1
|
Cacace R, Zhou L, Hendrickx Van de Craen E, Buist A, Hoogmartens J, Sieben A, Cras P, Vandenberghe R, De Deyn PP, Oehlrich D, De Bondt A, Engelborghs S, Moechars D, Van Broeckhoven C. Mutated Toll-like receptor 9 increases Alzheimer's disease risk by compromising innate immunity protection. Mol Psychiatry 2023; 28:5380-5389. [PMID: 37433968 PMCID: PMC11041692 DOI: 10.1038/s41380-023-02166-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023]
Abstract
The development of Alzheimer's disease (AD) involves central and peripheral immune deregulation. Gene identification and studies of AD genetic variants of peripheral immune components may aid understanding of peripheral-central immune crosstalk and facilitate new opportunities for therapeutic intervention. In this study, we have identified in a Flanders-Belgian family a novel variant p.E317D in the Toll-like receptor 9 gene (TLR9), co-segregating with EOAD in an autosomal dominant manner. In human, TLR9 is an essential innate and adaptive immune component predominantly expressed in peripheral immune cells. The p.E317D variant caused 50% reduction in TLR9 activation in the NF-κB luciferase assay suggesting that p.E317D is a loss-of-function mutation. Cytokine profiling of human PBMCs upon TLR9 activation revealed a predominantly anti-inflammatory response in contrast to the inflammatory responses from TLR7/8 activation. The cytokines released upon TLR9 activation suppressed inflammation and promoted phagocytosis of Aβ42 oligomers in human iPSC-derived microglia. Transcriptome analysis identified upregulation of AXL, RUBICON and associated signaling pathways, which may underline the effects of TLR9 signaling-induced cytokines in regulating the inflammatory status and phagocytic property of microglia. Our data suggest a protective role of TLR9 signaling in AD pathogenesis, and we propose that TLR9 loss-of-function may disrupt a peripheral-central immune crosstalk that promotes dampening of inflammation and clearance of toxic protein species, leading to the build-up of neuroinflammation and pathogenic protein aggregates in AD development.
Collapse
Affiliation(s)
- Rita Cacace
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Lujia Zhou
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Elisabeth Hendrickx Van de Craen
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology, University Hospital Antwerp, Edegem, Belgium
| | - Arjan Buist
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Julie Hoogmartens
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Anne Sieben
- Department of Pathology, University Hospital Antwerp, Edegem, Belgium
| | - Patrick Cras
- Department of Neurology, University Hospital Antwerp, Edegem, Belgium
- Institute Born-Bunge, Antwerp, Belgium
| | - Rik Vandenberghe
- Department of Neurology, University Hospitals Leuven, and Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Peter P De Deyn
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Institute Born-Bunge, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp, Antwerp, Belgium
| | - Daniel Oehlrich
- Discovery Sciences, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - An De Bondt
- Discovery Sciences, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Sebastiaan Engelborghs
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Universitair Ziekenhuis Brussel, and Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Diederik Moechars
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
2
|
Shepard CR. TLR9 in MAFLD and NASH: At the Intersection of Inflammation and Metabolism. Front Endocrinol (Lausanne) 2020; 11:613639. [PMID: 33584545 PMCID: PMC7880160 DOI: 10.3389/fendo.2020.613639] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Toll-Like Receptor 9 (TLR9) is an ancient receptor integral to the primordial functions of inflammation and metabolism. TLR9 functions to regulate homeostasis in a healthy system under acute stress. The literature supports that overactivation of TLR9 under the chronic stress of obesity is a critical driver of the pathogenesis of NASH and NASH-associated fibrosis. Research has focused on the core contributions of the parenchymal and non-parenchymal cells in the liver, adipose, and gut compartments. TLR9 is activated by endogenous circulating mitochondrial DNA (mtDNA). Chronically elevated circulating levels of mtDNA, caused by the stress of overnutrition, are observed in obesity, metabolic dysfunction-associated fatty liver disease (MAFLD), and NASH. Clinical evidence is supportive of TLR9 overactivation as a driver of disease. The role of TLR9 in metabolism and energy regulation may have an underappreciated contribution in the pathogenesis of NASH. Antagonism of TLR9 in NASH and NASH-associated fibrosis could be an effective therapeutic strategy to target both the inflammatory and metabolic components of such a complex disease.
Collapse
|
3
|
Chauhan A, Pandey N, Desai A, Raithatha N, Patel P, Choxi Y, Kapadia R, Khandelwal R, Jain N. Association of TLR4 and TLR9 gene polymorphisms and haplotypes with cervicitis susceptibility. PLoS One 2019; 14:e0220330. [PMID: 31365550 PMCID: PMC6668796 DOI: 10.1371/journal.pone.0220330] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cervicitis is one of the major health problems amongst women caused by infection of various pathogens including Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), Trichomonas vaginalis (TV) as well as human papillomavirus (HPV), and persistent cervical inflammation is one of the etiologic agents of cervical cancer. Toll-like receptors (TLRs) play an important role in the recognition and subsequent elimination of these pathogens. Variations in the Toll-like receptor genes influence susceptibility to pathogens as well as disease progression independently. METHODS Ten single nucleotide polymorphisms, five each of TLR4 and TLR9 genes were analyzed among 130 cervicitis patients and 150 controls either using polymerase chain reaction-restriction fragment length polymorphism or allele specific-PCR. RESULTS T. vaginalis infection was found at the highest frequency (30.7%) as compared to C. trachomatis (1.5%), N. gonorrhoeae (2.3%) and HPV (4.6%) infections in cervicitis patients. TLR4 rs11536889 CC (age-adjusted OR, 2.469 [95% CI, 1.499 to 4.065]; p < 0.001) and TLR9 rs187084 TC (age-adjusted OR, 2.165 [95% CI, 1.267-3.699]; p = 0.005) genotypes showed the higher distribution in cervicitis patients compared to controls. In addition, TLR4 rs11536889 C allele was shown to increase the risk of cervicitis (age-adjusted OR, 1.632 [95% CI, 1.132 to 2.352]; p = 0.009) compared to controls. The TLR4 haplotype GCA (OR, 0.6 [95% CI, 0.38-0.95]; p = 0.0272) and TLR9 haplotype GTA (OR, 1.99 [95% CI, 1.14-3.48]; p = 0.014) were found to be associated with decreased and increased risk of cervicitis respectively. CONCLUSIONS TLR4 and TLR9 polymorphisms, as well as haplotypes were shown to modulate the cervicitis risk.
