1
|
Maldeniya MUS, Liu Y, Ma B, Yin J, Wen S, Yuan L, Luo P. Microplastic and nanoplastic exposure induced transcriptional and physiological alterations and triggered immune responses in the sea cucumber, Holothuria leucospilota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126291. [PMID: 40268045 DOI: 10.1016/j.envpol.2025.126291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/19/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are pervasive pollutants widely distributed across aquatic ecosystems. They have gained significant attention due to their potential adverse effects on marine organisms. Many marine species, particularly sea cucumbers, inadvertently ingest these plastic particles due to their non-selective feeding behavior. In this study we carried out a 14-day exposure experiment and investigated the effects of polyethylene MPs and NPs on gene expression, oxidative stress, immune condition and histology of a tropical sea cucumber, Holothuria leucospilota, a most abundant sea cucumbers species in the world. The results showed that MPs and NPs dramatically altered gene expression in discrepant profiles. NPs caused down-regulation of the majority of genes related to metabolic processes. In contrast to the enrichment of GO terms which related to regulation, differentiation and development after being exposed to MPs, metabolome-related GO terms were significantly enriched in NPs exposure. The toxicity mechanism associated with the NPs and MPs exposure involves the activation of the antioxidant defense system and the disruption of immune balance. Furthermore, histological destruction of the respiratory tree in NP and MP groups provided robust evidence for the unstable physiological condition. Our study deepens the comprehension of size-dependent plastic toxicity on marine benthic invertebrates, thereby posing a potential hazard to marine ecosystems.
Collapse
Affiliation(s)
- M U S Maldeniya
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China; China-Sri Lanka Joint Center for Research and Education (CSL-CER), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China
| | - Yang Liu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Ma
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiayue Yin
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuyang Wen
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lihong Yuan
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Peng Luo
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; China-Sri Lanka Joint Center for Research and Education (CSL-CER), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China.
| |
Collapse
|
2
|
Wang L, Yang J, Li S, Qu Z, Wang M. The immunomodulation of outer membrane vesicles from Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease in Pacific white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110274. [PMID: 40081434 DOI: 10.1016/j.fsi.2025.110274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/16/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease (VpAHPND) is a significant bacterial pathogen to Litopenaeus vannamei aquaculture with a substantial economic burden. Outer membrane vesicles (OMVs) released by Gram-negative pathogenic bacteria play complex roles in the modulation on host's immune response. To elucidate the potential roles of VpAHPND-OMVs on L. vannamei innate immune responses, this study investigated the immune responses and molecular mechanisms induced by VpAHPND-OMVs in hepatopancreas using transcriptomic and proteomic analysis. Shrimps were fed diets supplemented with 30 μg kg-1 (T1 group) or 60 μg kg-1VpAHPND-OMVs (T2 group), and the control group was fed a normal diet (CK group). Neither growth rate and hepatopancreas histological structure were affected by VpAHPND-OMVs. The most pronounced changes in the activities of immune-related enzymes, including lysozyme, superoxide dismutase, alkaline phosphatase and glutathione S-transferase, were observed at 7 and 14 days of the experiment, which suggested that VpAHPND-OMVs can rapidly and significantly enhance the activity of immune enzymes within a short period. The transcription levels of genes associated with immune and pathogen defense were significantly downregulated in the T1 and T2 groups including heat shock 70 kDa protein cognate 4-like (HSP70), beta-1,3-glucan-binding protein-like (GNBP1), C-type mannose receptor 2-like (MRC2), penaeidin-3a-like (PEN-3), and chitinase 10 (Cht10). Several key proteins were also significantly downregulated in the proteomics analysis, including alkaline phosphatase, integrin, cathepsin, C-type lectin 2, ras-related protein Rab-11A, and ferritin. Furthermore, the KEGG enrichment analysis revealed that the differentially expressed genes and differentially expressed proteins were associated with innate immune signaling pathways like apoptosis (ko04210), phagosome (ko04145) and lysosome (ko04142). All these results suggest that VpAHPND-OMVs may have a dual regulatory effect on shrimp, initially activating the immune system but potentially leading to an immunosuppressive with prolonged exposure. This study enhanced our understanding on shrimp immune regulation.
Collapse
Affiliation(s)
- Lihan Wang
- Hainan Key Laboratory of Tropical Aquatic Germplasm (Hainan Seed Industry Laboratory), Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China; MOE Key Laboratory of Marine Genetics and Breeding, Shandong Key Laboratory of Marine Seed Industry (preparatory), and Qingdao Institute of Maritime Silk Road (Qingdao Institute of Blue Seed Industry), Ocean University of China, Qingdao, 266003, China
| | - Jinyu Yang
- Hainan Key Laboratory of Tropical Aquatic Germplasm (Hainan Seed Industry Laboratory), Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China; MOE Key Laboratory of Marine Genetics and Breeding, Shandong Key Laboratory of Marine Seed Industry (preparatory), and Qingdao Institute of Maritime Silk Road (Qingdao Institute of Blue Seed Industry), Ocean University of China, Qingdao, 266003, China
| | - Shengwen Li
- Hainan Key Laboratory of Tropical Aquatic Germplasm (Hainan Seed Industry Laboratory), Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China; MOE Key Laboratory of Marine Genetics and Breeding, Shandong Key Laboratory of Marine Seed Industry (preparatory), and Qingdao Institute of Maritime Silk Road (Qingdao Institute of Blue Seed Industry), Ocean University of China, Qingdao, 266003, China
| | - Zhe Qu
- Hainan Key Laboratory of Tropical Aquatic Germplasm (Hainan Seed Industry Laboratory), Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China; MOE Key Laboratory of Marine Genetics and Breeding, Shandong Key Laboratory of Marine Seed Industry (preparatory), and Qingdao Institute of Maritime Silk Road (Qingdao Institute of Blue Seed Industry), Ocean University of China, Qingdao, 266003, China
| | - Mengqiang Wang
- Hainan Key Laboratory of Tropical Aquatic Germplasm (Hainan Seed Industry Laboratory), Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China; MOE Key Laboratory of Marine Genetics and Breeding, Shandong Key Laboratory of Marine Seed Industry (preparatory), and Qingdao Institute of Maritime Silk Road (Qingdao Institute of Blue Seed Industry), Ocean University of China, Qingdao, 266003, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
3
|
Li G, Cheng M, Lin Y, Ho Y, Lin G, Chiu C, Ho H. Downregulation of NAD Kinase Expression in β-Cells Contributes to the Aging-Associated Decline in Glucose-Stimulated Insulin Secretion. Aging Cell 2025; 24:e70037. [PMID: 40045495 PMCID: PMC11984695 DOI: 10.1111/acel.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 04/12/2025] Open
Abstract
Nicotinamide adenine dinucleotide kinase (NADK) is essential to the generation of nicotinamide adenine dinucleotide phosphate (NADP(H)), an important metabolic coupling factor involved in glucose-stimulated insulin secretion. In the present study, we showed that the expression of Nadk and Nadk2 transcripts and NADP(H) content were lower in islets of 80-week-old (aged) mice than those of 8-week-old (young) mice. This was associated with diminished oral glucose tolerance of old mice and the glucose-stimulated insulin secretion (GSIS) response of islets. Knockdown (KD) of Nadk or Nadk2 gene expression in NIT-1 cells impaired glucose-stimulated insulin secretion. Metabolomic analysis revealed that Nadk KD specifically affected purine metabolism in glucose-stimulated cells. The levels of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) were higher in KD cells than in the non-targeting control (NTC) cells. Phosphorylation of AMP-activated protein kinase (AMPK) was elevated in glucose-treated KD cells compared to that of NTC cells. Increased AICAR level and AMPKα phosphorylation were observed in the glucose-stimulated islets of the aged mice. Genetic and pharmacological inhibition of AMPK promoted glucose-stimulated insulin release by KD cells and the aged mouse islets. It is likely that NADK is modulatory to AMPK activation in pancreatic β-cells and to their GSIS response. Enhanced AICAR formation in KD cells was accompanied by significantly increased conversion from inosine monophosphate (IMP) in a tetrahydrofolate (THF)-dependent manner. Folate supplementation augmented the GSIS response of KD cells and aged mouse islets. Taken together, these findings suggest that the aging-associated decline in NADK expression may underlie the reduced insulin secretory capacity of pancreatic β-cells.
Collapse
Grants
- MOST 111-2634-F-182-001 Ministry of Education in Taiwan and the National Science and Technology Council, Taiwan
- EMRPD1K0441 Ministry of Education in Taiwan
- EMRPD1K0481 Ministry of Education in Taiwan
- EMRPD1L0421 Ministry of Education in Taiwan
- 110-2320-B-182-017-MY3 National Science and Technology Council
- 111-2320-B-182-011 National Science and Technology Council
- 112-2320-B-182-020-MY3 National Science and Technology Council
- 113-2320-B-182-018-MY3 National Science and Technology Council
- BMRP564 Chang Gung Memorial Hospital, Linkou
- BMRP819 Chang Gung Memorial Hospital, Linkou
- CLRPG3K0023 Chang Gung Memorial Hospital, Linkou
- CMRPD1J0263 Chang Gung Memorial Hospital, Linkou
- CMRPD1L0161 Chang Gung Memorial Hospital, Linkou
- CMRPD1L0162 Chang Gung Memorial Hospital, Linkou
- CMRPD1M0341 Chang Gung Memorial Hospital, Linkou
- CMRPD1M0342 Chang Gung Memorial Hospital, Linkou
- CMRPD1M0351 Chang Gung Memorial Hospital, Linkou
- CMRPD1M0352 Chang Gung Memorial Hospital, Linkou
- CMRPD1N0071 Chang Gung Memorial Hospital, Linkou
- CMRPD1N0151 Chang Gung Memorial Hospital, Linkou
- CMRPD1P0171 Chang Gung Memorial Hospital, Linkou
- CORPD1P0011 Chang Gung Memorial Hospital, Linkou
- CORPD1P0021 Chang Gung Memorial Hospital, Linkou
- National Science and Technology Council
- Chang Gung Memorial Hospital, Linkou
Collapse
Affiliation(s)
- Guan‐Jie Li
- Graduate Institute of Biomedical Sciences, College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Mei‐Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research CenterChang Gung UniversityTaoyuanTaiwan
- Clinical Metabolomics Core LaboratoryChang Gung Memorial Hospital at LinkouTaoyuanTaiwan
- Department of Biomedical Sciences, College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Yu‐Ting Lin
- School of Physical Therapy, College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Yu‐Hsuan Ho
- Department of Biomedical Sciences, College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Gigin Lin
- Clinical Metabolomics Core LaboratoryChang Gung Memorial Hospital at LinkouTaoyuanTaiwan
- Department of Medical Imaging and InterventionChang Gung Memorial Hospital at Linkou and Chang Gung UniversityTaoyuanTaiwan
- Department of Medical Imaging and Radiological SciencesChang Gung UniversityTaoyuanTaiwan
| | - Chih‐Yung Chiu
- Clinical Metabolomics Core LaboratoryChang Gung Memorial Hospital at LinkouTaoyuanTaiwan
- Department of PediatricsChang Gung Memorial Hospital at Linkou, and Chang Gung UniversityTaoyuanTaiwan
- Department of PediatricsChang Gung Memorial Hospital at Keelung, and Chang Gung UniversityTaoyuanTaiwan
| | - Hung‐Yao Ho
- Graduate Institute of Biomedical Sciences, College of MedicineChang Gung UniversityTaoyuanTaiwan
- Metabolomics Core Laboratory, Healthy Aging Research CenterChang Gung UniversityTaoyuanTaiwan
- Clinical Metabolomics Core LaboratoryChang Gung Memorial Hospital at LinkouTaoyuanTaiwan
- Department of Medical Biotechnology and Laboratory Science, College of MedicineChang Gung UniversityTaoyuanTaiwan
- Research Center for Emerging Viral InfectionsChang Gung UniversityTaoyuanTaiwan
| |
Collapse
|
4
|
Wei Q, Xiao X, Huo E, Guo C, Zhou X, Hu X, Dong C, Shi H, Dong Z. Hypermethylation and suppression of microRNA219a-2 activates the ALDH1L2/GSH/PAI-1 pathway for fibronectin degradation in renal fibrosis. Mol Ther 2025; 33:249-262. [PMID: 39295147 PMCID: PMC11764320 DOI: 10.1016/j.ymthe.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/08/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
Epigenetic regulations, such as DNA methylation and microRNAs, play an important role in renal fibrosis. Here, we report the regulation of microRNA219a-2 by DNA methylation in fibrotic kidneys, unveiling the crosstalk between these epigenetic mechanisms. Through genome-wide DNA methylation analysis and pyrosequencing, we detected the hypermethylation of microRNA219a-2 in renal fibrosis induced by unilateral ureteral obstruction (UUO) or renal ischemia/reperfusion, which was accompanied by a significant decrease in microRNA-219a-5p expression. Functionally, overexpression of microRNA219a-2 enhanced fibronectin induction during hypoxia or TGF-β1 treatment of cultured renal cells. In mice, inhibition of microRNA-219a-5p suppressed fibronectin accumulation in UUO and ischemic/reperfused kidneys. Aldehyde dehydrogenase 1 family member L2 (ALDH1L2) was identified to be the direct target gene of microRNA-219a-5p in renal fibrotic models. MicroRNA-219a-5p suppressed ALDH1L2 expression in cultured renal cells, while inhibition of microRNA-219a-5p prevented the decrease of ALDH1L2 in injured kidneys. Knockdown of ALDH1L2 enhanced plasminogen activator inhibitor-1 (PAI-1) induction during TGF-β1 treatment of renal cells, which was associated with fibronectin expression. In conclusion, the hypermethylation of microRNA219a-2 in response to fibrotic stress may attenuate microRNA-219a-5p expression and induce the upregulation of its target gene ALDH1L2, which reduces fibronectin deposition by suppressing PAI-1.
