1
|
Pușcașu C, Negreș S, Zbârcea CE, Chiriță C. Unlocking New Therapeutic Options for Vincristine-Induced Neuropathic Pain: The Impact of Preclinical Research. Life (Basel) 2024; 14:1500. [PMID: 39598298 PMCID: PMC11595627 DOI: 10.3390/life14111500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Vincristine, a vinca alkaloid, is used in chemotherapy protocols for cancers such as acute leukemia, Hodgkin's disease, neuroblastoma, cervical carcinoma, lymphomas, breast cancer, and melanoma. Among the common adverse effects of vincristine is peripheral neuropathy, with most patients receiving a cumulative dose over 4 mg/m2 who develop varying degrees of sensory neuropathy. The onset of vincristine-induced peripheral neuropathy can greatly affect patients' quality of life, often requiring dose adjustments or the discontinuation of treatment. Moreover, managing vincristine-induced peripheral neuropathy is challenging, with few effective therapeutic strategies available. In the past decade, preclinical studies have explored diverse substances aimed at preventing or alleviating VIPN. Our review consolidates these findings, focusing on the analgesic efficacy and potential mechanisms of various agents, including pharmaceutical drugs, natural compounds, and antioxidants, that show promise in reducing neuropathic pain and protecting neural integrity in preclinical models. Key novel therapeutic options, such as metabolic agents (liraglutide), enzyme inhibitors (ulinastatin), antipsychotics (aripiprazole), interleukin-1 receptor antagonists (anakinra), hormones (oxytocin), and antioxidants (thioctic acid), are highlighted for their neuroprotective, anti-inflammatory, and antioxidant effects. Through this synthesis, we aim to enhance the current understanding of VIPN management by identifying pharmacological strategies that target critical molecular pathways, laying the groundwork for future clinical studies. By clarifying these novel pharmacological approaches and elucidating their mechanisms of action, this review provides a foundation for developing more effective VIPN treatment strategies to ultimately improve patient outcomes.
Collapse
Affiliation(s)
| | | | - Cristina Elena Zbârcea
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.); (C.C.)
| | | |
Collapse
|
2
|
Khodaei M, Mehri S, Pour SR, Mahdavi S, Yarmohammadi F, Hayes AW, Karimi G. The protective effect of chemical and natural compounds against vincristine-induced peripheral neuropathy (VIPN). Naunyn Schmiedebergs Arch Pharmacol 2022; 395:907-919. [PMID: 35562512 DOI: 10.1007/s00210-022-02254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
Vincristine, an alkaloid extracted from Catharanthus rosea, is a class of chemotherapy drugs that act by altering the function of the microtubules and by inhibiting mitosis. Despite its widespread application, a major adverse effect of vincristine that limits treatment duration is the occurrence of peripheral neuropathy (PN). PN presents with several symptoms including numbness, painful sensation, tingling, and muscle weakness. Vincristine-induced PN involves impaired calcium homeostasis, an increase of reactive oxygen species (ROS), and the upregulation of tumor necrosis factor-alpha (TNF-α), and interleukin 1 beta (IL-1β) expression. Several potential approaches to attenuate the vincristine-induced PN including the concomitant administration of chemicals with vincristine have been reported. These chemicals have a variety of pharmaceutical properties including anti-inflammation, antioxidant, and inhibition of calcium channels and calcineurin signaling pathways and increased expression of nerve growth factor (NGF). This review summarized several of these compounds and the mechanisms of action that could lead to effective options in improving vincristine-induced peripheral neuropathy (VIPN).
Collapse
Affiliation(s)
- Mitra Khodaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Soroush Rashid Pour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Mahdavi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
The antiepileptic drug lacosamide and memory - A preclinial study. Epilepsy Behav 2021; 125:108401. [PMID: 34775245 DOI: 10.1016/j.yebeh.2021.108401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Lacosamide (LC) belongs to a new generation of antiepileptic drugs (AEDs) and demonstrates unique mechanism of action. The drug also shows neuroprotective activity on the hippocampus. In this study, the impact of LC on learning processes was assessed. METHODS Adult male Wistar rats (n = 40) were used. Lacosamide was administered p.o. as a single (25 mg/kg or 75 mg/kg) or repeated doses (75 mg/kg). The effect of the drug was assessed in the Morris water maze (spatial memory) and the passive avoidance (PA) (emotional memory). RESULTS Lacosamide administered at a single dose or repeatedly did not impair spatial memory in Morris water maze. Higher swimming speed was observed in rats after administration of acute doses of LC. In PA, the disturbance of emotional memory was observed only after the single high dose of LC. CONCLUSION Lacosamide does not impair memory and learning processes. The emotional memory impairment observed after the acute high dose appears to be temporary and did not occur after repeated administration.
Collapse
|
4
|
Chou P, Kuo CC. Anticonvulsant vs. Proconvulsant Effect of in situ Deep Brain Stimulation at the Epileptogenic Focus. Front Syst Neurosci 2021; 15:607450. [PMID: 34408632 PMCID: PMC8366291 DOI: 10.3389/fnsys.2021.607450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Since deep brain stimulation (DBS) at the epileptogenic focus (in situ) denotes long-term repetitive stimulation of the potentially epileptogenic structures, such as the amygdala, the hippocampus, and the cerebral cortex, a kindling effect and aggravation of seizures may happen and complicate the clinical condition. It is, thus, highly desirable to work out a protocol with an evident quenching (anticonvulsant) effect but free of concomitant proconvulsant side effects. We found that in the basolateral amygdala (BLA), an extremely wide range of pulsatile stimulation protocols eventually leads to the kindling effect. Only protocols with a pulse frequency of ≤1 Hz or a direct current (DC), with all of the other parameters unchanged, could never kindle the animal. On the other hand, the aforementioned DC stimulation (DCS), even a pulse as short as 10 s given 5 min before the kindling stimuli or a pulse given even to the contralateral BLA, is very effective against epileptogenicity and ictogenicity. Behavioral, electrophysiological, and histological findings consistently demonstrate success in seizure quenching or suppression as well as in the safety of the specific DBS protocol (e.g., no apparent brain damage by repeated sessions of stimulation applied to the BLA for 1 month). We conclude that in situ DCS, with a novel and rational design of the stimulation protocol composed of a very low (∼3% or 10 s/5 min) duty cycle and assuredly devoid of the potential of kindling, may make a successful antiepileptic therapy with adequate safety in terms of little epileptogenic adverse events and tissue damage.
Collapse
Affiliation(s)
- Ping Chou
- Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chung-Chin Kuo
- Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
Perez-Miller S, Patek M, Moutal A, de Haro PD, Cabel CR, Thorne CA, Campos SK, Khanna R. Novel Compounds Targeting Neuropilin Receptor 1 with Potential To Interfere with SARS-CoV-2 Virus Entry. ACS Chem Neurosci 2021; 12:1299-1312. [PMID: 33787218 PMCID: PMC8029449 DOI: 10.1021/acschemneuro.0c00619] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Neuropilin-1 (NRP-1) is a multifunctional transmembrane receptor for ligands that affect developmental axonal growth and angiogenesis. In addition to a role in cancer, NRP-1 is a reported entry point for several viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19). The furin cleavage product of SARS-CoV-2 Spike protein takes advantage of the vascular endothelial growth factor A (VEGF-A) binding site on NRP-1 which accommodates a polybasic stretch ending in a C-terminal arginine. This site has long been a focus of drug discovery efforts for cancer therapeutics. We recently showed that interruption of the VEGF-A/NRP-1 signaling pathway ameliorates neuropathic pain and hypothesize that interference of this pathway by SARS-CoV-2 Spike protein interferes with pain signaling. Here, we report confirmed hits from a small molecule and natural product screen of nearly 0.5 million compounds targeting the VEGF-A binding site on NRP-1. We identified nine chemical series with lead- or drug-like physicochemical properties. Using ELISA, we demonstrate that six compounds disrupt VEGF-A-NRP-1 binding more effectively than EG00229, a known NRP-1 inhibitor. Secondary validation in cells revealed that all tested compounds inhibited VEGF-A triggered VEGFR2 phosphorylation. Further, two compounds displayed robust inhibition of a recombinant vesicular stomatitis virus protein that utilizes the SARS-CoV-2 Spike for entry and fusion. These compounds represent a first step in a renewed effort to develop small molecule inhibitors of the VEGF-A/NRP-1 signaling for the treatment of neuropathic pain and cancer with the added potential of inhibiting SARS-CoV-2 virus entry.
Collapse
Affiliation(s)
- Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Marcel Patek
- Bright Rock Path Consulting, LLC, Tucson, Arizona
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Paz Duran de Haro
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Carly R. Cabel
- Department of Cellular & Molecular Medicine, College of Medicine, The University of Arizona
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
| | - Curtis A. Thorne
- Department of Cellular & Molecular Medicine, College of Medicine, The University of Arizona
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
- Bio5 Institute, University of Arizona
| | - Samuel K. Campos
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
- Bio5 Institute, University of Arizona
- Department of Immunobiology, College of Medicine, University of Arizona
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona, USA
- Regulonix LLC, Tucson, AZ, USA
| |
Collapse
|
6
|
Rohracher A, Kalss G, Kuchukhidze G, Neuray C, Leitinger M, Höfler J, Kreidenhuber R, Rossini F, Volna K, Mauritz M, Poppert N, Lattanzi S, Brigo F, Trinka E. New anti-seizure medication for elderly epilepsy patients - a critical narrative review. Expert Opin Pharmacother 2020; 22:621-634. [PMID: 33111598 DOI: 10.1080/14656566.2020.1843636] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: The number of elderly patients with epilepsy is growing in resource rich countries due to demographic changes and increased longevity. Management in these patients is challenging as underlying etiology, co-morbidities, polypharmacy, age-related pharmacokinetic and pharmacodynamic changes need to be considered.Areas covered: Lacosamide, eslicarbazepine acetate, brivaracetam, and perampanel have been approved in the USA and Europe for monotherapy and/or adjunctive treatment of seizures in the last few years. The authors review the pharmacological properties and safety profile of these drugs and provide recommendations for their use in in the elderly.Expert opinion: There are only limited data available on more recent antiseizure medications (ASMs). Drugs with a low risk of interaction (lacosamide, brivaracetam) are preferred choices. Once daily formulations (perampanel and eslicarbazepine acetate) have the advantage of increased compliance. Intravenous formulations (brivaracetam and lacosamide) are useful in emergency situations and in patients who have difficulties to swallow. Dose adjustments are necessary for all ASMs used in the elderly with slow titration and lower target doses than in the regulatory trials. The adverse event profile does not significantly differ from that found in the general adult population.
