1
|
Hoshino S, Onaka H, Abe I. Recent advances in the biosynthetic studies of bacterial organoarsenic natural products. Nat Prod Rep 2025; 42:663-671. [PMID: 39192828 DOI: 10.1039/d4np00036f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Covering: 1977 to presentArsenic is widely distributed throughout terrestrial and aquatic environments, mainly in highly toxic inorganic forms. To adapt to environmental inorganic arsenic, bacteria have evolved ubiquitous arsenic metabolic strategies by combining arsenite methylation and related redox reactions, which have been extensively studied. Recent reports have shown that some bacteria have specific metabolic pathways associated with structurally and biologically unique organoarsenic natural products. In this highlight, by exemplifying the cases of oxo-arsenosugars, arsinothricin, and bisenarsan, we summarize recent advances in the identification and biosynthesis of bacterial organoarsenic natural products. We also discuss the potential discoveries of novel arsenic-containing natural products of bacterial origins.
Collapse
Affiliation(s)
- Shotaro Hoshino
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Hiroyasu Onaka
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
2
|
Melnyk S, Stierhof M, Bratiichuk D, Fries F, Müller R, Rebets Y, Luzhetskyy A, Ostash B. Uncovering the genetic basis of antiviral polyketide limocrocin biosynthesis through heterologous expression. Microb Cell Fact 2025; 24:17. [PMID: 39800732 PMCID: PMC11727611 DOI: 10.1186/s12934-024-02621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Streptomyces roseochromogenes NRRL 3504 produces clorobiocin, an aminocoumarin antibiotic that inhibits DNA replication. No other natural products have been isolated from this bacterium so far, despite the presence of a rich repertoire of specialized metabolite biosynthesis gene clusters (smBGCs) within its genome. Heterologous expression of smBGCs in suitable chassis speeds up the discovery of the natural products hidden behind these sets of genes. RESULTS In this work we focus on one intriguing smBGC of NRRL 3504 bearing some similarity to gene clusters involved in production of manumycin family polyketides. Through heterologous expression in Streptomyces chassis strains S. albus Del14 and S. lividans ΔYA9, this smBGC (hereafter referred to as lim BGC) was shown to direct the production of unusual polyketide limocrocin (LIM) known for its ability to interfere with viral reverse transcriptases. The organization of lim BGC, data on the structures of revealed metabolites as well as manipulations of lim genes allowed us to put forward an initial hypothesis about a biosynthetic pathway leading to LIM. We provide initial data on two LIM derivatives as well as updated NMR spectra for the main product. CONCLUSION This study reveals the genetic control of biosynthesis of LIM that remained hidden for the last 70 years. This, in turn, opens the door to biological routes towards overproduction of LIM as well as generation of its derivatives.
Collapse
Affiliation(s)
- Sofiia Melnyk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine
- Explogen LLC, Volodymyra Velykoho st. 16, Lviv, 79032, Ukraine
| | - Marc Stierhof
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), UdS Campus, Bld. E8.1, 66123, Saarbrücken, Germany
| | - Dmytro Bratiichuk
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), UdS Campus, Bld. E8.1, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123, Saarbrücken, Germany
| | - Franziska Fries
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, 66123, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany
- German-Ukrainian Core of Excellence in Natural Products Research (CENtR), Zelena st. 20, Lviv, 79005, Ukraine
| | - Yuriy Rebets
- Explogen LLC, Volodymyra Velykoho st. 16, Lviv, 79032, Ukraine
- German-Ukrainian Core of Excellence in Natural Products Research (CENtR), Zelena st. 20, Lviv, 79005, Ukraine
| | - Andriy Luzhetskyy
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), UdS Campus, Bld. E8.1, 66123, Saarbrücken, Germany.
- German-Ukrainian Core of Excellence in Natural Products Research (CENtR), Zelena st. 20, Lviv, 79005, Ukraine.
- Saarland University, HIPS UdS Campus Bldg C2.3, 66123, Saarbruecken, Germany.
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine.
- German-Ukrainian Core of Excellence in Natural Products Research (CENtR), Zelena st. 20, Lviv, 79005, Ukraine.
| |
Collapse
|
3
|
Shen SM, Xie YC, Tu LR, Wu ME, Wang YM, Song CH, Sun YH, Luo MH. Genome-Based Mining of Carpatamides I-M and Their Candidate Biosynthetic Gene Cluster. Mar Drugs 2024; 22:521. [PMID: 39590801 PMCID: PMC11595529 DOI: 10.3390/md22110521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Chemically investigating the marine-derived Streptomyces parvus 1268 led to the isolation of a new compound of carpatamide I (1). Subsequent genomic analysis identified its candidate biosynthetic gene cluster ctd of approximately 44 kb. In order to obtain more carpatamide derivatives, we conducted the upregulation of Ctd14, which is a positive regulator, and obtained improvement of carpatamide I and four new compounds of carpatamides J-M (2-5). The structures of the aforementioned five new isolates were identified by a combination of ESI-HRMS as well as one-dimensional (1D) and two-dimensional (2D) spectral NMR datasets. Bioassay results showed that compounds 1-5 displayed anti-inflammatory activity and weak cytotoxicity against cell lines of A549, HT-29, and HepG2.
Collapse
Affiliation(s)
- Shu-Mei Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (S.-M.S.); (L.-R.T.)
| | - Yun-Chang Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (Y.-C.X.); (M.-E.W.); (Y.-M.W.); (C.-H.S.)
| | - Li-Rong Tu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (S.-M.S.); (L.-R.T.)
| | - Miao-Er Wu
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (Y.-C.X.); (M.-E.W.); (Y.-M.W.); (C.-H.S.)
| | - Yan-Min Wang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (Y.-C.X.); (M.-E.W.); (Y.-M.W.); (C.-H.S.)
| | - Chun-Hui Song
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (Y.-C.X.); (M.-E.W.); (Y.-M.W.); (C.-H.S.)
| | - Yu-Hui Sun
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ming-He Luo
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (S.-M.S.); (L.-R.T.)
| |
Collapse
|
4
|
Boukouvala S, Kontomina E, Olbasalis I, Patriarcheas D, Tzimotoudis D, Arvaniti K, Manolias A, Tsatiri MA, Basdani D, Zekkas S. Insights into the genomic and functional divergence of NAT gene family to serve microbial secondary metabolism. Sci Rep 2024; 14:14905. [PMID: 38942826 PMCID: PMC11213898 DOI: 10.1038/s41598-024-65342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024] Open
Abstract
Microbial NAT enzymes, which employ acyl-CoA to acylate aromatic amines and hydrazines, have been well-studied for their role in xenobiotic metabolism. Some homologues have also been linked to secondary metabolism, but this function of NAT enzymes is not as well-known. For this comparative study, we surveyed sequenced microbial genomes to update the list of formally annotated NAT genes, adding over 4000 new sequences (mainly bacterial, but also archaeal, fungal and protist) and portraying a broad but not universal distribution of NATs in the microbiocosmos. Localization of NAT sequences within microbial gene clusters was not a rare finding, and this association was evident across all main types of biosynthetic gene clusters (BGCs) implicated in secondary metabolism. Interrogation of the MIBiG database for experimentally characterized clusters with NAT genes further supports that secondary metabolism must be a major function for microbial NAT enzymes and should not be overlooked by researchers in the field. We also show that NAT sequences can be associated with bacterial plasmids potentially involved in horizontal gene transfer. Combined, our computational predictions and MIBiG literature findings reveal the extraordinary functional diversification of microbial NAT genes, prompting further research into their role in predicted BGCs with as yet uncharacterized function.
Collapse
Affiliation(s)
- Sotiria Boukouvala
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece.
| | - Evanthia Kontomina
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Ioannis Olbasalis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dionysios Patriarcheas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dimosthenis Tzimotoudis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Konstantina Arvaniti
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Aggelos Manolias
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Maria-Aggeliki Tsatiri
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dimitra Basdani
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Sokratis Zekkas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| |
Collapse
|
5
|
Kawai S, Yamada A, Du D, Sugai Y, Katsuyama Y, Ohnishi Y. Identification and Analysis of the Biosynthetic Gene Cluster for the Hydrazide-Containing Aryl Polyene Spinamycin. ACS Chem Biol 2023; 18:1821-1828. [PMID: 37498311 DOI: 10.1021/acschembio.3c00248] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Natural products containing nitrogen-nitrogen (N-N) bonds have attracted much attention because of their bioactivities and chemical features. Several recent studies have revealed the nitrous acid-dependent N-N bond-forming machinery. However, the catalytic mechanisms of hydrazide synthesis using nitrous acid remain unknown. Herein, we focused on spinamycin, a hydrazide-containing aryl polyene produced by Streptomyces albospinus JCM3399. In the S. albospinus genome, we discovered a putative spinamycin biosynthetic gene (spi) cluster containing genes that encode a type II polyketide synthase and genes for the secondary metabolism-specific nitrous acid biosynthesis pathway. A gene inactivation experiment showed that this cluster was responsible for spinamycin biosynthesis. A feeding experiment using stable isotope-labeled sodium nitrite and analysis of nitrous acid-synthesizing enzymes in vitro strongly indicated that one of the nitrogen atoms of the hydrazide group was derived from nitrous acid. In vitro substrate specificity analysis of SpiA3, which is responsible for loading a starter substrate onto polyketide synthase, indicated that N-N bond formation occurs after starter substrate loading. In vitro analysis showed that the AMP-dependent ligase SpiA7 catalyzes the diazotization of an amino group on a benzene ring without a hydroxy group, resulting in a highly reactive diazo intermediate, which may be the key step in hydrazide group formation. Therefore, we propose the overall biosynthetic pathway of spinamycin. This study expands our knowledge of N-N bond formation in microbial secondary metabolism.