Collapse
Affiliation(s)
- Alex Chauhan
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, Anand, India
| | - Nilesh Pandey
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, Anand, India
| | - Ajesh Desai
- Department of Obstetrics and Gynaecology, GMERS Medical College and Hospital, Ahmedabad, India
| | - Nitin Raithatha
- Department of Obstetrics and Gynaecology, Pramukh Swami Medical College, Shree Krishna Hospital, Karamsad, India
| | - Purvi Patel
- Department of Obstetrics and Gynaecology, Sir Sayajirao General Hospital and Medical College Baroda, Vadodara, India
| | - Yesha Choxi
- Department of Obstetrics and Gynaecology, GMERS Medical College and Hospital, Ahmedabad, India
| | - Rutul Kapadia
- Department of Obstetrics and Gynaecology, GMERS Medical College and Hospital, Ahmedabad, India
| | - Ronak Khandelwal
- Department of Obstetrics and Gynaecology, Sir Sayajirao General Hospital and Medical College Baroda, Vadodara, India
| | - Neeraj Jain
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, Anand, India
| |
Collapse
|
4
|
Mukherjee S, Huda S, Sinha Babu SP. Toll-like receptor polymorphism in host immune response to infectious diseases: A review. Scand J Immunol 2019; 90:e12771. [PMID: 31054156 DOI: 10.1111/sji.12771] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 04/20/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
Abstract
Immunopolymorphism is considered as an important aspect behind the resistance or susceptibility of the host to an infectious disease. Over the years, researchers have explored many genetic factors for their role in immune surveillance against infectious diseases. Polymorphic characters in the gene encoding Toll-like receptors (TLRs) play profound roles in inducing differential immune responses by the host against parasitic infections. Protein(s) encoded by TLR gene(s) are immensely important due to their ability of recognizing different types of pathogen associated molecular patterns (PAMPs). This study reviews the polymorphic residues present in the nucleotide or in the amino acid sequence of TLRs and their influence on alteration of inflammatory signalling pathways promoting either susceptibility or resistance to major infectious diseases, including tuberculosis, leishmaniasis, malaria and filariasis. Population-based studies exploring TLR polymorphisms in humans are primarily emphasized to discuss the association of the polymorphic residues with the occurrence and epidemiology of the mentioned infectious diseases. Principal polymorphic residues in TLRs influencing immunity to infection are mostly single nucleotide polymorphisms (SNPs). I602S (TLR1), R677W (TLR2), P554S (TLR3), D299G (TLR4), F616L (TLR5), S249P (TLR6), Q11L (TLR7), M1V (TLR8), G1174A (TLR9) and G1031T (TLR10) are presented as the major influential SNPs in shaping immunity to pathogenic infections. The contribution of these SNPs in the structure-function relationship of TLRs is yet not clear. Therefore, molecular studies on such polymorphisms can improve our understanding on the genetic basis of the immune response and pave the way for therapeutic intervention in a more feasible way.
Collapse
Affiliation(s)
| | - Sahel Huda
- Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, Santiniketan, India
| | - Santi P Sinha Babu
- Department of Zoology (Centre for Advanced Studies), Visva-Bharati University, Santiniketan, India
| |
Collapse
|
5
|
Chauhan A, Pandey N, Raithatha N, Patel P, Desai A, Jain N. Absence of toll-like receptor 9 Pro99Leu polymorphism in cervical cancer. F1000Res 2018; 7:606. [PMID: 30345020 PMCID: PMC6171715 DOI: 10.12688/f1000research.14840.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2018] [Indexed: 11/20/2022] Open
Abstract
Background: Toll-like receptor 9 (TLR9) plays a key role in the elimination of viral pathogens by recognising their CpG DNA. Polymorphisms in the TLR9 gene may influence their recognition and subsequent elimination. Therefore, the present study was designed to elucidate the role of a rare unexplored TLR9 gene polymorphism C296T/ Pro99Leu (rs5743844) in cervical cancer susceptibility among Indian women. Methods: The genotyping of TLR9 Pro99Leu polymorphism in 110 cervical cancer patients and 141 healthy controls was performed by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Results: The genotype frequency detected in both cervical cancer and control populations was 1.0 (CC), 0.0 (CT) and 0.0 (TT); while the allele frequency was found to be 1.0 (C) and 0.0 (T). Conclusions: The present study demonstrates no involvement of TLR9 C296T/ Pro99Leu polymorphism in cervical cancer susceptibility and supports minor allele frequency (MAF) (0.0002) status of the same as no nucleotide variation was detected in any of the study subjects.
