1
|
Cao Z, Li C, Jiang H, Secundo F, Mao X. Molecular modification of a GH84 β-N-acetylglucosaminidase from Streptomyces violascens for synthesis of lacto-N-triose II using whey powder and chitin-derived N-acetyl chitobiose. Food Chem 2025; 474:143046. [PMID: 39919427 DOI: 10.1016/j.foodchem.2025.143046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
β-N-acetylhexosaminidases garnered attention in the enzymatic synthesis of lacto-N-triose II (LNT2) as the backbone precursor of human milk oligosaccharides (HMOs). In this study, β-N-acetylglucosaminidases Hex(Sv)-2557 from Streptomyces violascens ATCC 27968 was engineered based on a stabilizing intermediate strategy to improve its transglycosylation activity for LNT2 synthesis. A mutant Hex(Sv)-2557(D297K) with a transglycosylation activity of 38.4 U/mg with pNP-GlcNAc -1.9-fold higher than that of Hex(Sv)-2557- was obtained and characterized. Instead, the hydrolase activity of the mutant was 73 % lower compared to the wild-type enzyme. Importantly, the mutant can use N-acetyl chitobiose (GlcNAc2) as the donor for LNT2 synthesis. The LNT2 yield of 14.85 % was obtained when the synthetic reaction, catalyzed by the mutant Hex(Sv)-2557(D297K), started from whey powder and GlcNAc2-prepared from chitin by chitinase ChiA and ChiB. This study has altered the donor for the action by directed modification and promoting the high-value utilization of whey powder and chitin.
Collapse
Affiliation(s)
- Zhuoning Cao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Chengqiang Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China.
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", CNR, v. Mario Bianco 9, Milan 20131, Italy
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China.
| |
Collapse
|
2
|
Ullah SF, Oreb M, Boles E, Srivastava V, Seidl-Seiboth V, Seiboth B, Kappel L. N-acetylglucosamine sensing in the filamentous soil fungus Trichoderma reesei. FEBS J 2025. [PMID: 39954246 DOI: 10.1111/febs.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/03/2024] [Accepted: 01/02/2025] [Indexed: 02/17/2025]
Abstract
N-acetylglucosamine (GlcNAc) is involved in diverse signaling pathways in dimorphic yeasts and bacteria and is related to morphogenetic switching, mating, stress, virulence, and cell death. Recently, GlcNAc has been shown to promote plant growth by shaping the bacterial soil community. However, the role of GlcNAc sensing in filamentous soil fungi has not been investigated. By using Trichoderma reesei as a model organism, we show here that GlcNAc impacts the expression of around 2100 genes. Carbohydrate metabolism, amino acid metabolism, and secondary metabolism were the three most strongly affected classes of eukaryotic orthologous groups (KOG classes). Two key regulators of GlcNAc catabolism, the NDT80 domain-containing transcriptional regulator RON1, and a GlcNAc sensor, NGS1, are needed for differential regulation of two-thirds of these genes. In silico structural modeling of NGS1 identified a domain with homology to the GCN5-related histone acetyltransferase from Candida albicans, which serves as a GlcNAc catabolism regulator and GlcNAc sensor. Finally, we characterized the third regulator of GlcNAc sensing in T. reesei, which is the highly specific GlcNAc transporter N-acetylglucosamine transporter (NGT1). Using a deletion mutant of ngt1, we demonstrate that GlcNAc has to enter the cell to activate the GlcNAc catabolic gene expression. Interestingly, in contrast to dimorphic yeasts, the pathways for defense and pathogenicity seem to be induced in T. reesei by external GlcNAc. Given the ancestral role of Trichoderma spp. in the fungal kingdom and the highly conserved GlcNAc catabolism cluster that includes their regulators in many species of fungi, we propose a regulatory network for GlcNAc sensing in soil fungi.
Collapse
Affiliation(s)
- Sadia Fida Ullah
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Mislav Oreb
- Faculty of Biological Sciences, Institute of Molecular Biosciences, Goethe University, Frankfurt, Germany
| | - Eckhard Boles
- Faculty of Biological Sciences, Institute of Molecular Biosciences, Goethe University, Frankfurt, Germany
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Verena Seidl-Seiboth
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Bernhard Seiboth
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Lisa Kappel
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
3
|
Yang H, Yao X, Wu W, He A, Ma C, Yang S, Ruan J. Genome-wide identification and gene expression pattern analysis of the glycoside hydrolase family 1 in Fagopyrum tataricum. BMC PLANT BIOLOGY 2024; 24:1183. [PMID: 39695944 DOI: 10.1186/s12870-024-05919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND The β-glucosidases (BGLU) of glycoside hydrolase family 1 hydrolyze the glycosidic bond to release β-D-glucose and related ligands, which are widely involved in important physiological processes in plants. Genome-wide analysis of the BGLU genes in the model crops Arabidopsis thaliana and Oryza sativa revealed that they are functionally diverse. In contrast, the BGLU gene family in Tartary buckwheat remains unclear. RESULTS This study identified the FtBGLU gene family based on Tartary buckwheat genomic data and analyzed the biological function of the FtBGLU gene using bioinformatics methods and the expression pattern of the gene using fluorescence quantitative PCR. The results showed that 39 BGLU genes were identified in Tartary buckwheat, which were classified into 10 subfamilies and one unclassified group. They were unevenly distributed on 10 chromosomes, and seven tandem duplication events involving 19 FtBGLU genes were observed, which mainly occurred in subfamily II. Their physicochemical properties are highly variable; however, they have relatively conserved exon-intron structures and high sequence homology in the subfamily, and most of the FtBGLUs contain conserved motifs, among which the expression products FtBGLU1, FtBGLU17, FtBGLU19, FtBGLU21, FtBGLU22, and FtBGLU28 have no β-glucosidase activity. Additionally, we analyzed the tissue expression specificity of 10 FtBGLU genes during Tartary buckwheat growth and development and their expression patterns under adversity stress and hormone treatments. Revealing the important role of the BGLU gene family in Tartary buckwheat growth and development, as well as its response to adversity, provides strong support for further analysis of its regulatory mechanisms and functional applications. A total of 39 FtBGLU genes were identified. Bioinformatics analysis of the gene structure, evolutionary relationship, and expression pattern of the Fagopyrum tataricum BGLU gene family establishes a foundation for a better understanding and future research on the Tartary buckwheat BGLU gene family.
Collapse
Affiliation(s)
- Haizhu Yang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Xin Yao
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Weijiao Wu
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Ailing He
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Chao Ma
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Sanwei Yang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
4
|
Lin SK, Zhou J, Lu Y, Guo L, Huang JJ, Lin JF. Computer-Guided Engineered Endo- and Exocleaving Glycosidase for Significantly Improving Production of Ginsenoside F1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26294-26304. [PMID: 39535231 DOI: 10.1021/acs.jafc.4c07387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Ginsenoside F1, a particularly rare and valuable compound known for its health benefits, requires precise deglycosylation due to the extensive glycosylation of ginsenosides in Panax notoginseng. Here, we identified that the β-d-glucosidase BglSK exhibits both endo- and exocleaving glycosidase activities with multi-6-O-glycosides, thereby facilitating the specific production of Ginsenoside F1. The variant BglSKT137A/L508A, obtained through protein engineering, displayed kcat/KM values for the reactions of ginsenoside Rg1 and notoginsenoside R1 that were increased by 13.88-fold and 108.56-fold, respectively, compared with the BglSKWT. The reduced steric hindrance and the overall increase in loop stability show a higher tendency to adopt a closed conformation and facilitate the prereaction state, which may explain the enhanced catalytic efficiency of the engineered enzyme. These beneficial mutants will deepen our understanding of mechanisms for improving glycosidase activity and provide tools for producing high-value P. notoginseng products.