Collapse
Affiliation(s)
- Seiji Kawai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akito Yamada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Danyao Du
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshinori Sugai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
Ye S, Molloy B, Pérez-Victoria I, Montero I, Braña AF, Olano C, Arca S, Martín J, Reyes F, Salas JA, Méndez C. Uncovering the Cryptic Gene Cluster ahb for 3-amino-4-hydroxybenzoate Derived Ahbamycins, by Searching SARP Regulator Encoding Genes in the Streptomyces argillaceus Genome. Int J Mol Sci 2023; 24:ijms24098197. [PMID: 37175904 PMCID: PMC10179220 DOI: 10.3390/ijms24098197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Genome mining using standard bioinformatics tools has allowed for the uncovering of hidden biosynthesis gene clusters for specialized metabolites in Streptomyces genomes. In this work, we have used an alternative approach consisting in seeking "Streptomyces Antibiotic Regulatory Proteins" (SARP) encoding genes and analyzing their surrounding DNA region to unearth cryptic gene clusters that cannot be identified using standard bioinformatics tools. This strategy has allowed the unveiling of the new ahb cluster in Streptomyces argillaceus, which had not been retrieved before using antiSMASH. The ahb cluster is highly preserved in other Streptomyces strains, which suggests a role for their encoding compounds in specific environmental conditions. By combining overexpression of three regulatory genes and generation of different mutants, we were able to activate the ahb cluster, and to identify and chemically characterize the encoded compounds that we have named ahbamycins (AHBs). These constitute a new family of metabolites derived from 3-amino-4-hydroxybenzoate (3,4-AHBA) known for having antibiotic and antitumor activity. Additionally, by overexpressing three genes of the cluster (ahbH, ahbI, and ahbL2) for the synthesis and activation of 3,4-AHBA, a new hybrid compound, AHB18, was identified which had been produced from a metabolic crosstalk between the AHB and the argimycin P pathways. The identification of this new BGC opens the possibility to generate new compounds by combinatorial biosynthesis.
Collapse
Affiliation(s)
- Suhui Ye
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Brian Molloy
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, 18016 Granada, Spain
| | - Ignacio Montero
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alfredo F Braña
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Sonia Arca
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, 18016 Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Armilla, 18016 Granada, Spain
| | - José A Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
7
|
Kawaguchi J, Mori H, Iwai N, Wachi M. A secondary metabolic enzyme functioned as an evolutionary seed of a primary metabolic enzyme. Mol Biol Evol 2022; 39:6651898. [PMID: 35904937 PMCID: PMC9356726 DOI: 10.1093/molbev/msac164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The antibiotic alaremycin has a structure that resembles that of 5-aminolevulinic acid (ALA), a universal precursor of porphyrins, and inhibits porphyrin biosynthesis. Genome sequencing of the alaremycin-producing bacterial strain and enzymatic analysis revealed that the first step of alaremcyin biosynthesis is catalysed by the enzyme, AlmA, which exhibits a high degree of similarity to 5-aminolevulinate synthase (ALAS) expressed by animals, protozoa, fungi and α-proteobacteria. Site-directed mutagenesis of AlmA revealed that the substitution of two amino acids residues around the substrate binding pocket transformed its substrate specificity from that of alaremycin precursor synthesis to ALA synthesis. To estimate the evolutionary trajectory of AlmA and ALAS, we performed an ancestral sequence reconstitution analysis based on a phylogenetic tree of AlmA and ALAS. The reconstructed common ancestral enzyme of AlmA and ALAS exhibited alaremycin precursor synthetic activity, rather than ALA synthetic activity. These results suggest that ALAS evolved from an AlmA-like enzyme. We propose a new evolutionary hypothesis in which a non-essential secondary metabolic enzyme acts as an 'evolutionary seed' to generate an essential primary metabolic enzyme.
Collapse
Affiliation(s)
- Jun Kawaguchi
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hikaru Mori
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Noritaka Iwai
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Masaaki Wachi
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|
8
|
Harnessing Rare Actinomycete Interactions and Intrinsic Antimicrobial Resistance Enables Discovery of an Unusual Metabolic Inhibitor. mBio 2022; 13:e0039322. [PMID: 35608300 PMCID: PMC9239090 DOI: 10.1128/mbio.00393-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacterial natural products have historically been a deep source of new medicines, but their slowed discovery in recent decades has put a premium on developing strategies that enhance the likelihood of capturing novel compounds. Here, we used a straightforward approach that capitalizes on the interactive ecology of “rare” actinomycetes. Specifically, we screened for interactions that triggered the production of antimicrobials that inhibited the growth of a bacterial strain with exceptionally diverse natural antimicrobial resistance. This strategy led to the discovery of a family of antimicrobials we term the dynaplanins. Heterologous expression enabled identification of the dynaplanin biosynthetic gene cluster, which was missed by typical algorithms for natural product gene cluster detection. Genome sequencing of partially resistant mutants revealed a 2-oxo acid dehydrogenase E2 subunit as the likely molecular target of the dynaplanins, and this finding was supported by computational modeling of the dynaplanin scaffold within the active site of this enzyme. Thus, this simple strategy, which leverages microbial interactions and natural antibiotic resistance, can enable discovery of molecules with unique antimicrobial activity. In addition, these results indicate that primary metabolism may be a direct target for inhibition via chemical interference in competitive microbial interactions.
Collapse
|
9
|
Yan X, Zhang J, Tan H, Liu Z, Jiang K, Tian W, Zheng M, Lin Z, Deng Z, Qu X. A Pair of Atypical KAS III Homologues with Initiation and Elongation Functions Program the Polyketide Biosynthesis in Asukamycin. Angew Chem Int Ed Engl 2022; 61:e202200879. [DOI: 10.1002/anie.202200879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoli Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Jun Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Hongqun Tan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Zhihao Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Kai Jiang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Wenya Tian
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Mengmeng Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| |
Collapse
|
10
|
Castro-Falcón G, Creamer KE, Chase AB, Kim MC, Sweeney D, Glukhov E, Fenical W, Jensen PR. Structure and Candidate Biosynthetic Gene Cluster of a Manumycin-Type Metabolite from Salinispora pacifica. JOURNAL OF NATURAL PRODUCTS 2022; 85:980-986. [PMID: 35263117 PMCID: PMC9209988 DOI: 10.1021/acs.jnatprod.1c01117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A new manumycin-type natural product named pacificamide (1) and its candidate biosynthetic gene cluster (pac) were discovered from the marine actinobacterium Salinispora pacifica CNT-855. The structure of the compound was determined using NMR, electronic circular dichroism, and bioinformatic predictions. The pac gene cluster is unique to S. pacifica and found in only two of the 119 Salinispora genomes analyzed across nine species. Comparative analyses of biosynthetic gene clusters encoding the production of related manumycin-type compounds revealed genetic differences in accordance with the unique pacificamide structure. Further queries of manumycin-type gene clusters from public databases revealed their limited distribution across the phylum Actinobacteria and orphan diversity that suggests additional products remain to be discovered in this compound class. Production of the known metabolite triacsin D is also reported for the first time from the genus Salinispora. This study adds two classes of compounds to the natural product collective isolated from the genus Salinispora, which has proven to be a useful model for natural product research.
Collapse
Affiliation(s)
- Gabriel Castro-Falcón
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Kaitlin E Creamer
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Alexander B Chase
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Min Cheol Kim
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Douglas Sweeney
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Evgenia Glukhov
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
11
|
Yan X, Zhang J, Tan H, Liu Z, Jiang K, Tian W, Zheng M, Lin Z, Deng Z, Qu X. A Pair of Atypical KAS III Homologues with Initiation and Elongation Functions Program the Polyketide Biosynthesis in Asukamycin. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoli Yan
- Wuhan University School of pharmaceutical Sciences CHINA
| | - Jun Zhang
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Hongqun Tan
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Zhihao Liu
- Wuhan University School of pharmaceutical Sciences CHINA
| | - Kai Jiang
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Wenya Tian
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Mengmeng Zheng
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Zhi Lin
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Zixin Deng
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Xudong Qu
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology 800 Dongchuan Rd. 200240 Shanghai CHINA
| |
Collapse
|
12
|
Yamamoto T, Hasegawa Y, Iwaki H. Identification and characterization of a novel class of self-sufficient cytochrome P450 hydroxylase involved in cyclohexanecarboxylate degradation in Paraburkholderia terrae strain KU-64. Biosci Biotechnol Biochem 2022; 86:199-208. [PMID: 34965585 DOI: 10.1093/bbb/zbab199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/15/2021] [Indexed: 11/14/2022]
Abstract
Cytochrome P450 monooxygenases play important roles in metabolism. Here, we report the identification and biochemical characterization of P450CHC, a novel self-sufficient cytochrome P450, from cyclohexanecarboxylate-degrading Paraburkholderia terrae KU-64. P450CHC was found to comprise a [2Fe-2S] ferredoxin domain, NAD(P)H-dependent FAD-containing reductase domain, FCD domain, and cytochrome P450 domain (in that order from the N terminus). Reverse transcription-polymerase chain reaction results indicated that the P450CHC-encoding chcA gene was inducible by cyclohexanecarboxylate. chcA overexpression in Escherichia coli and recombinant protein purification enabled functional characterization of P450CHC as a catalytically self-sufficient cytochrome P450 that hydroxylates cyclohexanecarboxylate. Kinetic analysis indicated that P450CHC largely preferred NADH (Km = 0.011 m m) over NADPH (Km = 0.21 m m). The Kd, Km, and kcat values for cyclohexanecarboxylate were 0.083 m m, 0.084 m m, and 15.9 s-1, respectively. The genetic and biochemical analyses indicated that the physiological role of P450CHC is initial hydroxylation in the cyclohexanecarboxylate degradation pathway.