Collapse
Affiliation(s)
- A Rohracher
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, affiliated partner of the ERN EpiCARE Center for Cognitive Neuroscience, Paracelsus Medical University Salzburg, and Christian Doppler Medical Centre, Salzburg, Austria
| | - G Kalss
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, affiliated partner of the ERN EpiCARE Center for Cognitive Neuroscience, Paracelsus Medical University Salzburg, and Christian Doppler Medical Centre, Salzburg, Austria
| | - G Kuchukhidze
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, affiliated partner of the ERN EpiCARE Center for Cognitive Neuroscience, Paracelsus Medical University Salzburg, and Christian Doppler Medical Centre, Salzburg, Austria
| | - C Neuray
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, affiliated partner of the ERN EpiCARE Center for Cognitive Neuroscience, Paracelsus Medical University Salzburg, and Christian Doppler Medical Centre, Salzburg, Austria
| | - M Leitinger
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, affiliated partner of the ERN EpiCARE Center for Cognitive Neuroscience, Paracelsus Medical University Salzburg, and Christian Doppler Medical Centre, Salzburg, Austria
| | - J Höfler
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, affiliated partner of the ERN EpiCARE Center for Cognitive Neuroscience, Paracelsus Medical University Salzburg, and Christian Doppler Medical Centre, Salzburg, Austria
| | - R Kreidenhuber
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, affiliated partner of the ERN EpiCARE Center for Cognitive Neuroscience, Paracelsus Medical University Salzburg, and Christian Doppler Medical Centre, Salzburg, Austria
| | - F Rossini
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, affiliated partner of the ERN EpiCARE Center for Cognitive Neuroscience, Paracelsus Medical University Salzburg, and Christian Doppler Medical Centre, Salzburg, Austria
| | - K Volna
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, affiliated partner of the ERN EpiCARE Center for Cognitive Neuroscience, Paracelsus Medical University Salzburg, and Christian Doppler Medical Centre, Salzburg, Austria
| | - M Mauritz
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, affiliated partner of the ERN EpiCARE Center for Cognitive Neuroscience, Paracelsus Medical University Salzburg, and Christian Doppler Medical Centre, Salzburg, Austria
| | - N Poppert
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, affiliated partner of the ERN EpiCARE Center for Cognitive Neuroscience, Paracelsus Medical University Salzburg, and Christian Doppler Medical Centre, Salzburg, Austria
| | - S Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - F Brigo
- Department of Neurology, Franz Tappeiner Hospital, Meran, Italy
| | - E Trinka
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, affiliated partner of the ERN EpiCARE Center for Cognitive Neuroscience, Paracelsus Medical University Salzburg, and Christian Doppler Medical Centre, Salzburg, Austria
| |
Collapse
|
7
|
Peng YS, Wu HT, Lai YC, Chen JL, Yang YC, Kuo CC. Inhibition of neuronal Na+ currents by lacosamide: Differential binding affinity and kinetics to different inactivated states. Neuropharmacology 2020; 179:108266. [DOI: 10.1016/j.neuropharm.2020.108266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/06/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
|
8
|
Khanna R, Moutal A, Perez-Miller S, Chefdeville A, Boinon L, Patek M. Druggability of CRMP2 for Neurodegenerative Diseases. ACS Chem Neurosci 2020; 11:2492-2505. [PMID: 32693579 DOI: 10.1021/acschemneuro.0c00307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs) are ubiquitously expressed phosphoproteins that coordinate cytoskeletal formation and regulate cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. Accumulating evidence has also demonstrated a key role for CRMP2 in trafficking of voltage- and ligand-gated ion channels. These functions are tightly regulated by post-translational modifications including phosphorylation and SUMOylation (addition of a small ubiquitin like modifier). Over the past decade, it has become increasingly clear that dysregulated post-translational modifications of CRMP2 contribute to the pathomechanisms of diverse diseases, including cancer, neurodegenerative diseases, chronic pain, and bipolar disorder. Here, we review the discovery, functions, and current putative preclinical and clinical therapeutics targeting CRMP2. These potential therapeutics include CRMP2-based peptides that inhibit protein-protein interactions and small-molecule compounds. Capitalizing on the availability of structural information, we identify druggable pockets on CRMP2 and predict binding modes for five known CRMP2-targeting compounds, setting the stage for optimization and de novo drug discovery targeting this multifunctional protein.
Collapse
Affiliation(s)
- Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Graduate Interdisciplinary Program in Neuroscience, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
- Regulonix LLC, Tucson, Arizona 85718, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Lisa Boinon
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Marcel Patek
- BrightRock Path, LLC, Tucson, Arizona 85704, United States
| |
Collapse
|
9
|
López-Escobar B, Fernández-Torres R, Vargas-López V, Villar-Navarro M, Rybkina T, Rivas-Infante E, Hernández-Viñas A, Álvarez Del Vayo C, Caro-Vega J, Sánchez-Alcázar JA, González-Meneses A, Carrión MÁ, Ybot-González P. Lacosamide intake during pregnancy increases the incidence of foetal malformations and symptoms associated with schizophrenia in the offspring of mice. Sci Rep 2020; 10:7615. [PMID: 32376856 PMCID: PMC7203245 DOI: 10.1038/s41598-020-64626-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/08/2020] [Indexed: 01/01/2023] Open
Abstract
The use of first and second generation antiepileptic drugs during pregnancy doubles the risk of major congenital malformations and other teratogenic defects. Lacosamide (LCM) is a third-generation antiepileptic drug that interacts with collapsing response mediator protein 2, a protein that has been associated with neurodevelopmental diseases like schizophrenia. The aim of this study was to test the potential teratogenic effects of LCM on developing embryos and its effects on behavioural/histological alterations in adult mice. We administered LCM to pregnant mice, assessing its presence, and that of related compounds, in the mothers’ serum and in embryonic tissues using liquid chromatography coupled to quadrupole/time of flight mass spectrometry detection. Embryo morphology was evaluated, and immunohistochemistry was performed on adult offspring. Behavioural studies were carried out during the first two postnatal weeks and on adult mice. We found a high incidence of embryonic lethality and malformations in mice exposed to LCM during embryonic development. Neonatal mice born to dams treated with LCM during gestation displayed clear psychomotor delay and behavioural and morphological alterations in the prefrontal cortex, hippocampus and amygdala that were associated with behaviours associated with schizophrenia spectrum disorders in adulthood. We conclude that LCM and its metabolites may have teratogenic effects on the developing embryos, reflected in embryonic lethality and malformations, as well as behavioural and histological alterations in adult mice that resemble those presented by patients with schizophrenia.
Collapse
Affiliation(s)
- Beatriz López-Escobar
- Grupo de Neurodesarrollo, Hospital Universitario Virgen del Rocio/Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla, 41013, Spain
| | - Rut Fernández-Torres
- Departamento de Química Analítica, Facultad Química, Universidad Sevilla, Sevilla, Spain.,Centro de Investigación en Salud y Medio Ambiente (CYSMA), Universidad de Huelva, Huelva, Spain
| | - Viviana Vargas-López
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013, Sevilla, Spain.,Behavioral Neurophysiology Laboratory, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Tatyana Rybkina
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Eloy Rivas-Infante
- Unidad de Gestión Clínica de Anatomía Patología, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Ayleen Hernández-Viñas
- Grupo de Neurodesarrollo, Hospital Universitario Virgen del Rocio/Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla, 41013, Spain
| | - Concepción Álvarez Del Vayo
- Unidad de Gestión Clínica de Farmacia, Hospital Universitario Virgen del Rocío and Universidad de Sevilla, Sevilla, Spain
| | - José Caro-Vega
- Grupo de Neurodesarrollo, Hospital Universitario Virgen del Rocio/Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla, 41013, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, CSIC, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Antonio González-Meneses
- Unidad de Gestión Clínica de Pediatría, Hospital Universitario Virgen del Rocío and Universidad de Sevilla, Sevilla, Spain
| | - M Ángel Carrión
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013, Sevilla, Spain.
| | - Patricia Ybot-González
- Grupo de Neurodesarrollo, Hospital Universitario Virgen del Rocio/Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Sevilla, 41013, Spain. .,Unidad de Gestión Clínica de Neurología y Neurofisiología, Hospital Universitario Virgen Macarena, Sevilla, 41009, Spain.
| |
Collapse
|
10
|
Zhou Y, Cai S, Moutal A, Yu J, Gómez K, Madura CL, Shan Z, Pham NYN, Serafini MJ, Dorame A, Scott DD, François-Moutal L, Perez-Miller S, Patek M, Khanna M, Khanna R. The Natural Flavonoid Naringenin Elicits Analgesia through Inhibition of NaV1.8 Voltage-Gated Sodium Channels. ACS Chem Neurosci 2019; 10:4834-4846. [PMID: 31697467 DOI: 10.1021/acschemneuro.9b00547] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Naringenin (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one is a natural flavonoid found in fruits from the citrus family. Because (2S)-naringenin is known to racemize, its bioactivity might be related to one or both enantiomers. Computational studies predicted that (2R)-naringenin may act on voltage-gated ion channels, particularly the N-type calcium channel (CaV2.2) and the NaV1.7 sodium channel-both of which are key for pain signaling. Here we set out to identify the possible mechanism of action of naringenin. Naringenin inhibited depolarization-evoked Ca2+ influx in acetylcholine-, ATP-, and capsaicin-responding rat dorsal root ganglion (DRG) neurons. This was corroborated in electrophysiological recordings from DRG neurons. Pharmacological dissection of each of the voltage-gated Ca2+ channels subtypes could not pinpoint any selectivity of naringenin. Instead, naringenin inhibited NaV1.8-dependent and tetrodotoxin (TTX)-resistant while sparing tetrodotoxin sensitive (TTX-S) voltage-gated Na+ channels as evidenced by the lack of further inhibition by the NaV1.8 blocker A-803467. The effects of the natural flavonoid were validated ex vivo in spinal cord slices where naringenin decreased both the frequency and amplitude of sEPSC recorded in neurons within the substantia gelatinosa. The antinociceptive potential of naringenin was evaluated in male and female mice. Naringenin had no effect on the nociceptive thresholds evoked by heat. Naringenin's reversed allodynia was in mouse models of postsurgical and neuropathic pain. Here, driven by a call by the National Center for Complementary and Integrative Health's strategic plan to advance fundamental research into basic biological mechanisms of the action of natural products, we advance the antinociceptive potential of the flavonoid naringenin.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Clinical Laboratory, the First Hospital of Jilin University, Changchun 130021, China
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Song Cai
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Jie Yu
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Kimberly Gómez
- Department of Physiology, Biophysics and Neuroscience, Centre for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico
| | - Cynthia L. Madura
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Zhiming Shan
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Nancy Y. N. Pham
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Maria J. Serafini
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Angie Dorame
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - David D. Scott
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Liberty François-Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
| | - Marcel Patek
- BrightRock Path Consulting, LLC, Tucson, Arizona 85721, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson 85724-5050, Arizona, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
| |
Collapse
|
11
|
Moutal A, White KA, Chefdeville A, Laufmann RN, Vitiello PF, Feinstein D, Weimer JM, Khanna R. Dysregulation of CRMP2 Post-Translational Modifications Drive Its Pathological Functions. Mol Neurobiol 2019; 56:6736-6755. [PMID: 30915713 PMCID: PMC6728212 DOI: 10.1007/s12035-019-1568-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/15/2019] [Indexed: 12/13/2022]
Abstract
Collapsin response mediator proteins (CRMPs) are a family of ubiquitously expressed, homologous phosphoproteins best known for coordinating cytoskeletal formation and regulating cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. These functions are tightly regulated by post-translational modifications including phosphorylation, SUMOylation, oxidation, and O-GlcNAcylation. While CRMP2's physiological functions rely mostly on its non-phosphorylated state, dysregulation of CRMP2 phosphorylation and SUMOylation has been reported to be involved in the pathophysiology of multiple diseases including cancer, chronic pain, spinal cord injury, neurofibromatosis type 1, and others. Here, we provide a consolidated update on what is known about CRMP2 signaling and function, first focusing on axonal growth and neuronal polarity, then illustrating the link between dysregulated CRMP2 post-translational modifications and diseases. We additionally discuss the roles of CRMP2 in non-neuronal cells, both in the CNS and regions of the periphery. Finally, we offer thoughts on the therapeutic implications of modulating CRMP2 function in a variety of diseases.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Rachel N Laufmann
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA
| | - Peter F Vitiello
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Douglas Feinstein
- Department of Veterans Affairs, Jesse Brown VA Medical Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Jill M Weimer
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA.
- Department of Anesthesiology, University of Arizona, Tucson, AZ, USA.
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
12
|
Sharma N, Zameer S, Akhtar M, Vohora D. Effect of lacosamide on ethanol induced conditioned place preference and withdrawal associated behavior in mice: Possible contribution of hippocampal CRMP-2. Pharmacol Rep 2019; 71:804-810. [PMID: 31377562 DOI: 10.1016/j.pharep.2019.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 12/25/2018] [Accepted: 04/13/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Excessive consumption of ethanol is known to activate the mTORC1 pathway and to enhance the Collapsin Response Mediator Protein-2 (CRMP-2) levels in the limbic region of brain. The latter helps in forming microtubule assembly that is linked to drug taking or addiction-like behavior in rodents. Therefore, in this study, we investigated the effect of lacosamide, an antiepileptic drug and a known CRMP-2 inhibitor, which binds to CRMP-2 and inhibits the formation of microtubule assembly, on ethanol-induced conditioned place preference (CPP) in mice. METHODS The behavior of mice following ethanol addiction and withdrawal was assessed by performing different behavioral paradigms. Mice underwent ethanol-induced CPP training with alternate dose of ethanol (2 g/kg, po) and saline (10 ml/kg, po). The effect of lacosamide on the expression of ethanol-induced CPP and on ethanol withdrawal associated anxiety and depression-like behavior was evaluated. The effect of drug on locomotor activity was also assessed and hippocampal CRMP-2 levels were measured. RESULTS Ethanol-induced CPP was associated with enhanced CRMP-2 levels in the hippocampus. Lacosamide significantly reduced the expression of ethanol-induced CPP and alleviated the levels of hippocampal CRMP-2 but aggravated withdrawal-associated anxiety and depression in mice. CONCLUSION The present study demonstrated the beneficial effect of lacosamide in attenuation of expression of ethanol induced conditioned place preference via reduction of hippocampal CRMP-2 level. These findings suggest that lacosamide may be investigated further for ethanol addiction but not for managing withdrawal.
