1
|
Richter EA, Bilan PJ, Klip A. A comprehensive view of muscle glucose uptake: regulation by insulin, contractile activity, and exercise. Physiol Rev 2025; 105:1867-1945. [PMID: 40173020 DOI: 10.1152/physrev.00033.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/07/2024] [Accepted: 03/08/2025] [Indexed: 04/04/2025] Open
Abstract
Skeletal muscle is the main site of glucose deposition in the body during meals and the major glucose utilizer during physical activity. Although in both instances the supply of glucose from the circulation to the muscle is of paramount importance, in most conditions the rate-limiting step in glucose uptake, storage, and utilization is the transport of glucose across the muscle cell membrane. This step is dependent upon the translocation of the insulin- and contraction-responsive glucose transporter GLUT4 from intracellular storage sites to the sarcolemma and T tubules. Here, we first analyze how glucose can traverse the capillary wall into the muscle interstitial space. We then review the molecular processes that regulate GLUT4 translocation in response to insulin and muscle contractions and the methodologies utilized to unravel them. We further discuss how physical activity and inactivity, respectively, lead to increased and decreased insulin action in muscle and touch upon sex differences in glucose metabolism. Although many key processes regulating glucose uptake in muscle are known, the advent of newer and bioinformatics tools has revealed further molecular signaling processes reaching a staggering level of complexity. Much of this molecular mapping has emerged from cellular and animal studies and more recently from application of a variety of -omics in human tissues. In the future, it will be imperative to validate the translatability of results drawn from experimental systems to human physiology.
Collapse
Affiliation(s)
- Erik A Richter
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Munteanu C, Kotova P, Schwartz B. Impact of Olive Oil Components on the Expression of Genes Related to Type 2 Diabetes Mellitus. Nutrients 2025; 17:570. [PMID: 39940428 PMCID: PMC11820997 DOI: 10.3390/nu17030570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disorder characterized by insulin resistance and beta cell dysfunction, resulting in hyperglycemia. Olive oil, a cornerstone of the Mediterranean diet, has attracted considerable attention due to its potential health benefits, including reducing the risk of developing T2DM. This literature review aims to critically examine and synthesize existing research regarding the impact of olive oil on the expression of genes relevant to T2DM. This paper also seeks to provide an immunological and genetic perspective on the signaling pathways of the main components of extra virgin olive oil. Key bioactive components of olive oil, such as oleic acid and phenolic compounds, were identified as modulators of insulin signaling. These compounds enhanced the insulin signaling pathway, improved lipid metabolism, and reduced oxidative stress by decreasing reactive oxygen species (ROS) production. Additionally, they were shown to alleviate inflammation by inhibiting the NF-κB pathway and downregulating pro-inflammatory cytokines and enzymes. Furthermore, these bioactive compounds were observed to mitigate endoplasmic reticulum (ER) stress by downregulating stress markers, thereby protecting beta cells from apoptosis and preserving their function. In summary, olive oil, particularly its bioactive constituents, has been demonstrated to enhance insulin sensitivity, protect beta cell function, and reduce inflammation and oxidative stress by modulating key genes involved in these processes. These findings underscore olive oil's therapeutic potential in managing T2DM. However, further research, including well-designed human clinical trials, is required to fully elucidate the role of olive oil in personalized nutrition strategies for the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Polina Kotova
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190500, Israel
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190500, Israel
| |
Collapse
|
3
|
Saw EL. Induction on Insulin Resistance In Vitro. Methods Mol Biol 2025; 2894:43-51. [PMID: 39699809 DOI: 10.1007/978-1-0716-4342-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Cellular model serves as a crucial preclinical research tool, providing essential insights into the mechanistic aspects of disease biology. Particularly in the study of chronic metabolic disorders such as type 2 diabetes mellitus and obesity, palmitate (a saturated fatty acid) is often used as a key inducer of insulin resistance in vitro. Within this chapter, I delineate procedures aimed at inducing insulin resistance in AC16 human cardiac-derived cells. The method involves the strategic application of heightened concentrations of palmitate and glucose to specifically target the AKT/GLUT-4 signaling pathway.
Collapse
Affiliation(s)
- Eng Leng Saw
- Whitaker Cardiovascular Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Kandror KV. Self-assembly of the insulin-responsive vesicles creates a signaling platform for the insulin action on glucose uptake. VITAMINS AND HORMONES 2024; 128:93-121. [PMID: 40097254 DOI: 10.1016/bs.vh.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
In fat and skeletal muscle cells, insulin causes plasma membrane translocation of specialized insulin-responsive vesicles, or IRVs. These vesicles consist of multiple copies of Glut4, sortilin, IRAP, and LRP1 as well as several auxiliary components. Major IRV proteins have relatively long half-life inside the cell and survive multiple rounds of translocation to and from the cell surface. Here, we summarize evidence showing how the IRVs are self-assembled from pre-synthesized Glut4, sortilin, IRAP, and LRP1 after each translocation event. Furthermore, the cytoplasmic tail of sortilin binds Akt while cytoplasmic tails of IRAP and LRP1 interact with the Akt target, TBC1D4. Recruitment of signaling proteins to the IRVs may render insulin responsiveness to this compartment and thus distinguish it from other intracellular membrane vesicles.
Collapse
Affiliation(s)
- Konstantin V Kandror
- Department of Biochemistry and Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States.
| |
Collapse
|
5
|
Yong J, Song J. CaMKII activity and metabolic imbalance-related neurological diseases: Focus on vascular dysfunction, synaptic plasticity, amyloid beta accumulation, and lipid metabolism. Biomed Pharmacother 2024; 175:116688. [PMID: 38692060 DOI: 10.1016/j.biopha.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024] Open
Abstract
Metabolic syndrome (MetS) is characterized by insulin resistance, hyperglycemia, excessive fat accumulation and dyslipidemia, and is known to be accompanied by neuropathological symptoms such as memory loss, anxiety, and depression. As the number of MetS patients is rapidly increasing globally, studies on the mechanisms of metabolic imbalance-related neuropathology are emerging as an important issue. Ca2+/calmodulin-dependent kinase II (CaMKII) is the main Ca2+ sensor and contributes to diverse intracellular signaling in peripheral organs and the central nervous system (CNS). CaMKII exerts diverse functions in cells, related to mechanisms such as RNA splicing, reactive oxygen species (ROS) generation, cytoskeleton, and protein-protein interactions. In the CNS, CaMKII regulates vascular function, neuronal circuits, neurotransmission, synaptic plasticity, amyloid beta toxicity, lipid metabolism, and mitochondrial function. Here, we review recent evidence for the role of CaMKII in neuropathologic issues associated with metabolic disorders.
Collapse
Affiliation(s)
- Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea.
| |
Collapse
|
6
|
Zaarur N, Meriin AB, Singh M, Goel RK, Zaia J, Kandror KV. Akt may associate with insulin-responsive vesicles via interaction with sortilin. FEBS Lett 2024; 598:390-399. [PMID: 38105115 PMCID: PMC10922807 DOI: 10.1002/1873-3468.14790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Insulin-responsive vesicles (IRVs) deliver the glucose transporter Glut4 to the plasma membrane in response to activation of the insulin signaling cascade: insulin receptor-IRS-PI3 kinase-Akt-TBC1D4-Rab10. Previous studies have shown that Akt, TBC1D4, and Rab10 are compartmentalized on the IRVs. Although functionally significant, the mechanism of Akt association with the IRVs remains unknown. Using pull-down assays, immunofluorescence microscopy, and cross-linking, we have found that Akt may be recruited to the IRVs via the interaction with the juxtamembrane domain of the cytoplasmic C terminus of sortilin, a major IRV protein. Overexpression of full-length sortilin increases insulin-stimulated phosphorylation of TBC1D4 and glucose uptake in adipocytes, while overexpression of the cytoplasmic tail of sortilin has the opposite effect. Our findings demonstrate that the IRVs represent both a scaffold and a target of insulin signaling.
Collapse
Affiliation(s)
- Nava Zaarur
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118
| | - Anatoli B. Meriin
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118
| | - Maneet Singh
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118
| | - Raghuveera K. Goel
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118
- Center for Network Systems Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118
| | - Joseph Zaia
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118
- Center for Network Systems Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118
| | - Konstantin V. Kandror
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA 02118
| |
Collapse
|
7
|
Pánico P, Velasco M, Salazar AM, Ostrosky-Wegman P, Hiriart M. The effects of sucrose and arsenic on muscular insulin signaling pathways differ between the gastrocnemius and quadriceps muscles. Front Endocrinol (Lausanne) 2023; 14:1165415. [PMID: 37229459 PMCID: PMC10205014 DOI: 10.3389/fendo.2023.1165415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Insulin resistance in muscle can originate from a sedentary lifestyle, hypercaloric diets, or exposure to endocrine-disrupting pollutants such as arsenic. In skeletal muscle, insulin stimulates glucose uptake by translocating GLUT4 to the sarcolemma. This study aimed to evaluate the alterations induced by sucrose and arsenic exposure in vivo on the pathways involved in insulinstimulated GLUT4 translocation in the quadriceps and gastrocnemius muscles. Methods Male Wistar rats were treated with 20% sucrose (S), 50 ppm sodium arsenite (A), or both (A+S) in drinking water for 8 weeks. We conducted an intraperitoneal insulin tolerance (ITT) test on the seventh week of treatment. The quadriceps and gastrocnemius muscles were obtained after overnight fasting or 30 min after intraperitoneal insulin injection. We assessed changes in GLUT4 translocation to the sarcolemma by cell fractionation and abundance of the proteins involved in GLUT4 translocation by Western blot. Results Male rats consuming S and A+S gained more weight than control and Atreated animals. Rats consuming S, A, and A+S developed insulin resistance assessed through ITT. Neither treatments nor insulin stimulation in the quadriceps produced changes in GLUT4 levels in the sarcolemma and Akt phosphorylation. Conversely, A and A+S decreased protein expression of Tether containing UBX domain for GLUT4 (TUG), and A alone increased calpain-10 expression. All treatments reduced this muscle's protein levels of VAMP2. Conversely, S and A treatment increased basal GLUT4 levels in the sarcolemma of the gastrocnemius, while all treatments inhibited insulin-induced GLUT4 translocation. These effects correlated with lower basal levels of TUG and impaired insulin-stimulated TUG proteolysis. Moreover, animals treated with S had reduced calpain-10 protein levels in this muscle, while A and A+S inhibited insulin-induced Akt phosphorylation. Conclusion Arsenic and sucrose induce systemic insulin resistance due to defects in GLUT4 translocation induced by insulin. These defects depend on which muscle is being analyzed, in the quadriceps there were defects in GLUT4 retention and docking while in the gastrocnemius the Akt pathway was impacted by arsenic and the proteolytic pathway was impaired by arsenic and sucrose.
