studies confirmed that the ectodomain of GDPDL-RLPs might have undergone a purifying selection with a predominance of synonymous substitutions. Expression analyses revealed that predicted GDPGL-RLPs display a basal expression level and respond to developmental and biotic signals. The results of these biological assays indicate that these subfamily members have maintained functional domains during evolution and may play relevant roles in development and plant defense. Therefore, RLPredictiOme provides a framework for genome-wide surveys of the RLP superfamily as a foundation to rationalize functional studies of surface receptors and their relationships with different biological processes.
Collapse
Affiliation(s)
- Jose Cleydson F. Silva
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa 36570-900, Brazil
| | - Marco Aurélio Ferreira
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | - Thales F. M. Carvalho
- Institute of Engineering, Science and Technology, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Janaúba 39447-814, Brazil
| | - Fabyano F. Silva
- Departament of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | - Sabrina de A. Silveira
- Department of Computer Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | | | - Elizabeth P. B. Fontes
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| |
Collapse
|
40
|
Umemoto N, Saito N, Noguchi M, Shoda SI, Ohnuma T, Watanabe T, Sakuda S, Fukamizo T. Plant Chitinase Mutants as the Catalysts for Chitooligosaccharide Synthesis Using the Sugar Oxazoline Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12897-12906. [PMID: 36184795 DOI: 10.1021/acs.jafc.2c04632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sugar oxazolines, (GlcNAc)n-oxa (n = 2, 3, 4, and 5), were synthesized from a mixture of chitooligosaccharides, (GlcNAc)n (n = 2, 3, 4, and 5), and utilized for synthesis of (GlcNAc)7 with higher elicitor activity using plant chitinase mutants as the catalysts. From isothermal titration calorimetry, the binding affinity of (GlcNAc)2-oxa toward an inactive mutant obtained from Arabidopsis thaliana GH18 chitinase was found to be higher than those of the other (GlcNAc)n-oxa (n = 3, 4, and 5). To synthesize (GlcNAc)7, the donor/acceptor substrates with different size combinations, (GlcNAc)2-oxa/(GlcNAc)5 (1), (GlcNAc)3-oxa/(GlcNAc)4 (2), (GlcNAc)4-oxa/(GlcNAc)3 (3), and (GlcNAc)5-oxa/(GlcNAc)2 (4), were incubated with hypertransglycosylating mutants of GH18 chitinases from A. thaliana and Cycas revoluta. The synthetic activities of these plant chitinase mutants were lower than that of a mutant of Bacillus circulans chitinase A1. Nevertheless, in the plant chitinase mutants, the synthetic efficiency of combination (1) was higher than those of the other combinations (2), (3), and (4), suggesting that the synthetic reaction is mostly dominated by the binding affinities of (GlcNAc)n-oxa. In contrast, the Bacillus enzyme mutant with a different subsite arrangement synthesized (GlcNAc)7 from combination (1) in the lowest efficiency. Donor/acceptor-size dependency of the enzymatic synthesis appeared to be strongly related to the subsite arrangement of the enzyme used as the catalyst. The A. thaliana chitinase mutant was found to be useful when combination (1) is employed for the substrates.
Collapse
Affiliation(s)
- Naoyuki Umemoto
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba, Sendai 980-8579, Japan
| | - Natsuki Saito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba, Sendai 980-8579, Japan
| | - Masato Noguchi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba, Sendai 980-8579, Japan
| | - Shin-Ichiro Shoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba, Sendai 980-8579, Japan
| | - Takayuki Ohnuma
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Takeshi Watanabe
- Department of Agro-Food Science, Niigata Agro-Food University, Tainai-shi, Niigata 959-2702, Japan
| | - Shohei Sakuda
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan
| | - Tamo Fukamizo
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
41
|
Liao CJ, Hailemariam S, Sharon A, Mengiste T. Pathogenic strategies and immune mechanisms to necrotrophs: Differences and similarities to biotrophs and hemibiotrophs. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102291. [PMID: 36063637 DOI: 10.1016/j.pbi.2022.102291] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Pathogenesis in plant diseases is complex comprising diverse pathogen virulence and plant immune mechanisms. These pathogens cause damaging plant diseases by deploying specialized and generic virulence strategies that are countered by intricate resistance mechanisms. The significant challenges that necrotrophs pose to crop production are predicted to increase with climate change. Immunity to biotrophs and hemibiotrophs is dominated by intracellular receptors that recognize specific effectors and activate resistance. These mechanisms play only minor roles in resistance to necrotrophs. Pathogen- or host-derived conserved pattern molecules trigger immune responses that broadly contribute to plant immunity. However, certain pathogen or host-derived immune elicitors are enriched by the virulence activities of necrotrophs. Different plant hormones modulate systemic resistance and cell death that have differential impacts on resistance to pathogens of different lifestyles. Knowledge of mechanisms that contribute to resistance to necrotrophs has expanded. Besides toxins and cell wall degrading enzymes that dominate the pathogenesis of necrotrophs, other effectors with subtle contributions are being identified.