Collapse
Affiliation(s)
- Shi-Kun Lin
- College of Food Science, South China Agricultural University, Guangzhou 510640, China
| | - Jinlin Zhou
- Golden Health Biotechnology Co., Ltd., Foshan 528225, China
| | - Yujing Lu
- School of Chemical Engineering and Light Industry, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Liqiong Guo
- College of Food Science, South China Agricultural University, Guangzhou 510640, China
| | - Jia-Jun Huang
- Golden Health Biotechnology Co., Ltd., Foshan 528225, China
- TF BioSyn Biotechnology Co., Ltd., Foshan 528225, China
| | - Jun-Fang Lin
- College of Food Science, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
5
|
Sagiroglugil M, Nin-Hill A, Ficko-Blean E, Rovira C. An Unusual His/Asp Dyad Operates Catalysis in Agar-Degrading Glycosidases. ACS Catal 2024; 14:16897-16904. [PMID: 39569157 PMCID: PMC11574756 DOI: 10.1021/acscatal.4c04139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 11/22/2024]
Abstract
Agarose motifs, found in agars present in the cell walls of red algae, consist of alternating units of d-galactose (G) and α-3,6-anhydro-l-galactose (LA). Glycoside hydrolases from family 117 (GH117) cleave the terminal α-1,3-glycosidic bonds, releasing LA units. Structural studies have suggested that these enzymes use unconventional catalytic machinery, involving a histidine (His302) as a general acid rather than a carboxylic residue as in most glycosidases. By means of quantum mechanics/molecular mechanics metadynamics, we investigated the reaction mechanism of Phocaeicola plebeius GH117, confirming the catalytic role of His302. This residue shares a proton with a neighbor aspartate residue (Asp320), forming a His/Asp dyad. Our study also reveals that, even though the sugar unit at the -1 subsite (LA) can adopt two conformations, 4 C 1 and 1,4 B, only the latter is catalytically competent, defining a 1,4 B → [4 E]‡ → 1,4 B (→ 4 C 1) conformational itinerary. This mechanism may be applicable to similar enzymes with a His/Asp dyad in their active sites, such as GH3 β-N-acetylglucosaminidase and GH156 sialidase. These insights enhance our understanding of glycosidase catalytic strategies and could inform the engineering of enzymes for the more efficient processing of seaweed.
Collapse
Affiliation(s)
- Mert Sagiroglugil
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| | - Alba Nin-Hill
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| | - Elizabeth Ficko-Blean
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, CNRS, Sorbonne Université, UMR8227, Roscoff 29688, France
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, Barcelona 08020, Spain
| |
Collapse
|
6
|
Zhou Y, Rernglit W, Fukamizo T, Sucharitakul J, Suginta W. A three-step "ping-pong" mechanism of a GH20 β-N-acetylglucosaminidase from Vibrio campbellii belonging to a major Clade A-I of the phylogenetic tree of the enzyme superfamily. Biochem Biophys Res Commun 2024; 729:150357. [PMID: 39002194 DOI: 10.1016/j.bbrc.2024.150357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
β-N-acetylglucosaminidase (GlcNAcase) is an essential biocatalyst in chitin assimilation by marine Vibrio species, which rely on chitin as their main carbon source. Structure-based phylogenetic analysis of the GlcNAcase superfamily revealed that a GlcNAcase from Vibrio campbellii, formerly named V. harveyi, (VhGlcNAcase) belongs to a major clade, Clade A-I, of the phylogenetic tree. Pre-steady-state and steady-state kinetic analysis of the reaction catalysed by VhGlcNAcase with the fluorogenic substrate 4-methylumbelliferyl N-acetyl-β-D-glucosaminide suggested the following mechanism: (1) the Michaelis-Menten complex is formed in a rapid enzyme-substrate equilibrium with a Kd of 99.1 ± 1 μM. (2) The glycosidic bond is cleaved by the action of the catalytic residue Glu438, followed by the rapid release of the aglycone product with a rate constant (k2) of 53.3 ± 1 s-1. (3) After the formation of an oxazolinium ion intermediate with the assistance of Asp437, the anomeric carbon of the transition state is attacked by a catalytic water, followed by release of the glycone product with a rate constant (k3) of 14.6 s-1, which is rate-limiting. The result clearly indicated a three-step "ping-pong" mechanism for VhGlcNAcase.
Collapse
Affiliation(s)
- Yong Zhou
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Waraporn Rernglit
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Tamo Fukamizo
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand.
| | - Jeerus Sucharitakul
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand.
| |
Collapse
|
7
|
Addai FP, Wu J, Liu Y, Ma X, Han J, Lin F, Zhou Y, Wang Y. Amorphous-crystalline phase transition and intrinsic magnetic property of nickel organic framework for easy immobilization and recycling of β-Galactosidase. Int J Biol Macromol 2024; 254:127901. [PMID: 37952798 DOI: 10.1016/j.ijbiomac.2023.127901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/14/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
This work describes the synthesis of fibrous nickel-based metal organic framework (Ni-ZIF) via simple solvothermal method. The material formed was calcinated at 400, 600, 800 °C to improve its surface area, porosity and enzyme binding capacity. Changes in X-ray diffraction pattern after calcination revealed the Ni-ZIF transitioned from amorphous to crystalline structure. The surface area, pore volume and pore size for Ni-ZIF@600 were found to be 312.15 m2/g, 0.88 cm3/g and 10.28 nm, with an enzyme loading capacity of 593.85 mg/g after 30 h The free (β-Gal-LEH) and immobilized β-Galactosidase were stable at pH 7.5, temperature 50 °C, and yielded 70.70 and 63.95 mM glucose after milk lactose hydrolysis, respectively. The Ni-ZIF@600@β-Gal-LEH exhibited high enzyme retention capacity, maintaining 59.44 % of its original activity after 6-cycles. The enhanced magnetic property, enzyme binding capacity and easy recoverability of the calcinated Ni-ZIF could guarantee its industrial significance as immobilization module for enzyme-mediated catalysis.
Collapse
Affiliation(s)
- Frank Peprah Addai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Jiacong Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yuelin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Xinnan Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Juan Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang Province 313001, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
8
|
Kurihara K, Umezawa K, Donnelly AE, Sperling B, Liao G, Hecht MH, Arai R. Crystal structure and activity of a de novo enzyme, ferric enterobactin esterase Syn-F4. Proc Natl Acad Sci U S A 2023; 120:e2218281120. [PMID: 37695900 PMCID: PMC10515146 DOI: 10.1073/pnas.2218281120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
Producing novel enzymes that are catalytically active in vitro and biologically functional in vivo is a key goal of synthetic biology. Previously, we reported Syn-F4, the first de novo protein that meets both criteria. Syn-F4 hydrolyzed the siderophore ferric enterobactin, and expression of Syn-F4 allowed an inviable strain of Escherichia coli (Δfes) to grow in iron-limited medium. Here, we describe the crystal structure of Syn-F4. Syn-F4 forms a dimeric 4-helix bundle. Each monomer comprises two long α-helices, and the loops of the Syn-F4 dimer are on the same end of the bundle (syn topology). Interestingly, there is a penetrated hole in the central region of the Syn-F4 structure. Extensive mutagenesis experiments in a previous study showed that five residues (Glu26, His74, Arg77, Lys78, and Arg85) were essential for enzymatic activity in vivo. All these residues are located around the hole in the central region of the Syn-F4 structure, suggesting a putative active site with a catalytic dyad (Glu26-His74). The complete inactivity of purified proteins with mutations at the five residues supports the putative active site and reaction mechanism. Molecular dynamics and docking simulations of the ferric enterobactin siderophore binding to the Syn-F4 structure demonstrate the dynamic property of the putative active site. The structure and active site of Syn-F4 are completely different from native enterobactin esterase enzymes, thereby demonstrating that proteins designed de novo can provide life-sustaining catalytic activities using structures and mechanisms dramatically different from those that arose in nature.