Collapse
Affiliation(s)
- Pablo Pánico
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Myrian Velasco
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana María Salazar
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Patricia Ostrosky-Wegman
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcia Hiriart
- Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
8
|
Yudhani RD, Sari Y, Nugrahaningsih DAA, Sholikhah EN, Rochmanti M, Purba AKR, Khotimah H, Nugrahenny D, Mustofa M. In Vitro Insulin Resistance Model: A Recent Update. J Obes 2023; 2023:1964732. [PMID: 36714242 PMCID: PMC9876677 DOI: 10.1155/2023/1964732] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/28/2022] [Accepted: 01/07/2023] [Indexed: 01/20/2023] Open
Abstract
Insulin resistance, which affects insulin-sensitive tissues, including adipose tissues, skeletal muscle, and the liver, is the central pathophysiological mechanism underlying type 2 diabetes progression. Decreased glucose uptake in insulin-sensitive tissues disrupts insulin signaling pathways, particularly the PI3K/Akt pathway. An in vitro model is appropriate for studying the cellular and molecular mechanisms underlying insulin resistance because it is easy to maintain and the results can be easily reproduced. The application of cell-based models for exploring the pathogenesis of diabetes and insulin resistance as well as for developing drugs for these conditions is well known. However, a comprehensive review of in vitro insulin resistance models is lacking. Therefore, this review was conducted to provide a comprehensive overview and summary of the latest in vitro insulin resistance models, particularly 3T3-L1 (preadipocyte), C2C12 (skeletal muscle), and HepG2 (liver) cell lines induced with palmitic acid, high glucose, or chronic exposure to insulin.
Collapse
Affiliation(s)
- Ratih D. Yudhani
- Department of Pharmacology, Faculty of Medicine, Universitas Sebelas Maret, Jl. Ir. Sutami No. 36A, Surakarta, Central Java 57126, Indonesia
| | - Yulia Sari
- Department of Parasitology, Faculty of Medicine, Universitas Sebelas Maret, Jl. Ir. Sutami No. 36A, Surakarta, Central Java 57126, Indonesia
| | - Dwi A. A. Nugrahaningsih
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Farmako, Sekip Utara, Sleman, Daerah Istimewa Yogyakarta 55281, Indonesia
| | - Eti N. Sholikhah
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Farmako, Sekip Utara, Sleman, Daerah Istimewa Yogyakarta 55281, Indonesia
| | - Maftuchah Rochmanti
- Department of Anatomy, Histology and Pharmacology, Faculty of Medicine, Universitas Airlangga, Jl Mayjen Prof. Dr. Moestopo 47, Surabaya, East Java 60131, Indonesia
| | - Abdul K. R. Purba
- Department of Anatomy, Histology and Pharmacology, Faculty of Medicine, Universitas Airlangga, Jl Mayjen Prof. Dr. Moestopo 47, Surabaya, East Java 60131, Indonesia
| | - Husnul Khotimah
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Jl. Veteran, Malang, East Java 65145, Indonesia
| | - Dian Nugrahenny
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Jl. Veteran, Malang, East Java 65145, Indonesia
| | - Mustofa Mustofa
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Farmako, Sekip Utara, Sleman, Daerah Istimewa Yogyakarta 55281, Indonesia
| |
Collapse
|
9
|
Mitok KA, Keller MP, Attie AD. Sorting through the extensive and confusing roles of sortilin in metabolic disease. J Lipid Res 2022; 63:100243. [PMID: 35724703 PMCID: PMC9356209 DOI: 10.1016/j.jlr.2022.100243] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 01/06/2023] Open
Abstract
Sortilin is a post-Golgi trafficking receptor homologous to the yeast vacuolar protein sorting receptor 10 (VPS10). The VPS10 motif on sortilin is a 10-bladed β-propeller structure capable of binding more than 50 proteins, covering a wide range of biological functions including lipid and lipoprotein metabolism, neuronal growth and death, inflammation, and lysosomal degradation. Sortilin has a complex cellular trafficking itinerary, where it functions as a receptor in the trans-Golgi network, endosomes, secretory vesicles, multivesicular bodies, and at the cell surface. In addition, sortilin is associated with hypercholesterolemia, Alzheimer's disease, prion diseases, Parkinson's disease, and inflammation syndromes. The 1p13.3 locus containing SORT1, the gene encoding sortilin, carries the strongest association with LDL-C of all loci in human genome-wide association studies. However, the mechanism by which sortilin influences LDL-C is unclear. Here, we review the role sortilin plays in cardiovascular and metabolic diseases and describe in detail the large and often contradictory literature on the role of sortilin in the regulation of LDL-C levels.
Collapse
Affiliation(s)
- Kelly A Mitok
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
10
|
Joseph JS, Anand K, Malindisa ST, Fagbohun OF. Role of CaMKII in the regulation of fatty acids and lipid metabolism. Diabetes Metab Syndr 2021; 15:589-594. [PMID: 33714133 DOI: 10.1016/j.dsx.2021.02.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND & AIMS Previous studies have reported the beneficial roles of the activation of calmodulin-dependent protein kinase (CaMK)II to many cellular functions associated with human health. This review aims at discussing its activation by exercise as well as its roles in the regulation of unsaturated, saturated, omega 3 fatty acids, and lipid metabolism. METHODS A wide literature search was conducted using online database such as 'PubMed', 'Google Scholar', 'Researcher', 'Scopus' and the website of World Health Organization (WHO) as well as Control Disease and Prevention (CDC). The criteria for the search were mainly lipid and fatty acid metabolism, diabetes, and metabolic syndrome (MetS). A total of ninety-seven articles were included in the review. RESULTS Calmodulin-dependent protein kinase activation by exercise is helpful in controlling membrane lipids related with type 2 diabetes and obesity. CaMKII regulates many health beneficial cellular functions in individuals who exercise compared with those who do not exercise. Regulation of lipid metabolism and fatty acids are crucial in the improvement of metabolic syndrome. CONCLUSIONS Approaches that involve CaMKII could be a new avenue for designing novel and effective therapeutic modalities in the treatment or better management of metabolic diseases such as type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Jitcy S Joseph
- Department of Toxicology and Biochemistry, National Institute for Occupational Health, A Division of National Health Laboratory Service, Johannesburg, South Africa.
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Sibusiso T Malindisa
- Department of Life and Consumer Sciences, University of South Africa (UNISA), Florida Park, Johannesburg, South Africa
| | - Oladapo F Fagbohun
- Department of Biomedical Engineering, First Technical University, Ibadan, Oyo State, Nigeria; Department of Pediatrics, Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Yang HW, Jiang YF, Lee HG, Jeon YJ, Ryu B. Ca 2+-Dependent Glucose Transport in Skeletal Muscle by Diphlorethohydroxycarmalol, an Alga Phlorotannin: In Vitro and In Vivo Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8893679. [PMID: 33628395 PMCID: PMC7889350 DOI: 10.1155/2021/8893679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/21/2020] [Accepted: 01/13/2021] [Indexed: 12/31/2022]
Abstract
Diphlorethohydroxycarmalol (DPHC), a type of phlorotannin isolated from the marine alga Ishige okamurae, reportedly alleviates impaired glucose tolerance. However, the molecular mechanisms of DPHC regulatory activity and by which it exerts potential beneficial effects on glucose transport into skeletal myotubes to control glucose homeostasis remain largely unexplored. The aim of this study was to evaluate the effect of DPHC on cytosolic Ca2+ levels and its correlation with blood glucose transport in skeletal myotubes in vitro and in vivo. Cytosolic Ca2+ levels upon DPHC treatment were evaluated in skeletal myotubes and zebrafish larvae by Ca2+ imaging using Fluo-4. We investigated the effect of DPHC on the blood glucose level and glucose transport pathway in a hyperglycemic zebrafish. DPHC was shown to control blood glucose levels by accelerating glucose transport; this effect was associated with elevated cytosolic Ca2+ levels in skeletal myotubes. Moreover, the increased cytosolic Ca2+ level caused by DPHC can facilitate the Glut4/AMPK pathways of the skeletal muscle in activating glucose metabolism, thereby regulating muscle contraction through the regulation of expression of troponin I/C, CaMKII, and ATP. Our findings provide insights into the mechanism of DPHC activity in skeletal myotubes, suggesting that increased cytosolic Ca2+ levels caused by DPHC can promote glucose transport into skeletal myotubes to modulate blood glucose levels, thus indicating the potential use of DPHC in the prevention of diabetes.
Collapse
Affiliation(s)
- Hye-Won Yang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Yun-Fei Jiang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Hyo-Geun Lee
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea
| | - BoMi Ryu
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
12
|
Complexin-2 redistributes to the membrane of muscle cells in response to insulin and contributes to GLUT4 translocation. Biochem J 2021; 478:407-422. [DOI: 10.1042/bcj20200542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/11/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022]
Abstract
Insulin stimulates glucose uptake in muscle cells by rapidly redistributing vesicles containing GLUT4 glucose transporters from intracellular compartments to the plasma membrane (PM). GLUT4 vesicle fusion requires the formation of SNARE complexes between vesicular VAMP and PM syntaxin4 and SNAP23. SNARE accessory proteins usually regulate vesicle fusion processes. Complexins aide in neuro-secretory vesicle-membrane fusion by stabilizing trans-SNARE complexes but their participation in GLUT4 vesicle fusion is unknown. We report that complexin-2 is expressed and homogeneously distributed in L6 rat skeletal muscle cells. Upon insulin stimulation, a cohort of complexin-2 redistributes to the PM. Complexin-2 knockdown markedly inhibited GLUT4 translocation without affecting proximal insulin signalling of Akt/PKB phosphorylation and actin fiber remodelling. Similarly, complexin-2 overexpression decreased maximal GLUT4 translocation suggesting that the concentration of complexin-2 is finely tuned to vesicle fusion. These findings reveal an insulin-dependent regulation of GLUT4 insertion into the PM involving complexin-2.
Collapse
|
13
|
da Silva Rosa SC, Nayak N, Caymo AM, Gordon JW. Mechanisms of muscle insulin resistance and the cross-talk with liver and adipose tissue. Physiol Rep 2020; 8:e14607. [PMID: 33038072 PMCID: PMC7547588 DOI: 10.14814/phy2.14607] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/18/2022] Open
Abstract
Insulin resistance is a metabolic disorder affecting multiple tissues and is a precursor event to type 2 diabetes (T2D). As T2D affects over 425 million people globally, there is an imperative need for research into insulin resistance to better understand the underlying mechanisms. The proposed mechanisms involved in insulin resistance include both whole body aspects, such as inflammation and metabolic inflexibility; as well as cellular phenomena, such as lipotoxicity, ER stress, and mitochondrial dysfunction. Despite numerous studies emphasizing the role of lipotoxicity in the pathogenesis of insulin resistance, an understanding of the interplay between tissues and these proposed mechanisms is still emerging. Furthermore, the tissue-specific and unique responses each of the three major insulin target tissues and how each interconnect to regulate the whole body insulin response has become a new priority in metabolic research. With an emphasis on skeletal muscle, this mini-review highlights key similarities and differences in insulin signaling and resistance between different target-tissues, and presents the latest findings related to how these tissues communicate to control whole body metabolism.