Collapse
Affiliation(s)
- Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Sara Hailemariam
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
42
|
Lü P, Liu Y, Yu X, Shi CL, Liu X. The right microbe-associated molecular patterns for effective recognition by plants. Front Microbiol 2022; 13:1019069. [PMID: 36225366 PMCID: PMC9549324 DOI: 10.3389/fmicb.2022.1019069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Plants are constantly exposed to diverse microbes and thus develop a sophisticated perceive system to distinguish non-self from self and identify non-self as friends or foes. Plants can detect microbes in apoplast via recognition of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) on the cell surface to activate appropriate signaling in response to microbes. MAMPs are highly conserved but essential molecules of microbes and often buried in microbes’ complex structure. Mature MAMPs are released from microbes by invasion-induced hydrolytic enzymes in apoplast and accumulate in proximity of plasma membrane-localized PRRs to be perceived as ligands to activate downstream signaling. In response, microbes developed strategies to counteract these processing. Here, we review how the form, the concentration, and the size of mature MAMPs affect the PRR-mediated immune signaling. In particular, we describe some potential applications and explore potential open questions in the fields.
Collapse
Affiliation(s)
- Pengpeng Lü
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Yi Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Xixi Yu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | | | - Xiaokun Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- *Correspondence: Xiaokun Liu,
| |
Collapse
|
43
|
Ahmad S, Chen G, Huang J, Yang K, Hao Y, Zhou Y, Zhao K, Lan S, Liu Z, Peng D. Beauty and the pathogens: A leaf-less control presents a better image of Cymbidium orchids defense strategy. FRONTIERS IN PLANT SCIENCE 2022; 13:1001427. [PMID: 36176684 PMCID: PMC9513425 DOI: 10.3389/fpls.2022.1001427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Biological control is a safe way of combating plant diseases using the living organisms. For the precise use of microbial biological control agents, the genetic information on the hypersensitive response (HR), and defense-related gene induction pathways of plants are necessary. Orchids are the most prominent stakeholders of floriculture industry, and owing to their long-awaited flowering pattern, disease control is imperative to allow healthy vegetative growth that spans more than 2 years in most of the orchids. We observed leaf-less flowering in three orchid species (Cymbidium ensifolium, C. goeringii and C. sinense). Using these materials as reference, we performed transcriptome profiling for healthy leaves from non-infected plants to identify genes specifically involved in plant-pathogen interaction pathway. For this pathway, a total of 253 differentially expressed genes (DEGs) were identified in C. ensifolium, 189 DEGs were identified in C. goeringii and 119 DEGs were found in C. sinense. These DEGs were mainly related to bacterial secretion systems, FLS2, CNGCs and EFR, regulating HR, stomatal closure and defense-related gene induction. FLS2 (LRR receptor-like serine/threonine kinase) contained the highest number of DEGs among three orchid species, followed by calmodulin. Highly upregulated gene sets were found in C. sinense as compared to other species. The great deal of DEGs, mainly the FLS2 and EFR families, related to defense and immunity responses can effectively direct the future of biological control of diseases for orchids.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guizhen Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kang Yang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Hao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuzhen Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
44
|
Ji L, Yang X, Qi F. Distinct Responses to Pathogenic and Symbionic Microorganisms: The Role of Plant Immunity. Int J Mol Sci 2022; 23:ijms231810427. [PMID: 36142339 PMCID: PMC9499406 DOI: 10.3390/ijms231810427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Plants must balance both beneficial (symbiotic) and pathogenic challenges from microorganisms, the former benefitting the plant and agriculture and the latter causing disease and economic harm. Plant innate immunity describes a highly conserved set of defense mechanisms that play pivotal roles in sensing immunogenic signals associated with both symbiotic and pathogenic microbes and subsequent downstream activation of signaling effector networks that protect the plant. An intriguing question is how the innate immune system distinguishes “friends” from “foes”. Here, we summarize recent advances in our understanding of the role and spectrum of innate immunity in recognizing and responding to different microbes. In addition, we also review some of the strategies used by microbes to manipulate plant signaling pathways and thus evade immunity, with emphasis on the use of effector proteins and micro-RNAs (miRNAs). Furthermore, we discuss potential questions that need addressing to advance the field of plant–microbe interactions.