Collapse
Affiliation(s)
- Kodai Kurihara
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano386-8567, Japan
| | - Koji Umezawa
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Minami-minowa, Kami-ina, Nagano399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano390-8621, Japan
| | - Ann E. Donnelly
- Department of Chemistry, Princeton University, Princeton, NJ08544
| | - Brendan Sperling
- Department of Chemistry, Princeton University, Princeton, NJ08544
| | - Guanyu Liao
- Department of Chemistry, Princeton University, Princeton, NJ08544
| | - Michael H. Hecht
- Department of Chemistry, Princeton University, Princeton, NJ08544
| | - Ryoichi Arai
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano386-8567, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano390-8621, Japan
| |
Collapse
|
9
|
Serra GM, Siqueira AS, de Molfetta FA, Santos AV, Xavier LP. In Silico Analysis of a GH3 β-Glucosidase from Microcystis aeruginosa CACIAM 03. Microorganisms 2023; 11:microorganisms11040998. [PMID: 37110421 PMCID: PMC10146135 DOI: 10.3390/microorganisms11040998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/02/2023] [Accepted: 02/28/2023] [Indexed: 04/29/2023] Open
Abstract
Cyanobacteria are rich sources of secondary metabolites and have the potential to be excellent industrial enzyme producers. β-glucosidases are extensively employed in processing biomass degradation as they mediate the most crucial step of bioconversion of cellobiose (CBI), hence controlling the efficiency and global rate of biomass hydrolysis. However, the production and availability of these enzymes derived from cyanobacteria remains limited. In this study, we evaluated the β-glucosidase from Microcystis aeruginosa CACIAM 03 (MaBgl3) and its potential for bioconversion of cellulosic biomass by analyzing primary/secondary structures, predicting physicochemical properties, homology modeling, molecular docking, and simulations of molecular dynamics (MD). The results showed that MaBgl3 derives from an N-terminal domain folded as a distorted β-barrel, which contains the conserved His-Asp catalytic dyad often found in glycosylases of the GH3 family. The molecular docking results showed relevant interactions with Asp81, Ala271 and Arg444 residues that contribute to the binding process during MD simulation. Moreover, the MD simulation of the MaBgl3 was stable, shown by analyzing the root mean square deviation (RMSD) values and observing favorable binding free energy in both complexes. In addition, experimental data suggest that MaBgl3 could be a potential enzyme for cellobiose-hydrolyzing degradation.
Collapse
Affiliation(s)
- Gustavo Marques Serra
- Laboratório de Biotecnologia de Enzimas e Biotransformações, Instituto de Ciências Biológicas, Universidade Federal do Pará-UFPA, Belém 66075-110, Brazil
| | - Andrei Santos Siqueira
- Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará-UFPA, Belém 66075-110, Brazil
| | - Fábio Alberto de Molfetta
- Laboratório de Modelagem Molecular, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará-UFPA, Belém 66075-10, Brazil
| | - Agenor Valadares Santos
- Laboratório de Biotecnologia de Enzimas e Biotransformações, Instituto de Ciências Biológicas, Universidade Federal do Pará-UFPA, Belém 66075-110, Brazil
| | - Luciana Pereira Xavier
- Laboratório de Biotecnologia de Enzimas e Biotransformações, Instituto de Ciências Biológicas, Universidade Federal do Pará-UFPA, Belém 66075-110, Brazil
| |
Collapse
|
10
|
Kaenying W, Choengpanya K, Tagami T, Wattana-Amorn P, Lang W, Okuyama M, Li YK, Kimura A, Kongsaeree PT. Crystal structure and identification of amino acid residues for catalysis and binding of GH3 AnBX β-xylosidase from Aspergillus niger. Appl Microbiol Biotechnol 2023; 107:2335-2349. [PMID: 36877249 DOI: 10.1007/s00253-023-12445-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 03/07/2023]
Abstract
β-Xylosidases catalyze the hydrolysis of xylooligosaccharides to xylose in the final step of hemicellulose degradation. AnBX, which is a GH3 β-xylosidase from Aspergillus niger, has a high catalytic efficiency toward xyloside substrates. In this study, we report the three-dimensional structure and the identification of catalytic and substrate binding residues of AnBX by performing site-directed mutagenesis, kinetic analysis, and NMR spectroscopy-associated analysis of the azide rescue reaction. The structure of the E88A mutant of AnBX, determined at 2.5-Å resolution, contains two molecules in the asymmetric unit, each of which is composed of three domains, namely an N-terminal (β/α)8 TIM-barrel-like domain, an (α/β)6 sandwich domain, and a C-terminal fibronectin type III domain. Asp288 and Glu500 of AnBX were experimentally confirmed to act as the catalytic nucleophile and acid/base catalyst, respectively. The crystal structure revealed that Trp86, Glu88 and Cys289, which formed a disulfide bond with Cys321, were located at subsite -1. Although the E88D and C289W mutations reduced catalytic efficiency toward all four substrates tested, the substitution of Trp86 with Ala, Asp and Ser increased the substrate preference for glucoside relative to xyloside substrates, indicating that Trp86 is responsible for the xyloside specificity of AnBX. The structural and biochemical information of AnBX obtained in this study provides invaluable insight into modulating the enzymatic properties for the hydrolysis of lignocellulosic biomass. KEY POINTS: • Asp288 and Glu500 of AnBX are the nucleophile and acid/base catalyst, respectively • Glu88 and the Cys289-Cys321 disulfide bond are crucial for the catalytic activity of AnBX • The W86A and W86S mutations in AnBX increased the preference for glucoside substrates.
Collapse
Affiliation(s)
- Wilaiwan Kaenying
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Khuanjarat Choengpanya
- Interdisciplinary Graduate Program in Genetic Engineering, Faculty of Graduate School, Kasetsart University, Bangkok, 10900, Thailand
- Program in Basic Science, Maejo University Phrae Campus, Phrae, 54140, Thailand
| | - Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Pakorn Wattana-Amorn
- Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Weeranuch Lang
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Masayuki Okuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Yaw-Kuen Li
- Department of Applied Chemistry, College of Science, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Prachumporn T Kongsaeree
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Interdisciplinary Graduate Program in Genetic Engineering, Faculty of Graduate School, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
11
|
Abstract
Natural enzymes catalyze biochemical transformations in superior catalytic efficiency and remarkable substrate specificity. The excellent catalytic repertoire of enzymes is attributed to the sophisticated chemical structures of their active sites, as a result of billions-of-years natural evolution. However, large-scale practical applications of natural enzymes are restricted due to their poor stability, difficulty in modification, and high costs of production. One viable solution is to fabricate supramolecular catalysts with enzyme-mimetic active sites. In this review, we introduce the principles and strategies of designing peptide-based artificial enzymes which display catalytic activities similar to those of natural enzymes, such as aldolases, laccases, peroxidases, and hydrolases (mainly the esterases and phosphatases). We also discuss some multifunctional enzyme-mimicking systems which are capable of catalyzing orthogonal or cascade reactions. We highlight the relationship between structures of enzyme-like active sites and the catalytic properties, as well as the significance of these studies from an evolutionary point of view.
Collapse
|
12
|
Li CC, Yi H, Wang YM, Tang XY, Zhu YB, Song YJ, Zhao NL, Huang Q, Mou XY, Luo GH, Liu TG, Yang GL, Zeng YJ, Wang LJ, Tang H, Fan G, Bao R. Nucleotide binding as an allosteric regulatory mechanism for Akkermansia muciniphila β- N-acetylhexosaminidase Am2136. Gut Microbes 2022; 14:2143221. [PMID: 36394293 PMCID: PMC9673926 DOI: 10.1080/19490976.2022.2143221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
β-N-acetylhexosaminidases (EC3.2.1.52), which belong to the glycosyl hydrolase family GH20, are important enzymes for oligosaccharides modification. Numerous microbial β-N-acetylhexosaminidases have been investigated for applications in biology, biomedicine and biotechnology. Akkermansia muciniphila is an anaerobic intestinal commensal bacterium which possesses specific β-N-acetylhexosaminidases for gut mucosal layer colonization and mucin degradation. In this study, we assessed the in vitro mucin glycan cleavage activity of the A. muciniphila β-N-acetylhexosaminidase Am2136 and demonstrated its ability that hydrolyzing the β-linkages joining N-acetylglucosamine to a wide variety of aglycone residues, which indicated that Am2136 may be a generalist β-N-acetylhexosaminidase. Structural and enzyme activity assay experiments allowed us to probe the essential function of the inter-domain interactions in β23-β33. Importantly, we revealed that the hydrolysis activity of Am2136 was enhanced by nucleotides. We further speculated that this activation mechanism might be associated with the conformational motions between domain III and IV. To our knowledge, this is the first report of nucleotide effector regulated β-N-acetylhexosaminidase, to reveal its novel biological functions. These findings contribute to understanding the distinct properties within the GH20 family and lay a certain foundation to develop controllable glycan hydrolyzing catalysts.Abbreviations: OD600 - optical cell densities at 600 nm; LB - Luria-Bertani; IPTG - isopropyl β-D-1-thiogalactopyranoside; PMSF - phenylmethanesulfonyl fluoride; rmsd - root mean square deviation; GlcNAc - N-acetyl-β-D-glucosamine; GalNAc - N-acetyl-β-D-galactosamine; Gal - galactose.