Collapse
Affiliation(s)
- Nidhi Sharma
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Saima Zameer
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohd Akhtar
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
13
|
Bedoya M, Rinné S, Kiper AK, Decher N, González W, Ramírez D. TASK Channels Pharmacology: New Challenges in Drug Design. J Med Chem 2019; 62:10044-10058. [PMID: 31260312 DOI: 10.1021/acs.jmedchem.9b00248] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rational drug design targeting ion channels is an exciting and always evolving research field. New medicinal chemistry strategies are being implemented to explore the wild chemical space and unravel the molecular basis of the ion channels modulators binding mechanisms. TASK channels belong to the two-pore domain potassium channel family and are modulated by extracellular acidosis. They are extensively distributed along the cardiovascular and central nervous systems, and their expression is up- and downregulated in different cancer types, which makes them an attractive therapeutic target. However, TASK channels remain unexplored, and drugs designed to target these channels are poorly selective. Here, we review TASK channels properties and their known blockers and activators, considering the new challenges in ion channels drug design and focusing on the implementation of computational methodologies in the drug discovery process.
Collapse
Affiliation(s)
- Mauricio Bedoya
- Centro de Bioinformática y Simulación Molecular (CBSM) , Universidad de Talca , 1 Poniente No. 1141 , 3460000 Talca , Chile
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior, MCMBB , Philipps-University of Marburg , Deutschhausstraße 2 , Marburg 35037 , Germany
| | - Aytug K Kiper
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior, MCMBB , Philipps-University of Marburg , Deutschhausstraße 2 , Marburg 35037 , Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior, MCMBB , Philipps-University of Marburg , Deutschhausstraße 2 , Marburg 35037 , Germany
| | - Wendy González
- Centro de Bioinformática y Simulación Molecular (CBSM) , Universidad de Talca , 1 Poniente No. 1141 , 3460000 Talca , Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD) , Universidad de Talca , 1 Poniente No. 1141 , 3460000 Talca , Chile
| | - David Ramírez
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud , Universidad Autónoma de Chile , El Llano Subercaseaux 2801, Piso 6 , 8900000 Santiago , Chile
| |
Collapse
|
14
|
Phosphorylated CRMP2 Regulates Spinal Nociceptive Neurotransmission. Mol Neurobiol 2018; 56:5241-5255. [PMID: 30565051 DOI: 10.1007/s12035-018-1445-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023]
Abstract
The collapsin response mediator protein 2 (CRMP2) has emerged as a central node in assembling nociceptive signaling complexes involving voltage-gated ion channels. Concerted actions of post-translational modifications, phosphorylation and SUMOylation, of CRMP2 contribute to regulation of pathological pain states. In the present study, we demonstrate a novel role for CRMP2 in spinal nociceptive transmission. We found that, of six possible post-translational modifications, three phosphorylation sites on CRMP2 were critical for regulating calcium influx in dorsal root ganglion sensory neurons. Of these, only CRMP2 phosphorylated at serine 522 by cyclin-dependent kinase 5 (Cdk5) contributed to spinal neurotransmission in a bidirectional manner. Accordingly, expression of a non-phosphorylatable CRMP2 (S522A) decreased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs), whereas expression of a constitutively phosphorylated CRMP2 (S522D) increased the frequency of sEPSCs. The presynaptic nature of CRMP2's actions was further confirmed by pharmacological antagonism of Cdk5-mediated CRMP2 phosphorylation with S-N-benzy-2-acetamido-3-methoxypropionamide ((S)-lacosamide; (S)-LCM) which (i) decreased sEPSC frequency, (ii) increased paired-pulse ratio, and (iii) reduced the presynaptic distribution of CaV2.2 and NaV1.7, two voltage-gated ion channels implicated in nociceptive signaling. (S)-LCM also inhibited depolarization-evoked release of the pro-nociceptive neurotransmitter calcitonin gene-related peptide (CGRP) in the spinal cord. Increased CRMP2 phosphorylation in rats with spared nerve injury (SNI) was decreased by intrathecal administration of (S)-LCM resulting in a loss of presynaptic localization of CaV2.2 and NaV1.7. Together, these findings indicate that CRMP2 regulates presynaptic excitatory neurotransmission in spinal cord and may play an important role in regulating pathological pain. Novel targeting strategies to inhibit CRMP2 phosphorylation by Cdk5 may have great potential for the treatment of chronic pain.
Collapse
|
15
|
Al-Massri KF, Ahmed LA, El-Abhar HS. Pregabalin and lacosamide ameliorate paclitaxel-induced peripheral neuropathy via inhibition of JAK/STAT signaling pathway and Notch-1 receptor. Neurochem Int 2018; 120:164-171. [PMID: 30118739 DOI: 10.1016/j.neuint.2018.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/22/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
Anticonvulsant drugs such as pregabalin (PGB) and lacosamide (LCM), exhibit potent analgesic effects in diabetic neuropathy; however, their possible role/mechanisms in paclitaxel (PTX)-induced peripheral neuropathy have not been elucidated, which is the aim of the present study. Neuropathic pain was induced in rats by injecting PTX (2 mg/kg, i. p) on days 0, 2, 4 and 6. Forty eight hours after the last dose of PTX, rats were treated orally with 30 mg/kg/day of either PGB or LCM for 21 days. Both therapies improved thermal hyperalgesia and cold allodynia induced by PTX. Interestingly, LCM therapy showed no motor impairment that was observed upon using PGB, as demonstrated using rotarod test. Treatment with PGB or LCM restored the sciatic nerve content of the depleted total antioxidant capacity (TAC) and nerve growth factor (NGF), and lessened the elevated contents of nuclear factor kappa B p65 (NF-kB p65), tumor necrosis factor-α (TNF-α), and active caspase-3. On the molecular level, the drugs reduced the protein expression of Notch1 receptor, phosphorylated p38 mitogen-activated protein kinase (p-p38-MAPK), and the trajectory interleukin-6/phosphorylated janus kinase 2/phosphorylated signal transducer and activator of transcription 3 (IL-6/p-JAK2/p-STAT3). Therefore, the current study demonstrated a pivotal role for LCM in the management of PTX-induced peripheral neuropathy similar to PGB, but without motor adverse effects via the inhibition of oxidative stress, inflammation and apoptosis, as well as IL-6/JAK/STAT pathway and Notch1 receptor over-expression.
Collapse
Affiliation(s)
- Khaled F Al-Massri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
16
|
Abstract
Neurofibromatosis type 1 (NF1), a genetic disorder linked to inactivating mutations or a homozygous deletion of the Nf1 gene, is characterized by tumorigenesis, cognitive dysfunction, seizures, migraine, and pain. Omic studies on human NF1 tissues identified an increase in the expression of collapsin response mediator protein 2 (CRMP2), a cytosolic protein reported to regulate the trafficking and activity of presynaptic N-type voltage-gated calcium (Cav2.2) channels. Because neurofibromin, the protein product of the Nf1 gene, binds to and inhibits CRMP2, the neurofibromin-CRMP2 signaling cascade will likely affect Ca channel activity and regulate nociceptive neurotransmission and in vivo responses to noxious stimulation. Here, we investigated the function of neurofibromin-CRMP2 interaction on Cav2.2. Mapping of >275 peptides between neurofibromin and CRMP2 identified a 15-amino acid CRMP2-derived peptide that, when fused to the tat transduction domain of HIV-1, inhibited Ca influx in dorsal root ganglion neurons. This peptide mimics the negative regulation of CRMP2 activity by neurofibromin. Neurons treated with tat-CRMP2/neurofibromin regulating peptide 1 (t-CNRP1) exhibited a decreased Cav2.2 membrane localization, and uncoupling of neurofibromin-CRMP2 and CRMP2-Cav2.2 interactions. Proteomic analysis of a nanodisc-solubilized membrane protein library identified syntaxin 1A as a novel CRMP2-binding protein whose interaction with CRMP2 was strengthened in neurofibromin-depleted cells and reduced by t-CNRP1. Stimulus-evoked release of calcitonin gene-related peptide from lumbar spinal cord slices was inhibited by t-CNRP1. Intrathecal administration of t-CNRP1 was antinociceptive in experimental models of inflammatory, postsurgical, and neuropathic pain. Our results demonstrate the utility of t-CNRP1 to inhibit CRMP2 protein-protein interactions for the potential treatment of pain.
Collapse
|
17
|
Wang Y, Huo F. Inhibition of sympathetic sprouting in CCD rats by lacosamide. Eur J Pain 2018; 22:1641-1650. [PMID: 29758584 DOI: 10.1002/ejp.1246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Early hyperexcitability activity of injured nerve/neuron is critical for developing sympathetic nerve sprouting within dorsal root ganglia (DRG) since lacosamide (LCM), an anticonvulsant, inhibits Na+ channel. The present study tried to test the potential effect of LCM on inhibiting sympathetic sprouting in vivo. METHODS Lacosamide (50 mg/kg) was daily injected intraperitoneally into rats subjected to chronic compression DRG (CCD), an animal model of neuropathic pain that exhibits sympathetic nerve sprouting, for the 1st 7 days after injury. Mechanical sensitivity was tested from day 3 to day 18 after injury, and then DRGs were removed off. Immunohistochemical staining for tyrosine hydroxylase (TH) was examined to observe sympathetic sprouting, and patch-clamp recording was performed to test the excitability and Na+ current of DRG neurons. RESULTS Early systemic LCM treatment significantly reduced TH immunoreactivity density in injured DRG, lowered the excitability level of injured DRG neurons and increased paw withdrawal threshold. These effects on reducing sympathetic sprouting, inhibiting excitability and suppressing pain behaviour were observed 10 days after the end of early LCM injection. In vitro 100 μmol/L LCM instantly reduced the excitability of CCD neurons via inhibiting Na+ current and reducing the amplitude of AP. CONCLUSIONS All the findings suggest, for the first time, that early administration of LCM inhibited sympathetic sprouting and then alleviated neuropathic pain. SIGNIFICANCE Early LCM administration inhibited sympathetic sprouting within DRG in CCD rats via reducing hyperexcitability of neurons. Early LCM administration suppressed neuropathic pain in CCD rats.
Collapse
Affiliation(s)
- Y Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710061, China
| | - F Huo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
18
|
A novel action of lacosamide on GABA A currents sets the ground for a synergic interaction with levetiracetam in treatment of epilepsy. Neurobiol Dis 2018; 115:59-68. [PMID: 29621596 DOI: 10.1016/j.nbd.2018.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/03/2018] [Accepted: 03/30/2018] [Indexed: 01/01/2023] Open
Abstract
Epilepsy is one of the most common chronic neurological diseases, and its pharmacological treatment holds great importance for both physicians and national authorities, especially considering the high proportion of drug-resistant patients (about 30%). Lacosamide (LCM) is an effective and well-tolerated new-generation antiepileptic drug (AED), currently licensed as add-on therapy for partial-onset seizures. However, LCM mechanism of action is still a matter of debate, although its effect on the voltage sensitive sodium channels is by far the most recognized. This study aimed to retrospectively analyze a cohort of 157 drug-resistant patients treated with LCM to describe the most common and effective therapeutic combinations and to investigate if the LCM can affect also GABAA-mediated neurotransmission as previously shown for levetiracetam (LEV). In our cohort, LEV resulted the compound most frequently associated with LCM in the responder subgroup. We therefore translated this clinical observation into the laboratory bench by taking advantage of the technique of "membrane micro-transplantation" in Xenopus oocytes and electrophysiological approaches to study human GABAA-evoked currents. In cortical brain tissues from refractory epileptic patients, we found that LCM reduces the use-dependent GABA impairment (i.e., "rundown") that it is considered one of the specific hallmarks of drug-resistant epilepsies. Notably, in line with our clinical observations, we found that the co-treatment with subthreshold concentrations of LCM and LEV, which had no effect on GABAA currents on their own, reduced GABA impairment in drug-resistant epileptic patients, and this effect was blocked by PKC inhibitors. Our findings demonstrate, for the first time, that LCM targets GABAA receptors and that it can act synergistically with LEV, improving the GABAergic function. This novel mechanism might contribute to explain the clinical efficacy of LCM-LEV combination in several refractory epileptic patients.