Collapse
Affiliation(s)
- Taisei Yamamoto
- Department of Life Science and Biotechnology, Kansai University, Suita, Osaka, Japan
| | - Yoshie Hasegawa
- Department of Life Science and Biotechnology, Kansai University, Suita, Osaka, Japan
| | - Hiroaki Iwaki
- Department of Life Science and Biotechnology, Kansai University, Suita, Osaka, Japan
| |
Collapse
|
13
|
Montaño ET, Nideffer JF, Brumage L, Erb M, Busch J, Fernandez L, Derman AI, Davis JP, Estrada E, Fu S, Le D, Vuppala A, Tran C, Luterstein E, Lakkaraju S, Panchagnula S, Ren C, Doan J, Tran S, Soriano J, Fujita Y, Gutala P, Fujii Q, Lee M, Bui A, Villarreal C, Shing SR, Kim S, Freeman D, Racha V, Ho A, Kumar P, Falah K, Dawson T, Enustun E, Prichard A, Gomez A, Khanna K, Wanamaker SA, Pogliano K, Pogliano J. Isolation and characterization of Streptomyces bacteriophages and Streptomyces strains encoding biosynthetic arsenals. PLoS One 2022; 17:e0262354. [PMID: 35061755 PMCID: PMC8782336 DOI: 10.1371/journal.pone.0262354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022] Open
Abstract
The threat to public health posed by drug-resistant bacteria is rapidly increasing, as some of healthcare's most potent antibiotics are becoming obsolete. Approximately two-thirds of the world's antibiotics are derived from natural products produced by Streptomyces encoded biosynthetic gene clusters. Thus, to identify novel gene clusters, we sequenced the genomes of four bioactive Streptomyces strains isolated from the soil in San Diego County and used Bacterial Cytological Profiling adapted for agar plate culturing in order to examine the mechanisms of bacterial inhibition exhibited by these strains. In the four strains, we identified 104 biosynthetic gene clusters. Some of these clusters were predicted to produce previously studied antibiotics; however, the known mechanisms of these molecules could not fully account for the antibacterial activity exhibited by the strains, suggesting that novel clusters might encode antibiotics. When assessed for their ability to inhibit the growth of clinically isolated pathogens, three Streptomyces strains demonstrated activity against methicillin-resistant Staphylococcus aureus. Additionally, due to the utility of bacteriophages for genetically manipulating bacterial strains via transduction, we also isolated four new phages (BartholomewSD, IceWarrior, Shawty, and TrvxScott) against S. platensis. A genomic analysis of our phages revealed nearly 200 uncharacterized proteins, including a new site-specific serine integrase that could prove to be a useful genetic tool. Sequence analysis of the Streptomyces strains identified CRISPR-Cas systems and specific spacer sequences that allowed us to predict phage host ranges. Ultimately, this study identified Streptomyces strains with the potential to produce novel chemical matter as well as integrase-encoding phages that could potentially be used to manipulate these strains.
Collapse
Affiliation(s)
- Elizabeth T. Montaño
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Jason F. Nideffer
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Lauren Brumage
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Marcella Erb
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Julia Busch
- Department of Immunology, Duke University, Durham, North Carolina, United Stated of America
| | - Lynley Fernandez
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Alan I. Derman
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - John Paul Davis
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Elena Estrada
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Sharon Fu
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Danielle Le
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Aishwarya Vuppala
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Cassidy Tran
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Elaine Luterstein
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Shivani Lakkaraju
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Sriya Panchagnula
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Caroline Ren
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Jennifer Doan
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Sharon Tran
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Jamielyn Soriano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Yuya Fujita
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Pranathi Gutala
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Quinn Fujii
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Minda Lee
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Anthony Bui
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Carleen Villarreal
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Samuel R. Shing
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Sean Kim
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Danielle Freeman
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Vipula Racha
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Alicia Ho
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Prianka Kumar
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Kian Falah
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Thomas Dawson
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Eray Enustun
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Amy Prichard
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Ana Gomez
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Kanika Khanna
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Shelly A. Wanamaker
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
14
|
Del Rio Flores A, Twigg FF, Du Y, Cai W, Aguirre DQ, Sato M, Dror MJ, Narayanamoorthy M, Geng J, Zill NA, Zhai R, Zhang W. Biosynthesis of triacsin featuring an N-hydroxytriazene pharmacophore. Nat Chem Biol 2021; 17:1305-1313. [PMID: 34725510 PMCID: PMC8605994 DOI: 10.1038/s41589-021-00895-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/09/2021] [Indexed: 01/08/2023]
Abstract
Triacsins are an intriguing class of specialized metabolites possessing a conserved N-hydroxytriazene moiety not found in any other known natural products. Triacsins are notable as potent acyl-CoA synthetase inhibitors in lipid metabolism, yet their biosynthesis has remained elusive. Through extensive mutagenesis and biochemical studies, we here report all enzymes required to construct and install the N-hydroxytriazene pharmacophore of triacsins. Two distinct ATP-dependent enzymes were revealed to catalyze the two consecutive N-N bond formation reactions, including a glycine-utilizing, hydrazine-forming enzyme (Tri28) and a nitrite-utilizing, N-nitrosating enzyme (Tri17). This study paves the way for future mechanistic interrogation and biocatalytic application of enzymes for N-N bond formation.
Collapse
Affiliation(s)
- Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Frederick F Twigg
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Yongle Du
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Daniel Q Aguirre
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Moriel J Dror
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | | | - Jiaxin Geng
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, United States
| | - Nicholas A Zill
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Rui Zhai
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, United States.
- Chan Zuckerberg Biohub, San Francisco, CA, United States.
| |
Collapse
|
15
|
Yamamoto T, Hasegawa Y, Lau PCK, Iwaki H. Identification and characterization of a chc gene cluster responsible for the aromatization pathway of cyclohexanecarboxylate degradation in Sinomonas cyclohexanicum ATCC 51369. J Biosci Bioeng 2021; 132:621-629. [PMID: 34583900 DOI: 10.1016/j.jbiosc.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/18/2022]
Abstract
Cyclohexanecarboxylate (CHCA) is formed by oxidative microbial degradation of n-alkylcycloparaffins and anaerobic degradation of benzoate, and also known to be a synthetic intermediate or the starter unit of biosynthesis of cellular constituents and secondary metabolites. Although two degradation pathways have been proposed, genetic information has been limited to the β-oxidation-like pathway. In this study, we identified a gene cluster, designated chcC1XTC2B1B2RAaAbAc, that is responsible for the CHCA aromatization pathway in Sinomonas (formerly Corynebacterium) cyclohexanicum strain ATCC 51369. Reverse transcription-PCR analysis indicated that the chc gene cluster is inducible by CHCA and that it consists of two transcriptional units, chcC1XTC2B1B2R and chcAaAbAc. Overexpression of the various genes in Escherichia coli, and purification of the recombinant proteins led to the functional characterization of ChcAaAbAc as subunits of a cytochrome P450 system responsible for CHCA hydroxylation; ChcB1 and ChcB2 as trans-4-hydroxyCHCA and cis-4-hydroxyCHCA dehydrogenases, respectively; ChcC1 was identified as a 4-oxoCHCA desaturase containing a covalently bound FAD; and ChcC2 was identified as a 4-oxocyclohexenecarboxylate desaturase. The binding constant of ChcAa for CHCA was found to be 0.37 mM. Kinetic parameters established for ChcB1 indicated that it has a high catalytic efficiency towards 4-oxoCHCA compared to trans- or cis-4-hydroxyCHCA. The Km and Kcat values of ChcC1 for 4-oxoCHCA were 0.39 mM and 44 s-1, respectively. Taken together with previous work on the identification of a pobA gene encoding a 4-hydroxybenzoate hydroxylase, we have now localized the remaining set of genes for the final degradation of protocatechuate before entry into the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Taisei Yamamoto
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Yoshie Hasegawa
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Peter C K Lau
- Department of Microbiology & Immunology, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Hiroaki Iwaki
- Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
16
|
Activation of a Cryptic Manumycin-Type Biosynthetic Gene Cluster of Saccharothrix espanaensis DSM44229 by Series of Genetic Manipulations. Microorganisms 2021; 9:microorganisms9030559. [PMID: 33800500 PMCID: PMC8000086 DOI: 10.3390/microorganisms9030559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 11/20/2022] Open
Abstract
(1) Background: Manumycins are small actinomycete polyketides with prominent cancerostatic and immunosuppressive activities via inhibition of various eukaryotic enzymes. Their overall activity towards human cells depends on the structural variability of both their polyketide chains, mainly the upper one. In our genetic screening project to find novel producers of anti-inflammatory manumycins, the strain Saccharothrix espanaensis DSM44229 was identified as containing a novel manumycin-type biosynthetic gene cluster (BGC). (2) Methods: The biosynthetic genes appeared to be silent under all assayed laboratory conditions. Several techniques were used to activate the BGC, including: (i) heterologous expression in various hosts, (ii) overexpression of putative pathway-specific regulatory genes, and (iii) overexpression of a bottleneck cyclizing aminolevulinate synthase gene in both natural and heterologous producers. (3) Results: Multiple novel manumycin-type compounds were produced at various levels by genetically-modified strains, sharing a tetraene lower chain structure with a colabomycin subgroup of manumycins, but possessing much shorter and saturated upper chains. (4) Conclusions: A cryptic manumycin-type BGC was successfully activated by genetic means to gain production of novel manumycin-type compounds for future comparative activity assays. Heterologously produced compounds were identical to those found after final activation of the BGC in the original strain, proving the intactness of the cloned BGC.