Collapse
Affiliation(s)
- Alex Chauhan
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, India
| | - Nilesh Pandey
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, India
| | - Nitin Raithatha
- Department of Obstetrics and Gynaecology, Pramukh Swami Medical College, Shree Krishna Hospital, Karamsad, India
| | - Purvi Patel
- Department of Obstetrics and Gynaecology, Sir Sayajirao General Hospital and Medical College Baroda, Vadodara, India
| | - Ajesh Desai
- Department of Obstetrics and Gynaecology, GMERS Medical College and Hospital, Ahmedabad, India
| | - Neeraj Jain
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, India
| |
Collapse
|
6
|
Chauhan A, Pandey N, Raithatha N, Patel P, Desai A, Jain N. Absence of toll-like receptor 9 Pro99Leu polymorphism in cervical cancer. F1000Res 2018; 7:606. [PMID: 30345020 PMCID: PMC6171715 DOI: 10.12688/f1000research.14840.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2018] [Indexed: 09/29/2023] Open
Abstract
Background: Toll-like receptor 9 (TLR9) plays a key role in the elimination of viral pathogens by recognising their CpG DNA. Polymorphisms in the TLR9 gene may influence their recognition and subsequent elimination. Therefore, the present study was designed to elucidate the role of a rare unexplored TLR9 gene polymorphism C296T/ Pro99Leu (rs5743844) in cervical cancer susceptibility among Indian women. Methods: The genotyping of TLR9 Pro99Leu polymorphism in 110 cervical cancer patients and 141 healthy controls was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results: The genotype frequency detected in both cervical cancer and control populations was 1.0 (CC), 0.0 (CT) and 0.0 (TT); while the allele frequency was found to be 1.0 (C) and 0.0 (T). Conclusions: The present study results demonstrate no involvement of TLR9 C296T/ Pro99Leu polymorphism in cervical cancer susceptibility and supports worldwide minor allele frequency (MAF) (0.0002) status of the same as no nucleotide variation was detected in any of the study participants.
Collapse
Affiliation(s)
- Alex Chauhan
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, India
| | - Nilesh Pandey
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, India
| | - Nitin Raithatha
- Department of Obstetrics and Gynaecology, Pramukh Swami Medical College, Shree Krishna Hospital, Karamsad, India
| | - Purvi Patel
- Department of Obstetrics and Gynaecology, Sir Sayajirao General Hospital and Medical College Baroda, Vadodara, India
| | - Ajesh Desai
- Department of Obstetrics and Gynaecology, GMERS Medical College and Hospital, Ahmedabad, India
| | - Neeraj Jain
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, India
| |
Collapse
|
7
|
Chandler MR, Keene KS, Tuomela JM, Forero-Torres A, Desmond R, Vuopala KS, Harris KW, Merner ND, Selander KS. Lower frequency of TLR9 variant associated with protection from breast cancer among African Americans. PLoS One 2017; 12:e0183832. [PMID: 28886076 PMCID: PMC5590816 DOI: 10.1371/journal.pone.0183832] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022] Open
Abstract
Introduction Toll-like receptor 9 (TLR9) is an innate immune system DNA-receptor that regulates tumor invasion and immunity in vitro. Low tumor TLR9 expression has been associated with poor survival in Caucasian patients with triple negative breast cancer (TNBC). African American (AA) patients with TNBC have worse prognosis than Caucasians but whether this is due to differences in tumor biology remains controversial. We studied the prognostic significance of tumor Toll like receptor-9 (TLR9) protein expression among African American (AA) triple negative breast cancer (TNBC) patients. Germline TLR9 variants in European Americans (EAs) and AAs were investigated, to determine their contribution to AA breast cancer risk. Methods TLR9 expression was studied with immunohistochemistry in archival tumors. Exome Variant Server and The Cancer Genome Atlas were used to determine the genetic variation in the general EA and AA populations, and AA breast cancer cases. Minor allele frequencies (MAFs) were compared between EAs (n = 4300), AAs (n = 2203), and/or AA breast cancer cases (n = 131). Results Thirty-two TLR9 variants had a statistically significant MAF difference between general EAs and AAs. Twenty-one of them affect a CpG site. Rs352140, a variant previously associated with protection from breast cancer, is more common in EAs than AAs (p = 2.20E-16). EAs had more synonymous alleles, while AAs had more rare coding alleles. Similar analyses comparing AA breast cancer cases with AA controls did not reveal any variant class differences; however, three previously unreported TLR9 variants were associated with late onset breast cancer. Although not statistically significant, rs352140 was observed less frequently in AA cases compared to controls. Tumor TLR9 protein expression was not associated with prognosis. Conclusions Tumor TLR9 expression is not associated with prognosis in AA TNBC. Significant differences were detected in TLR9 variant MAFs between EAs and AAs. They may affect TLR9 expression and function. Rs352140, which may protect from breast cancer, is 1.6 X more common among EAs. These findings call for a detailed analysis of the contribution of TLR9 to breast cancer pathophysiology and health disparities.
Collapse
Affiliation(s)
- Madison R. Chandler
- Harrison School of Pharmacy, Auburn University, Auburn, AL, United States of America
| | - Kimberly S. Keene
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Johanna M. Tuomela
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Andres Forero-Torres
- Department of Medicine, Division of Hematology & Oncology, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Renee Desmond
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Katri S. Vuopala
- Department of Pathology, Lapland Central Hospital, Rovaniemi, Finland
| | - Kevin W. Harris
- Department of Medicine, Division of Hematology & Oncology, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, United States of America
| | - Nancy D. Merner
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Katri S. Selander
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Pathology, Lapland Central Hospital, Rovaniemi, Finland
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, United States of America
- * E-mail:
| |
Collapse
|
8
|
Abstract
Current hypotheses on the pathogenesis of sarcoidosis assume that it is induced by a nondegradable antigen inducing immune reactions, which are mediated by a panel of immune cells of the innate and adoptive immune system. This immune reaction leads to an accumulation of immune cells that is mainly alveolar macrophages, T cells, and neutrophils in the lung. As the antigen persists and cannot be eliminated, the ongoing immune reaction results in granuloma formation and remodeling of the lung. The current review aims to elucidate the different roles of the cellular players in the immunopathogenesis of sarcoidosis.