Collapse
Affiliation(s)
- Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Xiao Xiao
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Emily Huo
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Augusta Preparatory Day School, 285 Flowing Wells Rd, Martinez, GA 30907, USA
| | - Chunyuan Guo
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 414300, Hubei, China
| | - Xiaoru Hu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410000, Hunan, China
| | - Charles Dong
- Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Huidong Shi
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| |
Collapse
|
5
|
Li J, Zhang C, Zhou Q, Long Q, Chen J, Meng L, Tian W, Yang Y, Ge C, Su Y, Long XD, Wu J, Tian H. ALDH1L2 drives HCC progression through TAM polarization. JHEP Rep 2025; 7:101217. [PMID: 39687603 PMCID: PMC11648791 DOI: 10.1016/j.jhepr.2024.101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND & AIMS Dysregulation of one-carbon metabolism is considered an early hallmark of mitochondrial dysfunction and cancer metabolism. ALDH1L2 belongs to the aldehyde dehydrogenase family and plays an important role in tumor progression. However, little is known about the precise role and underlying mechanisms of ALDH1L2 in hepatocellular carcinoma (HCC). METHODS Immunohistochemistry, western blotting, and immunofluorescence staining were used to evaluate ALDH1L2 expression in HCC samples (n = 90) and cell lines (n = 9). A series of in vitro and in vivo assays were performed to explore the role and molecular mechanism of ALDH1L2 in HCC progression. RESULTS ALDH1L2 upregulation is associated with poor prognosis in HCC (hazard ratio 1.923; 95% confidence interval 1.03-3.59; p = 0.04). ALDH1L2 promotes tumor cell proliferation and metastasis by activating NRF2/IL-6/STAT3 signaling. ALDH1L2 promotes mitochondrial respiration, increases ATP production and protects HCC cells from reactive oxygen species-induced cellular damage via NRF2 stabilization. NRF2 also directly binds to the ALDH1L2 promoter and increases ALDH1L2 transcription, thereby establishing a positive feedback loop to maintain the function of ALDH1L2. The interaction between tumor-associated macrophages and ALDH1L2-overexpressing HCC cells further promotes HCC progression. In addition, ALDH1L2 knockdown enhances the anti-HCC activity of the tyrosine kinase inhibitor sorafenib. CONCLUSIONS These findings provide the first evidence indicating that ALDH1L2 is directly involved in tumor progression by interacting with tumor-associated macrophages through the Jak2/STAT3 signaling pathway and that ALDH1L2 may be a target molecule for HCC therapy. IMPACT AND IMPLICATIONS This research highlights that ALDH1L2 could serve as a predictive and prognostic marker in HCC. We found that a positive feedback loop between ALDH1L2 and NRF2 promotes HCC progression by activating the IL-6/Jak2/STAT3 signaling axis and tumor-associated macrophage polarization. In addition, we found that ALDH1L2 knockdown enhances the anti-HCC effect of sorafenib.
Collapse
Affiliation(s)
- Jiajun Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chi Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingqing Zhou
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinqin Long
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- The Key Laboratory of Molecular Pathology in Tumors of Guangxi Higher Education Institutes, Baise, China
| | - Jiayi Chen
- Department of Laboratory Medicine, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Meng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Tian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Ge
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Su
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Dai Long
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- The Key Laboratory of Molecular Pathology in Tumors of Guangxi Higher Education Institutes, Baise, China
| | - Jun Wu
- Department of Laboratory Medicine, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Tian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- The Key Laboratory of Molecular Pathology in Tumors of Guangxi Higher Education Institutes, Baise, China
| |
Collapse
|
6
|
Tang Q, Li L, Wang R, Jin X, Jia X, Zhu Y, Sun X, Zhong J, Xie H, Da Y, Zu L, Xu S. Constructing a folate metabolism gene signature for predicting prognosis in pulmonary neuroendocrine carcinomas. J Cancer 2024; 15:6256-6272. [PMID: 39513106 PMCID: PMC11540503 DOI: 10.7150/jca.102186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
Folate metabolism is a crucial biological process in cell proliferation and exhibits its pro-tumorigenic functions in multiple tumor types. However, its role in pulmonary neuroendocrine carcinomas remains uncertain. Folate metabolism related genes were obtained from previous studies, and the gene expression data and clinical data were collected from GEO database. The expression patterns of folate metabolism related genes were measured across normal and tumor tissues. We subsequently assessed their prognostic role using Kaplan-Meier and univariate Cox regression analysis. The core genes were isolated from 16 prognostic genes through four algorithms. Based on the expression of core genes, patients were divided into two clusters employing consensus clustering algorithm. Furthermore, we evaluated immune infltration level, biological mechanisms, and drug sensitivity. ALDH1L2 was finally identified through qRT-PCR and its pro-tumorigenic function was confirmed via in vitro experiments. The expression patterns of 26 folate metabolism related genes were evaluated between normal lung tissues and PNEC tumor tissues, and 20 of them exhibited differential expression. All of folate metabolism related genes were related to the prognosis of PNECS and 16 genes were identified as prognostic genes. Using SVM-RFE, RF, Xgboost and LASSO algorithm, three core genes were isolated from 16 prognostic genes. Based on the expression patterns of core genes, PNECs patients were divided into two clusters through consensus clustering algorithm. Cluster 1 was characterized by the worse survival, higher immune infiltration level, and sensitivity to chemotherapy. Compared with the HBEC cells, ALDH1L2 was notably overexpressed in NCI-H446 cells (SCLC cell line). ALDH1L2 knockdown significantly repressed the proliferation and migration capacity of tumor cells and increased the cell proportion in S phase. Our results indicated that folate metabolism gene signature is a reliable biomarker for PNECs. Classification based on this signature could be utilized to guide the treatment of PNECs patients and improve its prognosis.
Collapse
Affiliation(s)
- Quanying Tang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Luoyi Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Ruiyao Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Thoracic Surgery, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Xin Jin
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xuewang Jia
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yifan Zhu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiaoyue Sun
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jianguo Zhong
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Huangsheng Xie
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yurong Da
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Lingling Zu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Song Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
7
|
Du C, Liu C, Yu K, Zhang S, Fu Z, Chen X, Liao W, Chen J, Zhang Y, Wang X, Chen M, Chen F, Shen M, Wang C, Chen S, Wang S, Wang J. Mitochondrial serine catabolism safeguards maintenance of the hematopoietic stem cell pool in homeostasis and injury. Cell Stem Cell 2024; 31:1484-1500.e9. [PMID: 39181130 DOI: 10.1016/j.stem.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/14/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Hematopoietic stem cells (HSCs) employ a very unique metabolic pattern to maintain themselves, while the spectrum of their metabolic adaptations remains incompletely understood. Here, we uncover a distinct and heterogeneous serine metabolism within HSCs and identify mouse HSCs as a serine auxotroph whose maintenance relies on exogenous serine and the ensuing mitochondrial serine catabolism driven by the hydroxymethyltransferase 2 (SHMT2)-methylene-tetrahydrofolate dehydrogenase 2 (MTHFD2) axis. Mitochondrial serine catabolism primarily feeds NAD(P)H generation to maintain redox balance and thereby diminishes ferroptosis susceptibility of HSCs. Dietary serine deficiency, or genetic or pharmacological inhibition of the SHMT2-MTHFD2 axis, increases ferroptosis susceptibility of HSCs, leading to impaired maintenance of the HSC pool. Moreover, exogenous serine protects HSCs from irradiation-induced myelosuppressive injury by fueling mitochondrial serine catabolism to mitigate ferroptosis. These findings reframe the canonical view of serine from a nonessential amino acid to an essential niche metabolite for HSC pool maintenance.
Collapse
Affiliation(s)
- Changhong Du
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Chaonan Liu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; Frontier Medical Training Brigade, Army Medical University (Third Military Medical University), Xinjiang 831200, China
| | - Kuan Yu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shuzhen Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zeyu Fu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xinliang Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Weinian Liao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jun Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yimin Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xinmiao Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; Department of Hematology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610008, China
| | - Mo Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fang Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mingqiang Shen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Cheng Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shilei Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Song Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
8
|
Han CW, Lee HN, Jeong MS, Kim HY, Jang SB. Structural identification and comprehension of human ALDH1L1-Gossypol complex. Biochem Biophys Res Commun 2024; 726:150306. [PMID: 38917634 DOI: 10.1016/j.bbrc.2024.150306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
The folate metabolism enzyme ALDH1L1 catalyzed 10-formyltetrahydrofolate to tetrahydrofolate and CO2. Non-small cell lung cancer cells (NSCLC) strongly express ALDH1L1. Gossypol binds to an allosteric site and disrupts the folate metabolism by preventing NADP+ binding. The Cryo-EM structures of tetrameric C-terminal aldehyde dehydrogenase human ALDH1L1 complex with gossypol were examined. Gossypol-bound ALDH1L1 interfered with NADP+ by shifting the allosteric site of the structural conformation, producing a closed-form NADP+ binding site. In addition, the inhibition activity of ALDH1L1 was targeted with gossypol in NSCLC. The gossypol treatment had anti-cancer effects on NSCLC by blocking NADPH and ATP production. These findings emphasize the structure characterizing ALDH1L1 with gossypol.