Collapse
|
17
|
Elagamy A, Althagafi I, Pratap R. Step-wise and one-pot synthesis of highly substituted conjugated trienes from 2-oxobenzo[ h]chromenes/2 H-pyran-2-ones. Org Biomol Chem 2021; 19:3901-3910. [PMID: 33949600 DOI: 10.1039/d1ob00314c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild and efficient route for the synthesis of conjugated trienes via nitroethane-mediated ring contraction of 2-oxobenzo[h]chromenes/2H-pyran-2-ones followed by decarboxylative rearrangement of the obtained spirobutenolides and butenolides is described. The (E)-isomer of trienes was obtained by step-wise and one-pot approaches from 2-oxobenzo[h]chromenes. Butenolides 4a-l as new substrates have been developed for the construction of trienes. The mixture of the (E)- and (Z)-isomers of spirobutenolides undergoes decarboxylative rearrangement in the presence of sodium ethoxide as a base to yield the (E)-isomer of trienes, while the (E)-isomer of butenolides reacts to give a mixture of (2E,4E)- and (2E,4Z)-isomers of trienes in an almost steady ratio of 45 : 55 or 1 : 1.2. The structure and geometry of the obtained butenolides and trienes were confirmed by single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Amr Elagamy
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India.
| | - Ismail Althagafi
- Chemistry Department, Faculty of Science, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Ramendra Pratap
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India.
| |
Collapse
|
18
|
Skyrud W, Flores ADR, Zhang W. Biosynthesis of Cyclohexanecarboxyl-CoA Highlights a Promiscuous Shikimoyl-CoA Synthetase and a FAD-Dependent Dehydratase. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Wenjun Zhang
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
19
|
Liu L, Tang MC, Tang Y. Fungal Highly Reducing Polyketide Synthases Biosynthesize Salicylaldehydes That Are Precursors to Epoxycyclohexenol Natural Products. J Am Chem Soc 2019; 141:19538-19541. [PMID: 31790246 DOI: 10.1021/jacs.9b09669] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fungal highly reducing polyketide synthases (HRPKSs) are highly programmed multidomain enzymes that synthesize reduced polyketide structures. Recent reports indicated salicylaldehydes are synthesized by HRPKS biosynthetic gene clusters, which are unexpected based on known enzymology of HRPKSs. Using genome mining of a Trichoderma virens HRPKS gene cluster that encodes a number of redox enzymes, we uncover the strategy used by HRPKS pathways in the biosynthesis of aromatic products such as salicylaldehyde 4, which can be oxidatively modified to the epoxycyclohexanol natural product trichoxide 1. We show selective β-hydroxyl groups in the linear HRPKS product are individually reoxidized to β-ketones by short-chain dehydrogenase/reductase enzymes, which enabled intramolecular aldol condensation and aromatization. Our work expands the chemical space of natural products accessible through HRPKS pathways.
Collapse
Affiliation(s)
- Ling Liu
- Department of Chemical and Biomolecular Engineering , University of California , Los Angeles , California 90095 , United States.,State Key Laboratory of Mycology , Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , P.R. China
| | - Man-Cheng Tang
- Department of Chemical and Biomolecular Engineering , University of California , Los Angeles , California 90095 , United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering , University of California , Los Angeles , California 90095 , United States.,Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| |
Collapse
|
20
|
Nofiani R, Philmus B, Nindita Y, Mahmud T. 3-Ketoacyl-ACP synthase (KAS) III homologues and their roles in natural product biosynthesis. MEDCHEMCOMM 2019; 10:1517-1530. [PMID: 31673313 DOI: 10.1039/c9md00162j] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/29/2019] [Indexed: 11/21/2022]
Abstract
The 3-ketoacyl-ACP synthase (KAS) III proteins are one of the most abundant enzymes in nature, as they are involved in the biosynthesis of fatty acids and natural products. KAS III enzymes catalyse a carbon-carbon bond formation reaction that involves the α-carbon of a thioester and the carbonyl carbon of another thioester. In addition to the typical KAS III enzymes involved in fatty acid and polyketide biosynthesis, there are proteins homologous to KAS III enzymes that catalyse reactions that are different from that of the traditional KAS III enzymes. Those include enzymes that are responsible for a head-to-head condensation reaction, the formation of acetoacetyl-CoA in mevalonate biosynthesis, tailoring processes via C-O bond formation or esterification, as well as amide formation. This review article highlights the diverse reactions catalysed by this class of enzymes and their role in natural product biosynthesis.
Collapse
Affiliation(s)
- Risa Nofiani
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA . .,Department of Chemistry , Universitas Tanjungpura , Pontianak , Indonesia
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA .
| | - Yosi Nindita
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA .
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA .
| |
Collapse
|
21
|
Genome-guided and mass spectrometry investigation of natural products produced by a potential new actinobacterial strain isolated from a mangrove ecosystem in Futian, Shenzhen, China. Sci Rep 2019; 9:823. [PMID: 30696899 PMCID: PMC6351551 DOI: 10.1038/s41598-018-37475-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/05/2018] [Indexed: 11/08/2022] Open
Abstract
Actinobacteria, a group of gram-positive bacteria, can produce plenty of valuable bioactive secondary metabolites, especially antibiotics. Hence, in order to search for new actinobacteria, actinobacterial isolates were obtained from rhizosphere soil collected from the Futian mangrove ecosystem in Shenzhen, China. According to 16S rRNA sequences, 14 actinobacterial strains of the genus Streptomyces, Rhodococcus, Microbacterium, Micromonospora, Actinoplanes and Mycobacterium were isolated and identified. Among these, strain Mycobacterium sp.13 was described as a potential new species belonging to the genus Mycobacterium within the class of actinobacteria according to the genomic analysis. The genome-based 16S rRNA sequences had 98.48% sequence similarity with Mycobacterium moriokaense DSM 44221T. Meanwhile, the genome sequences of Mycobacterium sp.13 showed an average nucleotide identity (ANI) with the Mycobacterium mageritense DSM 44476, Mycobacterium smegmatis MKD8 and Mycobacterium goodii strain X7B of only 74.79%, 76.12% and 76.42%, respectively. Furthermore, genome-mining results showed that Mycobacterium sp.13 contained 105 gene clusters encoding to the secondary metabolite biosynthesis, where many kinds of terpene, bacteriocin, T1pks, Nrps, saccharide, fatty acid, butyrolactone, ectoine and resorcinol were included. Finally, through LC-MS and HR-MS, analyzing the small molecules from ethyl acetate extract of this strain, asukamycin C and apramycin were for the first time found present to be in Mycobacterium moriokaense strain. Our study provides evidence in support of the potential new Mycobacterium sp.13 isolated from the mangrove environment as a possible novel source of natural products.
Collapse
|
22
|
Nepal KK, Wang G. Streptomycetes: Surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products. Biotechnol Adv 2019; 37:1-20. [PMID: 30312648 PMCID: PMC6343487 DOI: 10.1016/j.biotechadv.2018.10.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/04/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022]
Abstract
Due to the worldwide prevalence of multidrug-resistant pathogens and high incidence of diseases such as cancer, there is an urgent need for the discovery and development of new drugs. Nearly half of the FDA-approved drugs are derived from natural products that are produced by living organisms, mainly bacteria, fungi, and plants. Commercial development is often limited by the low yield of the desired compounds expressed by the native producers. In addition, recent advances in whole genome sequencing and bioinformatics have revealed an abundance of cryptic biosynthetic gene clusters within microbial genomes. Genetic manipulation of clusters in the native host is commonly used to awaken poorly expressed or silent gene clusters, however, the lack of feasible genetic manipulation systems in many strains often hinders our ability to engineer the native producers. The transfer of gene clusters into heterologous hosts for expression of partial or entire biosynthetic pathways is an approach that can be used to overcome this limitation. Heterologous expression also facilitates the chimeric fusion of different biosynthetic pathways, leading to the generation of "unnatural" natural products. The genus Streptomyces is especially known to be a prolific source of drugs/antibiotics, its members are often used as heterologous expression hosts. In this review, we summarize recent applications of Streptomyces species, S. coelicolor, S. lividans, S. albus, S. venezuelae and S. avermitilis, as heterologous expression systems.