Collapse
Affiliation(s)
- Chang-Cheng Li
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Yi
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan-Mei Wang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu, China
| | - Xin-Yue Tang
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Bo Zhu
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ying-Jie Song
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ning-Lin Zhao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Huang
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Xing-Yu Mou
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Gui-Hua Luo
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Tong-Gen Liu
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Gang-Long Yang
- School of Biotechnology, Jiangnan University, Chengdu, China
| | - Yu-Jiao Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Jie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Tang
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China,Hong Tang Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University. Chengdu. China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Gang Fan State Key Laboratory of Southwestern Chinese Medicine Resources, College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine. Chengdu. China
| | - Rui Bao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China,CONTACT Rui Bao
| |
Collapse
|
13
|
Neun S, Brear P, Campbell E, Tryfona T, El Omari K, Wagner A, Dupree P, Hyvönen M, Hollfelder F. Functional metagenomic screening identifies an unexpected β-glucuronidase. Nat Chem Biol 2022; 18:1096-1103. [PMID: 35799064 DOI: 10.1038/s41589-022-01071-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Abstract
The abundance of recorded protein sequence data stands in contrast to the small number of experimentally verified functional annotation. Here we screened a million-membered metagenomic library at ultrahigh throughput in microfluidic droplets for β-glucuronidase activity. We identified SN243, a genuine β-glucuronidase with little homology to previously studied enzymes of this type, as a glycoside hydrolase 3 family member. This glycoside hydrolase family contains only one recently added β-glucuronidase, showing that a functional metagenomic approach can shed light on assignments that are currently 'unpredictable' by bioinformatics. Kinetic analyses of SN243 characterized it as a promiscuous catalyst and structural analysis suggests regions of divergence from homologous glycoside hydrolase 3 members creating a wide-open active site. With a screening throughput of >107 library members per day, picolitre-volume microfluidic droplets enable functional assignments that complement current enzyme database dictionaries and provide bridgeheads for the annotation of unexplored sequence space.
Collapse
Affiliation(s)
- Stefanie Neun
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Paul Brear
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Eleanor Campbell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Australian Synchrotron, Clayton, VIC, Australia
| | - Theodora Tryfona
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Armin Wagner
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
14
|
The evolutionary advantage of an aromatic clamp in plant family 3 glycoside exo-hydrolases. Nat Commun 2022; 13:5577. [PMID: 36151080 PMCID: PMC9508125 DOI: 10.1038/s41467-022-33180-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/03/2022] [Indexed: 11/08/2022] Open
Abstract
In the barley β-D-glucan glucohydrolase, a glycoside hydrolase family 3 (GH3) enzyme, the Trp286/Trp434 clamp ensures β-D-glucosides binding, which is fundamental for substrate hydrolysis during plant growth and development. We employ mutagenesis, high-resolution X-ray crystallography, and multi-scale molecular modelling methods to examine the binding and conformational behaviour of isomeric β-D-glucosides during substrate-product assisted processive catalysis that operates in GH3 hydrolases. Enzyme kinetics reveals that the W434H mutant retains broad specificity, while W434A behaves as a strict (1,3)-β-D-glucosidase. Investigations of reactant movements on the nanoscale reveal that processivity is sensitive to mutation-specific alterations of the tryptophan clamp. While wild-type and W434H utilise a lateral cavity for glucose displacement and sliding of (1,3)-linked hydrolytic products through the catalytic site without dissociation, consistent with their high hydrolytic rates, W434A does not adopt processive catalysis. Phylogenomic analyses of GH3 hydrolases disclose the evolutionary advantage of the tryptophan clamp that confers broad specificity, high catalytic efficiency, and processivity.
Collapse
|
15
|
NamZ1 and NamZ2 from the oral pathogen Tannerella forsythia are peptidoglycan processing exo-β- N-acetylmuramidases with distinct substrate specificity. J Bacteriol 2022; 204:e0059721. [PMID: 35129368 DOI: 10.1128/jb.00597-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative periodontal pathogen Tannerella forsythia is inherently auxotrophic for N-acetylmuramic acid (MurNAc), which is an essential carbohydrate constituent of the peptidoglycan (PGN) of the bacterial cell wall. Thus, to build up its cell wall, T. forsythia strictly depends on the salvage of exogenous MurNAc or sources of MurNAc, such as polymeric or fragmentary PGN, derived from cohabiting bacteria within the oral microbiome. In our effort to elucidate how T. forsythia satisfies its demand for MurNAc, we recognized that the organism possesses three putative orthologs of the exo-β-N-acetylmuramidase BsNamZ from Bacillus subtilis, which cleaves non-reducing end, terminal MurNAc entities from the artificial substrate pNP-MurNAc and the naturally-occurring disaccharide substrate MurNAc-N-acetylglucosamine (GlcNAc). TfNamZ1 and TfNamZ2 were successfully purified as soluble, pure recombinant His6-fusions and characterized as exo-lytic β-N-acetylmuramidases with distinct substrate specificities. The activity of TfNamZ1 was considerably lower compared to TfNamZ2 and BsNamZ, in the cleavage of MurNAc-GlcNAc. When peptide-free PGN glycans were used as substrates, we revealed striking differences in the specificity and mode of action of these enzymes, as analyzed by mass spectrometry. TfNamZ1, but not TfNamZ2 or BsNamZ, released GlcNAc-MurNAc disaccharides from these glycans. In addition, glucosamine (GlcN)-MurNAc disaccharides were generated when partially N-deacetylated PGN glycans from B. subtilis 168 were applied. This characterizes TfNamZ1 as a unique disaccharide-forming exo-lytic β-N-acetylmuramidase (exo-disaccharidase), and, TfNamZ2 and BsNamZ as sole MurNAc monosaccharide-lytic exo-β-N-acetylmuramidases. IMPORTANCE Two exo-N-acetylmuramidases from T. forsythia belonging to glycosidase family GH171 (www.cazy.org) were shown to differ in their activities, thus revealing a functional diversity within this family: NamZ1 releases disaccharides (GlcNAc-MurNAc/GlcN-MurNAc) from the non-reducing ends of PGN glycans, whereas NamZ2 releases terminal MurNAc monosaccharides. This work provides a better understanding of how T. forsythia may acquire the essential growth factor MurNAc by the salvage of PGN from cohabiting bacteria in the oral microbiome, which may pave avenues for the development of anti-periodontal drugs. On a broad scale, our study indicates that the utilization of PGN as a nutrient source, involving exo-lytic N-acetylmuramidases with different modes of action, appears to be a general feature of bacteria, particularly among the phylum Bacteroidetes.
Collapse
|
16
|
Enzymatic Preparation of Gentiooligosaccharides by a Thermophilic and Thermostable β-Glucosidase at a High Substrate Concentration. Foods 2022; 11:foods11030357. [PMID: 35159507 PMCID: PMC8834124 DOI: 10.3390/foods11030357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
Gentiooligosaccharides (GnOS) are a kind of oligosaccharide formed by glucose with β-1-6 glycosidic bonds, which has become a new type of functional oligosaccharide for its unique refreshing bitter taste and valuable probiotic effects. However, the research on the enzymatic preparation of GnOS is not thorough enough. In this study, a GH1 thermophilic β-glucosidase from Thermotoga sp. KOL6 was used as a biocatalyst for the synthesis of GnOS. TsBgl1 exhibited excellent thermophilic and thermostable properties by possessing a melting temperature of 101.5 °C and reacting at 80–90 °C efficiently. Its half-life at 90 °C was approximately 5 h, suggesting its high heat resistance as well. TsBgl1 also showed excellent glucose tolerance with an inhibition constant (Ki) of 1720 mM and was stimulated in the presence of 0–900 mM glucose. TsBgl1 showed the highest hydrolytic activity on laminaribiose (Glc-β-1,3-Glc), but mainly synthetized gentiobiose (Glc-β-1,6-Glc) during transglycosylation. By optimizing the reaction conditions and substrate concentration, the highest yield of GnOS synthesized by TsBgl1 reached 144.3 g·L−1 when 1000 g·L−1 glucose was used as a substrate, which was higher than the highest yield ever reported. The thermophilic and thermostable properties of TsBgl1 were considered to be significant advantages in the industrial production of GnOS, where long periods of high-temperature reactions are required. This study was expected to provide an excellent candidate enzyme for industrial production of GnOS and also provide a reference for studying the transglycosylation of GH1 β-glucosidases.