Collapse
Affiliation(s)
- Chang Woo Han
- Institute of Systems Biology, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Han Na Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Mi Suk Jeong
- Institute of Systems Biology, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Hong Yeoul Kim
- Elysiumbio Inc #2007, Samsung Cheil B/D, 309 Teheran-ro, Gangnam-gu, Seoul, 06151, Republic of Korea
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
9
|
Ma Q, Hao S, Hong W, Tergaonkar V, Sethi G, Tian Y, Duan C. Versatile function of NF-ĸB in inflammation and cancer. Exp Hematol Oncol 2024; 13:68. [PMID: 39014491 PMCID: PMC11251119 DOI: 10.1186/s40164-024-00529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Nuclear factor-kappaB (NF-ĸB) plays a crucial role in both innate and adaptive immune systems, significantly influencing various physiological processes such as cell proliferation, migration, differentiation, survival, and stemness. The function of NF-ĸB in cancer progression and response to chemotherapy has gained increasing attention. This review highlights the role of NF-ĸB in inflammation control, biological mechanisms, and therapeutic implications in cancer treatment. NF-ĸB is instrumental in altering the release of inflammatory factors such as TNF-α, IL-6, and IL-1β, which are key in the regulation of carcinogenesis. Specifically, in conditions including colitis, NF-ĸB upregulation can intensify inflammation, potentially leading to the development of colorectal cancer. Its pivotal role extends to regulating the tumor microenvironment, impacting components such as macrophages, fibroblasts, T cells, and natural killer cells. This regulation influences tumorigenesis and can dampen anti-tumor immune responses. Additionally, NF-ĸB modulates cell death mechanisms, notably by inhibiting apoptosis and ferroptosis. It also has a dual role in stimulating or suppressing autophagy in various cancers. Beyond these functions, NF-ĸB plays a role in controlling cancer stem cells, fostering angiogenesis, increasing metastatic potential through EMT induction, and reducing tumor cell sensitivity to chemotherapy and radiotherapy. Given its oncogenic capabilities, research has focused on natural products and small molecule compounds that can suppress NF-ĸB, offering promising avenues for cancer therapy.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230022, P.R. China
| | - Shuai Hao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, P.R. China
| | - Weilong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, 60532, USA.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China.
| |
Collapse
|
10
|
Yu Y, Martins LM. Mitochondrial One-Carbon Metabolism and Alzheimer's Disease. Int J Mol Sci 2024; 25:6302. [PMID: 38928008 PMCID: PMC11203557 DOI: 10.3390/ijms25126302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Mitochondrial one-carbon metabolism provides carbon units to several pathways, including nucleic acid synthesis, mitochondrial metabolism, amino acid metabolism, and methylation reactions. Late-onset Alzheimer's disease is the most common age-related neurodegenerative disease, characterised by impaired energy metabolism, and is potentially linked to mitochondrial bioenergetics. Here, we discuss the intersection between the molecular pathways linked to both mitochondrial one-carbon metabolism and Alzheimer's disease. We propose that enhancing one-carbon metabolism could promote the metabolic processes that help brain cells cope with Alzheimer's disease-related injuries. We also highlight potential therapeutic avenues to leverage one-carbon metabolism to delay Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Yizhou Yu
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - L. Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
11
|
Chen Z, Zhu S, Feng B, Zhang M, Gong J, Chen H, Munganga BP, Tao X, Feng J. Temporal Transcriptomic Profiling Reveals Dynamic Changes in Gene Expression of Giant Freshwater Prawn upon Acute Saline-Alkaline Stresses. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:511-525. [PMID: 38748059 DOI: 10.1007/s10126-024-10314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/09/2024] [Indexed: 06/15/2024]
Abstract
Bicarbonate and sulfate are among two primary ion constituents of saline-alkaline water, with excessive levels potentially causing metabolic disorders in crustaceans, affecting their molting and interrupting development. As an economically important crustacean species, the molecular adaptive mechanism of giant freshwater prawn Macrobrachium rosenbergii in response to the stress of bicarbonate and sulfate remains unexplored. To investigate the mechanism underlying NaHCO3, Na2SO4, and mixed NaHCO3, Na2SO4 stresses, M. rosenbergii larvae were exposed to the above three stress conditions, followed by total RNA extraction and high-throughput sequencing at eight distinct time points (0, 4, 8, 12, 24, 48, 72, and 96 h). Subsequent analysis revealed 13, 16, and 13 consistently identified differentially expressed genes (DEGs) across eight time points under three stress conditions. These consistently identified DEGs were significantly involved in the Gene Ontology (GO) terms of chitin-based cuticle development, protein-carbohydrate complex, structural constituent of cuticle, carnitine biosynthetic process, extracellular matrix, and polysaccharide catabolic process, indicating that alkaline stresses might potentially impact the energy metabolism, growth, and molting of M. rosenbergii larvae. Particularly, the transcriptome data revealed that DEGs associated with energy metabolism, immunity, and amino acid metabolism were enriched across multiple time points under three stress conditions. These DEGs are linked to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including glycolysis/glucogenesis, amino sugar and nucleotide sugar metabolism, and lysine degradation. Consistent enrichment findings across the three stress conditions support conclusions above. Together, these insights are instrumental in enhancing our understanding of the molecular mechanisms underlying the alkaline response in M. rosenbergii larvae. Additionally, they offer valuable perspectives on the regulatory mechanisms of freshwater crustaceans amid saline-alkaline water development.
Collapse
Affiliation(s)
- Zheyan Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Shouhao Zhu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Bingbing Feng
- Jiangsu Fishery Technology Promotion Centre, Nanjing, 210036, China
| | - Min Zhang
- Jiangsu Fishery Technology Promotion Centre, Nanjing, 210036, China
| | - Jinhua Gong
- Jiangsu Dinghe Aquatic Technology Development Co, Ltd, Taizhou, 225311, Jiangsu, China
| | - Huangen Chen
- Jiangsu Fishery Technology Promotion Centre, Nanjing, 210036, China
| | - Brian Pelekelo Munganga
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xianji Tao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jianbin Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
12
|
You M, Shamseldin HE, Fogle HM, Rushing BR, AlMalki RH, Jaafar A, Hashem M, Abdulwahab F, Rahman AMA, Krupenko NI, Alkuraya FS, Krupenko SA. Further delineation of the phenotypic and metabolomic profile of ALDH1L2-related neurodevelopmental disorder. Clin Genet 2024; 105:488-498. [PMID: 38193334 PMCID: PMC10990829 DOI: 10.1111/cge.14479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024]
Abstract
ALDH1L2, a mitochondrial enzyme in folate metabolism, converts 10-formyl-THF (10-formyltetrahydrofolate) to THF (tetrahydrofolate) and CO2. At the cellular level, deficiency of this NADP+-dependent reaction results in marked reduction in NADPH/NADP+ ratio and reduced mitochondrial ATP. Thus far, a single patient with biallelic ALDH1L2 variants and the phenotype of a neurodevelopmental disorder has been reported. Here, we describe another patient with a neurodevelopmental disorder associated with a novel homozygous missense variant in ALDH1L2, Pro133His. The variant caused marked reduction in the ALDH1L2 enzyme activity in skin fibroblasts derived from the patient as probed by 10-FDDF, a stable synthetic analog of 10-formyl-THF. Additional associated abnormalities in these fibroblasts include reduced NADPH/NADP+ ratio and pool of mitochondrial ATP, upregulated autophagy and dramatically altered metabolomic profile. Overall, our study further supports a link between ALDH1L2 deficiency and abnormal neurodevelopment in humans.
Collapse
Affiliation(s)
- Mikyoung You
- UNC Nutrition Research Institute, Kannapolis, NC, USA
| | - Hanan E. Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| | - Halle M. Fogle
- UNC Nutrition Research Institute, Kannapolis, NC, USA
- Department of Nutrition, University of North Carolina-Chapel Hill, NC, USA
| | - Blake R. Rushing
- UNC Nutrition Research Institute, Kannapolis, NC, USA
- Department of Nutrition, University of North Carolina-Chapel Hill, NC, USA
| | - Reem H. AlMalki
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| | - Amal Jaafar
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh, Saudi Arabia
| | - Natalia I. Krupenko
- UNC Nutrition Research Institute, Kannapolis, NC, USA
- Department of Nutrition, University of North Carolina-Chapel Hill, NC, USA
| | - Fowzan S. Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| | - Sergey A. Krupenko
- UNC Nutrition Research Institute, Kannapolis, NC, USA
- Department of Nutrition, University of North Carolina-Chapel Hill, NC, USA
| |
Collapse
|
13
|
Bouch RJ, Zhang J, Miller BC, Robbins CJ, Mosher TH, Li W, Krupenko SA, Nagpal R, Zhao J, Bloomfeld RS, Lu Y, Nikiforov MA, Song Q, He Z. Distinct inflammatory Th17 subsets emerge in autoimmunity and infection. J Exp Med 2023; 220:e20221911. [PMID: 37367944 PMCID: PMC10300431 DOI: 10.1084/jem.20221911] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Th17 cells play a critical role in both tissue homeostasis and inflammation during clearance of infections as well as autoimmune and inflammatory disorders. Despite numerous efforts to distinguish the homeostatic and inflammatory roles of Th17 cells, the mechanism underlying the divergent functions of inflammatory Th17 cells remains poorly understood. In this study, we demonstrate that the inflammatory Th17 cells involved in autoimmune colitis and those activated during colitogenic infection are distinguishable populations characterized by their differential responses to the pharmacological molecule, clofazimine (CLF). Unlike existing Th17 inhibitors, CLF selectively inhibits proautoimmune Th17 cells while preserving the functional state of infection-elicited Th17 cells partially by reducing the enzyme ALDH1L2. Overall, our study identifies two distinct subsets within the inflammatory Th17 compartment with distinct regulatory mechanisms. Furthermore, we highlight the feasibility to develop disease-promoting Th17 selective inhibitor for treating autoimmune diseases.
Collapse
Affiliation(s)
- Ronald J. Bouch
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | - Jing Zhang
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Brandi C. Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | - Caroline J. Robbins
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Timothy H. Mosher
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | - Wencheng Li
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sergey A. Krupenko
- Department of Nutrition, Nutrition Research Institute, University of North Carolina, Kannapolis, NC, USA
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Jun Zhao
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | - Richard S. Bloomfeld
- Department of Gastroenterology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yong Lu
- The Methodist Hospital Research Institute, Houston, TX, USA
| | | | - Qianqian Song
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Zhiheng He
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Xu X, Zhu J, Fang L, Zou Z, Yuan J, Peng M, Yu G, Wu D, Liu Y, Tang J. Exome sequencing identified novel variants in three Chinese patients with 5,10-methenyltetrahydrofolate synthetase deficiency. Front Genet 2023; 14:1236849. [PMID: 37795244 PMCID: PMC10545881 DOI: 10.3389/fgene.2023.1236849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/25/2023] [Indexed: 10/06/2023] Open
Abstract
5,10-methenyltetrahydrofolate synthetase (MTHFS) deficiency is a folate metabolism disorder known as a rare autosomal recessive neurodevelopmental disorder (MIM: #618367). With central nervous system involvements, it is mainly characterized by developmental delay, epilepsy, microcephaly, hypertonia, and cranial nerves involvement. Here, we report three new cases with MTHFS deficiency from two non-consanguineous Chinese families. All patients showed white matter dysplasia and global developmental delay, of which only patient 1 and 2 manifested tonic-clonic seizures. Moreover, patient 2 had severe eczema and patient 3 had recurrent diarrhea. Both phenotypic features are firstly found in MTHFS deficiency. Trio whole-exome sequencing and sanger sequencing were used to identify four novel variants, p.Y169Tfs*17, p.S53F, c.117+1delG, and p.E61G in the MTHFS gene. The identification of four novel pathogenic variants and varied clinical features in three affected patients expands the genotype and phenotype spectrum of MTHFS deficiency. We also reviewed all cases of MTHFS deficiency that had previously been reported. The experience of diagnosis and treatment from these cases provides us a more comprehensive understanding of this rare disease.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Zhu
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liwei Fang
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhuo Zou
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Jingjing Yuan
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Peng
- Chigene (Beijing) Translational Medical Research Center Co, Ltd, Beijing, China
| | - Guoliang Yu
- Chigene (Beijing) Translational Medical Research Center Co, Ltd, Beijing, China
| | - De Wu
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yun Liu
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Jiulai Tang
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Li C, Teng P, Sun S, Cui K, Yao S, Fei B, Ling F, Huang Z. Acetylation of aldehyde dehydrogenase ALDH1L2 regulates cellular redox balance and the chemosensitivity of colorectal cancer to 5-fluorouracil. J Biol Chem 2023; 299:105090. [PMID: 37507016 PMCID: PMC10470206 DOI: 10.1016/j.jbc.2023.105090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Folate-mediated one-carbon metabolism (FOCM) is crucial in sustaining rapid proliferation and survival of cancer cells. The folate cycle depends on a series of key cellular enzymes, including aldehyde dehydrogenase 1 family member L2 (ALDH1L2) that is usually overexpressed in cancer cells, but the regulatory mechanism of ALDH1L2 remains undefined. In this study, we observed the significant overexpression of ALDH1L2 in colorectal cancer (CRC) tissues, which is associated with poor prognosis. Mechanistically, we identified that the acetylation of ALDH1L2 at the K70 site is an important regulatory mechanism inhibiting the enzymatic activity of ALDH1L2 and disturbing cellular redox balance. Moreover, we revealed that sirtuins 3 (SIRT3) directly binds and deacetylates ALDH1L2 to increase its activity. Interestingly, the chemotherapeutic agent 5-fluorouracil (5-Fu) inhibits the expression of SIRT3 and increases the acetylation levels of ALDH1L2 in colorectal cancer cells. 5-Fu-induced ALDH1L2 acetylation sufficiently inhibits its enzymatic activity and the production of NADPH and GSH, thereby leading to oxidative stress-induced apoptosis and suppressing tumor growth in mice. Furthermore, the K70Q mutant of ALDH1L2 sensitizes cancer cells to 5-Fu both in vitro and in vivo through perturbing cellular redox and serine metabolism. Our findings reveal an unknown 5-Fu-SIRT3-ALDH1L2 axis regulating redox homeostasis, and suggest that targeting ALDH1L2 is a promising therapeutic strategy to sensitize tumor cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Chaoqun Li
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Peng Teng
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Shengbai Sun
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Bojian Fei
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Feng Ling
- Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
16
|
Hennequart M, Pilley SE, Labuschagne CF, Coomes J, Mervant L, Driscoll PC, Legrave NM, Lee Y, Kreuzaler P, Macintyre B, Panina Y, Blagih J, Stevenson D, Strathdee D, Schneider-Luftman D, Grönroos E, Cheung EC, Yuneva M, Swanton C, Vousden KH. ALDH1L2 regulation of formate, formyl-methionine, and ROS controls cancer cell migration and metastasis. Cell Rep 2023; 42:112562. [PMID: 37245210 DOI: 10.1016/j.celrep.2023.112562] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/10/2023] [Accepted: 05/09/2023] [Indexed: 05/30/2023] Open
Abstract
Mitochondrial 10-formyltetrahydrofolate (10-formyl-THF) is utilized by three mitochondrial enzymes to produce formate for nucleotide synthesis, NADPH for antioxidant defense, and formyl-methionine (fMet) to initiate mitochondrial mRNA translation. One of these enzymes-aldehyde dehydrogenase 1 family member 2 (ALDH1L2)-produces NADPH by catabolizing 10-formyl-THF into CO2 and THF. Using breast cancer cell lines, we show that reduction of ALDH1L2 expression increases ROS levels and the production of both formate and fMet. Both depletion of ALDH1L2 and direct exposure to formate result in enhanced cancer cell migration that is dependent on the expression of the formyl-peptide receptor (FPR). In various tumor models, increased ALDH1L2 expression lowers formate and fMet accumulation and limits metastatic capacity, while human breast cancer samples show a consistent reduction of ALDH1L2 expression in metastases. Together, our data suggest that loss of ALDH1L2 can support metastatic progression by promoting formate and fMet production, resulting in enhanced FPR-dependent signaling.