Collapse
|
9
|
Skevaki C, Pararas M, Kostelidou K, Tsakris A, Routsias JG. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious diseases. Clin Exp Immunol 2015; 180:165-77. [PMID: 25560985 PMCID: PMC4408151 DOI: 10.1111/cei.12578] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2014] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) are the best-studied family of pattern-recognition receptors (PRRs), whose task is to rapidly recognize evolutionarily conserved structures on the invading microorganisms. Through binding to these patterns, TLRs trigger a number of proinflammatory and anti-microbial responses, playing a key role in the first line of defence against the pathogens also promoting adaptive immunity responses. Growing amounts of data suggest that single nucleotide polymorphisms (SNPs) on the various human TLR proteins are associated with altered susceptibility to infection. This review summarizes the role of TLRs in innate immunity, their ligands and signalling and focuses on the TLR SNPs which have been linked to infectious disease susceptibility.
Collapse
Affiliation(s)
- C Skevaki
- Research Laboratories, Second Department of PediatricsAthens, Greece
| | - M Pararas
- Department of Microbiology, School of Medicine, University of AthensAthens, Greece
| | - K Kostelidou
- Research Laboratories, Second Department of PediatricsAthens, Greece
- Department of Food Science and Nutrition, University of the AegeanLemnos, Greece
| | - A Tsakris
- Department of Microbiology, School of Medicine, University of AthensAthens, Greece
| | - J G Routsias
- Department of Microbiology, School of Medicine, University of AthensAthens, Greece
| |
Collapse
|
10
|
Gupta CL, Akhtar S, Waye A, Pandey NR, Pathak N, Bajpai P. Cross talk between Leishmania donovani CpG DNA and Toll-like receptor 9: an immunoinformatics approach. Biochem Biophys Res Commun 2015; 459:424-9. [PMID: 25735984 DOI: 10.1016/j.bbrc.2015.02.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 02/21/2015] [Indexed: 11/17/2022]
Abstract
The precise and potential contribution of Toll-like receptors (TLRs) signaling pathways in fighting parasitic infections of Leishmania spp., an intracellular protozoan parasite, has gained significant attention during the last decades. Although it is well established that TLR9 recognizes CpG motifs in microbial genomes, the specificity of the CpG DNA pattern of Leishmania parasite interacting with endosomal TLR9 is still unknown. Hence in our study to identify the CpG DNA pattern of Leishmania donovani acting as ligand for TLR9, consecutive homology searches were performed using known CpG ODN 2216 as initial template until a consistent CpG pattern in L. donovani was found. A reliable model of TLR9 ectodomains (ECDs) as well as CpG DNA patterns was predicted to develop the 3D structural complexes of TLR9 ECD-CpG DNA utilizing molecular modeling and docking approaches. The results revealed the preferential specificity of L. donovani CpG DNA to TLR9 compared to control ODN and other CpG patterns. The interface between TLR9 and L. donovani CpG DNA was also found to be geometrically complementary with the LRR11 region of TLR9, acting as the critical region for ligand recognition. The L. donovani CpG pattern identified can be employed to derive a platform for development of an innate immunomodulatory agent for deadly disease.
Collapse
Affiliation(s)
- Chhedi Lal Gupta
- Department of Biosciences, Integral University, Lucknow, 226026, UP, India
| | - Salman Akhtar
- Department of Bioengineering, Integral University, Lucknow, 226026, UP, India
| | - Andrew Waye
- Department of Biology, University of Ottawa, 30 Marie-Curie, Ottawa, ON, K1N 6N5, Canada; Medipure Pharmaceuticals Inc., Maple Ridge, BC, V2X 2Z3, Canada
| | - Nihar R Pandey
- Center for Stroke Recovery, Ottawa Hospital Research Institute and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Medipure Pharmaceuticals Inc., Maple Ridge, BC, V2X 2Z3, Canada
| | - Neelam Pathak
- Department of Biosciences, Integral University, Lucknow, 226026, UP, India
| | - Preeti Bajpai
- Department of Biosciences, Integral University, Lucknow, 226026, UP, India.
| |
Collapse
|
11
|
Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature 2015; 520:702-5. [DOI: 10.1038/nature14138] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 12/03/2014] [Indexed: 12/18/2022]
|
12
|
Sanclemente G, Moreno A, Navasa M, Lozano F, Cervera C. Genetic variants of innate immune receptors and infections after liver transplantation. World J Gastroenterol 2014; 20:11116-11130. [PMID: 25170199 PMCID: PMC4145753 DOI: 10.3748/wjg.v20.i32.11116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 05/14/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
Infection is the leading cause of complication after liver transplantation, causing morbidity and mortality in the first months after surgery. Allograft rejection is mediated through adaptive immunological responses, and thus immunosuppressive therapy is necessary after transplantation. In this setting, the presence of genetic variants of innate immunity receptors may increase the risk of post-transplant infection, in comparison with patients carrying wild-type alleles. Numerous studies have investigated the role of genetic variants of innate immune receptors and the risk of complication after liver transplantation, but their results are discordant. Toll-like receptors and mannose-binding lectin are arguably the most important studied molecules; however, many other receptors could increase the risk of infection after transplantation. In this article, we review the published studies analyzing the impact of genetic variants in the innate immune system on the development of infectious complications after liver transplantation.