Collapse
|
19
|
Kanellopoulos AH, Koenig J, Huang H, Pyrski M, Millet Q, Lolignier S, Morohashi T, Gossage SJ, Jay M, Linley JE, Baskozos G, Kessler BM, Cox JJ, Dolphin AC, Zufall F, Wood JN, Zhao J. Mapping protein interactions of sodium channel Na V1.7 using epitope-tagged gene-targeted mice. EMBO J 2018; 37:427-445. [PMID: 29335280 PMCID: PMC5793798 DOI: 10.15252/embj.201796692] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 11/24/2022] Open
Abstract
The voltage-gated sodium channel NaV1.7 plays a critical role in pain pathways. We generated an epitope-tagged NaV1.7 mouse that showed normal pain behaviours to identify channel-interacting proteins. Analysis of NaV1.7 complexes affinity-purified under native conditions by mass spectrometry revealed 267 proteins associated with Nav1.7 in vivo The sodium channel β3 (Scn3b), rather than the β1 subunit, complexes with Nav1.7, and we demonstrate an interaction between collapsing-response mediator protein (Crmp2) and Nav1.7, through which the analgesic drug lacosamide regulates Nav1.7 current density. Novel NaV1.7 protein interactors including membrane-trafficking protein synaptotagmin-2 (Syt2), L-type amino acid transporter 1 (Lat1) and transmembrane P24-trafficking protein 10 (Tmed10) together with Scn3b and Crmp2 were validated by co-immunoprecipitation (Co-IP) from sensory neuron extract. Nav1.7, known to regulate opioid receptor efficacy, interacts with the G protein-regulated inducer of neurite outgrowth (Gprin1), an opioid receptor-binding protein, demonstrating a physical and functional link between Nav1.7 and opioid signalling. Further information on physiological interactions provided with this normal epitope-tagged mouse should provide useful insights into the many functions now associated with the NaV1.7 channel.
Collapse
Affiliation(s)
| | - Jennifer Koenig
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Honglei Huang
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Martina Pyrski
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Queensta Millet
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Stéphane Lolignier
- Molecular Nociception Group, WIBR, University College London, London, UK
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France
| | - Toru Morohashi
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Samuel J Gossage
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Maude Jay
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - John E Linley
- Molecular Nociception Group, WIBR, University College London, London, UK
- Neuroscience, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | | | - Benedikt M Kessler
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, Oxford, UK
| | - James J Cox
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - John N Wood
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Jing Zhao
- Molecular Nociception Group, WIBR, University College London, London, UK
| |
Collapse
|
20
|
Gáll Z, Vancea S. Distribution of lacosamide in the rat brain assessed by in vitro slice technique. Arch Pharm Res 2017; 41:79-86. [PMID: 29019022 DOI: 10.1007/s12272-017-0966-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/28/2017] [Indexed: 12/29/2022]
Abstract
Lacosamide is a newer anticonvulsant and is the only one that enhances the slow inactivation of voltage gated sodium channels. It is also claimed to have disease-modifying potential, but its pharmacokinetic properties have been much less discussed in the literature. In rats, lacosamide shows restricted distribution to tissues, and the brain-to-plasma partition coefficient (Kp) is only 0.553. In this study, the brain disposition of lacosamide was evaluated in rat brains, and its neuropharmacokinetic parameters (i.e., protein binding and intracellular accumulation) were assessed using in vitro methods. Brain slice experiments and brain homogenate binding studies were performed for several drugs acting on the central nervous system, and drugs were assayed by using a liquid chromatography-mass spectrometry system. By applying a combined approach, it was found that (1) the unbound volume of distribution in the brain for lacosamide (Vu,brain = 1.37) was lower than that of other classical anticonvulsants; (2) the unbound fraction of lacosamide in the brain (0.899) was slightly lower than its unbound fraction in plasma (0.96); (3) the unbound intracellular-to-extracellular concentration ratio of lacosamide was 1.233, meaning that lacosamide was accumulated in the intracellular space because of its physicochemical properties and zwitterionic structure; and (4) the unbound brain-to-plasma concentration ratio of lacosamide was lower than the total brain-to-plasma concentration ratio (Kp,uu,brain = 0.42 vs. Kp = 0.553). In conclusion, the limited brain distribution of lacosamide is not related to its nonspecific protein-binding capacity; rather, an active transport mechanism across the blood-brain barrier may be involved, which reduces the anticonvulsant and/or antiepileptogenic actions of this drug.
Collapse
Affiliation(s)
- Zsolt Gáll
- Faculty of Pharmacy, Department of Pharmacology and Clinical Pharmacy, University of Medicine and Pharmacy of Tîrgu Mureş, Gh. Marinescu Street, 38, 540139, Târgu Mureş, Romania.
| | - Szende Vancea
- Faculty of Pharmacy, Department of Physical Chemistry, University of Medicine and Pharmacy of Tîrgu Mureş, Gh. Marinescu Street, 38, 540139, Târgu Mureş, Romania
| |
Collapse
|
21
|
Sustained relief of ongoing experimental neuropathic pain by a CRMP2 peptide aptamer with low abuse potential. Pain 2017; 157:2124-2140. [PMID: 27537210 DOI: 10.1097/j.pain.0000000000000628] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Uncoupling the protein-protein interaction between collapsin response mediator protein 2 (CRMP2) and N-type voltage-gated calcium channel (CaV2.2) with an allosteric CRMP2-derived peptide (CBD3) is antinociceptive in rodent models of inflammatory and neuropathic pain. We investigated the efficacy, duration of action, abuse potential, and neurobehavioral toxicity of an improved mutant CRMP2 peptide. A homopolyarginine (R9)-conjugated CBD3-A6K (R9-CBD3-A6K) peptide inhibited the CaV2.2-CRMP2 interaction in a concentration-dependent fashion and diminished surface expression of CaV2.2 and depolarization-evoked Ca influx in rat dorsal root ganglia neurons. In vitro studies demonstrated suppression of excitability of small-to-medium diameter dorsal root ganglion and inhibition of subtypes of voltage-gated Ca channels. Sprague-Dawley rats with tibial nerve injury had profound and long-lasting tactile allodynia and ongoing pain. Immediate administration of R9-CBD3-A6K produced enhanced dopamine release from the nucleus accumbens shell selectively in injured animals, consistent with relief of ongoing pain. R9-CBD3-A6K, when administered repeatedly into the central nervous system ventricles of naive rats, did not result in a positive conditioned place preference demonstrating a lack of abusive liability. Continuous subcutaneous infusion of R9-CBD3-A6K over a 24- to 72-hour period reversed tactile allodynia and ongoing pain, demonstrating a lack of tolerance over this time course. Importantly, continuous infusion of R9-CBD3-A6K did not affect motor activity, anxiety, depression, or memory and learning. Collectively, these results validate the potential therapeutic significance of targeting the CaV-CRMP2 axis for treatment of neuropathic pain.
Collapse
|
22
|
Yamane M, Yamashita N, Hida T, Kamiya Y, Nakamura F, Kolattukudy P, Goshima Y. A functional coupling between CRMP1 and Na v1.7 for retrograde propagation of Semaphorin3A signaling. J Cell Sci 2017; 130:1393-1403. [PMID: 28254884 DOI: 10.1242/jcs.199737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/22/2017] [Indexed: 12/19/2022] Open
Abstract
Semaphorin3A (Sema3A) is a secreted type of axon guidance molecule that regulates axon wiring through complexes of neuropilin-1 (NRP1) with PlexinA protein receptors. Sema3A regulates the dendritic branching through tetrodotoxin (TTX)-sensitive retrograde axonal transport of PlexA proteins and tropomyosin-related kinase A (TrkA) complex. We here demonstrate that Nav1.7 (encoded by SCN9A), a TTX-sensitive Na+ channel, by coupling with collapsin response mediator protein 1 (CRMP1), mediates the Sema3A-induced retrograde transport. In mouse dorsal root ganglion (DRG) neurons, Sema3A increased co-localization of PlexA4 and TrkA in the growth cones and axons. TTX treatment and RNAi knockdown of Nav1.7 sustained Sema3A-induced colocalized signals of PlexA4 and TrkA in growth cones and suppressed the subsequent localization of PlexA4 and TrkA in distal axons. A similar localization phenotype was observed in crmp1-/- DRG neurons. Sema3A induced colocalization of CRMP1 and Nav1.7 in the growth cones. The half maximal voltage was increased in crmp1-/- neurons when compared to that in wild type. In HEK293 cells, introduction of CRMP1 lowered the threshold of co-expressed exogenous Nav1.7. These results suggest that Nav1.7, by coupling with CRMP1, mediates the axonal retrograde signaling of Sema3A.
Collapse
Affiliation(s)
- Masayuki Yamane
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Naoya Yamashita
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan .,Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tomonobu Hida
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan.,RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Yoshinori Kamiya
- Department of Anesthesiology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, 4132 Urasa, Minami-uonuma, Niigata 949-7302, Japan
| | - Fumio Nakamura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Pappachan Kolattukudy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
23
|
Collapsin response mediator protein 2: high-resolution crystal structure sheds light on small-molecule binding, post-translational modifications, and conformational flexibility. Amino Acids 2017; 49:747-759. [PMID: 28044206 DOI: 10.1007/s00726-016-2376-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
Collapsin response mediator protein 2 (CRMP-2) is a neuronal protein involved in axonal pathfinding. Intense research is focusing on its role in various neurological diseases. Despite a wealth of studies, not much is known about the molecular mechanisms of CRMP-2 function in vivo. The detailed structure-function relationships of CRMP-2 have also largely remained unknown, in part due to the fact that the available crystal structures lack the C-terminal tail, which is known to be a target for many post-translational modifications and protein interactions. Although CRMP-2, and other CRMPs, belong to the dihydropyrimidinase family, they have lost the enzymatic active site. Drug candidates for CRMP-2-related processes have come up during the recent years, but no reports of CRMP-2 complexes with small molecules have emerged. Here, CRMP-2 was studied at 1.25-Å resolution using X-ray crystallography. In addition, ligands were docked into the homotetrameric structure, and the C-terminal tail of CRMP-2 was produced recombinantly and analyzed. We have obtained the human CRMP-2 crystal structure at atomic resolution and could identify small-molecule binding pockets in the protein. Structures obtained in different crystal forms highlight flexible regions near possible ligand-binding pockets. We also used the CRMP-2 structure to analyze known or suggested post-translational modifications at the 3D structural level. The high-resolution CRMP-2 structure was also used for docking experiments with the sulfur amino acid metabolite lanthionine ketimine and its ester. We show that the C-terminal tail is intrinsically disordered, but it has conserved segments that may act as interaction sites. Our data provide the most accurate structural data on CRMPs to date and will be useful in further computational and experimental studies on CRMP-2, its function, and its binding to small-molecule ligands.