Collapse
Affiliation(s)
- Marc Hennequart
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Steven E Pilley
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christiaan F Labuschagne
- Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), 11 Hoffman Street, Potchesfstoom 2531, South Africa
| | - Jack Coomes
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Loic Mervant
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Paul C Driscoll
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Younghwan Lee
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Peter Kreuzaler
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Yulia Panina
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Julianna Blagih
- Department of Obstetrics-Gynaecology, University of Montreal, Maisonneuve-Rosemont Hospital Research Centre, 5414 Assomption Blvd, Montreal, QC H1T 2M4, Canada
| | | | | | | | - Eva Grönroos
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Eric C Cheung
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mariia Yuneva
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Charles Swanton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
17
|
Xiao X, Huo E, Guo C, Zhou X, Hu X, Dong C, Shi H, Dong Z, Wei Q. Hypermethylation suppresses microRNA-219a-2 to activate the ALDH1L2/GSH/PAI-1 pathway for fibronectin degradation in renal fibrosis. RESEARCH SQUARE 2023:rs.3.rs-2986934. [PMID: 37333081 PMCID: PMC10275039 DOI: 10.21203/rs.3.rs-2986934/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Epigenetic regulations, such as DNA methylation and microRNAs, play an important role in renal fibrosis. Here, we report the regulation of microRNA-219a-2 (mir-219a-2) by DNA methylation in fibrotic kidneys, unveiling the crosstalk between these epigenetic mechanisms. Through genome-wide DNA methylation analysis and pyro-sequencing, we detected the hypermethylation of mir-219a-2 in renal fibrosis induced by unilateral ureter obstruction (UUO) or renal ischemia/reperfusion, which was accompanied by a significant decrease in mir-219a-5p expression. Functionally, overexpression of mir-219a-2 enhanced fibronectin induction during hypoxia or TGF-β1 treatment of cultured renal cells. In mice, inhibition of mir-219a-5p suppressed fibronectin accumulation in UUO kidneys. ALDH1L2 was identified to be the direct target gene of mir-219a-5p in renal fibrosis. Mir-219a-5p suppressed ALDH1L2 expression in cultured renal cells, while inhibition of mir-219a-5p prevented the decrease of ALDH1L2 in UUO kidneys. Knockdown of ALDH1L2 enhanced PAI-1 induction during TGF-β1 treatment of renal cells, which was associated with fibronectin expression. In conclusion, the hypermethylation of mir-219a-2 in response to fibrotic stress attenuates mir-219a-5p expression and induces the up-regulation of its target gene ALDH1L2, which may reduce fibronectin deposition by suppressing PAI-1.
Collapse
Affiliation(s)
- Xiao Xiao
- Zhongnan Hospital of Wuhan University
| | | | - Chunyuan Guo
- Shanghai Skin Disease Hospital, Tongji University School of Medicine
| | | | - Xiaoru Hu
- The Second Xiangya Hospital at Central South University
| | | | | | | | | |
Collapse
|
18
|
Pratim Das P, Jyoti Kalita M, Jyoti Talukdar A, Mohd Khan F, Dutta K, Kalita S, Goswami N, Hazarika G, Samudrala G, Ghaznavi Idris M, Dutta S, Medhi S. Evaluation and analysis of novel germline variants in ethanol metabolism pathway genes predisposition to liver disease. Gene 2023; 873:147451. [PMID: 37150234 DOI: 10.1016/j.gene.2023.147451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
The pathogenetic events of liver disease are seemingly determined by factors linked to ethanol metabolism. The variations in genes encoding enzymes of the ethanol metabolic pathway can influence exposure to alcohol and thus may act as risk factors for the development of liver disease. The present study aimed to understand the genetic aspect of germline variations in ethanol metabolic pathway genes in two major categories of liver disease i.e. ALD and NAFLD. Targeted Re-sequencing was performed in the two disease categories along with healthy control followed by an assessment and evaluation of the variants in a case vs control manner. The pathogenicity prediction was evaluated using SIFT, PolyPhen, PROVEN, LRT, CADD, FATHMM, EIGEN, REVEL and VarSome, while MD simulation of a novel significant variant was performed using the GROMACS 5.1.4 package. The annotation of targeted re-sequencing results revealed 2172 variants in different locations of the genes. Upon recurrent assessment predominantly focusing on exonic missense variants from these genes of the alcohol metabolism pathway, the ALDH1L2 [c.337C>G, p.Pro113Ala, (rs199841702)] variant was found highly significant with comprehensive results. The amino acid substitution tool that predicted protein stability due to a point mutation showed a decrease in stability. The genotyping distribution of the identified novel variant in the population revealed that heterozygosity is significantly distributed in ALD patients. However, the predominant association between the inherited variant and the cause of developing disease needs further robust study.
Collapse
Affiliation(s)
- Partha Pratim Das
- Department of Bioengineering & Technology, Gauhati University, Guwahati, Assam-781014
| | - Manash Jyoti Kalita
- Department of Bioengineering & Technology, Gauhati University, Guwahati, Assam-781014
| | - Anjan Jyoti Talukdar
- Department of Medicine, Gauhati Medical College & Hospital, Guwahati, Assam-781032
| | - Faraz Mohd Khan
- School of Life sciences, Jawaharlal Nehru University, New Delhi, 110067
| | - Kalpajit Dutta
- Department of Bioengineering & Technology, Gauhati University, Guwahati, Assam-781014
| | - Simanta Kalita
- Department of Bioengineering & Technology, Gauhati University, Guwahati, Assam-781014
| | - Nabajyoti Goswami
- Department of Bioengineering & Technology, Gauhati University, Guwahati, Assam-781014
| | - Gautam Hazarika
- Department of Bioengineering & Technology, Gauhati University, Guwahati, Assam-781014
| | | | | | - Sangit Dutta
- Department of Medicine, Gauhati Medical College & Hospital, Guwahati, Assam-781032
| | - Subhash Medhi
- Department of Bioengineering & Technology, Gauhati University, Guwahati, Assam-781014.
| |
Collapse
|
19
|
Xia J, Li S, Liu S, Zhang L. Aldehyde dehydrogenase in solid tumors and other diseases: Potential biomarkers and therapeutic targets. MedComm (Beijing) 2023; 4:e195. [PMID: 36694633 PMCID: PMC9842923 DOI: 10.1002/mco2.195] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 01/18/2023] Open
Abstract
The family of aldehyde dehydrogenases (ALDHs) contains 19 isozymes and is involved in the oxidation of endogenous and exogenous aldehydes to carboxylic acids, which contributes to cellular and tissue homeostasis. ALDHs play essential parts in detoxification, biosynthesis, and antioxidants, which are of important value for cell proliferation, differentiation, and survival in normal body tissues. However, ALDHs are frequently dysregulated and associated with various diseases like Alzheimer's disease, Parkinson's disease, and especially solid tumors. Notably, the involvement of the ALDHs in tumor progression is responsible for the maintenance of the stem-cell-like phenotype, triggering rapid and aggressive clinical progressions. ALDHs have captured increasing attention as biomarkers for disease diagnosis and prognosis. Nevertheless, these require further longitudinal clinical studies in large populations for broad application. This review summarizes our current knowledge regarding ALDHs as potential biomarkers in tumors and several non-tumor diseases, as well as recent advances in our understanding of the functions and underlying molecular mechanisms of ALDHs in disease development. Finally, we discuss the therapeutic potential of ALDHs in diseases, especially in tumor therapy with an emphasis on their clinical implications.
Collapse
Affiliation(s)
- Jie Xia
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Siqin Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
20
|
Mating M, Zou Y, Sharbati S, Einspanier R. The Active Site of the Enzyme 10-Formyl-THFDH in the Honey Bee Apis mellifera-A Key Player in Formic Acid Detoxification. Int J Mol Sci 2022; 24:354. [PMID: 36613799 PMCID: PMC9820478 DOI: 10.3390/ijms24010354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Honey bees are important managed pollinators that fulfill important ecological and economic functions. In recent decades, the obligate ectoparasite Varroa destructor severely affected the survival of honey bees, as it weakened them by different means. A common treatment against V. destructor is formic acid fumigation, which has been used for decades by beekeepers across the world. This treatment is known to be effective, but many beekeepers report adverse effects of formic acid on bees, which include damage to the brood, worker bee mortality, and queen loss. Little is known about the molecular mechanisms of formic acid detoxification in honey bees. Recently, we reported upregulation of the bee enzyme, 10-formyl-THFDH, under formic acid fumigation. Here, the active site of this enzyme is characterized by an interdisciplinary approach combining homology modeling and protein mutagenesis. In addition, the limitations of the 3D protein structure prediction program AlphaFold2 are shown in regard to docking studies. This study provides a more thorough understanding of the molecular detoxification mechanisms of formic acid in Apis mellifera.
Collapse
Affiliation(s)
- Moritz Mating
- Institute of Veterinary Biochemistry, Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Ye Zou
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
21
|
Stemness of Normal and Cancer Cells: The Influence of Methionine Needs and SIRT1/PGC-1α/PPAR-α Players. Cells 2022; 11:cells11223607. [PMID: 36429035 PMCID: PMC9688847 DOI: 10.3390/cells11223607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Stem cells are a population of undifferentiated cells with self-renewal and differentiation capacities. Normal and cancer stem cells share similar characteristics in relation to their stemness properties. One-carbon metabolism (OCM), a network of interconnected reactions, plays an important role in this dependence through its role in the endogenous synthesis of methionine and S-adenosylmethionine (SAM), the universal donor of methyl groups in eukaryotic cells. OCM genes are differentially expressed in stem cells, compared to their differentiated counterparts. Furthermore, cultivating stem cells in methionine-restricted conditions hinders their stemness capacities through decreased SAM levels with a subsequent decrease in histone methylation, notably H3K4me3, with a decrease in stem cell markers. Stem cells' reliance on methionine is linked to several mechanisms, including high methionine flux or low endogenous methionine biosynthesis. In this review, we provide an overview of the recent discoveries concerning this metabolic dependence and we discuss the mechanisms behind them. We highlight the influence of SIRT1 on SAM synthesis and suggest a role of PGC-1α/PPAR-α in impaired stemness produced by methionine deprivation. In addition, we discuss the potential interest of methionine restriction in regenerative medicine and cancer treatment.