Collapse
|
45
|
Ren W, Zhang C, Wang M, Zhang C, Xu X, Huang Y, Chen Y, Lin Y, Lai Z. Genome-wide identification, evolution analysis of LysM gene family members and their expression analysis in response to biotic and abiotic stresses in banana (Musa L.). Gene X 2022; 845:146849. [PMID: 36044944 DOI: 10.1016/j.gene.2022.146849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
LysM (Lysin motif), in response to pathogenic molecular stresses, is a crucial signal recognition gene. To understand the molecular characteristics of banana LysM gene family members, we used a series of bioinformatics methods. Based on the genomic databases of Musa acuminata, Musa balbisiana and Musa itinerans, a total of 53 genes and 55 proteins were identified, with 21 genes and 23 proteins in the M.acuminata, 16 genes and 16 proteins in each of M.balbisiana and M.itinerans, respectively. According to the conserved structural domains, LysM can be divided into five classes, namely LysM&MltD, LYK, LYP, LysMn, and LysMe. The LysM gene was relatively highly conserved in the evolution of the three genomes of banana, and some differences occurred. Expression analysis revealed that MaLysM4-5 was relatively highly expressed under high-temperature stress, low-temperature stress and pathogen infection; at the same time, about one-third of the members were down-regulated under low-temperature stress and high-temperature stress, while the expression of MaLysM10-1 and MaLysM4-5 were up-regulated. After the banana wilt fungus FocTR4 infected the banana roots, MaLysM1 was down-regulated and MaLysM11-1 was up-regulated. In conclusion, our study suggests that MaLysMs may be necessary in the response to high- and low-temperature stresses, as well as the banana wilt fungus infestation. Overall, this paper found that LysM genes may be involved in biotic and abiotic stresses in banana, and provided helpful information about LysM's evolution, expression and properties, which will provide theoretical references for further studies on the functions of LysM genes and resistance breeding in the future.
Collapse
Affiliation(s)
- Wenhui Ren
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengyu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengge Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunyu Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoqiong Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuji Huang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
46
|
Riseh RS, Hassanisaadi M, Vatankhah M, Babaki SA, Barka EA. Chitosan as a potential natural compound to manage plant diseases. Int J Biol Macromol 2022; 220:998-1009. [PMID: 35988725 DOI: 10.1016/j.ijbiomac.2022.08.109] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 11/05/2022]
Abstract
The necessity for non-chemical approaches has grown as awareness of the dangers posed by pesticides has spread. Chitosan, due to its biocompatibility, biodegradability, and bioactivity is one the effective choice in phytopathology. Chitosan is a biopolymer that reduces plant diseases through two main mechanisms: (1) Direct antimicrobial function against pathogens, including plasma membrane damage mechanisms, interactions with DNA and RNA (electrostatic interactions), metal chelating capacity, and deposition onto the microbial surface, (2) Induction of plant defense responses resulting from downstream signalling, transcription factor activation, gene transcription and finally cellular activation after recognition and binding of chitin and chitosan by cell surface receptors. This biopolymer have potential with capability to combating fungi, bacteria, and viruses phythopathogens. Chitosan is synthesized by deacetylating chitin. The degree of deacetylation and molecular weight of chitosan are variable and have been mentioned as important structural parameters in chitosan's biological properties. Chitosan with a higher degree of deacetylation (>70 %) has better biological properties. Many crops able to withstand pre- and post-harvest illnesses better after receiving chitosan as a seed treatment, soil amendment, or foliar spray. This review discussed the properties and use of chitosan and focuses on its application as a plant resistance inducer against pathogens.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran; Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - Somayeh Abdani Babaki
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - Essaid Ait Barka
- Induced Resistance and Plant BioProtection Research Unit, UFR Sciences, UPRES EA 4707-USC INRAeE1488, University of Reims Champagne-Ardenne, 51687 Reims, France.