Collapse
|
24
|
Liu F, Laguesse S, Legastelois R, Morisot N, Ben Hamida S, Ron D. mTORC1-dependent translation of collapsin response mediator protein-2 drives neuroadaptations underlying excessive alcohol-drinking behaviors. Mol Psychiatry 2017; 22:89-101. [PMID: 26952865 PMCID: PMC5097030 DOI: 10.1038/mp.2016.12] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 01/01/2023]
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) has an essential role in dendritic mRNA translation and participates in mechanisms underlying alcohol-drinking and reconsolidation of alcohol-related memories. Here, we report that excessive alcohol consumption increases the translation of downstream targets of mTORC1, including collapsin response mediator protein-2 (CRMP-2), in the nucleus accumbens (NAc) of rodents. We show that alcohol-mediated induction of CRMP-2 translation is mTORC1-dependent, leading to increased CRMP-2 protein levels. Furthermore, we demonstrate that alcohol intake also blocks glycogen synthase kinase-3β (GSK-3β)-phosphorylation of CRMP-2, which results in elevated binding of CRMP-2 to microtubules and a concomitant increase in microtubule content. Finally, we show that systemic administration of the CRMP-2 inhibitor lacosamide, or knockdown of CRMP-2 in the NAc decreases excessive alcohol intake. These results suggest that CRMP-2 in the NAc is a convergent point that receives inputs from two signaling pathways, mTORC1 and GSK-3β, that in turn drives excessive alcohol-drinking behaviors.
Collapse
Affiliation(s)
- F Liu
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - S Laguesse
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - R Legastelois
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - N Morisot
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - S Ben Hamida
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - D Ron
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
25
|
Abstract
Voltage-gated sodium channels (VGSCs) are fundamentally important for the generation and coordinated transmission of action potentials throughout the nervous system. It is, therefore, unsurprising that they have been shown to play a central role in the genesis and alleviation of epilepsy. Genetic studies on patients with epilepsy have identified more than 700 mutations among the genes that encode for VGSCs attesting to their role in pathogenesis. Further, many common antiepileptic drugs act on VGSCs to suppress seizure activity. Here, we present an account of the role of VGSCs in epilepsy, both through their pathogenic dysfunction and as targets for pharmacotherapy.
Collapse
|
26
|
Laedermann CJ, Abriel H, Decosterd I. Post-translational modifications of voltage-gated sodium channels in chronic pain syndromes. Front Pharmacol 2015; 6:263. [PMID: 26594175 PMCID: PMC4633509 DOI: 10.3389/fphar.2015.00263] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/23/2015] [Indexed: 02/06/2023] Open
Abstract
In the peripheral sensory nervous system the neuronal expression of voltage-gated sodium channels (Navs) is very important for the transmission of nociceptive information since they give rise to the upstroke of the action potential (AP). Navs are composed of nine different isoforms with distinct biophysical properties. Studying the mutations associated with the increase or absence of pain sensitivity in humans, as well as other expression studies, have highlighted Nav1.7, Nav1.8, and Nav1.9 as being the most important contributors to the control of nociceptive neuronal electrogenesis. Modulating their expression and/or function can impact the shape of the AP and consequently modify nociceptive transmission, a process that is observed in persistent pain conditions. Post-translational modification (PTM) of Navs is a well-known process that modifies their expression and function. In chronic pain syndromes, the release of inflammatory molecules into the direct environment of dorsal root ganglia (DRG) sensory neurons leads to an abnormal activation of enzymes that induce Navs PTM. The addition of small molecules, i.e., peptides, phosphoryl groups, ubiquitin moieties and/or carbohydrates, can modify the function of Navs in two different ways: via direct physical interference with Nav gating, or via the control of Nav trafficking. Both mechanisms have a profound impact on neuronal excitability. In this review we will discuss the role of Protein Kinase A, B, and C, Mitogen Activated Protein Kinases and Ca++/Calmodulin-dependent Kinase II in peripheral chronic pain syndromes. We will also discuss more recent findings that the ubiquitination of Nav1.7 by Nedd4-2 and the effect of methylglyoxal on Nav1.8 are also implicated in the development of experimental neuropathic pain. We will address the potential roles of other PTMs in chronic pain and highlight the need for further investigation of PTMs of Navs in order to develop new pharmacological tools to alleviate pain.
Collapse
Affiliation(s)
- Cedric J. Laedermann
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Harvard Medical School, BostonMA, USA
| | - Hugues Abriel
- Department of Clinical Research, University of BernBern, Switzerland
| | - Isabelle Decosterd
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV) and University of LausanneLausanne, Switzerland
- Department of Fundamental Neurosciences, University of LausanneLausanne, Switzerland
| |
Collapse
|
27
|
Pasha I, Kamate M, Suresh D. Safety of lacosamide in children with refractory partial epilepsy. Saudi Pharm J 2015; 23:556-561. [PMID: 26594123 PMCID: PMC4605901 DOI: 10.1016/j.jsps.2015.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/01/2015] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES The study was carried out to investigate the safety of lacosamide on children with refractory partial epilepsy. MATERIALS & METHODS The study was carried out at a tertiary care hospital after obtaining approval from the institutional ethics committee. Patients aged between 5 and 15 years taking oral lacosamide (LCM) tablets that were given orally as an adjunctive anti-epileptic drug were enrolled for assessing safety, tolerability and its effect on the behavioural life at every visit of titration, during the treatment period (3 months) and at 2 follow up visits that were done at monthly intervals. Adverse events reported by caregiver or by investigator were recorded. Patients/caregivers also completed a 25 items on Connor's behavioural rating clinical scale at every visit. RESULTS Out of 531 screened patients, 79 patients with refractory partial epilepsy were enrolled after they fulfilled the inclusion and exclusion criteria. Mean age of the children was 8.84 ± 3.09 years (5-15 years), of which 53 were males and 26 females. The mean age at onset of seizures in males was 6.46 ± 3.57 and in females, 6.38 ± 3.39 years. Seventy-six children of 79, completed 3 months of treatment period showed significant (p < 0.001) decrease in the frequency of seizures, significant improvement in behaviour and showed good tolerability. Three (3.79%) patients dropped out of the study due to hyperactive behaviour, vomiting and lack of seizure control respectively. CONCLUSIONS Lacosamide is a well-tolerated newer antiepileptic drug that is effective in refractory partial epilepsy paediatric patients and concurrently improved patient's behaviour.
Collapse
Affiliation(s)
- Ismail Pasha
- Dept. of Pharmacology, KLE University’s College of Pharmacy, Belgaum, Karnataka State, India
| | - Mahesh Kamate
- Dept. of Pediatric Neurology, KLE University’s J N Medical College, KLES Prabhakar Kore Hospital, Belgaum, Karnataka State, India
| | - D.K. Suresh
- Dept. of Pharmacology, Luqman College of Pharmacy, Jevargi Road, Gulbarga, Karnataka State, India
| |
Collapse
|
28
|
CRMPs: critical molecules for neurite morphogenesis and neuropsychiatric diseases. Mol Psychiatry 2015; 20:1037-45. [PMID: 26077693 DOI: 10.1038/mp.2015.77] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 04/29/2015] [Accepted: 05/08/2015] [Indexed: 12/11/2022]
Abstract
Neuronal polarity and spatial rearrangement of neuronal processes are central to the development of all mature nervous systems. Recent studies have highlighted the dynamic expression of Collapsin-Response-Mediator Proteins (CRMPs) in neuronal dendritic/axonal compartments, described their interaction with cytoskeleton proteins, identified their ability to activate L- and N-type voltage-gated calcium channels (VGCCs) and delineated their crucial role as signaling molecules essential for neuron differentiation and neural network development and maintenance. In addition, evidence obtained from genome-wide/genetic linkage/proteomic/translational approaches revealed that CRMP expression is altered in human pathologies including mental (schizophrenia and mood disorders) and neurological (Alzheimer's, prion encephalopathy, epilepsy and others) disorders. Changes in CRMPs levels have been observed after psychotropic treatments, and disrupting CRMP2 binding to calcium channels blocked neuropathic pain. These observations, altogether with those obtained from genetically modified mice targeting individual CRMPs and RNA interference approaches, pave the way for considering CRMPs as potential early disease markers and modulation of their activity as therapeutic strategy for disorders associated with neurite abnormalities.
Collapse
|
29
|
Torregrosa R, Yang XF, Dustrude ET, Cummins TR, Khanna R, Kohn H. Chimeric derivatives of functionalized amino acids and α-aminoamides: compounds with anticonvulsant activity in seizure models and inhibitory actions on central, peripheral, and cardiac isoforms of voltage-gated sodium channels. Bioorg Med Chem 2015; 23:3655-66. [PMID: 25922183 PMCID: PMC4461516 DOI: 10.1016/j.bmc.2015.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/26/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
Abstract
Six novel 3″-substituted (R)-N-(phenoxybenzyl) 2-N-acetamido-3-methoxypropionamides were prepared and then assessed using whole-cell, patch-clamp electrophysiology for their anticonvulsant activities in animal seizure models and for their sodium channel activities. We found compounds with various substituents at the terminal aromatic ring that had excellent anticonvulsant activity. Of these compounds, (R)-N-4'-((3″-chloro)phenoxy)benzyl 2-N-acetamido-3-methoxypropionamide ((R)-5) and (R)-N-4'-((3″-trifluoromethoxy)phenoxy)benzyl 2-N-acetamido-3-methoxypropionamide ((R)-9) exhibited high protective indices (PI=TD50/ED50) comparable with many antiseizure drugs when tested in the maximal electroshock seizure test to mice (intraperitoneally) and rats (intraperitoneally, orally). Most compounds potently transitioned sodium channels to the slow-inactivated state when evaluated in rat embryonic cortical neurons. Treating HEK293 recombinant cells that expressed hNaV1.1, rNaV1.3, hNaV1.5, or hNaV1.7 with (R)-9 recapitulated the high levels of sodium channel slow inactivation.
Collapse
Affiliation(s)
- Robert Torregrosa
- NeuroGate Therapeutics, Inc., 150 Fayetteville Street, Suite 2300, Raleigh, NC 27601, United States
| | - Xiao-Fang Yang
- Department of Pharmacology and Neuroscience Graduate Interdisciplinary Program, College of Medicine, University of Arizona, Tucson, AZ 85742, United States
| | - Erik T Dustrude
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Theodore R Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Rajesh Khanna
- Department of Pharmacology and Neuroscience Graduate Interdisciplinary Program, College of Medicine, University of Arizona, Tucson, AZ 85742, United States
| | - Harold Kohn
- NeuroGate Therapeutics, Inc., 150 Fayetteville Street, Suite 2300, Raleigh, NC 27601, United States; Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States; Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, United States
| |
Collapse
|
30
|
(S)-Lacosamide Binding to Collapsin Response Mediator Protein 2 (CRMP2) Regulates CaV2.2 Activity by Subverting Its Phosphorylation by Cdk5. Mol Neurobiol 2015; 53:1959-1976. [PMID: 25846820 DOI: 10.1007/s12035-015-9141-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/09/2015] [Indexed: 12/22/2022]
Abstract
The neuronal circuit remodels during development as well as in human neuropathologies such as epilepsy. Neurite outgrowth is an obligatory step in these events. We recently reported that alterations in the phosphorylation state of an axon specification/guidance protein, the collapsin response mediator protein 2 (CRMP2), play a major role in the activity-dependent regulation of neurite outgrowth. We also identified (S)-LCM, an inactive stereoisomer of the clinically used antiepileptic drug (R)-LCM (Vimpat®), as a novel tool for preferentially targeting CRMP2-mediated neurite outgrowth. Here, we investigated the mechanism by which (S)-LCM affects CRMP2 phosphorylation by two key kinases, cyclin-dependent kinase 5 (Cdk5) and glycogen synthase kinase 3β (GSK-3β). (S)-LCM application to embryonic cortical neurons resulted in reduced levels of Cdk5- and GSK-3β-phosphorylated CRMP2. Mechanistically, (S)-LCM increased CRMP2 binding to both Cdk5- and GSK-3β without affecting binding of CRMP2 to its canonical partner tubulin. Saturation transfer difference nuclear magnetic resonance (STD NMR) and differential scanning fluorimetry (DSF) experiments demonstrated direct binding of (S)-LCM to CRMP2. Using an in vitro luminescent kinase assay, we observed that (S)-LCM specifically inhibited Cdk5-mediated phosphorylation of CRMP2. Cross-linking experiments and analytical ultracentrifugation showed no effect of (S)-LCM on the oligomerization state of CRMP2. The increased association between Cdk5-phosphorylated CRMP2 and CaV2.2 was reduced by (S)-LCM in vitro and in vivo. This reduction translated into a decrease of calcium influx via CaV2.2 in (S)-LCM-treated neurons compared to controls. (S)-LCM, to our knowledge, is the first molecule described to directly inhibit CRMP2 phosphorylation and may be useful for delineating CRMP2-facilitated functions.