Collapse
Affiliation(s)
- Keshav K Nepal
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946, USA
| | - Guojun Wang
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946, USA.
| |
Collapse
|
23
|
Du YL, Ryan KS. Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Nat Prod Rep 2019; 36:430-457. [DOI: 10.1039/c8np00049b] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We review reactions catalyzed by pyridoxal phosphate-dependent enzymes, highlighting enzymes reported in the recent natural product biosynthetic literature.
Collapse
Affiliation(s)
- Yi-Ling Du
- Institute of Pharmaceutical Biotechnology
- Zhejiang University School of Medicine
- Hangzhou
- China
| | - Katherine S. Ryan
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
24
|
Das R, Romi W, Das R, Sharma HK, Thakur D. Antimicrobial potentiality of actinobacteria isolated from two microbiologically unexplored forest ecosystems of Northeast India. BMC Microbiol 2018; 18:71. [PMID: 29996765 PMCID: PMC6042205 DOI: 10.1186/s12866-018-1215-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/28/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Actinobacteria are often known to be great producers of antibiotics. The rapid increase in the global burden of antibiotic-resistance with the concurrent decline in the discovery of new antimicrobial molecules necessitates the search for novel and effective antimicrobial metabolites from unexplored ecological niches. The present study investigated the antimicrobial producing actinobacterial strains isolated from the soils of two microbiologically unexplored forest ecosystems, viz. Nameri National Park (NNP) and Panidehing Wildlife Sanctuary (PWS), located in the Eastern Himalayan Biodiversity hotspot region. RESULTS A total of 172 putative isolates of actinobacteria were isolated, of which 24 isolates showed strong antimicrobial bioactivity. Evaluation of the ethyl acetate extracts of culture supernatants against test microbial strains revealed that isolates PWS22, PWS41, PWS12, PWS52, PWS11, NNPR15, NNPR38, and NNPR69 were the potent producers of antimicrobial metabolites. The antimicrobial isolates dominantly belonged to Streptomyces, followed by Nocardia and Streptosporangium. Some of these isolates could be putative novel taxa. Analysis of the antimicrobial biosynthetic genes (type II polyketide synthase and nonribosomal peptide synthetase genes) showed that the antimicrobial metabolites were associated with pigment production and belonged to known families of bioactive secondary metabolites. Characterization of the antimicrobial metabolites of Streptomyces sp. PWS52, which showed lowest taxonomic identity among the studied potent antimicrobial metabolite producers, and their interaction with the test strains using GC-MS, UHPLC-MS, and scanning electron microscopy revealed that the potential bioactivity of PWS52 was due to the production of active antifungal and antibacterial metabolites like 2,5-bis(1,1-dimethylethyl) phenol, benzeneacetic acid and nalidixic acid. CONCLUSIONS Our findings suggest that the unexplored soil habitats of NNP and PWS forest ecosystems of Northeast India harbor previously undescribed actinobacteria with the capability to produce diverse antimicrobial metabolites that may be explored to overcome the rapidly rising global concern about antibiotic-resistance.
Collapse
Affiliation(s)
- Ranjita Das
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Garchuk, Guwahati, Assam 781035 India
| | - Wahengbam Romi
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam India
| | - Rictika Das
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Garchuk, Guwahati, Assam 781035 India
| | | | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Garchuk, Guwahati, Assam 781035 India
| |
Collapse
|
25
|
Harunari E, Komaki H, Ichikawa N, Hosoyama A, Kimura A, Hamada M, Igarashi Y. Draft genome sequence of Streptomyces hyaluromycini MB-PO13 T, a hyaluromycin producer. Stand Genomic Sci 2018; 13:2. [PMID: 29371910 PMCID: PMC5765640 DOI: 10.1186/s40793-017-0286-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/23/2017] [Indexed: 11/10/2022] Open
Abstract
Streptomyces hyaluromycini MB-PO13T (=NBRC 110483T = DSM 100105T) is type strain of the species, which produces a hyaluronidase inhibitor, hyaluromycin. Here, we report the draft genome sequence of this strain together with features of the organism and generation, annotation and analysis of the genome sequence. The 11.5 Mb genome of Streptomyces hyaluromycini MB-PO13T encoded 10,098 putative ORFs, of which 5317 were assigned with COG categories. The genome harbored at least six type I PKS clusters, three type II PKS gene clusters, two type III PKS gene clusters, six NRPS gene clusters, and one hybrid PKS/NRPS gene cluster. The type II PKS gene cluster including 2-amino-3-hydroxycyclopent-2-enone synthetic genes was identified to be responsible for hyaluromycin synthesis. We propose the biosynthetic pathway based on bioinformatic analysis.
Collapse
Affiliation(s)
- Enjuro Harunari
- 1Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
| | - Hisayuki Komaki
- 2Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Chiba, Japan
| | | | | | | | - Moriyuki Hamada
- 2Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Chiba, Japan
| | - Yasuhiro Igarashi
- 1Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
| |
Collapse
|
26
|
Liu J, Kaganjo J, Zhang W, Zeilstra-Ryalls J. Investigating the bifunctionality of cyclizing and "classical" 5-aminolevulinate synthases. Protein Sci 2017; 27:402-410. [PMID: 29027286 DOI: 10.1002/pro.3324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 11/07/2022]
Abstract
The precursor to all tetrapyrroles is 5-aminolevulinic acid, which is made either via the condensation of glycine and succinyl-CoA catalyzed by an ALA synthase (the C4 or Shemin pathway) or by a pathway that uses glutamyl-tRNA as a precursor and involves other enzymes (the C5 pathway). Certain ALA synthases also catalyze the cyclization of ALA-CoA to form 2-amino-3-hydroxycyclopent-2-en-1-one. Organisms with synthases that possess this second activity nevertheless rely upon the C5 pathway to supply ALA for tetrapyrrole biosynthesis. The C5 N units are components of a variety of secondary metabolites. Here, we show that an ALA synthase used exclusively for tetrapyrrole biosynthesis is also capable of catalyzing the cyclization reaction, albeit at much lower efficiency than the dedicated cyclases. Two absolutely conserved serines present in all known ALA-CoA cyclases are threonines in all known ALA synthases, suggesting they could be important in distinguishing the functions of these enzymes. We found that purified mutant proteins having single and double substitutions of the conserved residues are not improved in their respective alternate activities; rather, they are worse. Protein structural modeling and amino acid sequence alignments were explored within the context of what is known about the reaction mechanisms of these two different types of enzymes to consider what other features are important for the two activities.
Collapse
Affiliation(s)
- Joyce Liu
- Department of Bioengineering, University of California, Berkeley, California
| | - James Kaganjo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California
| | - Jill Zeilstra-Ryalls
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio
| |
Collapse
|
27
|
Zhu L, Qian X, Chen D, Ge M. Role of two 5-aminolevulinic acid biosynthetic pathways in heme and secondary metabolite biosynthesis in Amycolatopsis orientalis. J Basic Microbiol 2017; 58:198-205. [PMID: 29164655 DOI: 10.1002/jobm.201600758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 07/25/2017] [Accepted: 09/23/2017] [Indexed: 11/09/2022]
Abstract
Analysis of the Amycolatopsis orientalis genome revealed that two genes, hemA1 and hemA2, belonging to divergent pathways, were involved in the biosynthesis of 5-aminolevulinic acid. The roles of hemA1 and hemA2 were elucidated via genetic manipulation and metabolite analysis. The disruption of hemA1, encoding the glutamyl-tRNAGlu reductase of the C5 pathway, was essential for cell growth and is used for heme synthesis. Overexpression of hemA1 resulted in elevated vancomycin and ECO-0501 production in Amycolatopsis orientalis, and it was also effective in increasing the production of daptomycin and natamycin in other Streptomycetes. The disruption of hemA2 indicated that it encodes the 5-aminolevulinic acid synthase of the Shemin pathway, serving as a key enzyme for the synthesis of the precursor aminohydroxycyclopentenone unit of ECO-0501. However, hemA2 disruption could not be complemented by the addition of 5-aminolevulinic acid or by the expression of hemA2 outside of the ECO-0501 gene cluster. The synthesis of ECO-0501 was only restored by the insertion of hemA2 at its original locus. The hemA2 gene could partly complement the hemA1 deficiency. Overexpression of hemA1, a key gene from the heme biosynthetic pathway, is proposed here as a new approach to improve the production of secondary metabolites in bacteria, whereas hemA2 plays different roles depending on its pattern of expression.
Collapse
Affiliation(s)
- Li Zhu
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, China.,Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
| | - Xiuping Qian
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, China
| | - Mei Ge
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
| |
Collapse
|
28
|
Guntaka NS, Healy AR, Crawford JM, Herzon SB, Bruner SD. Structure and Functional Analysis of ClbQ, an Unusual Intermediate-Releasing Thioesterase from the Colibactin Biosynthetic Pathway. ACS Chem Biol 2017; 12:2598-2608. [PMID: 28846367 PMCID: PMC5830302 DOI: 10.1021/acschembio.7b00479] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Colibactin is a genotoxic hybrid nonribosomal peptide/polyketide secondary metabolite produced by various pathogenic and probiotic bacteria residing in the human gut. The presence of colibactin metabolites has been correlated to colorectal cancer formation in several studies. The specific function of many gene products in the colibactin gene cluster can be predicted. However, the role of ClbQ, a type II editing thioesterase, has not been established. The importance of ClbQ has been demonstrated by genetic deletions that abolish colibactin cytotoxic activity, and recent studies suggest an atypical role in releasing pathway intermediates from the assembly line. Here we report the 2.0 Å crystal structure and biochemical characterization of ClbQ. Our data reveal that ClbQ exhibits greater catalytic efficiency toward acyl-thioester substrates as compared to precolibactin intermediates and does not discriminate among carrier proteins. Cyclized pyridone-containing colibactins, which are off-pathway derivatives, are not viable substrates for ClbQ, while linear precursors are, supporting a role of ClbQ in facilitating the promiscuous off-loading of premature precolibactin metabolites and novel insights into colibactin biosynthesis.