Collapse
|
22
|
Shi W, Hu R, Zhao R, Zhu J, Shen H, Li H, Wang L, Yang Z, Jiang Q, Qiao Y, Jiang G, Cheng J, Wan X. Transcriptome analysis of hepatopancreas and gills of Palaemon gravieri under salinity stress. Gene 2022; 851:147013. [DOI: 10.1016/j.gene.2022.147013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/01/2022] [Accepted: 10/25/2022] [Indexed: 11/04/2022]
|
23
|
Chen DTL, Cheng SW, Chen T, Chang JPC, Hwang BF, Chang HH, Chuang EY, Chen CH, Su KP. Identification of Genetic Variations in the NAD-Related Pathways for Patients with Major Depressive Disorder: A Case-Control Study in Taiwan. J Clin Med 2022; 11:3622. [PMID: 35806906 PMCID: PMC9267440 DOI: 10.3390/jcm11133622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
Background and Objectives: Nicotinamide adenine dinucleotide (NAD) is an important coenzyme in various physiological processes, including sirtuins (SIRTs) and kynurenine pathway (KP). Previous studies have shown that lower NAD levels can be indicative of increased risks of cancer and psychiatric disorders. However, there has been no prior study exploring the link between NAD homeostasis and psychiatric disorders from a genetic perspective. Therefore, we aimed to investigate the association of genetic polymorphism in the pathways of NAD biosynthesis with major depressive disorder (MDD). Methods: A total of 317 patients were included in the case group and were compared with sex-matched control group of 1268 participants (1:4 ratio) from Taiwan Biobank (TWB). All subjects in the control group were over 65 years old, which is well past the average age of onset of MDD. Genomic DNA extracted from patients' blood buffy coat was analyzed using the Affymetrix TWB array. Full-model tests were conducted for the analysis of single nucleotide polymorphism (SNPs) in all candidate genes. We focused on genes within the NAD-related candidate pathways, including 15 in KP, 12 in nicotinate metabolism, 7 in SIRTs, and 19 in aldehyde dehydrogenases (ALDHs). A total of 508 SNPs were analyzed in this study. After significant SNPs were determined, 5000 genome-wide max(T) permutations were performed in Plink. Finally, we built a predictive model with logistic regression and assessed the interactions of SNPs with the haplotype association tests. Results: We found three SNPs that were significantly associated with MDD in our NAD-related candidate pathways, one within the KP (rs12622574 in ACMSD) and two within the nicotinate metabolism (rs28532698 in BST1 and rs3733593 in CD38). The observed association with MDD was significant in the dominant model of inheritance with marital status, education level, and body mass index (BMI) adjusted as covariates. Lastly, in haplotype analysis, the three associated SNPs consisted of one haploblock in ACMSD, four haploblocks in BST1, and two haploblocks in CD38. Conclusions: This study provides the first evidence that genetic variations involved in NAD homeostasis in the KP and nicotinate metabolism may be associated with the occurrence of MDD.
Collapse
Affiliation(s)
- Daniel Tzu-Li Chen
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; (S.-W.C.); (T.C.); (J.P.-C.C.)
- Graduate Institute of Biomedicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Szu-Wei Cheng
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; (S.-W.C.); (T.C.); (J.P.-C.C.)
- School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Tiffany Chen
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; (S.-W.C.); (T.C.); (J.P.-C.C.)
- College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Jane Pei-Chen Chang
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; (S.-W.C.); (T.C.); (J.P.-C.C.)
- School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Bing-Fang Hwang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung 404, Taiwan;
| | - Hen-Hong Chang
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, and Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan; (H.-H.C.); (C.-H.C.)
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Eric Y. Chuang
- Master Program for Biomedical Engineering, China Medical University, Taichung 404, Taiwan;
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 100, Taiwan
| | - Che-Hong Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, and Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan; (H.-H.C.); (C.-H.C.)
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kuan-Pin Su
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan; (S.-W.C.); (T.C.); (J.P.-C.C.)
- Graduate Institute of Biomedicine, College of Medicine, China Medical University, Taichung 404, Taiwan
- An-Nan Hospital, China Medical University, Tainan 709, Taiwan
| |
Collapse
|
24
|
Chatenoud L, Marquet C, Valette F, Scott L, Quan J, Bu CH, Hildebrand S, Moresco EMY, Bach JF, Beutler B. Modulation of autoimmune diabetes by N-ethyl-N-nitrosourea- induced mutations in non-obese diabetic mice. Dis Model Mech 2022; 15:275575. [PMID: 35502705 PMCID: PMC9178510 DOI: 10.1242/dmm.049484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
Genetic association studies of type 1 diabetes (T1D) in humans, and in congenic non-obese diabetic (NOD) mice harboring DNA segments from T1D-resistant mice, face the challenge of assigning causation to specific gene variants among many within loci that affect disease risk. Here, we created random germline mutations in NOD/NckH mice and used automated meiotic mapping to identify mutations modifying T1D incidence and age of onset. In contrast with association studies in humans or congenic NOD mice, we analyzed a relatively small number of genetic changes in each pedigree, permitting implication of specific mutations as causative. Among 844 mice from 14 pedigrees bearing 594 coding/splicing changes, we identified seven mutations that accelerated T1D development, and five that delayed or suppressed T1D. Eleven mutations affected genes not previously known to influence T1D (Xpnpep1, Herc1, Srrm2, Rapgef1, Ppl, Zfp583, Aldh1l1, Col6a1, Ccdc13, Cd200r1, Atrnl1). A suppressor mutation in Coro1a validated the screen. Mutagenesis coupled with automated meiotic mapping can detect genes in which allelic variation influences T1D susceptibility in NOD mice. Variation of some of the orthologous/paralogous genes may influence T1D susceptibility in humans.
Collapse
Affiliation(s)
- Lucienne Chatenoud
- Université Paris Cité, Institut Necker Enfants Malades, F-75015 Paris, France.,INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Cindy Marquet
- Université Paris Cité, Institut Necker Enfants Malades, F-75015 Paris, France.,INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Fabrice Valette
- Université Paris Cité, Institut Necker Enfants Malades, F-75015 Paris, France.,INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Lindsay Scott
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiexia Quan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun Hui Bu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Hildebrand
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jean-François Bach
- Université Paris Cité, Institut Necker Enfants Malades, F-75015 Paris, France.,INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
25
|
TXN inhibitor impedes radioresistance of colorectal cancer cells with decreased ALDH1L2 expression via TXN/NF-κB signaling pathway. Br J Cancer 2022; 127:637-648. [PMID: 35597868 PMCID: PMC9381770 DOI: 10.1038/s41416-022-01835-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background Colorectal cancer (CRC) is prevalent worldwide and is often challenged by treatment failure and recurrence due to resistance to radiotherapy. Here, we aimed to identify the elusive underlying molecular mechanisms of radioresistance in CRC. Methods Weighted gene co-expression network analysis was used to identify potential radiation-related genes. Colony formation and comet assays and multi-target single-hit survival and xenograft animal models were used to validate the results obtained from the bioinformatic analysis. Immunohistochemistry was performed to examine the clinical characteristics of ALDH1L2. Co-immunoprecipitation, immunofluorescence and flow cytometry were used to understand the molecular mechanisms underlying radioresistance. Results Bioinformatic analysis, in vitro, and in vivo experiments revealed that ALDH1L2 is a radiation-related gene, and a decrease in its expression induces radioresistance in CRC cells by inhibiting ROS-mediated apoptosis. Patients with low ALDH1L2 expression exhibit resistance to radiotherapy. Mechanistically, ALDH1L2 interacts with thioredoxin (TXN) and regulates the downstream NF-κB signaling pathway. PX-12, the TXN inhibitor, overcomes radioresistance due to decreased ALDH1L2. Conclusions Our results provide valuable insights into the potential role of ALDH1L2 in CRC radiotherapy. We propose that the simultaneous application of TXN inhibitors and radiotherapy would significantly ameliorate the clinical outcomes of patients with CRC having low ALDH1L2. ![]()
Collapse
|
26
|
Francisco A, Figueira TR, Castilho RF. Mitochondrial NAD(P) + Transhydrogenase: From Molecular Features to Physiology and Disease. Antioxid Redox Signal 2022; 36:864-884. [PMID: 34155914 DOI: 10.1089/ars.2021.0111] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Significance: Proton-translocating NAD(P)+ transhydrogenase, also known as nicotinamide nucleotide transhydrogenase (NNT), catalyzes a reversible reaction coupling the protonmotive force across the inner mitochondrial membrane and hydride (H-, a proton plus two electrons) transfer between the mitochondrial pools of NAD(H) and NADP(H). The forward NNT reaction is a source of NADPH in the mitochondrial matrix, fueling antioxidant and biosynthetic pathways with reductive potential. Despite the greater emphasis given to the net forward reaction, the reverse NNT reaction that oxidizes NADPH also occurs in physiological and pathological conditions. Recent Advances: NNT (dys)function has been linked to various metabolic pathways and disease phenotypes. Most of these findings have been based on spontaneous loss-of-function Nnt mutations found in the C57BL/6J mouse strain (NntC57BL/6J mutation) and disease-causing Nnt mutations in humans. The present review focuses on recent advances based on the mouse NntC57BL/6J mutation. Critical Issues: Most studies associating NNT function with disease phenotypes have been based on comparisons between different strains of inbred mice (with or without the NntC57BL/6J mutation), which creates uncertainties over the actual contribution of NNT in the context of other potential genetic modifiers. Future Directions: Future research might contribute to understanding the role of NNT in pathological conditions and elucidate how NNT regulates physiological signaling through its forward and reverse reactions. The importance of NNT in redox balance and tumor cell proliferation makes it a potential target of new therapeutic strategies for oxidative-stress-mediated diseases and cancer. Antioxid. Redox Signal. 36, 864-884.
Collapse
Affiliation(s)
- Annelise Francisco
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Tiago Rezende Figueira
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Roger Frigério Castilho
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
27
|
Mating M, Sharbati S, Einspanier R. A Detoxification Enzyme for Apis mellifera Newly Characterized by Recombinant Expression: 10-Formyl Tetrahydrofolate Dehydrogenase. FRONTIERS IN INSECT SCIENCE 2022; 2:829869. [PMID: 38468756 PMCID: PMC10926475 DOI: 10.3389/finsc.2022.829869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/07/2022] [Indexed: 03/13/2024]
Abstract
Honeybees are important managed pollinators that perform important ecological and economic functions. In recent decades, the obligate ectoparasite Varroa destructor severely affected survival of honeybees as it either feeds on hemolymph and fat bodies or acts as a vector for viruses. A common treatment against the varroa mite is formic acid, which has been used for many years by beekeepers. This treatment is known to be effective, but the therapeutic index is very narrow. Many beekeepers report negative effects of formic acid on bees, which include damage to brood, worker bee mortality, and queen loss. Little is yet known about the molecular mechanisms of formic acid detoxification in honeybees. Our previous study shows the upregulation of predicted 10-formyl tetrahydrofolate dehydrogenase (10-FTHFDH) transcripts in honeybees exposed to formic acid. Here, the predicted honeybee-specific 10-FTHFDH is recombinantly expressed, and its hydrolase and dehydrogenase activities are investigated. As a result, the enzyme shows similar dehydrogenase activity in comparison to known 10-FTHFDHs. This study provides further knowledge to better understand the detoxification mechanisms of formic acid in Apis mellifera.