Collapse
|
31
|
Wilson SM, Khanna R. Specific binding of lacosamide to collapsin response mediator protein 2 (CRMP2) and direct impairment of its canonical function: implications for the therapeutic potential of lacosamide. Mol Neurobiol 2015; 51:599-609. [PMID: 24944082 PMCID: PMC4272652 DOI: 10.1007/s12035-014-8775-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/01/2014] [Indexed: 12/22/2022]
Abstract
The novel antiepileptic drug lacosamide (LCM; SPM927, Vimpat®) has been heralded as having a dual-mode of action through interactions with both the voltage-gated sodium channel and the neurite outgrowth-promoting collapsin response mediator protein 2 (CRMP2). Lacosamide's ability to dampen neuronal excitability through the voltage-gated sodium channel likely underlies its efficacy in attenuating the symptoms of epilepsy (i.e., seizures). While the role of CRMP2 in epilepsy has not been well studied, given the proposed involvement of circuit reorganization in epileptogenesis, the ability of lacosamide to alter CRMP2 function may prove disease modifying. Recently, however, the validity of lacosamide's interaction with CRMP2 has come under scrutiny. In this review, we address the contradictory reports concerning the binding of lacosamide to CRMP2 as well as the ability of lacosamide to directly impact CRMP2 function. Additionally, we address similarly the contradicting reports regarding the potential disease-modifying effect of lacosamide on the development and progression of epilepsy. As the vast majority of antiepileptic drugs influences only the symptoms of epilepsy, the ability to hinder disease progression would be a major breakthrough in efforts to cure or prevent this debilitating syndrome.
Collapse
Affiliation(s)
- Sarah M. Wilson
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rajesh Khanna
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Neuroscience Graduate Interdisciplinary Program, College of Medicine, University of Arizona, Tucson, AZ 85742
| |
Collapse
|
32
|
Park KD, Yang XF, Dustrude ET, Wang Y, Ripsch MS, White FA, Khanna R, Kohn H. Chimeric agents derived from the functionalized amino acid, lacosamide, and the α-aminoamide, safinamide: evaluation of their inhibitory actions on voltage-gated sodium channels, and antiseizure and antinociception activities and comparison with lacosamide and safinamide. ACS Chem Neurosci 2015; 6:316-30. [PMID: 25418676 PMCID: PMC4372064 DOI: 10.1021/cn5002182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
![]()
The functionalized amino acid, lacosamide
((R)-2), and the α-aminoamide,
safinamide ((S)-3), are neurological
agents that have been extensively
investigated and have displayed potent anticonvulsant activities in
seizure models. Both compounds have been reported to modulate voltage-gated
sodium channel activity. We have prepared a series of chimeric compounds,
(R)-7–(R)-10, by merging key structural units in these two clinical
agents, and then compared their activities with (R)-2 and (S)-3. Compounds
were assessed for their ability to alter sodium channel kinetics for
inactivation, frequency (use)-dependence, and steady-state activation
and fast inactivation. We report that chimeric compounds (R)-7–(R)-10 in catecholamine A-differentiated (CAD) cells and embryonic rat
cortical neurons robustly enhanced sodium channel inactivation at
concentrations far lower than those required for (R)-2 and (S)-3, and that
(R)-9 and (R)-10, unlike (R)-2 and (S)-3, produce sodium channel frequency (use)-dependence
at low micromolar concentrations. We further show that (R)-7–(R)-10 displayed
excellent anticonvulsant activities and pain-attenuating properties
in the animal formalin model. Of these compounds, only (R)-7 reversed mechanical hypersensitivity in the tibial-nerve
injury model for neuropathic pain in rats.
Collapse
Affiliation(s)
| | - Xiao-Fang Yang
- Department
of Pharmacology and Neuroscience Graduate Interdisciplinary Program,
College of Medicine, University of Arizona, Tucson, Arizona 85742, United States
| | | | - Yuying Wang
- Department
of Pharmacology and Neuroscience Graduate Interdisciplinary Program,
College of Medicine, University of Arizona, Tucson, Arizona 85742, United States
| | | | | | - Rajesh Khanna
- Department
of Pharmacology and Neuroscience Graduate Interdisciplinary Program,
College of Medicine, University of Arizona, Tucson, Arizona 85742, United States
| | - Harold Kohn
- NeuroGate Therapeutics, Inc., 150
Fayetteville Street, Suite 2300, Raleigh, North Carolina 27601, United States
| |
Collapse
|
33
|
Current understanding of the mechanism of action of the antiepileptic drug lacosamide. Epilepsy Res 2015; 110:189-205. [DOI: 10.1016/j.eplepsyres.2014.11.021] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022]
|
34
|
Cawello W, Stockis A, Andreas JO, Dimova S. Advances in epilepsy treatment: lacosamide pharmacokinetic profile. Ann N Y Acad Sci 2014; 1329:18-32. [PMID: 25167889 DOI: 10.1111/nyas.12513] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lacosamide (LCM) is a functionalized amino acid specifically developed for use as an antiepileptic drug (AED) and is currently indicated as adjunctive treatment for partial-onset seizures in adults with focal epilepsy (maximum approved dose 400 mg/day). Characterization of the pharmacokinetic profile is an important aspect in the development of LCM. Studies in healthy subjects and in patients with focal epilepsy have established that LCM has several favorable pharmacokinetic characteristics, including rapid absorption and high oral bioavailability not affected by food, linear and dose-proportional pharmacokinetics, low inter- and intraindividual variability, low plasma protein binding, renal elimination, and a low potential for clinically relevant pharmacokinetic drug-drug interactions both with AEDs and other common medications. Studies have demonstrated bioequivalence among the three LCM formulations (oral tablets, oral solution, and solution for intravenous (IV) infusion), allowing direct conversion to or from oral and IV administration without titration. Thus, the favorable and predictable pharmacokinetic profile and bioequivalence of LCM formulations, coupled with the low potential for clinically relevant pharmacokinetic drug-drug interactions, make LCM an easy-to-use adjunctive treatment for the management of patients with focal epilepsy.
Collapse
|
35
|
Wilson SM, Moutal A, Melemedjian OK, Wang Y, Ju W, François-Moutal L, Khanna M, Khanna R. The functionalized amino acid (S)-Lacosamide subverts CRMP2-mediated tubulin polymerization to prevent constitutive and activity-dependent increase in neurite outgrowth. Front Cell Neurosci 2014; 8:196. [PMID: 25104922 PMCID: PMC4109617 DOI: 10.3389/fncel.2014.00196] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/26/2014] [Indexed: 01/18/2023] Open
Abstract
Activity-dependent neurite outgrowth is a highly complex, regulated process with important implications for neuronal circuit remodeling in development as well as in seizure-induced sprouting in epilepsy. Recent work has linked outgrowth to collapsin response mediator protein 2 (CRMP2), an intracellular phosphoprotein originally identified as axon guidance and growth cone collapse protein. The neurite outgrowth promoting function of CRMP2 is regulated by its phosphorylation state. In this study, depolarization (potassium chloride)-driven activity increased the level of active CRMP2 by decreasing its phosphorylation by GSK3β via a reduction in priming by Cdk5. To determine the contribution of CRMP2 in activity-driven neurite outgrowth, we screened a limited set of compounds for their ability to reduce neurite outgrowth but not modify voltage-gated sodium channel (VGSC) biophysical properties. This led to the identification of (S)-lacosamide ((S)-LCM), a stereoisomer of the clinically used antiepileptic drug (R)-LCM (Vimpat®), as a novel tool for preferentially targeting CRMP2-mediated neurite outgrowth. Whereas (S)-LCM was ineffective in targeting VGSCs, the presumptive pharmacological targets of (R)-LCM, (S)-LCM was more efficient than (R)-LCM in subverting neurite outgrowth. Biomolecular interaction analyses revealed that (S)-LCM bound to wildtype CRMP2 with low micromolar affinity, similar to (R)-LCM. Through the use of this novel tool, the activity-dependent increase in neurite outgrowth observed following depolarization was characterized to be reliant on CRMP2 function. Knockdown of CRMP2 by siRNA in cortical neurons resulted in reduced CRMP2-dependent neurite outgrowth; incubation with (S)-LCM phenocopied this effect. Other CRMP2-mediated processes were unaffected. (S)-LCM subverted neurite outgrowth not by affecting the canonical CRMP2-tubulin association but rather by impairing the ability of CRMP2 to promote tubulin polymerization, events that are perfunctory for neurite outgrowth. Taken together, these results suggest that changes in the phosphorylation state of CRMP2 are a major contributing factor in activity-dependent regulation of neurite outgrowth.
Collapse
Affiliation(s)
- Sarah M Wilson
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine Indianapolis, IN, USA
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona Tucson, AZ, USA
| | - Ohannes K Melemedjian
- Department of Pharmacology, College of Medicine, University of Arizona Tucson, AZ, USA
| | - Yuying Wang
- Department of Pharmacology, College of Medicine, University of Arizona Tucson, AZ, USA
| | - Weina Ju
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine Indianapolis, IN, USA ; Department of Neurology, The First Hospital of Jilin University, and Jilin University Jilin, China
| | | | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona Tucson, AZ, USA
| | - Rajesh Khanna
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine Indianapolis, IN, USA ; Department of Pharmacology, College of Medicine, University of Arizona Tucson, AZ, USA ; Neuroscience Graduate Interdisciplinary Program, College of Medicine, University of Arizona Tucson, AZ, USA
| |
Collapse
|
36
|
Lee H, Park KD, Torregrosa R, Yang XF, Dustrude ET, Wang Y, Wilson SM, Barbosa C, Xiao Y, Cummins TR, Khanna R, Kohn H. Substituted N-(biphenyl-4'-yl)methyl (R)-2-acetamido-3-methoxypropionamides: potent anticonvulsants that affect frequency (use) dependence and slow inactivation of sodium channels. J Med Chem 2014; 57:6165-82. [PMID: 25004277 PMCID: PMC4111400 DOI: 10.1021/jm500707r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We
prepared 13 derivatives of N-(biphenyl-4′-yl)methyl
(R)-2-acetamido-3-methoxypropionamide that differed
in type and placement of a R-substituent in the terminal aryl unit.
We demonstrated that the R-substituent impacted the compound’s
whole animal and cellular pharmacological activities. In rodents,
select compounds exhibited excellent anticonvulsant activities and
protective indices (PI = TD50/ED50) that compared
favorably with clinical antiseizure drugs. Compounds with a polar,
aprotic R-substituent potently promoted Na+ channel slow
inactivation and displayed frequency (use) inhibition of Na+ currents at low micromolar concentrations. The possible advantage
of affecting these two pathways to decrease neurological hyperexcitability
is discussed.
Collapse
Affiliation(s)
- Hyosung Lee
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, and ‡Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wilson SM, Ki Yeon S, Yang XF, Park KD, Khanna R. Differential regulation of collapsin response mediator protein 2 (CRMP2) phosphorylation by GSK3ß and CDK5 following traumatic brain injury. Front Cell Neurosci 2014; 8:135. [PMID: 24904280 PMCID: PMC4035569 DOI: 10.3389/fncel.2014.00135] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/29/2014] [Indexed: 11/13/2022] Open
Abstract
Aberrant ion channel function has been heralded as a main underlying mechanism driving epilepsy and its symptoms. However, it has become increasingly clear that treatment strategies targeting voltage-gated sodium or calcium channels merely mask the symptoms of epilepsy without providing disease-modifying benefits. Ion channel function is likely only one important cog in a highly complex machine. Gross morphological changes, such as reactive sprouting and outgrowth, may also play a role in epileptogenesis. Mechanisms responsible for these changes are not well-understood. Here we investigate the potential involvement of the neurite outgrowth-promoting molecule collapsin response mediator protein 2 (CRMP2). CRMP2 activity, in this respect, is regulated by phosphorylation state, where phosphorylation by a variety of kinases, including glycogen synthase kinase 3 β (GSK3β) renders it inactive. Phosphorylation (inactivation) of CRMP2 was decreased at two distinct phases following traumatic brain injury (TBI). While reduced CRMP2 phosphorylation during the early phase was attributed to the inactivation of GSK3β, the sustained decrease in CRMP2 phosphorylation in the late phase appeared to be independent of GSK3β activity. Instead, the reduction in GSK3β-phosphorylated CRMP2 was attributed to a loss of priming by cyclin-dependent kinase 5 (CDK5), which allows for subsequent phosphorylation by GSK3β. Based on the observation that the proportion of active CRMP2 is increased for up to 4 weeks following TBI, it was hypothesized that it may drive neurite outgrowth, and therefore, circuit reorganization during this time. Therefore, a novel small-molecule tool was used to target CRMP2 in an attempt to determine its importance in mossy fiber sprouting following TBI. In this report, we demonstrate novel differential regulation of CRMP2 phosphorylation by GSK3β and CDK5 following TBI.