Collapse
Affiliation(s)
- Naga Sandhya Guntaka
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Alan R. Healy
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, United States
| | - Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Steven D. Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
29
|
Fu P, La S, MacMillan JB. Daryamide Analogues from a Marine-Derived Streptomyces species. JOURNAL OF NATURAL PRODUCTS 2017; 80:1096-1101. [PMID: 28225277 DOI: 10.1021/acs.jnatprod.7b00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Three new cyclohexene amine derivatives, daryamides D-F (1-3), a new arylamine derivative, carpatamide D (4), and a new ornithine lactamization derivative, ornilactam A (5), were isolated from the marine-derived Streptomyces strain SNE-011. Their structures, including absolute configurations, were elucidated on the basis of spectroscopic analysis and chemical methods. The carpatamide skeleton could be considered as the biosynthetic precursor of the daryamides.
Collapse
Affiliation(s)
- Peng Fu
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas , Dallas, Texas 75390, United States
| | - Scott La
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas , Dallas, Texas 75390, United States
| | - John B MacMillan
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas , Dallas, Texas 75390, United States
| |
Collapse
|
30
|
Waldman AJ, Ng TL, Wang P, Balskus EP. Heteroatom-Heteroatom Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5784-5863. [PMID: 28375000 PMCID: PMC5534343 DOI: 10.1021/acs.chemrev.6b00621] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Natural products that contain functional groups with heteroatom-heteroatom linkages (X-X, where X = N, O, S, and P) are a small yet intriguing group of metabolites. The reactivity and diversity of these structural motifs has captured the interest of synthetic and biological chemists alike. Functional groups containing X-X bonds are found in all major classes of natural products and often impart significant biological activity. This review presents our current understanding of the biosynthetic logic and enzymatic chemistry involved in the construction of X-X bond containing functional groups within natural products. Elucidating and characterizing biosynthetic pathways that generate X-X bonds could both provide tools for biocatalysis and synthetic biology, as well as guide efforts to uncover new natural products containing these structural features.
Collapse
Affiliation(s)
- Abraham J. Waldman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Tai L. Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Peng Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
31
|
Li Z, Du L, Zhang W, Zhang X, Jiang Y, Liu K, Men P, Xu H, Fortman JL, Sherman DH, Yu B, Gao S, Li S. Complete elucidation of the late steps of bafilomycin biosynthesis in Streptomyces lohii. J Biol Chem 2017; 292:7095-7104. [PMID: 28292933 DOI: 10.1074/jbc.m116.751255] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/27/2017] [Indexed: 11/06/2022] Open
Abstract
Bafilomycins are an important subgroup of polyketides with diverse biological activities and possible applications as specific inhibitors of vacuolar H+-ATPase. However, the general toxicity and structural complexity of bafilomycins present formidable challenges to drug design via chemical modification, prompting interests in improving bafilomycin activities via biosynthetic approaches. Two bafilomycin biosynthetic gene clusters have been identified, but their post-polyketide synthase (PKS) tailoring steps for structural diversification and bioactivity improvement remain largely unknown. In this study, the post-PKS tailoring pathway from bafilomycin A1 (1)→C1 (2)→B1 (3) in the marine microorganism Streptomyces lohii was elucidated for the first time by in vivo gene inactivation and in vitro biochemical characterization. We found that fumarate is first adenylated by a novel fumarate adenylyltransferase Orf3. Then, the fumaryl transferase Orf2 is responsible for transferring the fumarate moiety from fumaryl-AMP to the 21-hydroxyl group of 1 to generate 2. Last, the ATP-dependent amide synthetase BafY catalyzes the condensation of 2 and 2-amino-3-hydroxycyclopent-2-enone (C5N) produced by the 5-aminolevulinic acid synthase BafZ and the acyl-CoA ligase BafX, giving rise to the final product 3. The elucidation of fumarate incorporation mechanism represents the first paradigm for biosynthesis of natural products containing the fumarate moiety. Moreover, the bafilomycin post-PKS tailoring pathway features an interesting cross-talk between primary and secondary metabolisms for natural product biosynthesis. Taken together, this work provides significant insights into bafilomycin biosynthesis to inform future pharmacological development of these compounds.
Collapse
Affiliation(s)
- Zhong Li
- From the Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101.,the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Du
- From the Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101.,the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- From the Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101
| | - Xingwang Zhang
- From the Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101
| | - Yuanyuan Jiang
- From the Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101.,the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Liu
- From the Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101
| | - Ping Men
- From the Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101
| | - Huifang Xu
- From the Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101
| | - Jeffrey L Fortman
- the Departments of Medicinal Chemistry, Chemistry, and Microbiology and Immunology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, and
| | - David H Sherman
- the Departments of Medicinal Chemistry, Chemistry, and Microbiology and Immunology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Bing Yu
- the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Song Gao
- the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Shengying Li
- From the Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101,
| |
Collapse
|
32
|
Cruz-Morales P, Kopp JF, Martínez-Guerrero C, Yáñez-Guerra LA, Selem-Mojica N, Ramos-Aboites H, Feldmann J, Barona-Gómez F. Phylogenomic Analysis of Natural Products Biosynthetic Gene Clusters Allows Discovery of Arseno-Organic Metabolites in Model Streptomycetes. Genome Biol Evol 2016; 8:1906-16. [PMID: 27289100 PMCID: PMC4943196 DOI: 10.1093/gbe/evw125] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Natural products from microbes have provided humans with beneficial antibiotics for millennia. However, a decline in the pace of antibiotic discovery exerts pressure on human health as antibiotic resistance spreads, a challenge that may better faced by unveiling chemical diversity produced by microbes. Current microbial genome mining approaches have revitalized research into antibiotics, but the empirical nature of these methods limits the chemical space that is explored. Here, we address the problem of finding novel pathways by incorporating evolutionary principles into genome mining. We recapitulated the evolutionary history of twenty-three enzyme families previously uninvestigated in the context of natural product biosynthesis in Actinobacteria, the most proficient producers of natural products. Our genome evolutionary analyses where based on the assumption that expanded—repurposed enzyme families—from central metabolism, occur frequently and thus have the potential to catalyze new conversions in the context of natural products biosynthesis. Our analyses led to the discovery of biosynthetic gene clusters coding for hidden chemical diversity, as validated by comparing our predictions with those from state-of-the-art genome mining tools; as well as experimentally demonstrating the existence of a biosynthetic pathway for arseno-organic metabolites in Streptomyces coelicolor and Streptomyces lividans, Using a gene knockout and metabolite profile combined strategy. As our approach does not rely solely on sequence similarity searches of previously identified biosynthetic enzymes, these results establish the basis for the development of an evolutionary-driven genome mining tool termed EvoMining that complements current platforms. We anticipate that by doing so real ‘chemical dark matter’ will be unveiled.
Collapse
Affiliation(s)
- Pablo Cruz-Morales
- Evolution of Metabolic Diversity Laboratory, Langebio, Cinvestav-IPN, Irapuato, Guanajuato, México
| | - Johannes Florian Kopp
- Trace Element Speciation Laboratory (TESLA) College of Physical Sciences, Aberdeen, Scotland, UK
| | | | | | - Nelly Selem-Mojica
- Evolution of Metabolic Diversity Laboratory, Langebio, Cinvestav-IPN, Irapuato, Guanajuato, México
| | - Hilda Ramos-Aboites
- Evolution of Metabolic Diversity Laboratory, Langebio, Cinvestav-IPN, Irapuato, Guanajuato, México
| | - Jörg Feldmann
- Trace Element Speciation Laboratory (TESLA) College of Physical Sciences, Aberdeen, Scotland, UK
| | - Francisco Barona-Gómez
- Evolution of Metabolic Diversity Laboratory, Langebio, Cinvestav-IPN, Irapuato, Guanajuato, México
| |
Collapse
|
33
|
Du D, Katsuyama Y, Onaka H, Fujie M, Satoh N, Shin-ya K, Ohnishi Y. Production of a Novel Amide-Containing Polyene by Activating a Cryptic Biosynthetic Gene Cluster inStreptomycessp. MSC090213JE08. Chembiochem 2016; 17:1464-71. [DOI: 10.1002/cbic.201600167] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Danyao Du
- Department of Biotechnology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
| | - Yohei Katsuyama
- Department of Biotechnology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
| | - Hiroyasu Onaka
- Department of Biotechnology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
| | - Manabu Fujie
- Okinawa Institute of Science and Technology Graduate University; 1919-1 Tancha, Onna-son Kunigami-gun Okinawa 904-0495 Japan
| | - Noriyuki Satoh
- Okinawa Institute of Science and Technology Graduate University; 1919-1 Tancha, Onna-son Kunigami-gun Okinawa 904-0495 Japan
| | - Kazuo Shin-ya
- National Institute of Advanced Industrial Science and Technology (AIST); 2-4-7 Aomi Koto-ku Tokyo 135-0064 Japan
| | - Yasuo Ohnishi
- Department of Biotechnology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
34
|
Molecular Genetic Characterization of an Anthrabenzoxocinones Gene Cluster in Streptomyces Sp. FJS31-2 for the Biosynthesis of BE-24566B and Zunyimycin Ale. Molecules 2016; 21:molecules21060711. [PMID: 27248985 PMCID: PMC6273070 DOI: 10.3390/molecules21060711] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/08/2016] [Accepted: 05/18/2016] [Indexed: 12/05/2022] Open
Abstract
Genome mining is an effective tool used to discover novel natural products from actinomycetes. Genome sequence analysis of Streptomyces sp. FJS31-2 revealed the presence of one putative type II polyketide gene cluster (ABX), which may correspond to type II polyketide products including BE-24566B and its chloro-derivatives. The addition of natural humus acid successfully activated the biosynthsis of the abx gene cluster. BE-24566B and its chloro-derivatives, named zunyimycin A, were also detected. The targeted deletion of the polyketide skeleton synthesis genes such as abxp, abxk, and abxs was performed in the wild strain to identify the gene cluster for BE-24566B biosynthesis.