Collapse
Affiliation(s)
- Simone C. da Silva Rosa
- Department of Human Anatomy and Cell ScienceUniversity of ManitobaWinnipegCanada
- The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) ThemeUniversity of ManitobaWinnipegCanada
- Children’s Hospital Research Institute of Manitoba (CHRIM)University of ManitobaWinnipegCanada
| | - Nichole Nayak
- The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) ThemeUniversity of ManitobaWinnipegCanada
- Children’s Hospital Research Institute of Manitoba (CHRIM)University of ManitobaWinnipegCanada
- College of NursingUniversity of ManitobaWinnipegCanada
| | - Andrei Miguel Caymo
- The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) ThemeUniversity of ManitobaWinnipegCanada
- Children’s Hospital Research Institute of Manitoba (CHRIM)University of ManitobaWinnipegCanada
| | - Joseph W. Gordon
- Department of Human Anatomy and Cell ScienceUniversity of ManitobaWinnipegCanada
- The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) ThemeUniversity of ManitobaWinnipegCanada
- Children’s Hospital Research Institute of Manitoba (CHRIM)University of ManitobaWinnipegCanada
- College of NursingUniversity of ManitobaWinnipegCanada
| |
Collapse
|
14
|
Klimentidis YC, Arora A, Newell M, Zhou J, Ordovas JM, Renquist BJ, Wood AC. Phenotypic and Genetic Characterization of Lower LDL Cholesterol and Increased Type 2 Diabetes Risk in the UK Biobank. Diabetes 2020; 69:2194-2205. [PMID: 32493714 PMCID: PMC7506834 DOI: 10.2337/db19-1134] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/29/2020] [Indexed: 01/03/2023]
Abstract
Although hyperlipidemia is traditionally considered a risk factor for type 2 diabetes (T2D), evidence has emerged from statin trials and candidate gene investigations suggesting that lower LDL cholesterol (LDL-C) increases T2D risk. We thus sought to more comprehensively examine the phenotypic and genotypic relationships of LDL-C with T2D. Using data from the UK Biobank, we found that levels of circulating LDL-C were negatively associated with T2D prevalence (odds ratio 0.41 [95% CI 0.39, 0.43] per mmol/L unit of LDL-C), despite positive associations of circulating LDL-C with HbA1c and BMI. We then performed the first genome-wide exploration of variants simultaneously associated with lower circulating LDL-C and increased T2D risk, using data on LDL-C from the UK Biobank (n = 431,167) and the Global Lipids Genetics Consortium (n = 188,577), and data on T2D from the Diabetes Genetics Replication and Meta-Analysis consortium (n = 898,130). We identified 31 loci associated with lower circulating LDL-C and increased T2D, capturing several potential mechanisms. Seven of these loci have previously been identified for this dual phenotype, and nine have previously been implicated in nonalcoholic fatty liver disease. These findings extend our current understanding of the higher T2D risk among individuals with low circulating LDL-C and of the underlying mechanisms, including those responsible for the diabetogenic effect of LDL-C-lowering medications.
Collapse
Affiliation(s)
- Yann C Klimentidis
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ
- BIO5 Institute, University of Arizona, Tucson, AZ
| | - Amit Arora
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ
| | - Michelle Newell
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ
| | - Jin Zhou
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA
- Instituto Madrileño de Estudios Avanzados (IMDEA) Food Institute, Campus de Excelencia Internacional Universidad Autónoma de Madrid + Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Benjamin J Renquist
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ
| | - Alexis C Wood
- U.S. Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX
| |
Collapse
|
15
|
Attenuation of Free Fatty Acid (FFA)-Induced Skeletal Muscle Cell Insulin Resistance by Resveratrol is Linked to Activation of AMPK and Inhibition of mTOR and p70 S6K. Int J Mol Sci 2020; 21:ijms21144900. [PMID: 32664532 PMCID: PMC7404286 DOI: 10.3390/ijms21144900] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Insulin resistance, a main characteristic of type 2 diabetes mellitus (T2DM), is linked to obesity and excessive levels of plasma free fatty acids (FFA). Studies indicated that significantly elevated levels of FFAs lead to skeletal muscle insulin resistance, by dysregulating the steps in the insulin signaling cascade. The polyphenol resveratrol (RSV) was shown to have antidiabetic properties but the exact mechanism(s) involved are not clearly understood. In the present study, we examined the effect of RSV on FFA-induced insulin resistance in skeletal muscle cells in vitro and investigated the mechanisms involved. Parental and GLUT4myc-overexpressing L6 rat skeletal myotubes were used. [3H]2-deoxyglucose (2DG) uptake was measured, and total and phosphorylated levels of specific proteins were examined by immunoblotting. Exposure of L6 cells to FFA palmitate decreased the insulin-stimulated glucose uptake, indicating insulin resistance. Palmitate increased ser307 (131% ± 1.84% of control, p < 0.001) and ser636/639 (148% ± 10.1% of control, p < 0.01) phosphorylation of IRS-1, and increased the phosphorylation levels of mTOR (174% ± 15.4% of control, p < 0.01) and p70 S6K (162% ± 20.2% of control, p < 0.05). Treatment with RSV completely abolished these palmitate-induced responses. In addition, RSV increased the activation of AMPK and restored the insulin-mediated increase in (a) plasma membrane GLUT4 glucose transporter levels and (b) glucose uptake. These data suggest that RSV has the potential to counteract the FFA-induced muscle insulin resistance.
Collapse
|
16
|
Ouyang S, Jia B, Xie W, Yang J, Lv Y. Mechanism underlying the regulation of sortilin expression and its trafficking function. J Cell Physiol 2020; 235:8958-8971. [PMID: 32474917 DOI: 10.1002/jcp.29818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022]
Abstract
This review summarizes and analyzes the updated information on the regulation of sortilin expression and its trafficking function. Evidence indicates that the expression and function of sortilin are closely regulated at four levels: DNA, messenger RNA (mRNA), protein, and trafficking function. DNA methylation, several mutations, and minor single-nucleotide polymorphisms within DNA fragments affect the expression of SORT1 gene. A few transcription factors and microRNAs modulate its transcription as well as the splicing or stability of the mRNA. Moreover, several translation factors control the synthesis of sortilin protein, and posttranslational modifications affect its degradation processes. Multiple adaptor molecules modulate the sortilin trafficking function in the anterograde or retrograde pathway. Recent advances in the regulation of sortilin expression and function, and its related mechanisms will help the ongoing research related to sortilin and promote future clinical application via sortilin intervention.
Collapse
Affiliation(s)
- Shuhui Ouyang
- Department of Anatomy, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, China
| | - Bo Jia
- Department of Anatomy, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, China
| | - Wei Xie
- Department of Anatomy, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, China
| | - Jing Yang
- Department of Endocrinology of the First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Yuncheng Lv
- Department of Anatomy, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, China.,Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| |
Collapse
|
17
|
Saha S. Association between the membrane transporter proteins and type 2 diabetes mellitus. Expert Rev Clin Pharmacol 2020; 13:287-297. [PMID: 32066279 DOI: 10.1080/17512433.2020.1729125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The prevalence rate of diabetes is increasing day by day and the current scenario of the available agents for its treatment has given rise to stimulation in the search for new therapeutic targets and agents. Therefore the present review will examine the role of membrane composition in the pathophysiology of Type 2 Diabetes and the possible therapeutic approaches for this.Areas covered: Glucose transporter proteins (GLUTs) are integral membrane proteins which are responsible for facilitated glucose transport over the plasma membrane into cells. Thus, this chapter is an attempt to interpret the co-relation between membrane transporter proteins and lipid molecules of cell membrane and their implications in type 2 diabetes mellitus. The relationship between the composition controlled flexibility of the membrane in the insertion of GLUTs into cell membrane as well as its fusion with the membrane is the focus of this chapter.Expert opinion: There is increasing data on the central role of phospholipid composition toward T2DM. Plasma membrane lipid composition plays a key role in maintaining the machinery for insulin-independent GLUT insertion into the membrane as well as insulin-dependent GLUT4 containing vesicles. As a therapeutic option, the designing of new chemical entities should be aimed to decrease saturated fatty acids of lipid bilayer phospholipids to target type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Sarmistha Saha
- Department of Zoology, University School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
18
|
Su X, Peng D. New insight into sortilin in controlling lipid metabolism and the risk of atherogenesis. Biol Rev Camb Philos Soc 2020; 95:232-243. [PMID: 31625271 DOI: 10.1111/brv.12561] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Xin Su
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
19
|
Chen C, Li J, Matye DJ, Wang Y, Li T. Hepatocyte sortilin 1 knockout and treatment with a sortilin 1 inhibitor reduced plasma cholesterol in Western diet-fed mice. J Lipid Res 2019; 60:539-549. [PMID: 30670473 DOI: 10.1194/jlr.m089789] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/21/2019] [Indexed: 01/10/2023] Open
Abstract
Sortilin 1 (Sort1) is a member of the Vps10p domain intracellular trafficking receptor family. Genetic variations of the SORT1 gene are strongly associated with plasma cholesterol levels in humans. Recent studies have linked Sort1 to regulation of cholesterol metabolism in hepatocytes and pro-inflammatory response in macrophages, but the tissue-specific roles of Sort1 in lipid metabolism have not been well defined. We developed Sort1 floxed mice and investigated the development of Western diet (WD)-induced steatosis, hepatic inflammatory response, and hyperlipidemia in hepatocyte Sort1 KO mice and myeloid cell Sort1 KO mice. Our findings suggest that hepatocyte Sort1 deficiency attenuated diet-induced hepatic steatosis and hypercholesterolemia in mice. In contrast, myeloid Sort1 deficiency did not reduce hepatic cytokine expression or plasma cholesterol levels, but exacerbated hepatic triglyceride accumulation in WD-fed mice. Finally, we showed that treating WD-fed mice with an orally bioavailable Sort1 inhibitor, AF38469, decreased plasma cholesterol and hepatic cytokine expression. AF38469 treatment did not affect diet-induced obesity or insulin resistance, but was associated with reduced hepatic VLDL secretion and higher hepatic cholesterol 7α-hydrolase expression in WD-fed mice. In conclusion, findings from this study suggest that Sort1 loss-of-function in hepatocytes contributes to lower plasma cholesterol, and pharmacological inhibition of Sort1 attenuates diet-induced hypercholesterolemia in mice.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Jibiao Li
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - David J Matye
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Yifeng Wang
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Tiangang Li
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
20
|