Collapse
|
13
|
Colak E, Leslie A, Zausmer K, Khatamzas E, Kubarenko AV, Pichulik T, Klimosch SN, Mayer A, Siggs O, Hector A, Fischer R, Klesser B, Rautanen A, Frank M, Hill AVS, Manoury B, Beutler B, Hartl D, Simmons A, Weber ANR. RNA and imidazoquinolines are sensed by distinct TLR7/8 ectodomain sites resulting in functionally disparate signaling events. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:5963-73. [PMID: 24813206 PMCID: PMC4066583 DOI: 10.4049/jimmunol.1303058] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
TLRs 7 and 8 are pattern recognition receptors controlling antiviral host defense or autoimmune diseases. Apart from foreign and host RNA, synthetic RNA oligoribonucleotides (ORN) or small molecules of the imidazoquinoline family activate TLR7 and 8 and are being developed as therapeutic agonists. The structure-function relationships for RNA ORN and imidazoquinoline sensing and consequent downstream signaling by human TLR7 and TLR8 are unknown. Proteome- and genome-wide analyses in primary human monocyte-derived dendritic cells here showed that TLR8 sensing of RNA ORN versus imidazoquinoline translates to ligand-specific differential phosphorylation and transcriptional events. In addition, TLR7 and 8 ectodomains were found to discriminate between RNA ORN and imidazoquinolines by overlapping and nonoverlapping recognition sites to which murine loss-of-function mutations and human naturally occurring hyporesponsive polymorphisms map. Our data suggest TLR7 and TLR8 can signal in two different "modes" depending on the class of ligand. Considering RNA ORN and imidazoquinolines have been regarded as functionally interchangeable, our study highlights important functional incongruities whose understanding will be important for developing TLR7 or 8 therapeutics with desirable effector and safety profiles for in vivo application.
Collapse
Affiliation(s)
- Elif Colak
- Junior Research Group Toll-Like Receptors and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Alasdair Leslie
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Kieran Zausmer
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Elham Khatamzas
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Andriy V. Kubarenko
- Junior Research Group Toll-Like Receptors and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Tica Pichulik
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany
| | - Sascha N. Klimosch
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany
| | - Alice Mayer
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Owen Siggs
- Department of Genetics, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Andreas Hector
- Department of Pediatrics I, University of Tübingen, 72076 Tübingen, Germany
| | - Roman Fischer
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Benedikt Klesser
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Anna Rautanen
- Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, United Kingdom
| | - Martin Frank
- Core Facility Molecular Structure Analysis, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Adrian V. S. Hill
- Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, United Kingdom
| | - Bénédicte Manoury
- Hôpital Necker, INSERM Unit 1013, Proteases and Immunity Group, 75015 Paris, France
| | - Bruce Beutler
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Dominik Hartl
- Department of Pediatrics I, University of Tübingen, 72076 Tübingen, Germany
| | - Alison Simmons
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Alexander N. R. Weber
- Junior Research Group Toll-Like Receptors and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
14
|
TLR9 expressed on plasma membrane acts as a negative regulator of human B cell response. J Autoimmun 2014; 51:23-9. [PMID: 24582318 DOI: 10.1016/j.jaut.2014.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 12/21/2022]
Abstract
Toll-like receptors (TLRs) are positioned at the interface between innate and adaptive immunity. Unlike others, those such as TLR9, that recognize nucleic acids, are confined to the endosomal compartment and are scarce on the cell surface. Here, we present evidence for TLR9 expression on the plasma membrane of B cells. In contrast to endosomal TLR9, cell surface TLR9 does not bind CpG-B oligodeoxynucleotides. After B cell-receptor (BCR) stimulation, TLR9 was translocated into lipid rafts with the BCR, suggesting that it could serve as a co-receptor for BCR. Nevertheless, stimulation of B cells with anti-TLR9 antibodies did not modify the BCR-induced responses despite up-regulation of tyrosine phosphorylation of proteins. However, CpG-B activation of B cells, acting synergistically with BCR signals, was inhibited by anti-TLR9 stimulation. Induction of CD25 expression and proliferation of B cells were thus down-regulated by the engagement of cell surface TLR9. Overall, our results indicate that TLR9 expressed on the plasma membrane of B cells might be a negative regulator of endosomal TLR9, and could provide a novel control by which activation of autoreactive B cells is restrained.
Collapse
|
15
|
Klimosch SN, Försti A, Eckert J, Knežević J, Bevier M, von Schönfels W, Heits N, Walter J, Hinz S, Lascorz J, Hampe J, Hartl D, Frick JS, Hemminki K, Schafmayer C, Weber AN. Functional TLR5 Genetic Variants Affect Human Colorectal Cancer Survival. Cancer Res 2013; 73:7232-42. [DOI: 10.1158/0008-5472.can-13-1746] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Lin YT, Verma A, Hodgkinson CP. Toll-like receptors and human disease: lessons from single nucleotide polymorphisms. Curr Genomics 2013; 13:633-45. [PMID: 23730203 PMCID: PMC3492803 DOI: 10.2174/138920212803759712] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLRs), a large group of proteins which recognize various pathogen-associated molecular patterns, are critical for the normal function of the innate immune system. Following their discovery many single nucleotide polymorphisms within TLRs and components of their signaling machinery have been discovered and subsequently implicated in a wide range of human diseases including atherosclerosis, sepsis, asthma, and immunodeficiency. This review discusses the effect of genetic variation on TLR function and how they may precipitate disease.
Collapse
Affiliation(s)
- Yi-Tzu Lin
- Department of Medicine, Duke University Medical Center & Mandel Center for Hypertension and Atherosclerosis Research, Durham, NC 27710, USA
| | | | | |
Collapse
|
17
|
Moossavi S, Rezaei N. Toll-like receptor signalling and their therapeutic targeting in colorectal cancer. Int Immunopharmacol 2013; 16:199-209. [PMID: 23602501 DOI: 10.1016/j.intimp.2013.03.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 02/13/2013] [Accepted: 03/13/2013] [Indexed: 12/16/2022]
Abstract
Intestinal homeostasis is dependent on the proper host/microbiota interaction via pattern recognition receptors. Toll-like receptors are a specialised group of membrane receptors which detect pathogen-associated conserved structures. They are present in the intestinal tract and are required for intestinal homeostasis. Dysregulation in the Toll-like receptor signalling can conceivably result in a dysregulated immune response which could contribute to major intestinal pathologies including colorectal cancer. Evidence for the role of microbiota and toll-like receptors in colorectal cancer is emerging. In this report the evidence for the contribution of toll-like receptors to the pathogenesis of colorectal cancer; potential mechanisms affecting toll-like receptor signalling; and their therapeutic targeting in colorectal cancer are reviewed.