Collapse
|
17
|
Fernandez-Lopez L, Sanchez-Carrillo S, García-Moyano A, Borchert E, Almendral D, Alonso S, Cea-Rama I, Miguez N, Larsen Ø, Werner J, Makarova KS, Plou FJ, Dahlgren TG, Sanz-Aparicio J, Hentschel U, Bjerga GEK, Ferrer M. The bone-degrading enzyme machinery: From multi-component understanding to the treatment of residues from the meat industry. Comput Struct Biotechnol J 2021; 19:6328-6342. [PMID: 34938409 PMCID: PMC8645421 DOI: 10.1016/j.csbj.2021.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
Characterization of enzymes from bone-degrading marine microbiomes. Enzymes degrade sialo/glyco-proteins at multiple conditions of pH and temperatures. Enzyme cocktails are useful for valorising bone residues in biorefinery industry.
Many microorganisms feed on the tissue and recalcitrant bone materials from dead animals, however little is known about the collaborative effort and characteristics of their enzymes. In this study, microbial metagenomes from symbionts of the marine bone-dwelling worm Osedax mucofloris, and from microbial biofilms growing on experimentally deployed bone surfaces were screened for specialized bone-degrading enzymes. A total of 2,043 taxonomically (closest match within 40 phyla) and functionally (1 proteolytic and 9 glycohydrolytic activities) diverse and non-redundant sequences (median pairwise identity of 23.6%) encoding such enzymes were retrieved. The taxonomic assignation and the median identity of 72.2% to homologous proteins reflect microbial and functional novelty associated to a specialized bone-degrading marine community. Binning suggests that only one generalist hosting all ten targeted activities, working in synergy with multiple specialists hosting a few or individual activities. Collagenases were the most abundant enzyme class, representing 48% of the total hits. A total of 47 diverse enzymes, representing 8 hydrolytic activities, were produced in Escherichia coli, whereof 13 were soluble and active. The biochemical analyses revealed a wide range of optimal pH (4.0–7.0), optimal temperature (5–65 °C), and of accepted substrates, specific to each microbial enzyme. This versatility may contribute to a high environmental plasticity of bone-degrading marine consortia that can be confronted to diverse habitats and bone materials. Through bone-meal degradation tests, we further demonstrated that some of these enzymes, particularly those from Flavobacteriaceae and Marinifilaceae, may be an asset for development of new value chains in the biorefinery industry.
Collapse
Key Words
- Bone degradation
- Bone microbiome
- COLL, collagenases (peptidases families U32 and M9)
- Collagenase
- DNS, dinitrosalicylic acid
- FALGPA, N-[3-(2-furyl)acryloyl]-L-leucyl-glycyl-L-prolyl-L-alanine
- Glycosidase
- HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- HMM, Hidden Markov Models
- HPAEC-PAD, High performance anion-exchange chromatography with pulsed amperometric detection
- MAG, Metagenome Assembled Genome
- Metagenomics
- Neu5Ac-GM2, N-acetyl-galactose-β-1,4-[N-acetylneuraminidate-α-2,3-]-galactose-β-1,4-glucose-α-ceramide
- Neu5Ac-GM3, Neu5Acα2-3Galβ1-4Glcβ1-ceramide
- Ni-NTA, nickel-nitrilotriacetic acid
- Osedax mucofloris
- PEPT, peptidase (families S1, S8, S53, M61)
- RHAM, α-rhamnosidases
- SIAL, sialidases
- pNP-NAβGal, pNP-N-acetyl-β-galactosaminide
- pNP-NAβGlu, pNP-N-acetyl-β-glucosaminide
- pNP-Neu5Ac, 2-O-(p-nitrophenyl)-α-acetylneuraminic acid
- pNP-sugars, p-nitrophenyl-sugars
- pNP-αAFur, pNP-α-arabinofuranoside
- pNP-αAPyr, pNP-α-arabinopyranoside
- pNP-αFuc, pNP-α-fucopyranoside
- pNP-αGal, pNP-α-galactopyranoside
- pNP-αGlu, pNP-α-glucopyranoside
- pNP-αMal, pNP-α-maltoside
- pNP-αMan, pNP-α-mannopyranoside
- pNP-αRham, pNP-α-rhamnopyranoside
- pNP-αXyl, pNP-α-xylopyranoside
- pNP-βAPyr, pNP-β-arabinopyranoside
- pNP-βCel, pNP-β-cellobioside
- pNP-βFuc, pNP-β-fucopyranoside
- pNP-βGal, pNP-β-galactopyranoside
- pNP-βGlu, pNP-β-glucopyranoside
- pNP-βGlucur, pNP-β-glucuronide
- pNP-βLac, pNP-β-lactoside
- pNP-βMan, pNP-β-mannopyranoside
- pNP-βXyl, pNP-β-xylopyranoside
- αFUC, α-fucosidases
- αGAL, α-galactosidases
- αMAN, α-mannosidases
- αNAG, α-N-acetyl-hexosaminidases
- βGAL, β-galactosidases
- βGLU, β-glucosidases
- βNAG, β-N-acetyl-hexosaminidases
Collapse
Affiliation(s)
| | | | | | - Erik Borchert
- GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, Germany
- Corresponding authors at: GEOMAR Helmholtz Centre for Ocean Research, Wischhofstraße 1-3, 24148 Kiel, Germany (E. Borchert). Institute of Catalysis, CSIC, Marie Curie 2, 28049 Madrid, Spain (M. Ferrer).
| | | | | | - Isabel Cea-Rama
- Institute of Physical Chemistry “Rocasolano”, CSIC, 28006 Madrid, Spain
| | - Noa Miguez
- CSIC, Institute of Catalysis, 28049 Madrid, Spain
| | - Øivind Larsen
- NORCE Norwegian Research Centre, P.O. Box 22 Nygårdstangen, 5838 Bergen, Norway
| | - Johannes Werner
- High Performance and Cloud Computing Group, Zentrum für Datenverarbeitung (ZDV), Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, 20892 MD, USA
| | | | - Thomas G. Dahlgren
- NORCE Norwegian Research Centre, P.O. Box 22 Nygårdstangen, 5838 Bergen, Norway
| | | | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, Germany
- Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | | | - Manuel Ferrer
- CSIC, Institute of Catalysis, 28049 Madrid, Spain
- Corresponding authors at: GEOMAR Helmholtz Centre for Ocean Research, Wischhofstraße 1-3, 24148 Kiel, Germany (E. Borchert). Institute of Catalysis, CSIC, Marie Curie 2, 28049 Madrid, Spain (M. Ferrer).
| |
Collapse
|
18
|
Désiré J, Foucart Q, Poveda A, Gourlaouen G, Shimadate Y, Kise M, Proceviat C, Ashmus R, Vocadlo DJ, Jiménez-Barbero J, Kato A, Blériot Y. Synthesis, conformational analysis and glycosidase inhibition of bicyclic nojirimycin C-glycosides based on an octahydrofuro[3,2-b]pyridine motif. Carbohydr Res 2021; 511:108491. [PMID: 34953389 DOI: 10.1016/j.carres.2021.108491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
A set of bicyclic iminosugar C-glycosides, based on an octahydrofuro[3,2-b]pyridine motif, has been synthesized from a C-allyl iminosugar exploiting a debenzylative iodocycloetherification and an iodine nucleophilic displacement as the key steps. The halogen allowed the introduction of a range of aglycon moieties of different sizes bearing several functionalities such as alcohol, amine, amide and triazole. In these carbohydrate mimics the fused THF ring forces the piperidine to adopt a flattened 4C1 conformation according to NMR and DFT calculations studies. In their deprotected form, these bicycles were assayed on a panel of 23 glycosidases. The iminosugars displaying hydrophobic aglycon moieties proved to be superior glycosidase inhibitors, leading to a low micromolar inhibition of human lysosome β-glucosidase (compound 11; IC50 = 2.7 μM) and rice α-glucosidase (compound 10; IC50 = 7.7 μM). Finally, the loose structural analogy of these derivatives with Thiamet G, a potent OGA bicyclic inhibitor, was illustrated by the weak OGA inhibitory activity (Ki = 140 μM) of iminosugar 5.