Ardiansyah, Inagawa Y, Koseki T, Agista AZ, Ikeda I, Goto T, Komai M, Shirakawa H. Adenosine and adenosine-5'-monophosphate ingestion ameliorates abnormal glucose metabolism in mice fed a high-fat diet. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:304. [PMID: 30428888 PMCID: PMC6236947 DOI: 10.1186/s12906-018-2367-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022]
Abstract
Background We have previously reported that ingestion of adenosine (ADN) and adenosine-5′-monophosphate (AMP) improves abnormal glucose metabolism in the stroke-prone spontaneously hypertensive rat model of non-obesity-associated insulin resistance. In this study, we investigated the effect of ADN and AMP ingestion on glucose metabolism in mice with high-fat diet-induced obesity. Methods Seven-week-old C57BL/6 J mice were administered distilled water (as a control), 10 mg/L ADN, or 13 mg/L AMP via their drinking water for 14 or 25 weeks, during which they were fed a high-fat diet. Oral glucose tolerance test (OGTT) was conducted on 21-week-old mice fasted for 16 h. Insulin tolerance test (ITT) was performed on 22-week-old mice fasted for 3 h. Blood and muscle were collected for further analysis of serum parameters, gene and protein expression levels, respectively. Results Glucose metabolism in the ADN and AMP groups was significantly improved compared with the control. OGTT and ITT showed that ADN and AMP groups lower than control group. Furthermore, phosphorylation of AMP-activated protein kinase (AMPK) and mRNA levels of genes involved in lipid oxidation were enhanced in the skeletal muscle of ADN- and AMP-treated mice. Conclusion These results indicate that ingestion of ADN or AMP induces activation of AMPK in skeletal muscle and mitigates insulin resistance in mice with high-fat diet-induced diabetes. Electronic supplementary material The online version of this article (10.1186/s12906-018-2367-6) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Tsuchiya M, Sekiai S, Hatakeyama H, Koide M, Chaweewannakorn C, Yaoita F, Tan-No K, Sasaki K, Watanabe M, Sugawara S, Endo Y, Itoi E, Hagiwara Y, Kanzaki M. Neutrophils Provide a Favorable IL-1-Mediated Immunometabolic Niche that Primes GLUT4 Translocation and Performance in Skeletal Muscles. Cell Rep 2018; 23:2354-2364. [DOI: 10.1016/j.celrep.2018.04.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/09/2018] [Accepted: 04/14/2018] [Indexed: 11/27/2022] Open
|
22
|
Su Z, Deshpande V, James DE, Stöckli J. Tankyrase modulates insulin sensitivity in skeletal muscle cells by regulating the stability of GLUT4 vesicle proteins. J Biol Chem 2018; 293:8578-8587. [PMID: 29669812 DOI: 10.1074/jbc.ra117.001058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/05/2018] [Indexed: 11/06/2022] Open
Abstract
Tankyrase 1 and 2, members of the poly(ADP-ribose) polymerase family, have previously been shown to play a role in insulin-mediated glucose uptake in adipocytes. However, their precise mechanism of action, and their role in insulin action in other cell types, such as myocytes, remains elusive. Treatment of differentiated L6 myotubes with the small molecule tankyrase inhibitor XAV939 resulted in insulin resistance as determined by impaired insulin-stimulated glucose uptake. Proteomic analysis of XAV939-treated myotubes identified down-regulation of several glucose transporter GLUT4 storage vesicle (GSV) proteins including RAB10, VAMP8, SORT1, and GLUT4. A similar effect was observed following knockdown of tankyrase 1 in L6 myotubes. Inhibition of the proteasome using MG132 rescued GSV protein levels as well as insulin-stimulated glucose uptake in XAV939-treated L6 myotubes. These studies reveal an important role for tankyrase in maintaining the stability of key GLUT4 regulatory proteins that in turn plays a role in regulating cellular insulin sensitivity.
Collapse
Affiliation(s)
- Zhiduan Su
- From the Charles Perkins Centre, School of Life and Environmental Sciences and
| | - Vinita Deshpande
- From the Charles Perkins Centre, School of Life and Environmental Sciences and
| | - David E James
- From the Charles Perkins Centre, School of Life and Environmental Sciences and .,the Sydney Medical School, University of Sydney, Sydney 2006, Australia
| | - Jacqueline Stöckli
- From the Charles Perkins Centre, School of Life and Environmental Sciences and
| |
Collapse
|
23
|
Ebersbach-Silva P, Poletto AC, David-Silva A, Seraphim PM, Anhê GF, Passarelli M, Furuya DT, Machado UF. Palmitate-induced Slc2a4/GLUT4 downregulation in L6 muscle cells: evidence of inflammatory and endoplasmic reticulum stress involvement. Lipids Health Dis 2018; 17:64. [PMID: 29609616 PMCID: PMC5879605 DOI: 10.1186/s12944-018-0714-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
Background Obesity is strongly associated to insulin resistance, inflammation, and elevated plasma free fatty acids, but the mechanisms behind this association are not fully comprehended. Evidences suggest that endoplasmic reticulum (ER) stress may play a role in this complex pathophysiology. The aim of the present study was to investigate the involvement of inflammation and ER stress in the modulation of glucose transporter GLUT4, encoded by Slc2a4 gene, in L6 skeletal muscle cells. Methods L6 cells were acutely (2 h) and chronically (6 and 12 h) exposed to palmitate, and the expression of several proteins involved in insulin resistance, ER stress and inflammation were analyzed. Results Chronic and acute palmitate exposure significantly reduced GLUT4 protein (~ 39%, P < 0.01) and its mRNA (18%, P < 0.01) expression. Only acute palmitate treatment increased GRP78 (28%, P < 0.05), PERK (98%, P < 0.01), eIF-2A (35%, P < 0.01), IRE1a (60%, P < 0.05) and TRAF2 (23%, P < 0.05) protein content, and PERK phosphorylation (106%, P < 0.001), but did not elicit eIF-2A, IKK phosphorylation or increased XBP1 nuclear content. Additionally, acute and chronic palmitate increased NFKB p65 nuclear content (~ 30%, P < 0.05) and NFKB binding activity to Slc2a4 gene promoter (~ 45%, P < 0.05). Conclusion Different pathways are activated in acute and chronic palmitate induced-repression of Slc2a4/GLUT4 expression. This regulation involves activation of initial component of ER stress, such as the formation of a IRE1a-TRAF2-IKK complex, and converges to NFKB-induced repression of Slc2a4/GLUT4. These results link ER stress, inflammation and insulin resistance in L6 cells.
Collapse
Affiliation(s)
- Patrícia Ebersbach-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, São Paulo, 05508-900, Brazil
| | - Ana Cláudia Poletto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, São Paulo, 05508-900, Brazil
| | - Aline David-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, São Paulo, 05508-900, Brazil
| | - Patrícia Monteiro Seraphim
- Department of Physical Therapy, School of Science and Technology, Universidade Estadual Paulista, São Paulo, Brazil
| | - Gabriel Forato Anhê
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Marisa Passarelli
- Laboratório de Lípides (LIM-10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Daniela Tomie Furuya
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, São Paulo, 05508-900, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, São Paulo, 05508-900, Brazil.
| |
Collapse
|
24
|
PKC and Rab13 mediate Ca2+ signal-regulated GLUT4 traffic. Biochem Biophys Res Commun 2018; 495:1956-1963. [DOI: 10.1016/j.bbrc.2017.12.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 11/17/2022]
|
25
|
Abstract
Sorting receptor, sortilin, is highly expressed in metabolically active tissues, such as brain, liver, skeletal muscle, and fat. Specifically in adipocytes, sortilin plays an important role in the “Glut4 pathway” by sorting the insulin-responsive glucose transporter, Glut4, in early endosomes and trans-Golgi network and re-routing the transporter from degradation to the recycling pathway.
Collapse
|
26
|
Astudillo AM, Meana C, Guijas C, Pereira L, Lebrero P, Balboa MA, Balsinde J. Occurrence and biological activity of palmitoleic acid isomers in phagocytic cells. J Lipid Res 2017; 59:237-249. [PMID: 29167413 DOI: 10.1194/jlr.m079145] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/10/2017] [Indexed: 12/28/2022] Open
Abstract
Recent studies have highlighted the role of palmitoleic acid [16:1n-7 (cis-9-hexadecenoic acid)] as a lipid hormone that coordinates cross-talk between liver and adipose tissue and exerts anti-inflammatory protective effects on hepatic steatosis and insulin signaling in murine models of metabolic disease. More recently, a 16:1n-7 isomer, cis-7-hexadecenoic acid (16:1n-9), that also possesses marked anti-inflammatory effects, has been described in human circulating monocytes and monocyte-derived macrophages. By using gas chromatographic/mass spectrometric analyses of dimethyl disulfide derivatives of fatty acyl methyl esters, we describe in this study the presence of a third 16:1 isomer, sapienic acid [16:1n-10 (6-cis-hexadecenoic acid)], in phagocytic cells. Cellular levels of 16:1n-10 appear to depend not only on the cellular content of linoleic acid, but also on the expression level of fatty acid desaturase 2, thus revealing a complex regulation both at the enzyme level, via fatty acid substrate competition, and directly at the gene level. However, unlike 16:1n-7 and 16:1n-9, 16:1n-10 levels are not regulated by the activation state of the cell. Moreover, while 16:1n-7 and 16:1n-9 manifest strong anti-inflammatory activity when added to the cells at low concentrations (10 μM), notably higher concentrations of 16:1n-10 are required to observe a comparable effect. Collectively, these results suggest the presence in phagocytic cells of an unexpected variety of 16:1 isomers, which can be distinguished on the basis of their biological activity and cellular regulation.
Collapse
Affiliation(s)
- Alma M Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Clara Meana
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Carlos Guijas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain
| | - Laura Pereira
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain
| | - Patricia Lebrero
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| |
Collapse
|
27
|
Oleate Prevents Palmitate-Induced Atrophy via Modulation of Mitochondrial ROS Production in Skeletal Myotubes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2739721. [PMID: 28947926 PMCID: PMC5602654 DOI: 10.1155/2017/2739721] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/26/2017] [Accepted: 08/08/2017] [Indexed: 12/25/2022]
Abstract
Accumulation of saturated fatty acids contributes to lipotoxicity-related insulin resistance and atrophy in skeletal muscle. Conversely, unsaturated fatty acids like docosahexaenoic acid were proven to preserve muscle mass. However, it is not known if the most common unsaturated oleate will protect skeletal myotubes against palmitate-mediated atrophy, and its specific mechanism remains to be elucidated. Therefore, we investigated the effects of oleate on atrophy-related factors in palmitate-conditioned myotubes. Exposure of myotubes to palmitate, but not to oleate, led to an induction of fragmented nuclei, myotube loss, atrophy, and mitochondrial superoxide in a dose-dependent manner. Treatment of oleate to myotubes attenuated production of palmitate-induced mitochondrial superoxide in a dose-dependent manner. The treatment of oleate or MitoTEMPO to palmitate-conditioned myotubes led to inhibition of palmitate-induced mRNA expression of proinflammatory (TNF-α and IL6), mitochondrial fission (Drp1 and Fis1), and atrophy markers (myostatin and atrogin1). In accordance with the gene expression data, our immunocytochemistry experiment demonstrated that oleate and MitoTEMPO prevented or attenuated palmitate-mediated myotube shrinkage. These results provide a mechanism indicating that oleate prevents palmitate-mediated atrophy via at least partial modulation of mitochondrial superoxide production.