Collapse
Affiliation(s)
- Shirin Moossavi
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
18
|
Zhou W, Li Y, Pan X, Gao Y, Li B, Qiu Z, Liang L, Zhou H, Yue J. Toll-like receptor 9 interaction with CpG ODN--an in silico analysis approach. Theor Biol Med Model 2013; 10:18. [PMID: 23497207 PMCID: PMC3602074 DOI: 10.1186/1742-4682-10-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/10/2013] [Indexed: 11/24/2022] Open
Abstract
Background Toll-like receptor 9 (TLR9) recognises unmethylated CpG DNA and activates a signalling cascade, leading to the production of inflammatory cytokines such as TNF-α, IL-1, IL-6 and IL-12 via the adaptor protein MyD88. However, the specific sequence and structural requirements of the CpG DNA for the recognition of and binding to TLR9 are unknown. Moreover, the 3D structures of TLR9 and the TLR9-ODN complex have not been determined. In this study, we propose a reliable model of the interaction of the TLR9 ECD with CpG ODN using bioinformatics tools. Results The three-dimensional structures of two TLR9 ECD-CpG ODN complexes were constructed using a homology modelling and docking strategy. Based on the models of these complexes, the TLR9 ECD-CpG ODN interaction patterns were calculated. The results showed that the interface between the human TLR9 and the CpG ODN molecule is geometrically complementary. The computed molecular interactions indicated that LRR11 is the main region of TLR9 that binds to CpG ODN and that five positively charged residues within LRR11 are involved in the binding of the TLR9 ECD to the CpG ODN. Observations in the close-up view of these interactions indicated that these five positively charged residues contribute differently to the binding region within the TLR9 ECD-CpG ODN complex. 337Arg and 338Lys reside in the binding sites of ODN, forming hydrogen bonds and direct contacts with the CpG ODN, whereas 347Lys, 348Arg, and 353His do not directly contact the CpG ODN. These results are in agreement with previously reported experimental data. Conclusion In this study, we present two structural models for the human and mouse TLR9 ECD in a complex with CpG ODN. Some features predicted by this model are consistent with previously reported experimental data. This complex model may lead to a better understanding of the function of TLR9 and its interaction with CpG ODN and will improve our understanding of TLR9-ligand interaction in general.
Collapse
Affiliation(s)
- Wei Zhou
- Beijing Institute of Biotechnology, Beijing 100071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yang HY, Lu KC, Lee HS, Huang SM, Lin YF, Wu CC, Salter DM, Su SL. Role of the functional Toll-Like receptor-9 promoter polymorphism (-1237T/C) in increased risk of end-stage renal disease: a case-control study. PLoS One 2013; 8:e58444. [PMID: 23472199 PMCID: PMC3589433 DOI: 10.1371/journal.pone.0058444] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 02/04/2013] [Indexed: 01/23/2023] Open
Abstract
Inflammation induced by infectious and noninfectious triggers in the kidney may lead to end stage renal disease (ESRD). Toll-like receptor 9 (TLR-9) a receptor for CpG DNA is involved in activation of immune cells in renal disease and may contribute to chronic inflammatory disease progression through an interleukin-6 (IL-6) dependent pathway. Previous studies indicate that -1237T/C confers regulatory effects on TLR-9 transcription. To date the effect of TLR-9 polymorphisms on ESRD remains unknown. We performed a case-control study and genotyped 630 ESRD patients and 415 controls for -1237T/C, -1486T/C and 1635G/A by real-time PCR assays and assessed plasma concentration of IL-6 by ELISA. Haplotype association analysis was performed using the Haploview package. A luciferase reporter assay and real-time PCR were used to test the function of the -1237T/C promoter polymorphism. A significant association between -1237T/C in TLR-9 and ESRD was identified. The TCA, TTA and CCA haplotype of TLR-9 were associated with ESRD. ESRD patients carrying -1237TC had a higher mean plasma IL-6 level when compared with -1237TT. The TLR-9 transcriptional activity of the variant -1237CC allele is higher than the -1237TT allele. The results indicate that in a Han Chinese population the presence of the C allele of -1237T/C in the TLR-9 gene increases susceptibility towards development of ESRD. In vitro studies demonstrate that -1237T/C may be involved in the development of ESRD through transcriptional modulation of TLR-9.