Collapse
Affiliation(s)
| | | | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
28
|
Gao J, Hao Y, Piao X, Gu X. Aldehyde Dehydrogenase 2 as a Therapeutic Target in Oxidative Stress-Related Diseases: Post-Translational Modifications Deserve More Attention. Int J Mol Sci 2022; 23:ijms23052682. [PMID: 35269824 PMCID: PMC8910853 DOI: 10.3390/ijms23052682] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) has both dehydrogenase and esterase activity; its dehydrogenase activity is closely related to the metabolism of aldehydes produced under oxidative stress (OS). In this review, we recapitulate the enzyme activity of ALDH2 in combination with its protein structure, summarize and show the main mechanisms of ALDH2 participating in metabolism of aldehydes in vivo as comprehensively as possible; we also integrate the key regulatory mechanisms of ALDH2 participating in a variety of physiological and pathological processes related to OS, including tissue and organ fibrosis, apoptosis, aging, and nerve injury-related diseases. On this basis, the regulatory effects and application prospects of activators, inhibitors, and protein post-translational modifications (PTMs, such as phosphorylation, acetylation, S-nitrosylation, nitration, ubiquitination, and glycosylation) on ALDH2 are discussed and prospected. Herein, we aimed to lay a foundation for further research into the mechanism of ALDH2 in oxidative stress-related disease and provide a basis for better use of the ALDH2 function in research and the clinic.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
| | - Yue Hao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
- Correspondence:
| |
Collapse
|
29
|
Liu X, Zhang Y, Zhuang L, Olszewski K, Gan B. NADPH debt drives redox bankruptcy: SLC7A11/xCT-mediated cystine uptake as a double-edged sword in cellular redox regulation. Genes Dis 2021; 8:731-745. [PMID: 34522704 PMCID: PMC8427322 DOI: 10.1016/j.gendis.2020.11.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/03/2020] [Accepted: 11/18/2020] [Indexed: 01/18/2023] Open
Abstract
Cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11; also known as xCT) plays a key role in antioxidant defense by mediating cystine uptake, promoting glutathione synthesis, and maintaining cell survival under oxidative stress conditions. Recent studies showed that, to prevent toxic buildup of highly insoluble cystine inside cells, cancer cells with high expression of SLC7A11 (SLC7A11high) are forced to quickly reduce cystine to more soluble cysteine, which requires substantial NADPH supply from the glucose-pentose phosphate pathway (PPP) route, thereby inducing glucose- and PPP-dependency in SLC7A11high cancer cells. Limiting glucose supply to SLC7A11high cancer cells results in significant NADPH “debt”, redox “bankruptcy”, and subsequent cell death. This review summarizes our current understanding of NADPH-generating and -consuming pathways, discusses the opposing role of SLC7A11 in protecting cells from oxidative stress–induced cell death such as ferroptosis but promoting glucose starvation–induced cell death, and proposes the concept that SLC7A11-mediated cystine uptake acts as a double-edged sword in cellular redox regulation. A detailed understanding of SLC7A11 in redox biology may identify metabolic vulnerabilities in SLC7A11high cancer for therapeutic targeting.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yilei Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,The University of Texas, MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
30
|
Effects of maternal gestational diet, with or without methionine, on muscle transcriptome of Bos indicus-influenced beef calves following a vaccine-induced immunological challenge. PLoS One 2021; 16:e0253810. [PMID: 34166453 PMCID: PMC8224847 DOI: 10.1371/journal.pone.0253810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal nutrition during gestation can cause epigenetic effects that translate to alterations in gene expression in offspring. This 2-year study employed RNA-sequencing technology to evaluate the pre- and post-vaccination muscle transcriptome of early-weaned Bos indicus-influenced beef calves born from dams offered different supplementation strategies from 57 ± 5 d prepartum until 17 ± 5 d postpartum. Seventy-two Brangus heifers (36 heifers/yr) were stratified by body weight and body condition score and assigned to bahiagrass pastures (3 heifers/pasture/yr). Treatments were randomly assigned to pastures and consisted of (i) no pre- or postpartum supplementation (NOSUP), (ii) pre- and postpartum supplementation of protein and energy using 7.2 kg of dry matter/heifer/wk of molasses + urea (MOL), or (iii) MOL fortified with 105 g/heifer/wk of methionine hydroxy analog (MOLMET). Calves were weaned on d 147 of the study. On d 154, 24 calves/yr (8 calves/treatment) were randomly selected and individually limit-fed a high-concentrate diet until d 201. Calves were vaccinated on d 160. Muscle biopsies were collected from the same calves (4 calves/treatment/day/yr) on d 154 (pre-vaccination) and 201 (post-vaccination) for gene expression analysis using RNA sequencing. Molasses maternal supplementation led to a downregulation of genes associated with muscle cell differentiation and development along with intracellular signaling pathways (e.g., Wnt and TGF-β signaling pathway) compared to no maternal supplementation. Maternal fortification with methionine altered functional gene-sets involved in amino acid transport and metabolism and the one-carbon cycle. In addition, muscle transcriptome was impacted by vaccination with a total of 2,396 differentially expressed genes (FDR ≤ 0.05) on d 201 vs. d 154. Genes involved in cell cycle progression, extracellular matrix, and collagen formation were upregulated after vaccination. This study demonstrated that maternal supplementation of energy and protein, with or without, methionine has long-term implications on the muscle transcriptome of offspring and potentially influence postnatal muscle development.
Collapse
|
31
|
Zarou MM, Vazquez A, Vignir Helgason G. Folate metabolism: a re-emerging therapeutic target in haematological cancers. Leukemia 2021; 35:1539-1551. [PMID: 33707653 PMCID: PMC8179844 DOI: 10.1038/s41375-021-01189-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 01/31/2023]
Abstract
Folate-mediated one carbon (1C) metabolism supports a series of processes that are essential for the cell. Through a number of interlinked reactions happening in the cytosol and mitochondria of the cell, folate metabolism contributes to de novo purine and thymidylate synthesis, to the methionine cycle and redox defence. Targeting the folate metabolism gave rise to modern chemotherapy, through the introduction of antifolates to treat paediatric leukaemia. Since then, antifolates, such as methotrexate and pralatrexate have been used to treat a series of blood cancers in clinic. However, traditional antifolates have many deleterious side effects in normal proliferating tissue, highlighting the urgent need for novel strategies to more selectively target 1C metabolism. Notably, mitochondrial 1C enzymes have been shown to be significantly upregulated in various cancers, making them attractive targets for the development of new chemotherapeutic agents. In this article, we present a detailed overview of folate-mediated 1C metabolism, its importance on cellular level and discuss how targeting folate metabolism has been exploited in blood cancers. Additionally, we explore possible therapeutic strategies that could overcome the limitations of traditional antifolates.
Collapse
Affiliation(s)
- Martha M Zarou
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Alexei Vazquez
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
- Cancer Research UK Beatson Institute, Glasgow, UK.
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
32
|
Krupenko SA, Sharma J. Is ALDH1L1 Elevated in Lung Cancer? Comment on: Lee, S.-H.; et al. "The Combination of Loss of ALDH1L1 Function and Phenformin Treatment Decreases Tumor Growth in KRAS-Driven Lung Cancer" Cancers 2020, 12, 1382. Cancers (Basel) 2021; 13:cancers13071691. [PMID: 33918472 PMCID: PMC8038273 DOI: 10.3390/cancers13071691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
We read with interest the article by Lee et al [...].
Collapse
|
33
|
Zhao LN, Björklund M, Caldez MJ, Zheng J, Kaldis P. Therapeutic targeting of the mitochondrial one-carbon pathway: perspectives, pitfalls, and potential. Oncogene 2021; 40:2339-2354. [PMID: 33664451 DOI: 10.1038/s41388-021-01695-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
Most of the drugs currently prescribed for cancer treatment are riddled with substantial side effects. In order to develop more effective and specific strategies to treat cancer, it is of importance to understand the biology of drug targets, particularly the newly emerging ones. A comprehensive evaluation of these targets will benefit drug development with increased likelihood for success in clinical trials. The folate-mediated one-carbon (1C) metabolism pathway has drawn renewed attention as it is often hyperactivated in cancer and inhibition of this pathway displays promise in developing anticancer treatment with fewer side effects. Here, we systematically review individual enzymes in the 1C pathway and their compartmentalization to mitochondria and cytosol. Based on these insight, we conclude that (1) except the known 1C targets (DHFR, GART, and TYMS), MTHFD2 emerges as good drug target, especially for treating hematopoietic cancers such as CLL, AML, and T-cell lymphoma; (2) SHMT2 and MTHFD1L are potential drug targets; and (3) MTHFD2L and ALDH1L2 should not be considered as drug targets. We highlight MTHFD2 as an excellent therapeutic target and SHMT2 as a complementary target based on structural/biochemical considerations and up-to-date inhibitor development, which underscores the perspectives of their therapeutic potential.
Collapse
Affiliation(s)
- Li Na Zhao
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Mikael Björklund
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Haining, Zhejiang, PR China.,2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.,Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Matias J Caldez
- Laboratory of Host Defense, The World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Jie Zheng
- School of Information Science and Technology, Shanghai Tech University, Shanghai, PR China
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Malmö, Sweden.
| |
Collapse
|
34
|
Chen N, Wang C. Chemical Labeling of Protein 4'-Phosphopantetheinylation. Chembiochem 2021; 22:1357-1367. [PMID: 33289264 DOI: 10.1002/cbic.202000747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Indexed: 11/11/2022]
Abstract
Nature uses a diverse array of protein post-translational modifications (PTMs) to regulate protein structure, activity, localization, and function. Among them, protein 4'-phosphopantetheinylation derived from coenzyme A (CoA) is an essential PTM for the biosynthesis of fatty acids, polyketides, and nonribosomal peptides in prokaryotes and eukaryotes. To explore its functions, various chemical probes mimicking the natural structure of 4'-phosphopantetheinylation have been developed. In this minireview, we summarize these chemical probes and describe their applications in direct and metabolic labeling of proteins in bacterial and mammalian cells.
Collapse
Affiliation(s)
- Nan Chen
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Chu Wang
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Peking University, Beijing, 100871, P. R. China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
35
|
Krupenko NI, Sharma J, Pediaditakis P, Helke KL, Hall MS, Du X, Sumner S, Krupenko SA. Aldh1l2 knockout mouse metabolomics links the loss of the mitochondrial folate enzyme to deregulation of a lipid metabolism observed in rare human disorder. Hum Genomics 2020; 14:41. [PMID: 33168096 PMCID: PMC7654619 DOI: 10.1186/s40246-020-00291-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/14/2020] [Indexed: 12/29/2022] Open
Abstract
Background Mitochondrial folate enzyme ALDH1L2 (aldehyde dehydrogenase 1 family member L2) converts 10-formyltetrahydrofolate to tetrahydrofolate and CO2 simultaneously producing NADPH. We have recently reported that the lack of the enzyme due to compound heterozygous mutations was associated with neuro-ichthyotic syndrome in a male patient. Here, we address the role of ALDH1L2 in cellular metabolism and highlight the mechanism by which the enzyme regulates lipid oxidation. Methods We generated Aldh1l2 knockout (KO) mouse model, characterized its phenotype, tissue histology, and levels of reduced folate pools and applied untargeted metabolomics to determine metabolic changes in the liver, pancreas, and plasma caused by the enzyme loss. We have also used NanoString Mouse Inflammation V2 Code Set to analyze inflammatory gene expression and evaluate the role of ALDH1L2 in the regulation of inflammatory pathways. Results Both male and female Aldh1l2 KO mice were viable and did not show an apparent phenotype. However, H&E and Oil Red O staining revealed the accumulation of lipid vesicles localized between the central veins and portal triads in the liver of Aldh1l2-/- male mice indicating abnormal lipid metabolism. The metabolomic analysis showed vastly changed metabotypes in the liver and plasma in these mice suggesting channeling of fatty acids away from β-oxidation. Specifically, drastically increased plasma acylcarnitine and acylglycine conjugates were indicative of impaired β-oxidation in the liver. Our metabolomics data further showed that mechanistically, the regulation of lipid metabolism by ALDH1L2 is linked to coenzyme A biosynthesis through the following steps. ALDH1L2 enables sufficient NADPH production in mitochondria to maintain high levels of glutathione, which in turn is required to support high levels of cysteine, the coenzyme A precursor. As the final outcome, the deregulation of lipid metabolism due to ALDH1L2 loss led to decreased ATP levels in mitochondria. Conclusions The ALDH1L2 function is important for CoA-dependent pathways including β-oxidation, TCA cycle, and bile acid biosynthesis. The role of ALDH1L2 in the lipid metabolism explains why the loss of this enzyme is associated with neuro-cutaneous diseases. On a broader scale, our study links folate metabolism to the regulation of lipid homeostasis and the energy balance in the cell. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-020-00291-3.