Collapse
Affiliation(s)
- Jérôme Désiré
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "Synthèse Organique", Groupe Glycochimie, 4 rue Michel Brunet, 86073, Poitiers Cedex 9, France.
| | - Quentin Foucart
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "Synthèse Organique", Groupe Glycochimie, 4 rue Michel Brunet, 86073, Poitiers Cedex 9, France
| | - Ana Poveda
- CIC bioGUNE, Parque technologico de Bizkaia, Edif. 801A-1°, Derio-Bizkaia 48160, and Ikerbasque, Basque Foundation for Science, Maria Lopez de Haro 3, 48013, Bilbao, Spain
| | - Gurvan Gourlaouen
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "Synthèse Organique", Groupe Glycochimie, 4 rue Michel Brunet, 86073, Poitiers Cedex 9, France
| | - Yuna Shimadate
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Maki Kise
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Cameron Proceviat
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5S 1P6
| | - Roger Ashmus
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5S 1P6
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5S 1P6
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Parque technologico de Bizkaia, Edif. 801A-1°, Derio-Bizkaia 48160, and Ikerbasque, Basque Foundation for Science, Maria Lopez de Haro 3, 48013, Bilbao, Spain
| | - Atsushi Kato
- Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Yves Blériot
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "Synthèse Organique", Groupe Glycochimie, 4 rue Michel Brunet, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
19
|
Functional and structural characterization of a GH3 β-N-acetylhexosaminidase from Akkermansia muciniphila involved in mucin degradation. Biochem Biophys Res Commun 2021; 589:186-191. [PMID: 34922201 DOI: 10.1016/j.bbrc.2021.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/06/2023]
Abstract
Akkermansia muciniphila is a probiotic that colonizes the outer layer of intestinal mucus and is negatively associated with metabolic disorders. Amuc_2109 protein, a β-N-acetylhexosaminidase from A. muciniphila, may be involved in the degradation of mucins and is associated with intestinal health. Here, we reported the crystal structure of Amuc_2109, which belongs to the GH family 3 enzymes and fell into the canonical (α/β)8 TIM barrel structure with GlcNAc bound to the active center. Biochemical assay characterization of Amuc_2109 revealed that Amuc_2109 is a GlcNAc-specific glycosidase active over a wide temperature and pH range, reflecting the survival advantage of Amuc_2109 in the intestinal environment. Our structural and biochemical results will contribute to the understanding of the catalytic mechanism of the GH3 β-N-acetylhexosaminidase and help to gain insight into the molecular mechanism of complex carbohydrate utilization and restoration of the intestinal barrier in A. muciniphila.
Collapse
|
20
|
Itoh T. Structures and functions of carbohydrate-active enzymes of chitinolytic bacteria Paenibacillus sp. str. FPU-7. Biosci Biotechnol Biochem 2021; 85:1314-1323. [PMID: 33792636 DOI: 10.1093/bbb/zbab058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 11/14/2022]
Abstract
Chitin and its derivatives have valuable potential applications in various fields that include medicine, agriculture, and food industries. Paenibacillus sp. str. FPU-7 is one of the most potent chitin-degrading bacteria identified. This review introduces the chitin degradation system of P. str. FPU-7. In addition to extracellular chitinases, P. str. FPU-7 uses a unique multimodular chitinase (ChiW) to hydrolyze chitin to oligosaccharides on the cell surface. Chitin oligosaccharides are converted to N-acetyl-d-glucosamine by β-N-acetylhexosaminidase (PsNagA) in the cytosol. The functions and structures of ChiW and PsNagA are also summarized. The genome sequence of P. str. FPU-7 provides opportunities to acquire novel enzymes. Genome mining has identified a novel alginate lyase, PsAly. The functions and structure of PsAly are reviewed. These findings will inform further improvement of the sustainable conversion of polysaccharides to functional materials.
Collapse
Affiliation(s)
- Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-gun, Fukui, Japan
| |
Collapse
|
21
|
Li J, Gao K, Secundo F, Mao X. Biochemical characterization of two β-N-acetylglucosaminidases from Streptomyces violascens for efficient production of N-acetyl-d-glucosamine. Food Chem 2021; 364:130393. [PMID: 34167004 DOI: 10.1016/j.foodchem.2021.130393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022]
Abstract
Chitin, one of the most abundant renewable biopolymers on Earth, is commercially available from crustacean wastes. One critical step in converting chitin to high-value products is its degradation by chitinolytic enzymes to N-acetyl-d-glucosamine (GlcNAc), which plays a significant role in functional food and pharmaceutical industries. Here, we cloned and biochemically characterized two novel β-N-acetylglucosaminidases named SvNag2557 (family-84) and SvNag4755 (family-3) from Streptomyces violascens ATCC 27968. Both SvNag2557 and SvNag4755 exhibited strict substrate specificity toward N-acetyl chitooligosaccharides with GlcNAc as the sole product. Thus, a one-pot production for pure GlcNAc from chitin by an enzyme cocktail reaction was further developed. Under the co-action of an endo-type chitinase SaChiA4 and SvNag2557 (mass ratio 1:2), the final conversion rates of colloidal chitin and ionic liquid pretreated chitin to GlcNAc were 80.2% and 73.8% with GlcNAc purities of 99.7% and 96.8%, respectively.
Collapse
Affiliation(s)
- Jing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Kunpeng Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", CNR, v. Mario Bianco 9, Milan 20131, Italy
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| |
Collapse
|
22
|
Franceus J, Lormans J, Cools L, D’hooghe M, Desmet T. Evolution of Phosphorylases from N-Acetylglucosaminide Hydrolases in Family GH3. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jorick Franceus
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jolien Lormans
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Lore Cools
- SynBioC Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Matthias D’hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
23
|
Walter A, Friz S, Mayer C. Chitin, Chitin Oligosaccharide, and Chitin Disaccharide Metabolism of Escherichia coli Revisited: Reassignment of the Roles of ChiA, ChbR, ChbF, and ChbG. Microb Physiol 2021; 31:178-194. [PMID: 33794535 DOI: 10.1159/000515178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/05/2021] [Indexed: 11/19/2022]
Abstract
Escherichia coli is unable to grow on polymeric and oligomeric chitin, but grows on chitin disaccharide (GlcNAc-GlcNAc; N,N'-diacetylchitobiose) and chitin trisaccharide (GlcNAc-GlcNAc-GlcNAc; N,N',N''-triacetylchitotriose) via expression of the chb operon (chbBCARFG). The phosphotransferase system (PTS) transporter ChbBCA facilitates transport of both saccharides across the inner membrane and their concomitant phosphorylation at the non-reducing end, intracellularly yielding GlcNAc 6-phosphate-GlcNAc (GlcNAc6P-GlcNAc) and GlcNAc6P-GlcNAc-GlcNAc, respectively. We revisited the intracellular catabolism of the PTS products, thereby correcting the reported functions of the 6-phospho-glycosidase ChbF, the monodeacetylase ChbG, and the transcriptional regulator ChbR. Intracellular accumulation of glucosamine 6P-GlcNAc (GlcN6P-GlcNAc) and GlcN6P-GlcNAc-GlcNAc in a chbF mutant unraveled a role for ChbG as a monodeacetylase that removes the N-acetyl group at the non-reducing end. Consequently, GlcN6P- but not GlcNAc6P-containing saccharides likely function as coactivators of ChbR. Furthermore, ChbF removed the GlcN6P from the non-reducing terminus of the former saccharides, thereby degrading the inducers of the chb operon and facilitating growth on the saccharides. Consequently, ChbF was unable to hydrolyze GlcNAc6P-residues from the non-reducing end, contrary to previous assumptions but in agreement with structural modeling data and with the unusual catalytic mechanism of the family 4 of glycosidases, to which ChbF belongs. We also refuted the assumption that ChiA is a bifunctional endochitinase/lysozyme ChiA, and show that it is unable to degrade peptidoglycans but acts as a bona fide chitinase in vitro and in vivo, enabling growth of E. coli on chitin oligosaccharides when ectopically expressed. Overall, this study revises our understanding of the chitin, chitin oligosaccharide, and chitin disaccharide metabolism of E. coli.