Collapse
Affiliation(s)
- Sarah M Wilson
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine Indianapolis, IN, USA
| | - Seul Ki Yeon
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology Seoul, Korea
| | - Xiao-Fang Yang
- Department of Pharmacology, College of Medicine, University of Arizona Tucson, AZ, USA
| | - Ki Duk Park
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology Seoul, Korea
| | - Rajesh Khanna
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine Indianapolis, IN, USA ; Department of Pharmacology, College of Medicine, University of Arizona Tucson, AZ, USA
| |
Collapse
|
38
|
Bailey RC, Fountain NB. Update On the Use of Lacosamide in the Treatment of Partial-Onset Seizures. FUTURE NEUROLOGY 2014; 9:301-312. [DOI: 10.2217/fnl.14.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Russell C Bailey
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Nathan B Fountain
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
39
|
Fischer MJM, McNaughton PA. How anchoring proteins shape pain. Pharmacol Ther 2014; 143:316-22. [PMID: 24727631 DOI: 10.1016/j.pharmthera.2014.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 03/28/2014] [Indexed: 11/29/2022]
Abstract
Cellular responsiveness to external stimuli can be altered by extracellular mediators which activate membrane receptors, in turn signalling to the intracellular space via calcium, cyclic nucleotides, membrane lipids or enzyme activity. These signalling events trigger a cascade leading to an effector which can be a channel, an enzyme or a transcription factor. The effectiveness of these intracellular events is enhanced when they are maintained in close proximity by anchoring proteins, which assemble complexes of signalling molecules such as kinases together with their targets, and in this way enhance both the speed and the precision of intracellular signalling. The A kinase anchoring protein (AKAP) family are adaptor proteins originally named for their ability to associate Protein Kinase A and its targets, but several other enzymes bound by AKAPs have now been found and a wide variety of target structures has been described. This review provides an overview of anchoring proteins involved in pain signalling. The key anchoring proteins and their ion channel targets in primary sensory neurons responding to painful stimuli (nociceptors) are discussed.
Collapse
Affiliation(s)
- Michael J M Fischer
- Institute of Physiology and Pathophysiology, FAU Erlangen-Nürnberg, Germany.
| | - Peter A McNaughton
- Wolfson Centre for Age-Related Research, Hodgkin Building, King's College London, London SE1 1UH, UK
| |
Collapse
|
40
|
Effect of lacosamide on structural damage and functional recovery after traumatic brain injury in rats. Epilepsy Res 2014; 108:653-65. [PMID: 24636248 DOI: 10.1016/j.eplepsyres.2014.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 11/23/2022]
Abstract
In a subgroup of patients, traumatic brain injury (TBI) results in the occurrence of acute epileptic seizures or even status epilepticus, which are treated with antiepileptic drugs (AEDs). Recent experimental data, however, suggest that administration of AEDs at the early post-injury phase can compromise the recovery process. The present study was designed to assess the profile of a novel anticonvulsant, lacosamide (Vimpat) on post-TBI structural, motor and cognitive outcomes. Moderate TBI was induced by lateral fluid-percussion injury in adult rats. Treatment with 0.9% saline or lacosamide (30 mg/kg, i.p.) was started at 30 min post-injury and continued at 8h intervals for 3d (total daily dose 90 mg/kg/d). Rats were randomly assigned to 4 treatment groups: sham-operated controls treated with vehicle (Sham-Veh) or lacosamide (Sham-LCM) and injured animals treated with vehicle (TBI-Veh) or lacosamide (TBI-LCM). As functional outcomes we tested motor recovery with composite neuroscore and beam-walking at 2, 7, and 15 d post-injury. Cognitive recovery was tested with the Morris water-maze at 12-14 d post-TBI. To assess the structural outcome, animals underwent magnetic resonance imaging (MRI) at 2 d post-TBI. At 16d post-TBI, rats were perfused for histology to analyze cortical and hippocampal neurodegeneration and axonal damage. Our data show that at 2 d post-TBI, both the TBI-Veh and TBI-LCM groups were equally impaired in neuroscore. Thereafter, motor recovery occurred similarly during the first week. At 2 wk post-TBI, recovery of the TBI-LCM group lagged behind that in the TBI-VEH group (p<0.05). Performance in beam-walking did not differ between the TBI-Veh and TBI-LCM groups. Both TBI groups were similarly impaired in the Morris water-maze at 2 wk post-TBI. MRI and histology did not reveal any differences in the cortical or hippocampal damage between the TBI-Veh and TBI-LCM groups. Taken together, acute treatment with LCM had no protective effects on post-TBI structural or functional impairment. Composite neuroscore in the TBI-LCM group lagged behind that in the TBI-Veh group at 15 d post-injury, but no compromise was found in other indices of post-TBI recovery in the LCM treated animals.
Collapse
|
41
|
|
42
|
Dustrude ET, Wilson SM, Ju W, Xiao Y, Khanna R. CRMP2 protein SUMOylation modulates NaV1.7 channel trafficking. J Biol Chem 2013; 288:24316-31. [PMID: 23836888 DOI: 10.1074/jbc.m113.474924] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated sodium channel (NaV) trafficking is incompletely understood. Post-translational modifications of NaVs and/or auxiliary subunits and protein-protein interactions have been posited as NaV-trafficking mechanisms. Here, we tested if modification of the axonal collapsin response mediator protein 2 (CRMP2) by a small ubiquitin-like modifier (SUMO) could affect NaV trafficking; CRMP2 alters the extent of NaV slow inactivation conferred by the anti-epileptic (R)-lacosamide, implying NaV-CRMP2 functional coupling. Expression of a CRMP2 SUMOylation-incompetent mutant (CRMP2-K374A) in neuronal model catecholamine A differentiated (CAD) cells did not alter lacosamide-induced NaV slow inactivation compared with CAD cells expressing wild type CRMP2. Like wild type CRMP2, CRMP2-K374A expressed robustly in CAD cells. Neurite outgrowth, a canonical CRMP2 function, was moderately reduced by the mutation but was still significantly higher than enhanced GFP-transfected cortical neurons. Notably, huwentoxin-IV-sensitive NaV1.7 currents, which predominate in CAD cells, were significantly reduced in CAD cells expressing CRMP2-K374A. Increasing deSUMOylation with sentrin/SUMO-specific protease SENP1 or SENP2 in wild type CRMP2-expressing CAD cells decreased NaV1.7 currents. Consistent with a reduction in current density, biotinylation revealed a significant reduction in surface NaV1.7 levels in CAD cells expressing CRMP2-K374A; surface NaV1.7 expression was also decreased by SENP1 + SENP2 overexpression. Currents in HEK293 cells stably expressing NaV1.7 were reduced by CRMP2-K374A in a manner dependent on the E2-conjugating enzyme Ubc9. No decrement in current density was observed in HEK293 cells co-expressing CRMP2-K374A and NaV1.1 or NaV1.3. Diminution of sodium currents, largely NaV1.7, was recapitulated in sensory neurons expressing CRMP2-K374A. Our study elucidates a novel regulatory mechanism that utilizes CRMP2 SUMOylation to choreograph NaV1.7 trafficking.
Collapse
Affiliation(s)
- Erik T Dustrude
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
43
|
Hubbard C, Benda E, Hardin T, Baxter T, St. John E, O'Brien S, Hensley K, Holgado AM. Lanthionine ketimine ethyl ester partially rescues neurodevelopmental defects inunc-33(DPYSL2/CRMP2) mutants. J Neurosci Res 2013; 91:1183-90. [DOI: 10.1002/jnr.23239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/05/2013] [Accepted: 03/18/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Caleb Hubbard
- Department of Biological Sciences; Southwestern Oklahoma State University; Weatherford; Oklahoma
| | - Erica Benda
- Department of Biological Sciences; Southwestern Oklahoma State University; Weatherford; Oklahoma
| | - Tyler Hardin
- Department of Biological Sciences; Southwestern Oklahoma State University; Weatherford; Oklahoma
| | - Taylor Baxter
- Department of Biological Sciences; Southwestern Oklahoma State University; Weatherford; Oklahoma
| | - Elizabeth St. John
- Department of Biological Sciences; Southwestern Oklahoma State University; Weatherford; Oklahoma
| | - Sean O'Brien
- Department of Biological Sciences; Southwestern Oklahoma State University; Weatherford; Oklahoma
| | - Kenneth Hensley
- Department of Pathology and Department of Neuroscience; University of Toledo Medical Center; Toledo; Ohio
| | - Andrea M. Holgado
- Department of Biological Sciences; Southwestern Oklahoma State University; Weatherford; Oklahoma
| |
Collapse
|
44
|
Doty P, Hebert D, Mathy FX, Byrnes W, Zackheim J, Simontacchi K. Development of lacosamide for the treatment of partial-onset seizures. Ann N Y Acad Sci 2013; 1291:56-68. [PMID: 23859801 PMCID: PMC3759704 DOI: 10.1111/nyas.12213] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lacosamide is an antiepileptic drug (AED) available in multiple formulations that was first approved in 2008 as adjunctive therapy for partial-onset seizures (POS) in adults. Unlike traditional sodium channel blockers affecting fast inactivation, lacosamide selectively enhances sodium channel slow inactivation. This mechanism of action results in stabilization of hyperexcitable neuronal membranes, inhibition of neuronal firing, and reduction in long-term channel availability without affecting physiological function. Lacosamide has a well-characterized and favorable pharmacokinetic profile, including a fast absorption rate, minimal or no interaction with cytochrome P-450 izoenzymes, and a low potential for drug-drug interactions. Lacosamide clinical development included three placebo-controlled, double-blind, randomized trials conducted in more than 1300 patients, each demonstrating safety and efficacy of lacosamide compared to placebo as adjunctive therapy for adults with POS. The clinical use of lacosamide may broaden, pending results of trials evaluating its use as monotherapy for POS in adults, as treatment for epilepsy in pediatric subjects, and as adjunctive treatment for uncontrolled primary generalized tonic-clonic seizures in those with idiopathic generalized epilepsy.
Collapse
Affiliation(s)
- Pamela Doty
- UCB Pharma, Raleigh, North Carolina 27617, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Verrotti A, Loiacono G, Pizzolorusso A, Parisi P, Bruni O, Luchetti A, Zamponi N, Cappanera S, Grosso S, Kluger G, Janello C, Franzoni E, Elia M, Spalice A, Coppola G, Striano P, Pavone P, Savasta S, Viri M, Romeo A, Aloisi P, Gobbi G, Ferretti A, Cusmai R, Curatolo P. Lacosamide in pediatric and adult patients: comparison of efficacy and safety. Seizure 2013; 22:210-216. [PMID: 23298605 DOI: 10.1016/j.seizure.2012.12.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/11/2012] [Accepted: 12/12/2012] [Indexed: 11/17/2022] Open
Abstract
PURPOSE This multicenter, prospective study investigates the efficacy and safety of lacosamide adjunctive therapy in pediatric and adult patients with uncontrolled epilepsy. METHOD This study was carried out between September 2010 and December 2011 at 16 Italian and 1 German neurologic centers. Lacosamide was added to the baseline therapy at a starting dose of 1 mg/kg/day in patients aged <16 years (group A) and 100 mg daily in subjects aged 16 and older (group B), and titrated to the target dose, ranging from 3 to 12 mg/kg/day or from 100 to 600 mg daily, respectively. After completing the titration period, patients entered a 12-month maintenance period and they were followed up at 3, 6 and 12 months. The primary assessment of efficacy was based on the change from baseline in seizure frequency per 28 days and was evaluated at 3, 6 and 12 months as follows: number and proportion of 100% responders, 50% responders, non-responders and worsening patients. Safety evaluation was also performed at 3, 6 and 12 months. RESULTS A total of 118 patients (59 group A, 59 group B) with uncontrolled generalized and focal epilepsy were enrolled. Patient mean±SD age was 15.9±6.80 years and the age range was 4-38 years. At 3-month evaluation, of 118 treated patients 56 subjects (47.4% group A; 47.4% group B; p=0.8537) experienced at least a 50% reduction in seizure frequency. At 6 and 12-month follow-up, the 50% responders were 57 (52.5% group A; 44.1% group B; p=0.4612) and 51 (47.4% group A; 39% group B; p=0.4573), respectively. Thirty-five subjects (30.5% group A; 28.8% group B; p=1) experienced side effects during the treatment period. The most common adverse events were dyspepsia for group A and dizziness for group B. CONCLUSION Lacosamide may be a useful and safe pharmacological treatment option for both pediatric and adult patients with uncontrolled seizures.