| |
Collapse
|
47
|
Petutschnig E, Anders J, Stolze M, Meusel C, Hacke R, Much L, Schwier M, Gippert AL, Kroll S, Fasshauer P, Wiermer M, Lipka V. EXTRA LARGE G-PROTEIN2 mediates cell death and hyperimmunity in the chitin elicitor receptor kinase 1-4 mutant. PLANT PHYSIOLOGY 2022; 189:2413-2431. [PMID: 35522044 PMCID: PMC9342992 DOI: 10.1093/plphys/kiac214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/13/2022] [Indexed: 05/08/2023]
Abstract
Heterotrimeric G-proteins are signal transduction complexes that comprised three subunits, Gα, Gβ, and Gγ, and are involved in many aspects of plant life. The noncanonical Gα subunit EXTRA LARGE G-PROTEIN2 (XLG2) mediates pathogen-associated molecular pattern (PAMP)-induced reactive oxygen species (ROS) generation and immunity downstream of pattern recognition receptors. A mutant of the chitin receptor component CHITIN ELICITOR RECEPTOR KINASE1 (CERK1), cerk1-4, maintains normal chitin signaling capacity but shows excessive cell death upon infection with powdery mildew fungi. We identified XLG2 mutants as suppressors of the cerk1-4 phenotype. Mutations in XLG2 complex partners ARABIDOPSIS Gβ1 (AGB1) and Gγ1 (AGG1) have a partial cerk1-4 suppressor effect. Contrary to its role in PAMP-induced immunity, XLG2-mediated control of ROS production by RESPIRATORY BURST OXIDASE HOMOLOGUE D (RBOHD) is not critical for cerk1-4-associated cell death and hyperimmunity. The cerk1-4 phenotype is also independent of the co-receptor/adapter kinases BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) and SUPPRESSOR OF BIR1 1 (SOBIR1), but requires the E3 ubiquitin ligase PLANT U-BOX 2 (PUB2). XLG2 localizes to both the cell periphery and nucleus, and the cerk1-4 cell death phenotype is mediated by the cell periphery pool of XLG2. Integrity of the XLG2 N-terminal domain, but not its phosphorylation, is essential for correct XLG2 localization and formation of the cerk1-4 phenotype. Our results support a model in which XLG2 acts downstream of an unknown cell surface receptor that activates an NADPH oxidase-independent cell death pathway in Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
| | - Julia Anders
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen 37077, Germany
| | - Marnie Stolze
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen 37077, Germany
| | - Christopher Meusel
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen 37077, Germany
| | - Ronja Hacke
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen 37077, Germany
| | - Laura Much
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen 37077, Germany
| | - Melina Schwier
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen 37077, Germany
| | - Anna-Lena Gippert
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen 37077, Germany
| | - Samuel Kroll
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen 37077, Germany
| | - Patrick Fasshauer
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen 37077, Germany
| | | | | |
Collapse
|
48
|
Baez LA, Tichá T, Hamann T. Cell wall integrity regulation across plant species. PLANT MOLECULAR BIOLOGY 2022; 109:483-504. [PMID: 35674976 PMCID: PMC9213367 DOI: 10.1007/s11103-022-01284-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/05/2022] [Indexed: 05/05/2023]
Abstract
Plant cell walls are highly dynamic and chemically complex structures surrounding all plant cells. They provide structural support, protection from both abiotic and biotic stress as well as ensure containment of turgor. Recently evidence has accumulated that a dedicated mechanism exists in plants, which is monitoring the functional integrity of cell walls and initiates adaptive responses to maintain integrity in case it is impaired during growth, development or exposure to biotic and abiotic stress. The available evidence indicates that detection of impairment involves mechano-perception, while reactive oxygen species and phytohormone-based signaling processes play key roles in translating signals generated and regulating adaptive responses. More recently it has also become obvious that the mechanisms mediating cell wall integrity maintenance and pattern triggered immunity are interacting with each other to modulate the adaptive responses to biotic stress and cell wall integrity impairment. Here we will review initially our current knowledge regarding the mode of action of the maintenance mechanism, discuss mechanisms mediating responses to biotic stresses and highlight how both mechanisms may modulate adaptive responses. This first part will be focused on Arabidopsis thaliana since most of the relevant knowledge derives from this model organism. We will then proceed to provide perspective to what extent the relevant molecular mechanisms are conserved in other plant species and close by discussing current knowledge of the transcriptional machinery responsible for controlling the adaptive responses using selected examples.