Collapse
|
28
|
Pan X, Zaarur N, Singh M, Morin P, Kandror KV. Sortilin and retromer mediate retrograde transport of Glut4 in 3T3-L1 adipocytes. Mol Biol Cell 2017; 28:1667-1675. [PMID: 28450454 PMCID: PMC5469609 DOI: 10.1091/mbc.e16-11-0777] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 11/11/2022] Open
Abstract
Sortilin is a multiligand sorting receptor responsible for the anterograde transport of lysosomal enzymes and substrates. Here we demonstrate that sortilin is also involved in retrograde protein traffic. In cultured 3T3-L1 adipocytes, sortilin together with retromer rescues Glut4 from degradation in lysosomes and retrieves it to the TGN, where insulin--responsive vesicles are formed. Mechanistically, the luminal Vps10p domain of sortilin interacts with the first luminal loop of Glut4, and the cytoplasmic tail of sortilin binds to retromer. Ablation of the retromer does not affect insulin signaling but decreases the stability of sortilin and Glut4 and blocks their entry into the small vesicular carriers. As a result, Glut4 cannot reach the insulin-responsive compartment, and insulin-stimulated glucose uptake in adipocytes is suppressed. We suggest that sortilin- and retromer-mediated Glut4 retrieval from endosomes may represent a step in the Glut4 pathway vulnerable to the development of insulin resistance and diabetes.
Collapse
Affiliation(s)
- Xiang Pan
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Nava Zaarur
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Maneet Singh
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Peter Morin
- Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA 01730
| | - Konstantin V Kandror
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
29
|
Ghaffar S, Afridi SK, Aftab MF, Murtaza M, Hafizur RM, Sara S, Begum S, Waraich RS. Clove and Its Active Compound Attenuate Free Fatty Acid-Mediated Insulin Resistance in Skeletal Muscle Cells and in Mice. J Med Food 2017; 20:335-344. [DOI: 10.1089/jmf.2016.3835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Safina Ghaffar
- Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shabbir Khan Afridi
- Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Meha Fatima Aftab
- Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Munazza Murtaza
- Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Rahman M. Hafizur
- Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sara Sara
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sabira Begum
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Rizwana Sanaullah Waraich
- Dr. Panjwani Centre for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
30
|
Ariga M, Yoneyama Y, Fukushima T, Ishiuchi Y, Ishii T, Sato H, Hakuno F, Nedachi T, Takahashi SI. Glucose deprivation attenuates sortilin levels in skeletal muscle cells. Endocr J 2017; 64:255-268. [PMID: 27980238 DOI: 10.1507/endocrj.ej16-0319] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In skeletal muscle, sortilin plays a predominant role in the sorting of glucose transporter 4 (Glut4), thereby controlling glucose uptake. Moreover, our previous study suggested that the sortilin expression levels are also implicated in myogenesis. Despite the importance of sortilin in skeletal muscle, however, the regulation of sortilin expression has not been completely understood. In the present study, we analyzed if the sortilin expression is regulated by glucose in C2C12 myocytes and rat skeletal muscles in vivo. Sortilin protein expression was elevated upon C2C12 cell differentiation and was further enhanced in the presence of a high concentration of glucose. The gene expression and protein degradation of sortilin were not affected by glucose. On the other hand, rapamycin partially reduced sortilin induction by a high concentration of glucose, which suggested that sortilin translation could be regulated by glucose, at least in part. We also examined if the sortilin regulation by glucose was also observed in skeletal muscles that were obtained from fed or fasted rats. Sortilin expression in both gastrocnemius and extensor digitorum longus (EDL) muscle was significantly decreased by 17-18h of starvation. On the other hand, pathological levels of high blood glucose did not alter the sortilin expression in rat skeletal muscle. Overall, the present study suggests that sortilin protein levels are reduced under hypoglycemic conditions by post-transcriptional control in skeletal muscles.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/agonists
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/metabolism
- Animals
- Blood Glucose/analysis
- Cell Differentiation
- Cell Line
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Down-Regulation/drug effects
- Fasting/metabolism
- Food Deprivation
- Glucose/metabolism
- Hindlimb
- Male
- Mechanistic Target of Rapamycin Complex 1
- Multiprotein Complexes/antagonists & inhibitors
- Multiprotein Complexes/metabolism
- Muscle Cells/cytology
- Muscle Cells/drug effects
- Muscle Cells/metabolism
- Muscle Cells/pathology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Protein Kinase Inhibitors/pharmacology
- RNA, Messenger/metabolism
- Rats, Wistar
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Miyako Ariga
- Department of Animal Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li J, Matye DJ, Wang Y, Li T. Sortilin 1 knockout alters basal adipose glucose metabolism but not diet-induced obesity in mice. FEBS Lett 2017; 591:1018-1028. [PMID: 28236654 DOI: 10.1002/1873-3468.12610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/10/2017] [Accepted: 02/21/2017] [Indexed: 01/14/2023]
Abstract
Sortilin 1 (Sort1) is a trafficking receptor that has been implicated in the regulation of plasma cholesterol in humans and mice. Here, we use metabolomics and hyperinsulinemic-euglycemic clamp approaches to obtain further understanding of the in vivo effects of Sort1 deletion on diet-induced obesity as well as on adipose lipid and glucose metabolism. Results show that Sort1 knockout (KO) does not affect Western diet-induced obesity nor adipose fatty acid and ceramide concentrations. Under the basal fasting state, chow-fed Sort1 KO mice have decreased adipose glycolytic metabolites, but Sort1 deletion does not affect insulin-stimulated tissue glucose uptake during the insulin clamp. These results suggest that Sort1 loss-of-function in vivo does not affect obesity development, but differentially modulates adipose glucose metabolism under fasting and insulin-stimulated states.
Collapse
Affiliation(s)
- Jibiao Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, KS, USA
| | - David J Matye
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, KS, USA
| | - Yifeng Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, KS, USA
| | - Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, KS, USA
| |
Collapse
|
32
|
Gómez-Sámano MÁ, Cuevas-Ramos D, Grajales-Gómez M, Escamilla-Márquez M, López-Estrada A, Guillén-Pineda LE, López-Carrasco G, Gómez-Pérez FJ. Reduced first-phase insulin secretion increases postprandial lipidemia in subjects with impaired glucose tolerance. BMJ Open Diabetes Res Care 2017; 5:e000344. [PMID: 28713570 PMCID: PMC5501239 DOI: 10.1136/bmjdrc-2016-000344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/12/2017] [Accepted: 02/05/2017] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE It is not clear which phase of insulin secretion is more important to regulate lipoprotein lipase (LPL) activity. After a meal, insulin is released and acts as a major regulator of LPL activity. Postprandial hyperlipidemia is a common comorbidity in subjects with insulin resistance (IR). Therefore this study aimed to evaluate the role of the first-phase insulin secretion (FPIS) on postprandial lipidemia in subjects with IR and impaired glucose tolerance (IGT). RESEARCH DESIGN AND METHODS This is a cross-sectional, observational and comparative study. We included male and female subjects between 40 and 60 years with a body mass index (BMI) between 23 and 30 kg/m2. Then, patients were divided into three groups. Group 1 consisted of control subjects with normal glucose tolerance and preserved FPIS. Group 2 included patients with IGT and a reduced FPIS. Group 3 consisted of subjects with IGT but normal FPIS. Both groups were paired by age and BMI with subjects in the control group. Subjects underwent an intravenous glucose tolerance test to classify each case, and then a load with a mixed meal load to measure postprandial lipidemia. RESULTS A total of 32 subjects were evaluated: 10 were control subjects, 8 subjects with IGT with a reduced FPIS and 14 subjects with IGT and preserved FPIS. After administration of a standardized meal, group 2 showed a greater glucose area under the curve (AUC) at 30 and 120 min (p=0.001, for both). This group also showed a statistically significant increase (p<0.001) in triglyceride AUC. CONCLUSIONS A reduced FPIS is significantly and independently associated with a larger postprandial hyperlipidemia in subjects with IGT.
Collapse
Affiliation(s)
- Miguel Ángel Gómez-Sámano
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Daniel Cuevas-Ramos
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Mariana Grajales-Gómez
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Marco Escamilla-Márquez
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Angelina López-Estrada
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Luz Elizabeth Guillén-Pineda
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Guadalupe López-Carrasco
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Francisco J Gómez-Pérez
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| |
Collapse
|
33
|
Frigolet ME, Gutiérrez-Aguilar R. The Role of the Novel Lipokine Palmitoleic Acid in Health and Disease. Adv Nutr 2017; 8:173S-181S. [PMID: 28096141 PMCID: PMC5227969 DOI: 10.3945/an.115.011130] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The monounsaturated fatty acid palmitoleate (palmitoleic acid) is one of the most abundant fatty acids in serum and tissues, particularly adipose tissue and liver. Its endogenous production by stearoyl-CoA desaturase 1 gives rise to its cis isoform, cis-palmitoleate. Although trans-palmitoleate is also synthesized in humans, it is mainly found as an exogenous source in ruminant fat and dairy products. Recently, palmitoleate was considered to be a lipokine based on evidence demonstrating its release from adipose tissue and its metabolic effects on distant organs. After this finding, research has been performed to determine whether palmitoleate has beneficial effects on metabolism and to elucidate the underlying mechanisms. Thus, the aim of this work was to review the current status of knowledge about palmitoleate, its metabolism, and its influence on metabolic abnormalities. Results have shown mixed cardiovascular effects, direct or inverse correlations with obesity, and hepatosteatosis, but a significant amelioration or prevention of insulin resistance and diabetes. Finally, the induction of palmitoleate release from adipose tissue, dietary intake, and its supplementation are all interventions with a potential impact on certain metabolic diseases.