Collapse
|
46
|
Park KD, Yang XF, Lee H, Dustrude ET, Wang Y, Khanna R, Kohn H. Discovery of lacosamide affinity bait agents that exhibit potent voltage-gated sodium channel blocking properties. ACS Chem Neurosci 2013; 4:463-74. [PMID: 23509982 DOI: 10.1021/cn300188h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lacosamide ((R)-1) is a recently marketed, first-in-class, antiepileptic drug. Patch-clamp electrophysiology studies are consistent with the notion that (R)-1 modulates voltage-gated Na(+) channel function by increasing and stabilizing the slow inactivation state without affecting fast inactivation. The molecular pathway(s) that regulate slow inactivation are poorly understood. Affinity baits are chemical reactive units, which when appended to a ligand (drug) can lead to irreversible, covalent modification of the receptor thus permitting drug binding site identification including, possibly, the site of ligand function. We describe, herein, the synthesis of four (R)-1 affinity baits, (R)-N-(4″-isothiocyanatobiphenyl-4'-yl)methyl 2-acetamido-3-methoxypropionamide ((R)-8), (S)-N-(4″-isothiocyanatobiphenyl-4'-yl)methyl 2-acetamido-3-methoxypropionamide ((S)-8), (R)-N-(3″-isothiocyanatobiphenyl-4'-yl)methyl 2-acetamido-3-methoxypropionamide ((R)-9), and (R)-N-(3″-acrylamidobiphenyl-4'-yl)methyl 2-acetamido-3-methoxypropionamide ((R)-10). The affinity bait compounds were designed to interact with the receptor(s) responsible for (R)-1-mediated slow inactivation. We show that (R)-8 and (R)-9 are potent inhibitors of Na(+) channel function and function by a pathway similar to that observed for (R)-1. We further demonstrate that (R)-8 function is stereospecific. The calculated IC50 values determined for Na(+) channel slow inactivation for (R)-1, (R)-8, and (R)-9 were 85.1, 0.1, and 0.2 μM, respectively. Incubating (R)-9 with the neuronal-like CAD cells led to appreciable levels of Na(+) channel slow inactivation after cellular wash, and the level of slow inactivation only modestly decreased with further incubation and washing. Collectively, these findings have identified a promising structural template to investigate the voltage-gated Na(+) channel slow inactivation process.
Collapse
Affiliation(s)
- Ki Duk Park
- Departments of Pharmacology and
Toxicology, ‡Biochemistry and Molecular Biology, and §Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis,
Indiana 46202, United States
- Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, and ⊥Department of Chemistry, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Xiao-Fang Yang
- Departments of Pharmacology and
Toxicology, ‡Biochemistry and Molecular Biology, and §Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis,
Indiana 46202, United States
- Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, and ⊥Department of Chemistry, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Hyosung Lee
- Departments of Pharmacology and
Toxicology, ‡Biochemistry and Molecular Biology, and §Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis,
Indiana 46202, United States
- Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, and ⊥Department of Chemistry, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Erik T. Dustrude
- Departments of Pharmacology and
Toxicology, ‡Biochemistry and Molecular Biology, and §Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis,
Indiana 46202, United States
- Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, and ⊥Department of Chemistry, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Yuying Wang
- Departments of Pharmacology and
Toxicology, ‡Biochemistry and Molecular Biology, and §Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis,
Indiana 46202, United States
- Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, and ⊥Department of Chemistry, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Rajesh Khanna
- Departments of Pharmacology and
Toxicology, ‡Biochemistry and Molecular Biology, and §Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis,
Indiana 46202, United States
- Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, and ⊥Department of Chemistry, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Harold Kohn
- Departments of Pharmacology and
Toxicology, ‡Biochemistry and Molecular Biology, and §Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis,
Indiana 46202, United States
- Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, and ⊥Department of Chemistry, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
47
|
Ju W, Li Q, Wilson SM, Brittain JM, Meroueh L, Khanna R. SUMOylation alters CRMP2 regulation of calcium influx in sensory neurons. Channels (Austin) 2013; 7:153-9. [PMID: 23510938 DOI: 10.4161/chan.24224] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The axon/dendrite specification collapsin response mediator protein 2 (CRMP2) bidirectionally modulates N-type voltage-gated Ca ( 2+) channels (CaV2.2). Here we demonstrate that small ubiquitin-like modifier (SUMO) protein modifies CRMP2 via the SUMO E2-conjugating enzyme Ubc9 in vivo. Removal of a SUMO conjugation site KMD in CRMP2 (K374A/M375A/D376A; CRMP2AAA) resulted in loss of SUMOylated CRMP2 without compromising neurite branching, a canonical hallmark of CRMP2 function. Increasing SUMOylation levels correlated inversely with calcium influx in sensory neurons. CRMP2 deSUMOylation by SUMO proteases SENP1 and SENP2 normalized calcium influx to those in the CRMP2AAA mutant. Thus, our results identify a novel role for SUMO modification in CRMP2/CaV2.2 signaling pathway.
Collapse
Affiliation(s)
- Weina Ju
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | |
Collapse
|
48
|
King AM, Yang XF, Wang Y, Dustrude ET, Barbosa C, Due MR, Piekarz AD, Wilson SM, White FA, Salomé C, Cummins TR, Khanna R, Kohn H. Identification of the benzyloxyphenyl pharmacophore: a structural unit that promotes sodium channel slow inactivation. ACS Chem Neurosci 2012; 3:1037-49. [PMID: 23259039 DOI: 10.1021/cn300129d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/19/2012] [Indexed: 11/28/2022] Open
Abstract
Four compounds that contained the N-benzyl 2-amino-3-methoxypropionamide unit were evaluated for their ability to modulate Na(+) currents in catecholamine A differentiated CAD neuronal cells. The compounds differed by the absence or presence of either a terminal N-acetyl group or a (3-fluoro)benzyloxy moiety positioned at the 4'-benzylamide site. Analysis of whole-cell patch-clamp electrophysiology data showed that the incorporation of the (3-fluoro)benzyloxy unit, to give the (3-fluoro)benzyloxyphenyl pharmacophore, dramatically enhanced the magnitude of Na(+) channel slow inactivation. In addition, N-acetylation markedly increased the stereoselectivity for Na(+) channel slow inactivation. Furthermore, we observed that Na(+) channel frequency (use)-dependent block was maintained upon inclusion of this pharmacophore. Confirmation of the importance of the (3-fluoro)benzyloxyphenyl pharmacophore was shown by examining compounds where the N-benzyl 2-amino-3-methoxypropionamide unit was replaced by a N-benzyl 2-amino-3-methylpropionamide moiety, as well as examining a series of compounds that did not contain an amino acid group but retained the pharmacophore unit. Collectively, the data indicated that the (3-fluoro)benzyloxyphenyl unit is a novel pharmacophore for the modulation of Na(+) currents.
Collapse
Affiliation(s)
- Amber M. King
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman
School of Pharmacy, and ‡Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United
States
- Departments of Pharmacology & Toxicology, ∥Biochemistry & Molecular Biology, and ⊥Anesthesia and #Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Xiao-Fang Yang
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman
School of Pharmacy, and ‡Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United
States
- Departments of Pharmacology & Toxicology, ∥Biochemistry & Molecular Biology, and ⊥Anesthesia and #Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Yuying Wang
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman
School of Pharmacy, and ‡Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United
States
- Departments of Pharmacology & Toxicology, ∥Biochemistry & Molecular Biology, and ⊥Anesthesia and #Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Erik T. Dustrude
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman
School of Pharmacy, and ‡Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United
States
- Departments of Pharmacology & Toxicology, ∥Biochemistry & Molecular Biology, and ⊥Anesthesia and #Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Cindy Barbosa
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman
School of Pharmacy, and ‡Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United
States
- Departments of Pharmacology & Toxicology, ∥Biochemistry & Molecular Biology, and ⊥Anesthesia and #Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Michael R. Due
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman
School of Pharmacy, and ‡Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United
States
- Departments of Pharmacology & Toxicology, ∥Biochemistry & Molecular Biology, and ⊥Anesthesia and #Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Andrew D. Piekarz
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman
School of Pharmacy, and ‡Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United
States
- Departments of Pharmacology & Toxicology, ∥Biochemistry & Molecular Biology, and ⊥Anesthesia and #Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Sarah M. Wilson
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman
School of Pharmacy, and ‡Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United
States
- Departments of Pharmacology & Toxicology, ∥Biochemistry & Molecular Biology, and ⊥Anesthesia and #Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Fletcher A. White
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman
School of Pharmacy, and ‡Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United
States
- Departments of Pharmacology & Toxicology, ∥Biochemistry & Molecular Biology, and ⊥Anesthesia and #Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Christophe Salomé
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman
School of Pharmacy, and ‡Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United
States
- Departments of Pharmacology & Toxicology, ∥Biochemistry & Molecular Biology, and ⊥Anesthesia and #Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Theodore R. Cummins
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman
School of Pharmacy, and ‡Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United
States
- Departments of Pharmacology & Toxicology, ∥Biochemistry & Molecular Biology, and ⊥Anesthesia and #Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Rajesh Khanna
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman
School of Pharmacy, and ‡Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United
States
- Departments of Pharmacology & Toxicology, ∥Biochemistry & Molecular Biology, and ⊥Anesthesia and #Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Harold Kohn
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman
School of Pharmacy, and ‡Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United
States
- Departments of Pharmacology & Toxicology, ∥Biochemistry & Molecular Biology, and ⊥Anesthesia and #Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
49
|
Hagenacker T, Schäfer N, Büsselberg D, Schäfers M. Analgesic ineffectiveness of lacosamide after spinal nerve ligation and its sodium channel activity in injured neurons. Eur J Pain 2012; 17:881-92. [DOI: 10.1002/j.1532-2149.2012.00260.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2012] [Indexed: 11/10/2022]
Affiliation(s)
- T. Hagenacker
- Department of Neurology; University Hospital Essen; Germany
| | - N. Schäfer
- Department of Neurology; University Hospital Essen; Germany
| | - D. Büsselberg
- Weill Cornell Medical College in Qatar; Qatar Foundation-Education City; Doha; Qatar
| | - M. Schäfers
- Department of Neurology; University Hospital Essen; Germany
| |
Collapse
|
50
|
Eijkelkamp N, Linley JE, Baker MD, Minett MS, Cregg R, Werdehausen R, Rugiero F, Wood JN. Neurological perspectives on voltage-gated sodium channels. Brain 2012; 135:2585-612. [PMID: 22961543 PMCID: PMC3437034 DOI: 10.1093/brain/aws225] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The activity of voltage-gated sodium channels has long been linked to disorders of neuronal excitability such as epilepsy and chronic pain. Recent genetic studies have now expanded the role of sodium channels in health and disease, to include autism, migraine, multiple sclerosis, cancer as well as muscle and immune system disorders. Transgenic mouse models have proved useful in understanding the physiological role of individual sodium channels, and there has been significant progress in the development of subtype selective inhibitors of sodium channels. This review will outline the functions and roles of specific sodium channels in electrical signalling and disease, focusing on neurological aspects. We also discuss recent advances in the development of selective sodium channel inhibitors.
Collapse
Affiliation(s)
- Niels Eijkelkamp
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | | | | | | | | | |
Collapse
|