Collapse
|
35
|
Guo YY, Li H, Zhou ZX, Mao XM, Tang Y, Chen X, Jiang XH, Liu Y, Jiang H, Li YQ. Identification and Biosynthetic Characterization of Natural Aromatic Azoxy Products from Streptomyces chattanoogensis L10. Org Lett 2015; 17:6114-7. [DOI: 10.1021/acs.orglett.5b03137] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuan-Yang Guo
- Institute
of Biochemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Han Li
- Institute
of Biochemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhen-Xing Zhou
- Institute
of Biochemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xu-Ming Mao
- Institute
of Biochemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yi Tang
- Department
of Chemical and Biomolecular Engineering, University of California Los Angeles, 402 Westwood Plaza, Los
Angeles, California 90095, United States
| | - Xin Chen
- Institute
of Biochemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xin-Hang Jiang
- Institute
of Biochemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yu Liu
- Institute
of Biochemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hui Jiang
- Institute
of Biochemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yong-Quan Li
- Institute
of Biochemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
36
|
Liu J, Zhu X, Seipke RF, Zhang W. Biosynthesis of antimycins with a reconstituted 3-formamidosalicylate pharmacophore in Escherichia coli. ACS Synth Biol 2015; 4:559-65. [PMID: 25275920 DOI: 10.1021/sb5003136] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Antimycins are a family of natural products generated from a hybrid nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) assembly line. Although they possess an array of useful biological activities, their structural complexity makes chemical synthesis challenging, and their biosynthesis has thus far been dependent on slow-growing source organisms. Here, we reconstituted the biosynthesis of antimycins in Escherichia coli, a versatile host that is robust and easy to manipulate genetically. Along with Streptomyces genetic studies, the heterologous expression of different combinations of ant genes enabled us to systematically confirm the functions of the modification enzymes, AntHIJKL and AntO, in the biosynthesis of the 3-formamidosalicylate pharmacophore of antimycins. Our E. coli-based antimycin production system can not only be used to engineer the increased production of these bioactive compounds, but it also paves the way for the facile generation of novel and diverse antimycin analogues through combinatorial biosynthesis.
Collapse
Affiliation(s)
| | | | - Ryan F. Seipke
- School
of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | |
Collapse
|
37
|
Li J, Xie Z, Wang M, Ai G, Chen Y. Identification and analysis of the paulomycin biosynthetic gene cluster and titer improvement of the paulomycins in Streptomyces paulus NRRL 8115. PLoS One 2015; 10:e0120542. [PMID: 25822496 PMCID: PMC4425429 DOI: 10.1371/journal.pone.0120542] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/26/2015] [Indexed: 11/30/2022] Open
Abstract
The paulomycins are a group of glycosylated compounds featuring a unique paulic
acid moiety. To locate their biosynthetic gene clusters, the genomes of two
paulomycin producers, Streptomyces paulus NRRL 8115 and
Streptomyces sp. YN86, were sequenced. The paulomycin
biosynthetic gene clusters were defined by comparative analyses of the two
genomes together with the genome of the third paulomycin producer
Streptomyces albus J1074. Subsequently, the identity of the
paulomycin biosynthetic gene cluster was confirmed by inactivation of two genes
involved in biosynthesis of the paulomycose branched chain
(pau11) and the ring A moiety (pau18) in
Streptomyces paulus NRRL 8115. After determining the gene
cluster boundaries, a convergent biosynthetic model was proposed for paulomycin
based on the deduced functions of the pau genes. Finally, a
paulomycin high-producing strain was constructed by expressing an
activator-encoding gene (pau13) in S.
paulus, setting the stage for future investigations.
Collapse
Affiliation(s)
- Jine Li
- State Key Laboratory of Microbial Resources, Institute of
Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, P. R.
China
| | - Zhoujie Xie
- State Key Laboratory of Microbial Resources, Institute of
Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, P. R.
China
| | - Min Wang
- State Key Laboratory of Microbial Resources, Institute of
Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, P. R.
China
| | - Guomin Ai
- State Key Laboratory of Microbial Resources, Institute of
Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, P. R.
China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of
Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, P. R.
China
- * E-mail:
| |
Collapse
|
38
|
Operon for biosynthesis of lipstatin, the Beta-lactone inhibitor of human pancreatic lipase. Appl Environ Microbiol 2014; 80:7473-83. [PMID: 25239907 DOI: 10.1128/aem.01765-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipstatin, isolated from Streptomyces toxytricini as a potent and selective inhibitor of human pancreatic lipase, is a precursor for tetrahydrolipstatin (also known as orlistat, Xenical, and Alli), the only FDA-approved antiobesity medication for long-term use. Lipstatin features a 2-hexyl-3,5-dihydroxy-7,10-hexadecadienoic-β-lactone structure with an N-formyl-l-leucine group attached as an ester to the 5-hydroxy group. It has been suggested that the α-branched 3,5-dihydroxy fatty acid β-lactone moiety of lipstatin in S. toxytricini is derived from Claisen condensation between two fatty acid substrates, which are derived from incomplete oxidative degradation of linoleic acid based on feeding experiments. In this study, we identified a six-gene operon (lst) that was essential for the biosynthesis of lipstatin by large-deletion, complementation, and single-gene knockout experiments. lstA, lstB, and lstC, which encode two β-ketoacyl-acyl carrier protein synthase III homologues and an acyl coenzyme A (acyl-CoA) synthetase homologue, were indicated to be responsible for the generation of the α-branched 3,5-dihydroxy fatty acid backbone. Subsequently, the nonribosomal peptide synthetase (NRPS) gene lstE and the putative formyltransferase gene lstF were involved in decoration of the α-branched 3,5-dihydroxy fatty acid chain with an N-formylated leucine residue. Finally, the 3β-hydroxysteroid dehydrogenase-homologous gene lstD might be responsible for the reduction of the β-keto group of the biosynthetic intermediate, thereby facilitating the formation of the unique β-lactone ring.
Collapse
|
39
|
Kotowska M, Pawlik K. Roles of type II thioesterases and their application for secondary metabolite yield improvement. Appl Microbiol Biotechnol 2014; 98:7735-46. [PMID: 25081554 PMCID: PMC4147253 DOI: 10.1007/s00253-014-5952-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 12/31/2022]
Abstract
A large number of antibiotics and other industrially important microbial secondary metabolites are synthesized by polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). These multienzymatic complexes provide an enormous flexibility in formation of diverse chemical structures from simple substrates, such as carboxylic acids and amino acids. Modular PKSs and NRPSs, often referred to as megasynthases, have brought about a special interest due to the colinearity between enzymatic domains in the proteins working as an “assembly line” and the chain elongation and modification steps. Extensive efforts toward modified compound biosynthesis by changing organization of PKS and NRPS domains in a combinatorial manner laid good grounds for rational design of new structures and their controllable biosynthesis as proposed by the synthetic biology approach. Despite undeniable progress made in this field, the yield of such “unnatural” natural products is often not satisfactory. Here, we focus on type II thioesterases (TEIIs)—discrete hydrolytic enzymes often encoded within PKS and NRPS gene clusters which can be used to enhance product yield. We review diverse roles of TEIIs (removal of aberrant residues blocking the megasynthase, participation in substrate selection, intermediate, and product release) and discuss their application in new biosynthetic systems utilizing PKS and NRPS parts.