Collapse
Affiliation(s)
- Axel Walter
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Simon Friz
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Li C, Jiang S, Du C, Lu Z, He N, Zhou Y, Jiang S S, Zhang G G. High-Level Extracellular Expression of a New β-N-Acetylglucosaminidase in Escherichia coli for Producing GlcNAc. Front Microbiol 2021; 12:648373. [PMID: 33776979 PMCID: PMC7996098 DOI: 10.3389/fmicb.2021.648373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
N-acetyl-β-D glucosamine (GlcNAc) is wildly used in cosmetics, nutraceuticals and pharmaceuticals. The traditional chemical process for GlcNAc production from chitin causes serious acidic pollution. Therefore, the enzymatic hydrolysis becomes a great promising and alternative strategy to produce GlcNAc. β-N-acetylglucosaminidase (NAGase) can hydrolyze chitin to produce GlcNAc. Here, a GH3 family NAGase encoding gene BlNagZ from Bacillus licheniformis was expressed extracellularly in Escherichia coli guided by signal peptide PelB. The recombinant BlNagZ presented the best activity at 60°C and pH 5.5 with a high specific activity of 13.05 U/mg. The BlNagZ activity in the fermentation supernatant can reach 13.62 U/mL after optimizing the culture conditions, which is 4.25 times higher than optimization before. Finally, combining BlNagZ with chitinase ChiA we identified before, chitin conversion efficiency to GlcNAc can reach 89.2% within 3.5 h. In all, this study provided not only a high active NAGase, and a secreted expression strategy to reduce the cost of production, which is conducive to the industrial application.
Collapse
Affiliation(s)
- Congna Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Shun Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Chao Du
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Zhenghui Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Nisha He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Yuling Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Sijing Jiang S
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Guimin Zhang G
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
25
|
Müller M, Calvert M, Hottmann I, Kluj RM, Teufel T, Balbuchta K, Engelbrecht A, Selim KA, Xu Q, Borisova M, Titz A, Mayer C. The exo-β-N-acetylmuramidase NamZ from Bacillus subtilis is the founding member of a family of exo-lytic peptidoglycan hexosaminidases. J Biol Chem 2021; 296:100519. [PMID: 33684445 PMCID: PMC8054146 DOI: 10.1016/j.jbc.2021.100519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 11/11/2022] Open
Abstract
Endo-β-N-acetylmuramidases, commonly known as lysozymes, are well-characterized antimicrobial enzymes that catalyze an endo-lytic cleavage of peptidoglycan; i.e., they hydrolyze the β-1,4-glycosidic bonds connecting N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc). In contrast, little is known about exo-β-N-acetylmuramidases, which catalyze an exo-lytic cleavage of β-1,4-MurNAc entities from the non-reducing ends of peptidoglycan chains. Such an enzyme was identified earlier in the bacterium Bacillus subtilis, but the corresponding gene has remained unknown so far. We now report that ybbC of B. subtilis, renamed namZ, encodes the reported exo-β-N-acetylmuramidase. A ΔnamZ mutant accumulated specific cell wall fragments and showed growth defects under starvation conditions, indicating a role of NamZ in cell wall turnover and recycling. Recombinant NamZ protein specifically hydrolyzed the artificial substrate para-nitrophenyl β-MurNAc and the peptidoglycan-derived disaccharide MurNAc-β-1,4-GlcNAc. Together with the exo-β-N-acetylglucosaminidase NagZ and the exo-muramoyl-l-alanine amidase AmiE, NamZ degraded intact peptidoglycan by sequential hydrolysis from the non-reducing ends. A structure model of NamZ, built on the basis of two crystal structures of putative orthologs from Bacteroides fragilis, revealed a two-domain structure including a Rossmann-fold-like domain that constitutes a unique glycosidase fold. Thus, NamZ, a member of the DUF1343 protein family of unknown function, is now classified as the founding member of a new family of glycosidases (CAZy GH171; www.cazy.org/GH171.html). NamZ-like peptidoglycan hexosaminidases are mainly present in the phylum Bacteroidetes and less frequently found in individual genomes within Firmicutes (Bacilli, Clostridia), Actinobacteria, and γ-proteobacteria.
Collapse
Affiliation(s)
- Maraike Müller
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Matthew Calvert
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany; Department of Chemistry, Saarland University, Saarbrücken, Germany
| | - Isabel Hottmann
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Robert Maria Kluj
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Tim Teufel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Katja Balbuchta
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Alicia Engelbrecht
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Khaled A Selim
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany; Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Center, Giza, Egypt
| | - Qingping Xu
- GM/CA @ APS, Argonne National Laboratory, Lemont, Illinois, USA
| | - Marina Borisova
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany; Department of Chemistry, Saarland University, Saarbrücken, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
26
|
Hanumantha Rao K, Paul S, Ghosh S. N-acetylglucosamine Signaling: Transcriptional Dynamics of a Novel Sugar Sensing Cascade in a Model Pathogenic Yeast, Candida albicans. J Fungi (Basel) 2021; 7:65. [PMID: 33477740 PMCID: PMC7832408 DOI: 10.3390/jof7010065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 11/17/2022] Open
Abstract
The amino sugar, N-acetylglucosamine (GlcNAc), has emerged as an attractive messenger of signaling in the pathogenic yeast Candida albicans, given its multifaceted role in cellular processes, including GlcNAc scavenging, import and metabolism, morphogenesis (yeast to hyphae and white to opaque switch), virulence, GlcNAc induced cell death (GICD), etc. During signaling, the exogenous GlcNAc appears to adopt a simple mechanism of gene regulation by directly activating Ngs1, a novel GlcNAc sensor and transducer, at the chromatin level, to activate transcriptional response through the promoter acetylation. Ngs1 acts as a master regulator in GlcNAc signaling by regulating GlcNAc catabolic gene expression and filamentation. Ndt80-family transcriptional factor Rep1 appears to be involved in the recruitment of Ngs1 to GlcNAc catabolic gene promoters. For promoting filamentation, GlcNAc adopts a little modified strategy by utilizing a recently evolved transcriptional loop. Here, Biofilm regulator Brg1 takes up the key role, getting up-regulated by Ngs1, and simultaneously induces Hyphal Specific Genes (HSGs) expression by down-regulating NRG1 expression. GlcNAc kinase Hxk1 appears to play a prominent role in signaling. Recent developments in GlcNAc signaling have made C. albicans a model system to understand its role in other eukaryotes as well. The knowledge thus gained would assist in designing therapeutic interventions for the control of candidiasis and other fungal diseases.
Collapse
Affiliation(s)
- Kongara Hanumantha Rao
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, New Delhi 110067, India
- Central Instrumentation Facility, Division of Research and Development, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Soumita Paul
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani, West Bengal 741235, India; (S.P.); (S.G.)
| | - Swagata Ghosh
- Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani, West Bengal 741235, India; (S.P.); (S.G.)
| |
Collapse
|
27
|
Lima RAT, De Oliveira G, Souza AA, Lopes FAC, Santana RH, Istvan P, Quirino BF, Barbosa J, De Freitas S, Garay AV, Krüger RH. Functional and structural characterization of a novel GH3 β-glucosidase from the gut metagenome of the Brazilian Cerrado termite Syntermes wheeleri. Int J Biol Macromol 2020; 165:822-834. [PMID: 33011259 DOI: 10.1016/j.ijbiomac.2020.09.236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/26/2022]
Abstract
In this study, a GH3 family β-glucosidase (Bgl7226) from metagenomic sequences of the Syntermes wheeleri gut, a Brazilian Cerrado termite, was expressed, purified and characterized. The enzyme showed two optimum pHs (pH 7 and pH 10), and a maximum optimum temperature of about 40 °C using 4-Nitrophenyl β-D-glucopyranoside (pNPG) as substrate. Bgl7226 showed higher enzymatic activity at basic pH, but higher affinity (Km) at neutral pH. However, at neutral pH the Bgl7226 enzyme showed higher catalytic efficiency (kcat/Km) for pNPG substrate. Predictive analysis about the enzyme structure-function relationship by sequence alignment suggested the presence of multi-domains and conserved catalytic sites. Circular dichroism results showed that the secondary structure composition of the enzyme is pH-dependent. Small conformational changes occurred close to the optimum temperature of 40 o C, and seem important for the highest activity of Bgl7226 observed at pH 7 and 10. In addition, the small transition in the unfolding curves close to 40 o C is typical of intermediates associated with proteins structured in several domains. Bgl7226 has significant β-glucosidase activity which could be attractive for biotechnological applications, such as plant roots detoxification; specifically, our group is interested in cassava roots (Manihot esculenta) detoxification.