Collapse
Affiliation(s)
- Hsin-Yi Yang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, Republic of China
| | - Herng-Sheng Lee
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yuh-Feng Lin
- Division of Nephrology, Department of Medicine, Shuang Ho Hospital, Graduate Institute of Clinical Medicine, Taipei Medical University, New Taipei City, Taiwan, Republic of China
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chia-Chao Wu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Donald M. Salter
- Center for Molecular Medicine, MRC IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Sui-Lung Su
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
20
|
Suwarti S, Yamazaki T, Svetlana C, Hanagata N. Recognition of CpG oligodeoxynucleotides by human Toll-like receptor 9 and subsequent cytokine induction. Biochem Biophys Res Commun 2012; 430:1234-9. [PMID: 23266611 DOI: 10.1016/j.bbrc.2012.12.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 12/16/2012] [Indexed: 01/08/2023]
Abstract
Toll-like receptor 9 (TLR9) recognizes a synthetic ligand, oligodeoxynucleotide (ODN) containing cytosine-phosphate-guanine (CpG). Activation of TLR9 by CpG ODN induces a signal transduction cascade that plays a pivotal role in first-line immune defense in the human body. The three-dimensional structure of TLR9 has not yet been reported, and the ligand-binding mechanism of TLR9 is still poorly understood; therefore, the mechanism of human TLR9 (hTLR9) ligand binding needs to be elucidated. In this study, we constructed several hTLR9 mutants, including truncated mutants and single mutants in the predicted CpG ODN-binding site. We used these mutants to analyze the role of potential important regions of hTLR9 in receptor signaling induced by phosphorothioate (PTO)-modified CpG ODN and CpG ODNs only consist entirely of a phosphodiester (PD) backbone, CpG ODN2006x3-PD that we developed. We found truncated mutants of hTLR9 lost the signaling activity, indicating that both the C- and N-termini of the extracellular domain (ECD) are necessary for the function of hTLR9. We identified residues, His505, Gln510, His530, and Tyr554, in the C-terminal of hTLR9-ECD that are essential for hTLR9 activation. These residues might form positive charged clusters with which negatively charged CpG ODN could interact. Furthermore, we observed ODN-PD induced interleukin-6 (IL-6) through TLR9 in a CpG-sequence-dependent manner in human peripheral blood mononuclear cells and B cells, whereas ODN-PTO induced IL-6 in a CpG-sequence-independent manner. These finding are relevant for the mechanism of hTLR9 activation by CpG ODNs.
Collapse
Affiliation(s)
- Suwarti Suwarti
- Graduate School of Life Science, Hokkaido University, N10W8, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
21
|
Pan X, Yue J, Ding G, Li B, Liu X, Zheng X, Yu M, Li J, Jiang W, Wu C, Zheng J, Zhou H. Leucine-rich repeat 11 of Toll-like receptor 9 can tightly bind to CpG-containing oligodeoxynucleotides, and the positively charged residues are critical for the high affinity. J Biol Chem 2012; 287:30596-609. [PMID: 22822061 DOI: 10.1074/jbc.m112.396432] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TLR9 is a receptor for sensing bacterial DNA/CpG-containing oligonucleotides (CpG ODN). The extracellular domain (ECD) of human TLR9 (hTLR9) is composed of 25 leucine-rich repeats (LRR) contributing to the binding of CpG ODN. Herein, we showed that among LRR2, -5, -8, and -11, LRR11 of hTLR9 had the highest affinity for CpG ODN followed by LRR2 and -5, whereas LRR8 had almost no affinity. In vitro, preincubation with LRR11 more significantly decreased CpG ODN internalization, subsequent NF-κB activation, and cytokine release than with LRR2 and -5 in mouse peritoneal macrophages treated with CpG ODN. The LRR11 deletion mutant of hTLR9 conferred decreased cellular responses to CpG ODN. Single- or multiple-site mutants at five positively charged residues of LRR11 (LRR11m1-9), especially Arg-337 and Lys-367, were shown to contribute to hTLR9 binding of CpG ODN. LRR11m1-9 showed reduced inhibition of CpG ODN internalization and CpG ODN/TLR9 signaling, supporting the above findings. Prediction of whole hTLR9 ECD-CpG ODN interactions revealed that Arg-337 and Lys-338 directly contact CpG ODN through hydrogen bonding, whereas Lys-347, Arg-348, and His-353 contribute to stabilizing the shape of the ligand binding region. These findings suggested that although all five positively charged residues within LRR11 contributed to its high affinity, only Arg-337 and Lys-338 directly interacted with CpG ODN. In conclusion, the results suggested that LRR11 could strongly bind to CpG ODN, whereas mutations at the five positively charge residues reduced this high affinity. LRR11 may be further investigated as an antagonist of hTLR9.
Collapse
Affiliation(s)
- Xichun Pan
- Department of Pharmacology, College of Pharmacy, the Third Military Medical University, 400038 Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Knezević J, Pavlinić D, Rose WA, Leifer CA, Bendelja K, Gabrilovac J, Parcina M, Lauc G, Kubarenko AV, Petricevic B, Vrbanec D, Bulat-Kardum L, Bekeredjian-Ding I, Pavelić J, Dembić Z, Weber ANR. Heterozygous carriage of a dysfunctional Toll-like receptor 9 allele affects CpG oligonucleotide responses in B cells. J Biol Chem 2012; 287:24544-53. [PMID: 22613717 DOI: 10.1074/jbc.m111.337477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Toll-like receptors (TLR) are employed by the innate immune system to detect microbial pathogens based on conserved microbial pathogen molecules. For example, TLR9 is a receptor for CpG-containing microbial DNA, and its activation results in the production of cytokines and type I interferons from human B cells and plasmacytoid dendritic cells, respectively. Both are required for mounting an efficient antibacterial or antiviral immune response. These effects are mimicked by synthetic CpG oligodeoxynucleotides (ODN). Although several hyporesponsive TLR9 variants have been reported, their functional relevance in human primary cells has not been addressed. Here we report a novel TLR9 allele, R892W, which is hyporesponsive to CpG ODN and acts as a dominant-negative in a cellular model system. The R892W variant is characterized by increased MyD88 binding and defective co-localization with CpG ODN. Whereas primary plasmacytoid dendritic cells isolated from a heterozygous R892W carrier responded normally to CpG by interferon-α production, carrier B cells showed impaired IL-6 and IL-10 production. This suggests that heterozygous carriage of a hyporesponsive TLR9 allele is not associated with complete loss of TLR9 function but that TLR9 signals elicited in different cell types are regulated differently in human primary cells.