Collapse
Affiliation(s)
- Natalia I Krupenko
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Jaspreet Sharma
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Peter Pediaditakis
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Madeline S Hall
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Xiuxia Du
- Department of Bioinformatics & Genomics, UNC Charlotte, Charlotte, NC, USA
| | - Susan Sumner
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Sergey A Krupenko
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA. .,Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
36
|
Chen N, Liu Y, Li Y, Wang C. Chemical Proteomic Profiling of Protein 4′‐Phosphopantetheinylation in Mammalian Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Nan Chen
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuan Liu
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuanpei Li
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Chu Wang
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Peking University China
| |
Collapse
|
37
|
Chen N, Liu Y, Li Y, Wang C. Chemical Proteomic Profiling of Protein 4′‐Phosphopantetheinylation in Mammalian Cells. Angew Chem Int Ed Engl 2020; 59:16069-16075. [DOI: 10.1002/anie.202004105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/08/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Nan Chen
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuan Liu
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuanpei Li
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Chu Wang
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Peking University China
| |
Collapse
|
38
|
Yang Y, Liu S, Gao H, Wang P, Zhang Y, Zhang A, Jia Z, Huang S. Ursodeoxycholic acid protects against cisplatin-induced acute kidney injury and mitochondrial dysfunction through acting on ALDH1L2. Free Radic Biol Med 2020; 152:821-837. [PMID: 32004633 DOI: 10.1016/j.freeradbiomed.2020.01.182] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunction plays an important role in acute kidney injury (AKI). Thus, the agents improving the mitochondrial function could be beneficial for treating AKI. Ursodeoxycholic acid (UDCA) has been demonstrated to prevent mitochondrial dysfunction under pathology, however, its role in AKI and the underlying mechanism remain unknown. This study aimed to evaluate the effect of UDCA on cisplatin-induced AKI. In vivo, C57BL/6 J mice were treated with cisplatin (25 mg/kg) for 72 h to induce AKI through a single intraperitoneal (i.p.) injection with or without UDCA (60 mg/kg/day) administration by gavage. Renal function, mitochondrial function and oxidative stress were analyzed to evaluate kidney injury. In vitro, mouse proximal tubular cells (mPTCs) and human proximal tubule epithelial cells (HK2) were treated with cisplatin with or without UDCA treatment for 24 h. Transcriptomic RNA-seq was preformed to analyze possible targets of UDCA. Our results showed that cisplatin-induced increments of serum creatinine (Scr), blood urea nitrogen (BUN), and cystatin C were significantly reduced by UDCA along with ameliorated renal tubular injury evidenced by improved renal histology and blocked upregulation of neutrophil gelatinase associated lipocalin (NGAL) and kidney injury molecule 1 (KIM-1). Meanwhile, the apoptosis induced by cisplatin was also markedly attenuated by UDCA administration. In vitro, UDCA treatment protected against tubular cell apoptosis possibly through antagonizing mitochondrial dysfunction and oxidative stress by targeting ALDH1L2 which was screened out by an RNA-seq analysis. Knockout of ALDH1L2 by CRISPR/Cas9 greatly blunted the protective effects of UDCA in renal tubular cells. Moreover, UDCA did not diminish cisplatin's antineoplastic effect in human cancer cells. In all, our results demonstrated that UDCA protects against cisplatin-induced AKI through improving mitochondrial function through acting on the expression of ALDH1L2, suggesting a clinical potential of UDCA for the treatment of AKI.
Collapse
Affiliation(s)
- Yunwen Yang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Suwen Liu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Huiping Gao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Peipei Wang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, PR China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
39
|
Abstract
BACKGROUND Formate is a one-carbon molecule at the crossroad between cellular and whole body metabolism, between host and microbiome metabolism, and between nutrition and toxicology. This centrality confers formate with a key role in human physiology and disease that is currently unappreciated. SCOPE OF REVIEW Here we review the scientific literature on formate metabolism, highlighting cellular pathways, whole body metabolism, and interactions with the diet and the gut microbiome. We will discuss the relevance of formate metabolism in the context of embryonic development, cancer, obesity, immunometabolism, and neurodegeneration. MAJOR CONCLUSIONS We will conclude with an outlook of some open questions bringing formate metabolism into the spotlight.
Collapse
Affiliation(s)
| | - Johannes Meiser
- Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
| | - Alexei Vazquez
- Cancer Research UK Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
40
|
Krupenko SA, Horita DA. The Role of Single-Nucleotide Polymorphisms in the Function of Candidate Tumor Suppressor ALDH1L1. Front Genet 2019; 10:1013. [PMID: 31737034 PMCID: PMC6831610 DOI: 10.3389/fgene.2019.01013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Folate (vitamin B9) is a common name for a group of coenzymes that function as carriers of chemical moieties called one-carbon groups in numerous biochemical reactions. The combination of these folate-dependent reactions constitutes one-carbon metabolism, the name synonymous to folate metabolism. Folate coenzymes and associated metabolic pathways are vital for cellular homeostasis due to their key roles in nucleic acid biosynthesis, DNA repair, methylation processes, amino acid biogenesis, and energy balance. Folate is an essential nutrient because humans are unable to synthesize this coenzyme and must obtain it from the diet. Insufficient folate intake can ultimately increase risk of certain diseases, most notably neural tube defects. More than 20 enzymes are known to participate in folate metabolism. Single-nucleotide polymorphisms (SNPs) in genes encoding for folate enzymes are associated with altered metabolism, changes in DNA methylation and modified risk for the development of human pathologies including cardiovascular diseases, birth defects, and cancer. ALDH1L1, one of the folate-metabolizing enzymes, serves a regulatory function in folate metabolism restricting the flux of one-carbon groups through biosynthetic processes. Numerous studies have established that ALDH1L1 is often silenced or strongly down-regulated in cancers. The loss of ALDH1L1 protein positively correlates with the occurrence of malignant tumors and tumor aggressiveness, hence the enzyme is viewed as a candidate tumor suppressor. ALDH1L1 has much higher frequency of non-synonymous exonic SNPs than most other genes for folate enzymes. Common SNPs at the polymorphic loci rs3796191, rs2886059, rs9282691, rs2276724, rs1127717, and rs4646750 in ALDH1L1 exons characterize more than 97% of Europeans while additional common variants are found in other ethnic populations. The effects of these SNPs on the enzyme is not clear but studies indicate that some coding and non-coding ALDH1L1 SNPs are associated with altered risk of certain cancer types and it is also likely that specific haplotypes define the metabolic response to dietary folate. This review discusses the role of ALDH1L1 in folate metabolism and etiology of diseases with the focus on non-synonymous coding ALDH1L1 SNPs and their effects on the enzyme structure/function, metabolic role and association with cancer.
Collapse
Affiliation(s)
- Sergey A. Krupenko
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David A. Horita
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
41
|
Cytosolic 10-formyltetrahydrofolate dehydrogenase regulates glycine metabolism in mouse liver. Sci Rep 2019; 9:14937. [PMID: 31624291 PMCID: PMC6797707 DOI: 10.1038/s41598-019-51397-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
ALDH1L1 (10-formyltetrahydrofolate dehydrogenase), an enzyme of folate metabolism highly expressed in liver, metabolizes 10-formyltetrahydrofolate to produce tetrahydrofolate (THF). This reaction might have a regulatory function towards reduced folate pools, de novo purine biosynthesis, and the flux of folate-bound methyl groups. To understand the role of the enzyme in cellular metabolism, Aldh1l1−/− mice were generated using an ES cell clone (C57BL/6N background) from KOMP repository. Though Aldh1l1−/− mice were viable and did not have an apparent phenotype, metabolomic analysis indicated that they had metabolic signs of folate deficiency. Specifically, the intermediate of the histidine degradation pathway and a marker of folate deficiency, formiminoglutamate, was increased more than 15-fold in livers of Aldh1l1−/− mice. At the same time, blood folate levels were not changed and the total folate pool in the liver was decreased by only 20%. A two-fold decrease in glycine and a strong drop in glycine conjugates, a likely result of glycine shortage, were also observed in Aldh1l1−/− mice. Our study indicates that in the absence of ALDH1L1 enzyme, 10-formyl-THF cannot be efficiently metabolized in the liver. This leads to the decrease in THF causing reduced generation of glycine from serine and impaired histidine degradation, two pathways strictly dependent on THF.
Collapse
|
42
|
Jimenez AR, Naz N, Miyan JA. Altered folate binding protein expression and folate delivery are associated with congenital hydrocephalus in the hydrocephalic Texas rat. J Cereb Blood Flow Metab 2019; 39:2061-2073. [PMID: 29798726 PMCID: PMC6775583 DOI: 10.1177/0271678x18776226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydrocephalus (HC) is an imbalance in cerebrospinal fluid (CSF) secretion/absorption resulting in fluid accumulation within the brain with consequential pathophysiology. Our research has identified a unique cerebral folate system in which depletion of CSF 10-formyl-tetrahydrofolate-dehydrogenase (FDH) is associated with cortical progenitor cell-cycle arrest in hydrocephalic Texas (H-Tx) rats. We used tissue culture, immunohistochemistry, in-situ PCR and RT-PCR and found that the in-vitro proliferation of arachnoid cells is highly folate-dependent with exacerbated proliferation occurring in hydrocephalic CSF that has low FDH but high folate-receptor-alpha (FRα) and folate. Adding FDH to this CSF prevented aberrant proliferation indicating a regulatory function of FDH on CSF folate concentration. Arachnoid cells have no detectable mRNA for FRα or FDH, but FDH mRNA is found in the choroid plexus (CP) and CSF microvesicles. Co-localization of FDH, FRα and folate suggests important functions of FDH in cerebral folate transport, buffering and function. In conclusion, abnormal CSF levels of FDH, FRα and folate inhibit cortical cell proliferation but allow uncontrolled arachnoid cell division that should increase fluid absorption by increasing the arachnoid although this fails in the hydrocephalic brain. FDH appears to buffer available folate to control arachnoid proliferation and function.
Collapse
Affiliation(s)
- Alicia Requena Jimenez
- Faculty of Biology, Medicine & Health, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| | - Naila Naz
- Faculty of Biology, Medicine & Health, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| | - Jaleel A Miyan
- Faculty of Biology, Medicine & Health, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| |
Collapse
|
43
|
Sarret C, Ashkavand Z, Paules E, Dorboz I, Pediaditakis P, Sumner S, Eymard-Pierre E, Francannet C, Krupenko NI, Boespflug-Tanguy O, Krupenko SA. Deleterious mutations in ALDH1L2 suggest a novel cause for neuro-ichthyotic syndrome. NPJ Genom Med 2019; 4:17. [PMID: 31341639 PMCID: PMC6650503 DOI: 10.1038/s41525-019-0092-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/03/2019] [Indexed: 01/06/2023] Open
Abstract
Neuro-ichthyotic syndromes are a group of rare genetic diseases mainly associated with perturbations in lipid metabolism, intracellular vesicle trafficking, or glycoprotein synthesis. Here, we report a patient with a neuro-ichthyotic syndrome associated with deleterious mutations in the ALDH1L2 (aldehyde dehydrogenase 1 family member L2) gene encoding for mitochondrial 10-formyltetrahydrofolate dehydrogenase. Using fibroblast culture established from the ALDH1L2-deficient patient, we demonstrated that the enzyme loss impaired mitochondrial function affecting both mitochondrial morphology and the pool of metabolites relevant to β-oxidation of fatty acids. Cells lacking the enzyme had distorted mitochondria, accumulated acylcarnitine derivatives and Krebs cycle intermediates, and had lower ATP and increased ADP/AMP indicative of a low energy index. Re-expression of functional ALDH1L2 enzyme in deficient cells restored the mitochondrial morphology and the metabolic profile of fibroblasts from healthy individuals. Our study underscores the role of ALDH1L2 in the maintenance of mitochondrial integrity and energy balance of the cell, and suggests the loss of the enzyme as the cause of neuro-cutaneous disease.