Collapse
Affiliation(s)
- María E Frigolet
- Metabolic Diseases: Obesity and Diabetes Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico; and
| | - Ruth Gutiérrez-Aguilar
- Metabolic Diseases: Obesity and Diabetes Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico; and
- Research Division, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
34
|
Nurnberg ST, Zhang H, Hand NJ, Bauer RC, Saleheen D, Reilly MP, Rader DJ. From Loci to Biology: Functional Genomics of Genome-Wide Association for Coronary Disease. Circ Res 2016; 118:586-606. [PMID: 26892960 DOI: 10.1161/circresaha.115.306464] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genome-wide association studies have provided a rich collection of ≈ 58 coronary artery disease (CAD) loci that suggest the existence of previously unsuspected new biology relevant to atherosclerosis. However, these studies only identify genomic loci associated with CAD, and many questions remain even after a genomic locus is definitively implicated, including the nature of the causal variant(s) and the causal gene(s), as well as the directionality of effect. There are several tools that can be used for investigation of the functional genomics of these loci, and progress has been made on a limited number of novel CAD loci. New biology regarding atherosclerosis and CAD will be learned through the functional genomics of these loci, and the hope is that at least some of these new pathways relevant to CAD pathogenesis will yield new therapeutic targets for the prevention and treatment of CAD.
Collapse
Affiliation(s)
- Sylvia T Nurnberg
- From the Division of Translational Medicine and Human Genetics, Department of Medicine (S.T.N., R.C.B., D.J.R.), Penn Cardiovascular Institute, Department of Medicine (H.Z., M.P.R., D.J.R.), Department of Genetics (N.J.H., D.J.R.), and Department of Biostatistics and Epidemiology (D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Hanrui Zhang
- From the Division of Translational Medicine and Human Genetics, Department of Medicine (S.T.N., R.C.B., D.J.R.), Penn Cardiovascular Institute, Department of Medicine (H.Z., M.P.R., D.J.R.), Department of Genetics (N.J.H., D.J.R.), and Department of Biostatistics and Epidemiology (D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Nicholas J Hand
- From the Division of Translational Medicine and Human Genetics, Department of Medicine (S.T.N., R.C.B., D.J.R.), Penn Cardiovascular Institute, Department of Medicine (H.Z., M.P.R., D.J.R.), Department of Genetics (N.J.H., D.J.R.), and Department of Biostatistics and Epidemiology (D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Robert C Bauer
- From the Division of Translational Medicine and Human Genetics, Department of Medicine (S.T.N., R.C.B., D.J.R.), Penn Cardiovascular Institute, Department of Medicine (H.Z., M.P.R., D.J.R.), Department of Genetics (N.J.H., D.J.R.), and Department of Biostatistics and Epidemiology (D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Danish Saleheen
- From the Division of Translational Medicine and Human Genetics, Department of Medicine (S.T.N., R.C.B., D.J.R.), Penn Cardiovascular Institute, Department of Medicine (H.Z., M.P.R., D.J.R.), Department of Genetics (N.J.H., D.J.R.), and Department of Biostatistics and Epidemiology (D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Muredach P Reilly
- From the Division of Translational Medicine and Human Genetics, Department of Medicine (S.T.N., R.C.B., D.J.R.), Penn Cardiovascular Institute, Department of Medicine (H.Z., M.P.R., D.J.R.), Department of Genetics (N.J.H., D.J.R.), and Department of Biostatistics and Epidemiology (D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Daniel J Rader
- From the Division of Translational Medicine and Human Genetics, Department of Medicine (S.T.N., R.C.B., D.J.R.), Penn Cardiovascular Institute, Department of Medicine (H.Z., M.P.R., D.J.R.), Department of Genetics (N.J.H., D.J.R.), and Department of Biostatistics and Epidemiology (D.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| |
Collapse
|
35
|
Gizak A, Rakus D. Will Quantitative Proteomics Redefine Some of the Key Concepts in Skeletal Muscle Physiology? Proteomes 2016; 4:proteomes4010002. [PMID: 28248211 PMCID: PMC5217361 DOI: 10.3390/proteomes4010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 01/28/2023] Open
Abstract
Molecular and cellular biology methodology is traditionally based on the reasoning called “the mechanistic explanation”. In practice, this means identifying and selecting correlations between biological processes which result from our manipulation of a biological system. In theory, a successful application of this approach requires precise knowledge about all parameters of a studied system. However, in practice, due to the systems’ complexity, this requirement is rarely, if ever, accomplished. Typically, it is limited to a quantitative or semi-quantitative measurements of selected parameters (e.g., concentrations of some metabolites), and a qualitative or semi-quantitative description of expression/post-translational modifications changes within selected proteins. A quantitative proteomics approach gives a possibility of quantitative characterization of the entire proteome of a biological system, in the context of the titer of proteins as well as their post-translational modifications. This enables not only more accurate testing of novel hypotheses but also provides tools that can be used to verify some of the most fundamental dogmas of modern biology. In this short review, we discuss some of the consequences of using quantitative proteomics to verify several key concepts in skeletal muscle physiology.
Collapse
Affiliation(s)
- Agnieszka Gizak
- Department of Animal Molecular Physiology, Wroclaw University, Cybulskiego 30, 50-205 Wroclaw, Poland.
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Wroclaw University, Cybulskiego 30, 50-205 Wroclaw, Poland.
| |
Collapse
|
36
|
Aftab MF, Afridi SK, Ghaffar S, Murtaza M, Khan M, Karim A, Khan KM, Waraich RS. A bis-Schiff base of isatin improves methylglyoxal mediated insulin resistance in skeletal muscle cells. Arch Pharm Res 2015:10.1007/s12272-015-0670-z. [PMID: 26519157 DOI: 10.1007/s12272-015-0670-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/03/2015] [Indexed: 10/22/2022]
Abstract
Methylglyoxal (MGO) is a highly reactive advanced glycation end products (AGEs) precursor and its abnormal accumulation causes damage to various tissues and organs. In our previous study, we synthesized a novel MGO inhibitor, MK-I-81, a bis-Schiff base derivative of isatin. In this study we demonstrate the mechanism of action of MK-I-81, on insulin resistance in skeletal muscle cells. MK-I-81 reduced AGEs formation and restored proximal insulin signaling by modulating IRS-1 phosphorylation. MK-I-81 also alleviated MGO mediated diminished distal insulin signaling by increasing protein kinase B and glycogen synthase kinase 3-beta phosphorylation. We also observed that MK-I-81 prevented reduced glucose uptake and glycogen synthesis induced by MGO in muscle cells. We found that the mechanism of action by which MK-I-81 reduced insulin resistance was suppression of production of MGO mediated ROS production in C2C12 cells. We evaluated deactivation of PKC-α and receptor for advanced glycation end products (RAGE) after treatment of cells with MK-I-81. MK-I-81 also reduced MGO mediated IRS-1, PKC-α and RAGE interaction in muscle cells. MK-I-81 also promoted nuclear factor erythroid 2-related factor-2 phosphorylation, heme oxygenase-1 and glyoxalase expression levels. We conclude that MK-I-81 can be a potential therapeutic target to address AGEs mediated insulin resistance. A novel Advanced Glycation End products (AGEs) inhibitor, MK-I-81 (a bis Schiff base of isatin), restored AGEs mediated down regulation of insulin signaling via modulating key molecules of proximal and distal insulin signaling. MK-I-81 also increased glucose uptake and glycogen synthesis in muscle cells. Novel bis-Schiff base of isatin showed significant antioxidant activity and also reduced receptor for AGEs (RAGE) expression and PKC-alpha activation therefore; MK-I-81 reduces AGEs induced insulin resistance.
Collapse
Affiliation(s)
- Meha Fatima Aftab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shabbir Khan Afridi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Safina Ghaffar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Munazza Murtaza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Momin Khan
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Aneela Karim
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Khalid Mohammed Khan
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Rizwana Sanaullah Waraich
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
37
|
Mazibuko SE, Joubert E, Johnson R, Louw J, Opoku AR, Muller CJF. Aspalathin improves glucose and lipid metabolism in 3T3-L1 adipocytes exposed to palmitate. Mol Nutr Food Res 2015; 59:2199-208. [PMID: 26310822 DOI: 10.1002/mnfr.201500258] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/21/2015] [Accepted: 07/29/2015] [Indexed: 01/14/2023]
Abstract
SCOPE Saturated-free fatty acids, such as palmitate, are associated with insulin resistance. This study aimed to establish if an aspalathin-enriched green rooibos extract (GRE) and, its major flavanoid, aspalathin (ASP) could contribute significantly to the amelioration of experimentally induced insulin resistance in 3T3-L1 adipocytes. METHODS AND RESULTS 3T3-L1 adipocytes were cultured in DMEM containing 0.75 mM palmitate for 16 h to induce insulin resistance before treatment for 3 h with GRE (10 μg/mL) or ASP (10 μM). GRE and ASP reversed the palmitate-induced insulin resistance. At a protein level GRE and ASP suppressed nuclear factor kappa beta (NF-κB), insulin receptor substrate one (serine 307) (IRS1 (Ser (307) )) and AMP-activated protein kinase phosphorylation and increased serine/threonine kinase AKT (AKT) activation, while only GRE increased glucose transporter four (Glut4) protein expression. Peroxisome proliferator-activated receptor alpha and gamma (PPARα and γ), and carnitine palmitoyltransferase one (CPT1) expression were increased by ASP alone. CONCLUSION Together these effects offer a plausible explanation for the ameliorative effect of GRE and ASP on insulin-resistance, an underlying cause for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Sithandiwe E Mazibuko
- Diabetes Discovery Platform, South African Medical Research Council, Tygerberg, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Elizabeth Joubert
- Post-Harvest and Wine Technology Division, Agricultural Research Council (ARC), Infruitec-Nietvoorbij, Stellenbosch, South Africa.,Department of Food Science, Stellenbosch University, Matieland, South Africa
| | - Rabia Johnson
- Diabetes Discovery Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Johan Louw
- Diabetes Discovery Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Andrew R Opoku
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Christo J F Muller
- Diabetes Discovery Platform, South African Medical Research Council, Tygerberg, South Africa
| |
Collapse
|
38
|
Habtemichael EN, Alcázar-Román A, Rubin BR, Grossi LR, Belman JP, Julca O, Löffler MG, Li H, Chi NW, Samuel VT, Bogan JS. Coordinated Regulation of Vasopressin Inactivation and Glucose Uptake by Action of TUG Protein in Muscle. J Biol Chem 2015; 290:14454-61. [PMID: 25944897 DOI: 10.1074/jbc.c115.639203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Indexed: 01/16/2023] Open
Abstract
In adipose and muscle cells, insulin stimulates the exocytic translocation of vesicles containing GLUT4, a glucose transporter, and insulin-regulated aminopeptidase (IRAP), a transmembrane aminopeptidase. A substrate of IRAP is vasopressin, which controls water homeostasis. The physiological importance of IRAP translocation to inactivate vasopressin remains uncertain. We previously showed that in skeletal muscle, insulin stimulates proteolytic processing of the GLUT4 retention protein, TUG, to promote GLUT4 translocation and glucose uptake. Here we show that TUG proteolysis also controls IRAP targeting and regulates vasopressin action in vivo. Transgenic mice with constitutive TUG proteolysis in muscle consumed much more water than wild-type control mice. The transgenic mice lost more body weight during water restriction, and the abundance of renal AQP2 water channels was reduced, implying that vasopressin activity is decreased. To compensate for accelerated vasopressin degradation, vasopressin secretion was increased, as assessed by the cosecreted protein copeptin. IRAP abundance was increased in T-tubule fractions of fasting transgenic mice, when compared with controls. Recombinant IRAP bound to TUG, and this interaction was mapped to a short peptide in IRAP that was previously shown to be critical for GLUT4 intracellular retention. In cultured 3T3-L1 adipocytes, IRAP was present in TUG-bound membranes and was released by insulin stimulation. Together with previous results, these data support a model in which TUG controls vesicle translocation by interacting with IRAP as well as GLUT4. Furthermore, the effect of IRAP to reduce vasopressin activity is a physiologically important consequence of vesicle translocation, which is coordinated with the stimulation of glucose uptake.