Collapse
Affiliation(s)
- Jelena Knezević
- Laboratories of Molecular Oncology, Division of Molecular Medicine, Ruðer Bosković Institute, 10000 Zagreb, Croatia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Levenson VV, Melnikov AA. DNA methylation as clinically useful biomarkers-light at the end of the tunnel. Pharmaceuticals (Basel) 2012; 5:94-113. [PMID: 24288045 PMCID: PMC3763627 DOI: 10.3390/ph5010094] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 12/20/2022] Open
Abstract
A recent expansion of our knowledge about epigenetic changes strongly suggests that epigenetic rather than genetic features better reflect disease development, and consequently, can become more conclusive biomarkers for the detection and diagnosis of different diseases. In this paper we will concentrate on the current advances in DNA methylation studies that demonstrate a direct link between abnormal DNA methylation and a disease. This link can be used to develop diagnostic biomarkers that will precisely identify a particular disease. It also appears that disease-specific DNA methylation patterns undergo unique changes in response to treatment with a particular drug, thus raising the possibility of DNA methylation-based biomarkers for the monitoring of treatment efficacy, for prediction of response to treatment, and for the prognosis of outcome. While biomarkers for oncology are the most obvious applications, other fields of medicine are likely to benefit as well. This potential is demonstrated by DNA methylation-based biomarkers for neurological and psychiatric diseases. A special requirement for a biomarker is the possibility of longitudinal testing. In this regard cell-free circulating DNA from blood is especially interesting because it carries methylation markers specific for a particular disease. Although only a few DNA methylation-based biomarkers have attained clinical relevance, the ongoing efforts to decipher disease-specific methylation patterns are likely to produce additional biomarkers for detection, diagnosis, and monitoring of different diseases in the near future.
Collapse
Affiliation(s)
- Victor V Levenson
- Department of Radiation Oncology, Rush University Medical Center, 1750 West Harrison Street, Chicago, IL 60612, USA.
| | | |
Collapse
|
24
|
Lu KC, Yang HY, Lin YF, Kao SY, Lai CH, Chu CM, Wu CC, Su SL. The T-1237C polymorphism of the Toll-like receptor-9 gene is associated with chronic kidney disease in a Han Chinese population. TOHOKU J EXP MED 2011; 225:109-116. [PMID: 21908957 DOI: 10.1620/tjem.225.109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Chronic kidney disease (CKD) is increasingly recognized as a global public health problem. As inflammatory processes and genetic factors are involved in the pathogenesis of CKD, we have investigated the potential genetic contribution of Toll-like receptor (TLR) gene polymorphisms in CKD. In a case-control association study, 149 CKD patients and 429 healthy controls were genotyped by real-time polymerase chain reaction. CKD patients were defined as kidney damage (albuminuria, proteinuria or hematuria) or glomerular filtration rate < 60 ml/min/1.73 m(2) for 3 months or more. Single nucleotide polymorphisms (SNPs) at TLR-2 G2408A, TLR-4 A12874G and C13174T, and TLR-9 T-1237C, T-1486C, and G1635A were assessed, and linkage disequilibrium calculations and haplotype association analysis were undertaken. The functions of TLR-9 have been documented to recognize the viral and bacterial CpG DNA sequences, whereas detects microbe-derived peptidoglycan and lipopeptides and TLR-4 binds lipopolysaccharides. SNPs within the TLR genes may influence promoter activity, mRNA conformation and subcellular localization, and/or protein structure and function. Our results show that only the TLR-9 T-1237C and G1635A gene polymorphisms demonstrate an association with CKD (p = 0.002 and p = 0.04, respectively). The TLR-9 TCA haplotype at T-1237C, T-1486C, and G1635A was associated with a lower risk of CKD, whereas the TTA haplotype was associated with a higher risk of CKD. In the Han Chinese population, those who carry the C and A alleles at SNPs T-1237C and G1635A in the TLR-9 gene appear to be more susceptible to the development of CKD.
Collapse
Affiliation(s)
- Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kutikhin AG. Association of polymorphisms in TLR genes and in genes of the Toll-like receptor signaling pathway with cancer risk. Hum Immunol 2011; 72:1095-116. [PMID: 21872627 DOI: 10.1016/j.humimm.2011.07.307] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/06/2011] [Accepted: 07/25/2011] [Indexed: 12/15/2022]
Abstract
Toll-like receptors (TLRs) constitute a family of receptors directly recognizing a wide spectrum of exogenous and endogenous ligands playing the key role in realization of innate and adaptive immune response, and participating in the processes of cell proliferation, survival, apoptosis, angiogenesis, tissue remodeling and repair. Polymorphisms in TLR genes may shift balance between pro- and anti-inflammatory cytokines, modulating the risk of infection, chronic inflammation and cancer. The short list of TLR polymorphisms perspective for oncogenomic investigations can include rs10008492, rs4833103, rs5743815, rs11466657, rs7696175 (TLR1-TLR6-TLR10 gene cluster); rs3804100, rs4696480, -196 - -174 del (Delta22), GT-microsatellite polymorphism (TLR2); 829A/C (TLR3); rs5743836, rs352140 (TLR9). The extended list can additionally include rs4833095 rs5743551, rs5743618 (TLR1); rs5743704, rs62323857, rs1219178642 (TLR2); rs5743305, rs3775291, rs121434431, rs5743316 (TLR3); rs5744168 (TLR5); rs179008 (TLR7); rs3764880, rs2407992 (TLR8); rs352139, rs187084, rs41308230, rs5743844 (TLR9); rs4129009 (TLR10). General reasons for discrepancies between studies are insufficiency of sample size, age/gender/BMI/ethnic/racial differences, differences in prevalence of infectious agent in case and control groups, differences in immune response caused by specific ligand, differences in stratification, methods of diagnostics of cancer or chronic inflammatory conditions, genotyping methods, and chance. Future well-designed studies on large samples should shed light on the significance of TLR polymorphisms for cancer prevention.
Collapse
Affiliation(s)
- Anton G Kutikhin
- Department of Epidemiology and Central Research Laboratory, Kemerovo State Medical Academy, Kemerovo, Russian Federation.
| |
Collapse
|