Collapse
Affiliation(s)
- Catherine Sarret
- IGCNC, Institut Pascal, UMR CNRS-UCA-SIGMA, Aubière, France
- Department of Clinical Genetics and Medical Cytogenetics, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Zahra Ashkavand
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA
| | - Evan Paules
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA
- Department of Nutrition, University of North Carolina, Chapel Hill, NC USA
| | - Imen Dorboz
- INSERM UMR1141, DHU PROTECT, PARIS-DIDEROT, University Sorbonne Paris-Cite, Paris, France
| | - Peter Pediaditakis
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA
| | - Susan Sumner
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA
- Department of Nutrition, University of North Carolina, Chapel Hill, NC USA
| | - Eléonore Eymard-Pierre
- Department of Clinical Genetics and Medical Cytogenetics, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Christine Francannet
- Department of Clinical Genetics and Medical Cytogenetics, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Natalia I. Krupenko
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA
- Department of Nutrition, University of North Carolina, Chapel Hill, NC USA
| | - Odile Boespflug-Tanguy
- INSERM UMR1141, DHU PROTECT, PARIS-DIDEROT, University Sorbonne Paris-Cite, Paris, France
- Department of Child Neurology and Metabolic Disorders, LEUKOFRANCE, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sergey A. Krupenko
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC USA
- Department of Nutrition, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
44
|
Target prediction and antioxidant analysis on isoflavones of demethyltexasin: a DFT study. J Mol Model 2019; 25:169. [DOI: 10.1007/s00894-019-4045-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/21/2019] [Indexed: 11/27/2022]
|
45
|
Loss of ALDH1L1 folate enzyme confers a selective metabolic advantage for tumor progression. Chem Biol Interact 2019; 302:149-155. [PMID: 30794800 DOI: 10.1016/j.cbi.2019.02.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
ALDH1L1 (cytosolic 10-formyltetrahydrofolate dehydrogenase) is the enzyme in folate metabolism commonly downregulated in human cancers. One of the mechanisms of the enzyme downregulation is methylation of the promoter of the ALDH1L1 gene. Recent studies underscored ALDH1L1 as a candidate tumor suppressor and potential marker of aggressive cancers. In agreement with the ALDH1L1 loss in cancer, its re-expression leads to inhibition of proliferation and to apoptosis, but also affects migration and invasion of cancer cells through a specific folate-dependent mechanism involved in invasive phenotype. A growing body of literature evaluated the prognostic value of ALDH1L1 expression for cancer disease, the regulatory role of the enzyme in cellular proliferation, and associated metabolic and signaling cellular responses. Overall, there is a strong indication that the ALDH1L1 silencing provides metabolic advantage for tumor progression at a later stage when unlimited proliferation and enhanced motility become critical processes for the tumor expansion. Whether the ALDH1L1 loss is involved in tumor initiation is still an open question.
Collapse
|
46
|
May JL, Kouri FM, Hurley LA, Liu J, Tommasini-Ghelfi S, Ji Y, Gao P, Calvert AE, Lee A, Chandel NS, Davuluri RV, Horbinski CM, Locasale JW, Stegh AH. IDH3α regulates one-carbon metabolism in glioblastoma. SCIENCE ADVANCES 2019; 5:eaat0456. [PMID: 30613765 PMCID: PMC6314828 DOI: 10.1126/sciadv.aat0456] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 11/26/2018] [Indexed: 05/17/2023]
Abstract
Mutation or transcriptional up-regulation of isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) promotes cancer progression through metabolic reprogramming and epigenetic deregulation of gene expression. Here, we demonstrate that IDH3α, a subunit of the IDH3 heterotetramer, is elevated in glioblastoma (GBM) patient samples compared to normal brain tissue and promotes GBM progression in orthotopic glioma mouse models. IDH3α loss of function reduces tricarboxylic acid (TCA) cycle turnover and inhibits oxidative phosphorylation. In addition to its impact on mitochondrial energy metabolism, IDH3α binds to cytosolic serine hydroxymethyltransferase (cSHMT). This interaction enhances nucleotide availability during DNA replication, while the absence of IDH3α promotes methionine cycle activity, S-adenosyl methionine generation, and DNA methylation. Thus, the regulation of one-carbon metabolism via an IDH3α-cSHMT signaling axis represents a novel mechanism of metabolic adaptation in GBM.
Collapse
Affiliation(s)
- Jasmine L. May
- Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior, Chicago, IL 60611, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Fotini M. Kouri
- Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior, Chicago, IL 60611, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Lisa A. Hurley
- Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior, Chicago, IL 60611, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Serena Tommasini-Ghelfi
- Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior, Chicago, IL 60611, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Yanrong Ji
- Preventive Medicine, Health and Biomedical Informatics, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Peng Gao
- Metabolomics Core Facility of Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrea E. Calvert
- Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior, Chicago, IL 60611, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Andrew Lee
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Navdeep S. Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60615, USA
| | - Ramana V. Davuluri
- Preventive Medicine, Health and Biomedical Informatics, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Craig M. Horbinski
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60615, USA
| | - Jason W. Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alexander H. Stegh
- Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior, Chicago, IL 60611, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
47
|
Zhao L. Mitochondrial DNA degradation: A quality control measure for mitochondrial genome maintenance and stress response. Enzymes 2019; 45:311-341. [PMID: 31627882 DOI: 10.1016/bs.enz.2019.08.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria play a central role in bioenergetics, and fulfill a plethora of functions in cell signaling, programmed cell death, and biosynthesis of key protein cofactors. Mitochondria harbor their own genomic DNA, which encodes protein subunits of the electron transport chain and a full set of transfer and ribosomal RNAs. Mitochondrial DNA (mtDNA) is essential for cellular and organismal functions, and defects in mitochondrial genome maintenance have been implicated in common human diseases and mitochondrial disorders. mtDNA repair and degradation are known pathways to cope with mtDNA damage; however, molecular factors involved in this process have remained unclear. Such knowledge is fundamental to the understanding of mitochondrial genomic maintenance and pathology, because mtDNA degradation may contribute to the etiology of mtDNA depletion syndromes and to the activation of the innate immune response by fragmented mtDNA. This article reviews the current literature regarding the importance of mitochondrial DNA degradation in mtDNA maintenance and stress response, and the recent progress in uncovering molecular factors involved in mtDNA degradation. These factors include key components of the mtDNA replication machinery, such as DNA polymerase γ, helicase Twinkle, and exonuclease MGME1, as well as a major DNA-packaging protein, mitochondrial transcription factor A (TFAM).
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States.
| |
Collapse
|
48
|
Identification of cancer-type specific expression patterns for active aldehyde dehydrogenase (ALDH) isoforms in ALDEFLUOR assay. Cell Biol Toxicol 2018; 35:161-177. [PMID: 30220009 PMCID: PMC6424948 DOI: 10.1007/s10565-018-9444-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 08/16/2018] [Indexed: 12/26/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) defend intracellular homeostasis by catalyzing the conversion of toxic aldehydes into non-toxic carboxylic acids, which is of particular importance to the self-renewal of stem cells and cancer stem cells. The widely used ALDEFLUOR assay was initially designed to indicate the activity of ALDH1A1 in leukemia and has been demonstrated to detect the enzyme activity of several other ALDH isoforms in various cancer types in recent years. However, it is still elusive which isoforms, among the 19 ALDH isoforms in human genome, are the potential contributors in catalyzing ALDEFLUOR assay in different cancers. In the current study, we performed a screening via overexpressing each ALDH isoform to assess their ability of catalyzing ALDEFLUOR assay. Our results demonstrate that nine isoforms are active in ALDEFLUOR assay, whose overexpression significantly increases ALDH-positive (ALDH+) population. Further analysis of the expression of these active isoforms in various cancers reveals cancer-type specific expression patterns, suggesting that different cancer types may exhibit ALDEFLUOR activity through expression of specific active ALDH isoforms. This study strongly indicates that a detailed elucidation of the functions for each active ALDH isoform in CSCs is necessary and important for a profound understanding of the underlying mechanisms of ALDH-associated stemness.
Collapse
|
49
|
Rodan LH, Qi W, Ducker GS, Demirbas D, Laine R, Yang E, Walker MA, Eichler F, Rabinowitz JD, Anselm I, Berry GT. 5,10-methenyltetrahydrofolate synthetase deficiency causes a neurometabolic disorder associated with microcephaly, epilepsy, and cerebral hypomyelination. Mol Genet Metab 2018; 125:118-126. [PMID: 30031689 PMCID: PMC6557438 DOI: 10.1016/j.ymgme.2018.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
Abstract
Folate metabolism in the brain is critically important and serves a number of vital roles in nucleotide synthesis, single carbon metabolism/methylation, amino acid metabolism, and mitochondrial translation. Genetic defects in almost every enzyme of folate metabolism have been reported to date, and most have neurological sequelae. We report 2 patients presenting with a neurometabolic disorder associated with biallelic variants in the MTHFS gene, encoding 5,10-methenyltetrahydrofolate synthetase. Both patients presented with microcephaly, short stature, severe global developmental delay, progressive spasticity, epilepsy, and cerebral hypomyelination. Baseline CSF 5-methyltetrahydrolate (5-MTHF) levels were in the low-normal range. The first patient was treated with folinic acid, which resulted in worsening cerebral folate deficiency. Treatment in this patient with a combination of oral L-5-methyltetrahydrofolate and intramuscular methylcobalamin was able to increase CSF 5-MTHF levels, was well tolerated over a 4 month period, and resulted in subjective mild improvements in functioning. Measurement of MTHFS enzyme activity in fibroblasts confirmed reduced activity. The direct substrate of the MTHFS reaction, 5-formyl-THF, was elevated 30-fold in patient fibroblasts compared to control, supporting the hypothesis that the pathophysiology of this disorder is a manifestation of toxicity from this metabolite.
Collapse
Affiliation(s)
- Lance H Rodan
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Wanshu Qi
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory S Ducker
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Didem Demirbas
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Regina Laine
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa A Walker
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Irina Anselm
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gerard T Berry
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
50
|
Khan QA, Pediaditakis P, Malakhau Y, Esmaeilniakooshkghazi A, Ashkavand Z, Sereda V, Krupenko NI, Krupenko SA. CHIP E3 ligase mediates proteasomal degradation of the proliferation regulatory protein ALDH1L1 during the transition of NIH3T3 fibroblasts from G0/G1 to S-phase. PLoS One 2018; 13:e0199699. [PMID: 29979702 PMCID: PMC6034817 DOI: 10.1371/journal.pone.0199699] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/12/2018] [Indexed: 12/27/2022] Open
Abstract
ALDH1L1 is a folate-metabolizing enzyme abundant in liver and several other tissues. In human cancers and cell lines derived from malignant tumors, the ALDH1L1 gene is commonly silenced through the promoter methylation. It was suggested that ALDH1L1 limits proliferation capacity of the cell and thus functions as putative tumor suppressor. In contrast to cancer cells, mouse cell lines NIH3T3 and AML12 do express the ALDH1L1 protein. In the present study, we show that the levels of ALDH1L1 in these cell lines fluctuate throughout the cell cycle. During S-phase, ALDH1L1 is markedly down regulated at the protein level. As the cell cultures become confluent and cells experience increased contact inhibition, ALDH1L1 accumulates in the cells. In agreement with this finding, NIH3T3 cells arrested in G1/S-phase by a thymidine block completely lose the ALDH1L1 protein. Treatment with the proteasome inhibitor MG-132 prevents such loss in proliferating NIH3T3 cells, suggesting the proteasomal degradation of the ALDH1L1 protein. The co-localization of ALDH1L1 with proteasomes, demonstrated by confocal microscopy, supports this mechanism. We further show that ALDH1L1 interacts with the chaperone-dependent E3 ligase CHIP, which plays a key role in the ALDH1L1 ubiquitination and degradation. In NIH3T3 cells, silencing of CHIP by siRNA halts, while transient expression of CHIP promotes, the ALDH1L1 loss. The downregulation of ALDH1L1 is associated with the accumulation of the ALDH1L1 substrate 10-formyltetrahydrofolate, which is required for de novo purine biosynthesis, a key pathway activated in S-phase. Overall, our data indicate that CHIP-mediated proteasomal degradation of ALDH1L1 facilitates cellular proliferation.
Collapse
Affiliation(s)
- Qasim A. Khan
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - Peter Pediaditakis
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - Yuryi Malakhau
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - Amin Esmaeilniakooshkghazi
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - Zahra Ashkavand
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - Valentin Sereda
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - Natalia I. Krupenko
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sergey A. Krupenko
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|