Collapse
Affiliation(s)
| | - Abel Alcázar-Román
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and
| | - Bradley R Rubin
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8020
| | - Laura R Grossi
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8020
| | - Jonathan P Belman
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8020
| | - Omar Julca
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8020
| | - Michael G Löffler
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and
| | - Hongjie Li
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and
| | - Nai-Wen Chi
- the Veterans Affairs San Diego Healthcare System and Department of Medicine, University of California, San Diego, California 92093, and
| | - Varman T Samuel
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and the Veterans Affairs Medical Center, West Haven, Connecticut 06516
| | - Jonathan S Bogan
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine, and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8020,
| |
Collapse
|
39
|
Yoon JH, Kim D, Jang JH, Ghim J, Park S, Song P, Kwon Y, Kim J, Hwang D, Bae YS, Suh PG, Berggren PO, Ryu SH. Proteomic analysis of the palmitate-induced myotube secretome reveals involvement of the annexin A1-formyl peptide receptor 2 (FPR2) pathway in insulin resistance. Mol Cell Proteomics 2015; 14:882-92. [PMID: 25616869 DOI: 10.1074/mcp.m114.039651] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Indexed: 11/06/2022] Open
Abstract
Elevated levels of the free fatty acid palmitate are found in the plasma of obese patients and induce insulin resistance. Skeletal muscle secretes myokines as extracellular signaling mediators in response to pathophysiological conditions. Here, we identified and characterized the skeletal muscle secretome in response to palmitate-induced insulin resistance. Using a quantitative proteomic approach, we identified 36 secretory proteins modulated by palmitate-induced insulin resistance. Bioinformatics analysis revealed that palmitate-induced insulin resistance induced cellular stress and modulated secretory events. We found that the decrease in the level of annexin A1, a secretory protein, depended on palmitate, and that annexin A1 and its receptor, formyl peptide receptor 2 agonist, played a protective role in the palmitate-induced insulin resistance of L6 myotubes through PKC-θ modulation. In mice fed with a high-fat diet, treatment with the formyl peptide receptor 2 agonist improved systemic insulin sensitivity. Thus, we identified myokine candidates modulated by palmitate-induced insulin resistance and found that the annexin A1- formyl peptide receptor 2 pathway mediated the insulin resistance of skeletal muscle, as well as systemic insulin sensitivity.
Collapse
Affiliation(s)
| | - Dayea Kim
- From the ‡Department of Life Sciences
| | - Jin-Hyeok Jang
- §School of Interdisciplinary Bioscience and Bioengineering
| | | | | | | | | | - Jaeyoon Kim
- ‖The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Daehee Hwang
- §School of Interdisciplinary Bioscience and Bioengineering, ¶Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 790-784, Republic of Korea, ‖‖Center for Plant Aging Research, Institute for Basic Science and Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Yoe-Sik Bae
- **Department of Biological Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea, ‡‡Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710, Republic of Korea
| | - Pann-Ghill Suh
- §§School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 689-798, Republic of Korea
| | - Per-Olof Berggren
- ‖The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm SE-171 77, Sweden, Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784, Republic of Korea
| | | |
Collapse
|
40
|
Deshmukh AS, Murgia M, Nagaraj N, Treebak JT, Cox J, Mann M. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors. Mol Cell Proteomics 2015; 14:841-53. [PMID: 25616865 PMCID: PMC4390264 DOI: 10.1074/mcp.m114.044222] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Indexed: 11/07/2022] Open
Abstract
Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms.
Collapse
Affiliation(s)
- Atul S Deshmukh
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Marta Murgia
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany; §Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padua, Italy
| | - Nagarjuna Nagaraj
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Jonas T Treebak
- ¶The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jürgen Cox
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Matthias Mann
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany; ‖The Novo Nordisk Foundation Center for Protein Research, Department for proteomics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Govers R. Molecular mechanisms of GLUT4 regulation in adipocytes. DIABETES & METABOLISM 2014; 40:400-10. [PMID: 24656589 DOI: 10.1016/j.diabet.2014.01.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/24/2014] [Accepted: 01/26/2014] [Indexed: 01/28/2023]
|
42
|
Mukwevho E, Joseph JS. Calmodulin dependent protein kinase II activation by exercise regulates saturated & unsaturated fatty acids and improves some metabolic syndrome markers. Life Sci 2014; 111:53-61. [PMID: 25046734 DOI: 10.1016/j.lfs.2014.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/09/2014] [Accepted: 07/09/2014] [Indexed: 12/17/2022]
Abstract
AIMS Activation of Calmodulin dependent protein kinase (CaMK)-II by exercise has a plethora of benefits in health. Fatty acids play a pivotal role in the pathogenesis of metabolic syndrome (MetS). Prevention of MetS and treatment of its main characteristics are very significant to fight against type 2 diabetes. CaMKII activation in the regulation of saturated and unsaturated fatty acids in relation to type 2 diabetes and MetS has not been studied, which became the focus of this present study. MAIN METHODS Using Gas chromatography-Mass spectrometry, we investigated saturated fatty acids and unsaturated fatty acids. Quantitative real time PCR was also used to assess the gene expression. KEY FINDINGS Results indicate that both palmitoleic acid and oleic acid which are monounsaturated fatty acids were increased in response to CaMKII activation. On the other hand, myristic acid and palmitic acid which are saturated fatty acids known to increase the risk factors of MetS and type 2 diabetes were decreased by exercise induction of CaMKII. Conversely, lauric acid also a saturated fatty acid was increased in response to CaMKII activation by exercise. This fatty acid is known to have beneficial effects in alleviating symptoms of both type 2 diabetes and MetS. SIGNIFICANCE According to our knowledge, this is the first study to show that CaMKII activation by exercise regulates fatty acids essential in type 2 diabetes and MetS. CaMKII can be an avenue of designing novel therapeutic drugs in the management and treatment of type 2 diabetes and MetS.
Collapse
Affiliation(s)
- Emmanuel Mukwevho
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa.
| | - Jitcy S Joseph
- Department of Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
| |
Collapse
|
43
|
Lopez S, Bermudez B, Montserrat-de la Paz S, Jaramillo S, Varela LM, Ortega-Gomez A, Abia R, Muriana FJG. Membrane composition and dynamics: a target of bioactive virgin olive oil constituents. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1638-56. [PMID: 24440426 DOI: 10.1016/j.bbamem.2014.01.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 12/26/2022]
Abstract
The endogenous synthesis of lipids, which requires suitable dietary raw materials, is critical for the formation of membrane bilayers. In eukaryotic cells, phospholipids are the predominant membrane lipids and consist of hydrophobic acyl chains attached to a hydrophilic head group. The relative balance between saturated, monounsaturated, and polyunsaturated acyl chains is required for the organization and normal function of membranes. Virgin olive oil is the richest natural dietary source of the monounsaturated lipid oleic acid and is one of the key components of the healthy Mediterranean diet. Virgin olive oil also contains a unique constellation of many other lipophilic and amphipathic constituents whose health benefits are still being discovered. The focus of this review is the latest evidence regarding the impact of oleic acid and the minor constituents of virgin olive oil on the arrangement and behavior of lipid bilayers. We highlight the relevance of these interactions to the potential use of virgin olive oil in preserving the functional properties of membranes to maintain health and in modulating membrane functions that can be altered in several pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Sergio Lopez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Beatriz Bermudez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | | | - Sara Jaramillo
- Laboratory of Phytochemicals and Food Quality, Instituto de la Grasa, CSIC, 41014 Seville, Spain
| | - Lourdes M Varela
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Almudena Ortega-Gomez
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Rocio Abia
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain
| | - Francisco J G Muriana
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, 41012 Seville, Spain.
| |
Collapse
|
44
|
Abstract
GLUT4 is regulated by its intracellular localization. In the absence of insulin, GLUT4 is efficiently retained intracellularly within storage compartments in muscle and fat cells. Upon insulin stimulation (and contraction in muscle), GLUT4 translocates from these compartments to the cell surface where it transports glucose from the extracellular milieu into the cell. Its implication in insulin-regulated glucose uptake makes GLUT4 not only a key player in normal glucose homeostasis but also an important element in insulin resistance and type 2 diabetes. Nevertheless, how GLUT4 is retained intracellularly and how insulin acts on this retention mechanism is largely unclear. In this review, the current knowledge regarding the various molecular processes that govern GLUT4 physiology is discussed as well as the questions that remain.
Collapse
|
45
|
Opening of the mitochondrial permeability transition pore links mitochondrial dysfunction to insulin resistance in skeletal muscle. Mol Metab 2013; 3:124-34. [PMID: 24634818 DOI: 10.1016/j.molmet.2013.11.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 11/14/2013] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance is associated with mitochondrial dysfunction, but the mechanism by which mitochondria inhibit insulin-stimulated glucose uptake into the cytoplasm is unclear. The mitochondrial permeability transition pore (mPTP) is a protein complex that facilitates the exchange of molecules between the mitochondrial matrix and cytoplasm, and opening of the mPTP occurs in response to physiological stressors that are associated with insulin resistance. In this study, we investigated whether mPTP opening provides a link between mitochondrial dysfunction and insulin resistance by inhibiting the mPTP gatekeeper protein cyclophilin D (CypD) in vivo and in vitro. Mice lacking CypD were protected from high fat diet-induced glucose intolerance due to increased glucose uptake in skeletal muscle. The mitochondria in CypD knockout muscle were resistant to diet-induced swelling and had improved calcium retention capacity compared to controls; however, no changes were observed in muscle oxidative damage, insulin signaling, lipotoxic lipid accumulation or mitochondrial bioenergetics. In vitro, we tested 4 models of insulin resistance that are linked to mitochondrial dysfunction in cultured skeletal muscle cells including antimycin A, C2-ceramide, ferutinin, and palmitate. In all models, we observed that pharmacological inhibition of mPTP opening with the CypD inhibitor cyclosporin A was sufficient to prevent insulin resistance at the level of insulin-stimulated GLUT4 translocation to the plasma membrane. The protective effects of mPTP inhibition on insulin sensitivity were associated with improved mitochondrial calcium retention capacity but did not involve changes in insulin signaling both in vitro and in vivo. In sum, these data place the mPTP at a critical intersection between alterations in mitochondrial function and insulin resistance in skeletal muscle.