Collapse
Affiliation(s)
- Luis Alonso Baez
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway
| | - Tereza Tichá
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway
| | - Thorsten Hamann
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway.
| |
Collapse
|
49
|
Poulaki EG, Triviza MF, Malai M, Tjamos SE. A Case of Plant Vaccination: Enhancement of Plant Immunity against Verticillium dahliae by Necrotized Spores of the Pathogen. PLANTS 2022; 11:plants11131691. [PMID: 35807643 PMCID: PMC9269021 DOI: 10.3390/plants11131691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/18/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022]
Abstract
The soil-borne fungus Verticillium dahliae is causing a devastating vascular disease in more than 200 species of dicotyledonous plants. The pathogen attacks susceptible plants through the roots, colonizes the plant vascular system, and causes the death of aerial tissues. In this study, we used Arabidopsis and eggplants to examine the plant protective and immunization effects of autoclaved V. dahliae spores against V. dahliae. We observed that the application of V. dahliae autoclaved spores in eggplants and Arabidopsis resulted in enhanced protection against V. dahliae, since the disease severity and pathogen colonization were lower in the plants treated with V. dahliae autoclaved spores when compared to controls. In addition, upregulation of the defense related genes PR1 and PDF1.2 in the Arabidopsis plants treated with the V. dahliae autoclaved spores was revealed. Furthermore, pathogenicity experiments in the Arabidopsis mutant cerk1, defective in chitin perception, revealed a loss of protection against V. dahliae in the cerk1 treated with the V. dahliae autoclaved spores. The participation of the chitin receptor CERK1 is evident in Arabidopsis immunization against V. dahliae using autoclaved spores of the pathogen.
Collapse
|
50
|
Versluys M, Toksoy Öner E, Van den Ende W. Fructan oligosaccharide priming alters apoplastic sugar dynamics and improves resistance against Botrytis cinerea in chicory. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4214-4235. [PMID: 35383363 DOI: 10.1093/jxb/erac140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Carbohydrates such as fructans can be involved in priming or defence stimulation, and hence potentially provide new strategies for crop protection against biotic stress. Chicory (Cichorium intybus) is a model plant for fructan research and is a crop with many known health benefits. Using the chicory-Botrytis cinerea pathosystem, we tested the effectiveness of fructan-induced immunity, focussing on different plant and microbial fructans. Sugar dynamics were followed after priming and subsequent pathogen infection. Our results indicated that many higher plants might detect extracellular levan oligosaccharides (LOS) of microbial origin, while chicory also detects extracellular small inulin-type fructooligosaccharides (FOS) of endogenous origin, thus differing from the findings of previous fructan priming studies. No clear positive effects were observed for inulin or mixed-type fructans. An elicitor-specific burst of reactive oxygen species was observed for sulfated LOS, while FOS and LOS both behaved as genuine priming agents. In addition, a direct antifungal effect was observed for sulfated LOS. Intriguingly, LOS priming led to a temporary increase in apoplastic sugar concentrations, mainly glucose, which could trigger downstream responses. Total sugar and starch contents in total extracts of LOS-primed leaves were higher after leaf detachment, indicating they could maintain their metabolic activity. Our results indicate the importance of balancing intra- and extracellular sugar levels (osmotic balance) in the context of 'sweet immunity' pathways.
Collapse
Affiliation(s)
- Maxime Versluys
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Ebru Toksoy Öner
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| |
Collapse
|