Collapse
Affiliation(s)
- Magdalena Kotowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114, Wroclaw, Poland,
| | | |
Collapse
|
40
|
Rui Z, Ye M, Wang S, Fujikawa K, Akerele B, Aung M, Floss HG, Zhang W, Yu TW. Insights into a divergent phenazine biosynthetic pathway governed by a plasmid-born esmeraldin gene cluster. ACTA ACUST UNITED AC 2014; 19:1116-25. [PMID: 22999880 DOI: 10.1016/j.chembiol.2012.07.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 11/25/2022]
Abstract
Phenazine-type metabolites arise from either phenazine-1-carboxylic acid (PCA) or phenazine-1,6-dicarboxylic acid (PDC). Although the biosynthesis of PCA has been studied extensively, PDC assembly remains unclear. Esmeraldins and saphenamycin, the PDC originated products, are antimicrobial and antitumor metabolites isolated from Streptomyces antibioticus Tü 2706. Herein, the esmeraldin biosynthetic gene cluster was identified on a dispensable giant plasmid. Twenty-four putative esm genes were characterized by bioinformatics, mutagenesis, genetic complementation, and functional protein expressions. Unlike enzymes involved in PCA biosynthesis, EsmA1 and EsmA2 together decisively promoted the PDC yield. The resulting PDC underwent a series of conversions to give 6-acetylphenazine-1-carboxylic acid, saphenic acid, and saphenamycin through a unique one-carbon extension by EsmB1-B5, a keto reduction by EsmC, and an esterification by EsmD1-D3, the atypical polyketide sythases, respectively. Two transcriptional regulators, EsmT1 and EsmT2, are required for esmeraldin production.
Collapse
Affiliation(s)
- Zhe Rui
- Department of Biological Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bai L. Tandem modifications of an epoxyquinone C7N pharmacophore. ACTA ACUST UNITED AC 2014; 20:859-60. [PMID: 23890003 DOI: 10.1016/j.chembiol.2013.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
C7N moieties are wildly present as pharmacophores in natural products. In this issue of Chemistry & Biology, Rui and colleagues biochemically reproduced the initiation event of asukamycin biosynthesis and characterized tandem enzymatic oxygenations of the epoxyquinone C7N moiety.
Collapse
Affiliation(s)
- Linquan Bai
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
42
|
Petříčková K, Pospíšil S, Kuzma M, Tylová T, Jágr M, Tomek P, Chroňáková A, Brabcová E, Anděra L, Krištůfek V, Petříček M. Biosynthesis of colabomycin E, a new manumycin-family metabolite, involves an unusual chain-length factor. Chembiochem 2014; 15:1334-45. [PMID: 24838618 DOI: 10.1002/cbic.201400068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Indexed: 11/11/2022]
Abstract
Colabomycin E is a new member of the manumycin-type metabolites produced by the strain Streptomyces aureus SOK1/5-04 and identified by genetic screening from a library of streptomycete strains. The structures of colabomycin E and accompanying congeners were resolved. The entire biosynthetic gene cluster was cloned and expressed in Streptomyces lividans. Bioinformatic analysis and mutagenic studies identified components of the biosynthetic pathway that are involved in the formation of both polyketide chains. Recombinant polyketide synthases (PKSs) assembled from the components of colabomycin E and asukamycin biosynthetic routes catalyzing the biosynthesis of "lower" carbon chains were constructed and expressed in S. aureus SOK1/5-04 ΔcolC11-14 deletion mutant. Analysis of the metabolites produced by recombinant strains provided evidence that in both biosynthetic pathways the length of the lower carbon chain is controlled by an unusual chain-length factor supporting biosynthesis either of a triketide in asukamycin or of a tetraketide in colabomycin E. Biological activity assays indicated that colabomycin E significantly inhibited IL-1β release from THP-1 cells and might thus potentially act as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Kateřina Petříčková
- Institute of Microbiology AS CR, v.v.i. Vídeňská 1083, 142 00 Prague 4 (Czech Republic)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ostash B, Campbell J, Luzhetskyy A, Walker S. MoeH5: a natural glycorandomizer from the moenomycin biosynthetic pathway. Mol Microbiol 2013; 90:1324-38. [PMID: 24164498 DOI: 10.1111/mmi.12437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2013] [Indexed: 01/12/2023]
Abstract
The biosynthesis of the phosphoglycolipid antibiotic moenomycin A attracts the attention of researchers hoping to develop new moenomycin-based antibiotics against multidrug resistant Gram-positive infections. There is detailed understanding of most steps of this biosynthetic pathway in Streptomyces ghanaensis (ATCC14672), except for the ultimate stage, where a single pentasaccharide intermediate is converted into a set of unusually modified final products. Here we report that only one gene, moeH5, encoding a homologue of the glutamine amidotransferase (GAT) enzyme superfamily, is responsible for the observed diversity of terminally decorated moenomycins. Genetic and biochemical evidence support the idea that MoeH5 is a novel member of the GAT superfamily, whose homologues are involved in the synthesis of various secondary metabolites as well as K and O antigens of bacterial lipopolysaccharide. Our results provide insights into the mechanism of MoeH5 and its counterparts, and give us a new tool for the diversification of phosphoglycolipid antibiotics.
Collapse
Affiliation(s)
- Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Lviv, 79005, Ukraine; Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, MA, 02115, USA
| | | | | | | |
Collapse
|
44
|
Ongley SE, Bian X, Neilan BA, Müller R. Recent advances in the heterologous expression of microbial natural product biosynthetic pathways. Nat Prod Rep 2013; 30:1121-38. [PMID: 23832108 DOI: 10.1039/c3np70034h] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The heterologous expression of microbial natural product biosynthetic pathways coupled with advanced DNA engineering enables optimisation of product yields, functional elucidation of cryptic gene clusters, and generation of novel derivatives. This review summarises the recent advances in cloning and maintenance of natural product biosynthetic gene clusters for heterologous expression and the efforts fundamental for discovering novel natural products in the post-genomics era, with a focus on polyketide synthases (PKSs) and non-ribosomal polypeptide synthetases (NRPS).
Collapse
Affiliation(s)
- Sarah E Ongley
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia
| | | | | | | |
Collapse
|
45
|
Rui Z, Sandy M, Jung B, Zhang W. Tandem Enzymatic Oxygenations in Biosynthesis of Epoxyquinone Pharmacophore of Manumycin-type Metabolites. ACTA ACUST UNITED AC 2013; 20:879-87. [DOI: 10.1016/j.chembiol.2013.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/23/2013] [Accepted: 05/09/2013] [Indexed: 11/25/2022]
|
46
|
Transcriptional regulation and increased production of asukamycin in engineered Streptomyces nodosus subsp. asukaensis strains. Appl Microbiol Biotechnol 2012; 96:451-60. [DOI: 10.1007/s00253-012-4084-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/12/2012] [Accepted: 01/12/2012] [Indexed: 10/28/2022]
|
47
|
Thibodeaux CJ, Chang WC, Liu HW. Enzymatic chemistry of cyclopropane, epoxide, and aziridine biosynthesis. Chem Rev 2012; 112:1681-709. [PMID: 22017381 PMCID: PMC3288687 DOI: 10.1021/cr200073d] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Wei-chen Chang
- College of Pharmacy and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712
| | - Hung-wen Liu
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- College of Pharmacy and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
48
|
Walsh CT, Haynes SW, Ames BD. Aminobenzoates as building blocks for natural productassembly lines. Nat Prod Rep 2012; 29:37-59. [DOI: 10.1039/c1np00072a] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Pospíšil S, Petříčková K, Sedmera P, Halada P, Olšovská J, Petříček M. Effect of starter unit availability on the spectrum of manumycin-type metabolites produced by Streptomyces nodosus ssp. asukaensis. J Appl Microbiol 2011; 111:1116-28. [PMID: 21854515 DOI: 10.1111/j.1365-2672.2011.05132.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Production of minor asukamycin congeners and its new derivatives by combination of targeted genetic manipulations with specific precursor feeding in the producer of asukamycin, Streptomyces nodosus ssp. asukaensis. METHODS AND RESULTS Structural variations of manumycins lie only in the diverse initiation of the 'upper' polyketide chain. Inactivation of the gene involved in the biosynthesis of cyclohexanecarboxylic acid (CHC) turned off the production of asukamycin in the mutant strain and allowed an increased production of other manumycins with the branched end of the upper chain. The ratio of produced metabolites was further affected by specific precursor feeding. Precursor-directed biosynthesis of a new asukamycin analogue (asukamycin I, 28%) with linear initiation of the upper chain was achieved by feeding norleucine to the mutant strain. Another asukamycin analogue with the unbranched upper chain (asukamycin H, 14%) was formed by the CHC-deficient strain expressing a heterologous gene putatively involved in the formation of the n-butyryl-CoA starter unit of manumycin A. CONCLUSIONS Combination of the described techniques proved to be an efficient tool for the biosynthesis of minor or novel manumycins. SIGNIFICANCE AND IMPACT OF THE STUDY Production of two novel asukamycin derivatives, asukamycins H and I, was achieved. Variations appeared in the upper polyketide chain, the major determinant of enzyme-inhibitory features of manumycins, affecting their cancerostatic or anti-inflammatory features.
Collapse
Affiliation(s)
- S Pospíšil
- Institute of Microbiology AS CR, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
50
|
Draft genome sequence of the marine bacterium Streptomyces griseoaurantiacus M045, which produces novel manumycin-type antibiotics with a pABA core component. J Bacteriol 2011; 193:3417-8. [PMID: 21551298 DOI: 10.1128/jb.05053-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces griseoaurantiacus M045, isolated from marine sediment, produces manumycin and chinikomycin antibiotics. Here we present a high-quality draft genome sequence of S. griseoaurantiacus M045, the first marine Streptomyces species to be sequenced and annotated. The genome encodes several gene clusters for biosynthesis of secondary metabolites and has provided insight into genomic islands linking secondary metabolism to functional adaptation in marine S. griseoaurantiacus M045.
Collapse
|