Collapse
Key Words
- ANT, adenine nucleotide translocator
- BKA, bongkrekic acid
- CSA, cyclosporin A
- CYPD, cyclophilin D
- Cyclophilin D
- DAG, diacylglycerol
- ETC, electron transport chain
- FFA, free fatty acid
- Glucose
- HFD, high fat diet
- HK2, hexokinase 2
- Insulin resistance
- KO, knockout
- LFD, low fat diet
- MCAD, medium chain acyl-CoA dehydrogenase
- MHC, myosin heavy chain
- MIRKO, muscle insulin receptor knockout
- MPTP, mitochondrial permeability transition pore
- Mitochondrial dysfunction
- Mitochondrial permeability transition pore
- MnSOD, mitochondrial manganese superoxide dismutase
- O2•, superoxide
- OXPHOS, oxidative phosphorylation
- PDH, pyruvate dehydrogenase
- PDHa, active PDH
- PDHt, total PDH
- PM, plasma membrane
- Rg′, rate of glucose transport
- Skeletal muscle
- TBARS, thiobarbituric acid reactive substances
- TEM, transmission electron microscopy
- VDAC, voltage-dependent anion channel
- WT, wild type
- [3H]-2-DOG, [3H]-2-deoxyglucose
- β-HAD, β-hydroxyacyl-CoA dehydrogenase
Collapse
|
46
|
Payet LA, Pineau L, Snyder ECR, Colas J, Moussa A, Vannier B, Bigay J, Clarhaut J, Becq F, Berjeaud JM, Vandebrouck C, Ferreira T. Saturated Fatty Acids Alter the Late Secretory Pathway by Modulating Membrane Properties. Traffic 2013; 14:1228-41. [DOI: 10.1111/tra.12117] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 08/30/2013] [Accepted: 09/06/2013] [Indexed: 01/26/2023]
Affiliation(s)
- Laurie-Anne Payet
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | | | - Ellen C. R. Snyder
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | - Jenny Colas
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | - Ahmed Moussa
- Ecole Nationale des Sciences Appliquées de Tanger; BP 1818 90000 Tanger Morocco
| | - Brigitte Vannier
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | - Joelle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire; UMR CNRS 7275, Université de Nice-Sophia Antipolis; 660 Route des Lucioles, Sophia Antipolis 06560 Valbonne France
| | - Jonathan Clarhaut
- INSERM CIC 0802; CHU de Poitiers; 2 rue de la Milétrie 86021 Poitiers France
| | - Frédéric Becq
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | - Jean-Marc Berjeaud
- Université de Poitiers; Ecologie et Biologie des Interactions; UMR CNRS 7267, 40 avenue du Recteur Pineau 86022 Poitiers Cedex France
| | - Clarisse Vandebrouck
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | - Thierry Ferreira
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| |
Collapse
|
47
|
Kopál M, Muchová J, Ďuračková Z. Modulation of insulin resistance by PUFA in metabolic tissues. EUR J LIPID SCI TECH 2013. [DOI: 10.1002/ejlt.201200229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Martin Kopál
- Institute of Medical ChemistryBiochemistry and Clinical BiochemistryFaculty of MedicineComenius University, BratislavaSlovakia
| | - Jana Muchová
- Institute of Medical ChemistryBiochemistry and Clinical BiochemistryFaculty of MedicineComenius University, BratislavaSlovakia
| | - Zdeňka Ďuračková
- Institute of Medical ChemistryBiochemistry and Clinical BiochemistryFaculty of MedicineComenius University, BratislavaSlovakia
| |
Collapse
|
48
|
Green CJ, Henriksen TI, Pedersen BK, Solomon TPJ. Glucagon like peptide-1-induced glucose metabolism in differentiated human muscle satellite cells is attenuated by hyperglycemia. PLoS One 2012; 7:e44284. [PMID: 22937169 PMCID: PMC3429413 DOI: 10.1371/journal.pone.0044284] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/31/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Glucagon like peptide-1 (GLP-1) stimulates insulin secretion from the pancreas but also has extra-pancreatic effects. GLP-1 may stimulate glucose uptake in cultured muscle cells but the mechanism is not clearly defined. Furthermore, while the pancreatic effects of GLP-1 are glucose-dependent, the glucose-dependency of its extra-pancreatic effects has not been examined. METHODS Skeletal muscle satellite cells isolated from young (22.5 ± 0.97 yr), lean (BMI 22.5 ± 0.6 kg/m(2)), healthy males were differentiated in media containing either 22.5 mM (high) or 5 mM (normal) glucose for 7 days in the absence or presence of insulin and/or various GLP-1 concentrations. Myocellular effects of GLP-1, insulin and glucose were assessed by western-blot, glucose uptake and glycogen synthesis. RESULTS We firstly show that the GLP-1 receptor protein is expressed in differentiated human muscle satellite cells (myocytes). Secondly, we show that in 5 mM glucose media, exposure of myocytes to GLP-1 results in a dose dependent increase in glucose uptake, GLUT4 amount and subsequently glycogen synthesis in a PI3K dependent manner, independent of the insulin signaling cascade. Importantly, we provide evidence that differentiation of human satellite cells in hyperglycemic (22.5 mM glucose) conditions increases GLUT1 expression, and renders the cells insulin resistant and interestingly GLP-1 resistant in terms of glucose uptake and glycogen synthesis. Hyperglycemic conditions did not affect the ability of insulin to phosphorylate downstream targets, PKB or GSK3. Interestingly we show that at 5 mM glucose, GLP-1 increases GLUT4 protein levels and that this effect is abolished by hyperglycemia. CONCLUSIONS GLP-1 increases glucose uptake and glycogen synthesis into fully-differentiated human satellite cells in a PI3-K dependent mechanism potentially through increased GLUT4 protein levels. The latter occurs independently of the insulin signaling pathway. Attenuation of both GLP-1 and insulin-induced glucose metabolism by hyperglycemia is likely to occur downstream of PI3K.
Collapse
Affiliation(s)
- Charlotte J Green
- The Centre of Inflammation and Metabolism at Department of Infectious Diseases and Copenhagen Muscle Research Centre, Rigshospitalet, The Faculty of Health Sciences, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
49
|
Cousido-Siah A, Ayoub D, Berberián G, Bollo M, Van Dorsselaer A, Debaene F, DiPolo R, Petrova T, Schulze-Briese C, Olieric V, Esteves A, Mitschler A, Sanglier-Cianférani S, Beaugé L, Podjarny A. Structural and functional studies of ReP1-NCXSQ, a protein regulating the squid nerve Na+/Ca2+ exchanger. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1098-107. [PMID: 22948910 DOI: 10.1107/s090744491202094x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/08/2012] [Indexed: 11/10/2022]
Abstract
The protein ReP1-NCXSQ was isolated from the cytosol of squid nerves and has been shown to be required for MgATP stimulation of the squid nerve Na(+)/Ca(2+) exchanger NCXSQ1. In order to determine its mode of action and the corresponding biologically active ligand, sequence analysis, crystal structures and mass-spectrometric studies of this protein and its Tyr128Phe mutant are reported. Sequence analysis suggests that it belongs to the CRABP family in the FABP superfamily. The X-ray structure at 1.28 Å resolution shows the FABP β-barrel fold, with a fatty acid inside the barrel that makes a relatively short hydrogen bond to Tyr128 and shows a double bond between C9 and C10 but that is disordered beyond C12. Mass-spectrometric studies identified this fatty acid as palmitoleic acid, confirming the double bond between C9 and C10 and establishing a length of 16 C atoms in the aliphatic chain. This acid was caught inside during the culture in Escherichia coli and therefore is not necessarily linked to the biological activity. The Tyr128Phe mutant was unable to activate the Na(+)/Ca(2+) exchanger and the corresponding crystal structure showed that without the hydrogen bond to Tyr128 the palmitoleic acid inside the barrel becomes disordered. Native mass-spectrometric analysis confirmed a lower occupancy of the fatty acid in the Tyr128Phe mutant. The correlation between (i) the lack of activity of the Tyr128Phe mutant, (ii) the lower occupancy/disorder of the bound palmitoleic acid and (iii) the mass-spectrometric studies of ReP1-NCXSQ suggests that the transport of a fatty acid is involved in regulation of the NCXSQ1 exchanger, providing a novel insight into the mechanism of its regulation. In order to identify the biologically active ligand, additional high-resolution mass-spectrometric studies of the ligands bound to ReP1-NCXSQ were performed after incubation with squid nerve vesicles both with and without MgATP. These studies clearly identified palmitic acid as the fatty acid involved in regulation of the Na(+)/Ca(2+) exchanger from squid nerve.
Collapse
Affiliation(s)
- Alexandra Cousido-Siah
- Department of Structural Biology and Genomics, IGBMC, CNRS, INSERM, Université de Strasbourg, Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Palmitate contributes to insulin resistance through downregulation of the Src-mediated phosphorylation of Akt in C2C12 myotubes. Biosci Biotechnol Biochem 2012; 76:1356-61. [PMID: 22785470 DOI: 10.1271/bbb.120107] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanisms of free fatty acid (FFA)-induced peripheral insulin resistance remain elusive. This study aimed to investigate the effect of palmitate, a saturated fatty acid, on glucose metabolism in C2C12 myotubes, and to explore the underlying mechanisms. In it, palmitate decreased insulin-stimulated glucose uptake and consumption in a dose-dependent manner, and it reduced the insulin-stimulated phosphorylation of Akt at Thr308 and Ser473, but had no effect on the protein expression of PI3K-p85 or the activity of PI3K. Additionally, it inhibited the insulin-stimulated phosphorylation of Src at Tyr416, causing a reduction in the Src-mediated phosphorylation of Akt. Inhibition of Src by PP2 resulted in decreases in insulin-stimulated glucose uptake and phosphorylation of Src at Tyr416 and Akt at Thr308 and Ser473. The findings indicate that palmitate contributes to insulin resistance by inhibiting the Src-mediated phosphorylation of Akt in C2C12 myotubes, and this provides insight into the molecular mechanisms of FFA-induced insulin resistance.
Collapse
|