Collapse
Affiliation(s)
| | - Gideane De Oliveira
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Amanda Araújo Souza
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | | | - Renata Henrique Santana
- Instituto Federal de Brasília, Planaltina Campus, Brasília, DF 70910-900, Brazil; Genomic Sciences and Biotechnology, Universidade Católica de Brasília, Brasília, DF 70790-160, Brazil
| | - Paula Istvan
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil; Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben- Gurion University of the Negev, Department of Environmental Hydrology & Microbiology, Israel
| | - Betania Ferraz Quirino
- Embrapa Agroenergy, Parque Estação Biológica (PqEB), PqEB s/n°, Brasília, DF 70770-901, Brazil
| | - João Barbosa
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Sonia De Freitas
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Aisel Valle Garay
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Ricardo Henrique Krüger
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
28
|
Characterization and diversity of the complete set of GH family 3 enzymes from Rhodothermus marinus DSM 4253. Sci Rep 2020; 10:1329. [PMID: 31992772 PMCID: PMC6987092 DOI: 10.1038/s41598-020-58015-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/07/2020] [Indexed: 11/08/2022] Open
Abstract
The genome of Rhodothermus marinus DSM 4253 encodes six glycoside hydrolases (GH) classified under GH family 3 (GH3): RmBgl3A, RmBgl3B, RmBgl3C, RmXyl3A, RmXyl3B and RmNag3. The biochemical function, modelled 3D-structure, gene cluster and evolutionary relationships of each of these enzymes were studied. The six enzymes were clustered into three major evolutionary lineages of GH3: β-N-acetyl-glucosaminidases, β-1,4-glucosidases/β-xylosidases and macrolide β-glucosidases. The RmNag3 with additional β-lactamase domain clustered with the deepest rooted GH3-lineage of β-N-acetyl-glucosaminidases and was active on acetyl-chitooligosaccharides. RmBgl3B displayed β-1,4-glucosidase activity and was the only representative of the lineage clustered with macrolide β-glucosidases from Actinomycetes. The β-xylosidases, RmXyl3A and RmXyl3B, and the β-glucosidases RmBgl3A and RmBgl3C clustered within the major β-glucosidases/β-xylosidases evolutionary lineage. RmXyl3A and RmXyl3B showed β-xylosidase activity with different specificities for para-nitrophenyl (pNP)-linked substrates and xylooligosaccharides. RmBgl3A displayed β-1,4-glucosidase/β-xylosidase activity while RmBgl3C was active on pNP-β-Glc and β-1,3-1,4-linked glucosyl disaccharides. Putative polysaccharide utilization gene clusters were also investigated for both R. marinus DSM 4253 and DSM 4252T (homolog strain). The analysis showed that in the homolog strain DSM 4252TRmar_1080 (RmXyl3A) and Rmar_1081 (RmXyl3B) are parts of a putative polysaccharide utilization locus (PUL) for xylan utilization.
Collapse
|
29
|
β-Xylosidases: Structural Diversity, Catalytic Mechanism, and Inhibition by Monosaccharides. Int J Mol Sci 2019; 20:ijms20225524. [PMID: 31698702 PMCID: PMC6887791 DOI: 10.3390/ijms20225524] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
Xylan, a prominent component of cellulosic biomass, has a high potential for degradation into reducing sugars, and subsequent conversion into bioethanol. This process requires a range of xylanolytic enzymes. Among them, β-xylosidases are crucial, because they hydrolyze more glycosidic bonds than any of the other xylanolytic enzymes. They also enhance the efficiency of the process by degrading xylooligosaccharides, which are potent inhibitors of other hemicellulose-/xylan-converting enzymes. On the other hand, the β-xylosidase itself is also inhibited by monosaccharides that may be generated in high concentrations during the saccharification process. Structurally, β-xylosidases are diverse enzymes with different substrate specificities and enzyme mechanisms. Here, we review the structural diversity and catalytic mechanisms of β-xylosidases, and discuss their inhibition by monosaccharides.
Collapse
|
30
|
Itoh T, Araki T, Nishiyama T, Hibi T, Kimoto H. Structural and functional characterization of a glycoside hydrolase family 3 β-N-acetylglucosaminidase from Paenibacillus sp. str. FPU-7. J Biochem 2019; 166:503-515. [DOI: 10.1093/jb/mvz072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/11/2019] [Indexed: 11/14/2022] Open
Abstract
AbstractChitin, a β-1,4-linked homopolysaccharide of N-acetyl-d-glucosamine (GlcNAc), is one of the most abundant biopolymers on Earth. Paenibacillus sp. str. FPU-7 produces several different chitinases and converts chitin into N,N′-diacetylchitobiose ((GlcNAc)2) in the culture medium. However, the mechanism by which the Paenibacillus species imports (GlcNAc)2 into the cytoplasm and divides it into the monomer GlcNAc remains unclear. The gene encoding Paenibacillus β-N-acetyl-d-glucosaminidase (PsNagA) was identified in the Paenibacillus sp. str. FPU-7 genome using an expression cloning system. The deduced amino acid sequence of PsNagA suggests that the enzyme is a part of the glycoside hydrolase family 3 (GH3). Recombinant PsNagA was successfully overexpressed in Escherichia coli and purified to homogeneity. As assessed by gel permeation chromatography, the enzyme exists as a 57-kDa monomer. PsNagA specifically hydrolyses chitin oligosaccharides, (GlcNAc)2–4, 4-nitrophenyl N-acetyl β-d-glucosamine (pNP-GlcNAc) and pNP-(GlcNAc)2–6, but has no detectable activity against 4-nitrophenyl β-d-glucose, 4-nitrophenyl β-d-galactosamine and colloidal chitin. In this study, we present a 1.9 Å crystal structure of PsNagA bound to GlcNAc. The crystal structure reveals structural features related to substrate recognition and the catalytic mechanism of PsNagA. This is the first study on the structural and functional characterization of a GH3 β-N-acetyl-d-glucosaminidase from Paenibacillus sp.
Collapse
Affiliation(s)
- Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Tomomitsu Araki
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Tomohiro Nishiyama
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Takao Hibi
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Hisashi Kimoto
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| |
Collapse
|
31
|
A Bacillus pumilus originated β-N-acetylglucosaminidase for chitin combinatory hydrolysis and exploration of its thermostable mechanism. Int J Biol Macromol 2019; 132:1282-1289. [DOI: 10.1016/j.ijbiomac.2019.04.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 11/23/2022]
|
32
|
Srivastava N, Rathour R, Jha S, Pandey K, Srivastava M, Thakur VK, Sengar RS, Gupta VK, Mazumder PB, Khan AF, Mishra PK. Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application. Biomolecules 2019; 9:E220. [PMID: 31174354 PMCID: PMC6627771 DOI: 10.3390/biom9060220] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023] Open
Abstract
The biomass to biofuels production process is green, sustainable, and an advanced technique to resolve the current environmental issues generated from fossil fuels. The production of biofuels from biomass is an enzyme mediated process, wherein β-glucosidase (BGL) enzymes play a key role in biomass hydrolysis by producing monomeric sugars from cellulose-based oligosaccharides. However, the production and availability of these enzymes realize their major role to increase the overall production cost of biomass to biofuels production technology. Therefore, the present review is focused on evaluating the production and efficiency of β-glucosidase enzymes in the bioconversion of cellulosic biomass for biofuel production at an industrial scale, providing its mechanism and classification. The application of BGL enzymes in the biomass conversion process has been discussed along with the recent developments and existing issues. Moreover, the production and development of microbial BGL enzymes have been explained in detail, along with the recent advancements made in the field. Finally, current hurdles and future suggestions have been provided for the future developments. This review is likely to set a benchmark in the area of cost effective BGL enzyme production, specifically in the biorefinery area.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| | - Rishabh Rathour
- Department of Bioengineering, Integral University, Lucknow 226026, India.
| | - Sonam Jha
- Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Karan Pandey
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| | - Manish Srivastava
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India.
| | - Vijay Kumar Thakur
- Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK.
| | - Rakesh Singh Sengar
- Department of Agriculture Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel, University of Agriculture and Technology, Meerut 250110, U.P., India.
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia.
| | | | - Ahamad Faiz Khan
- Department of Bioengineering, Integral University, Lucknow 226026, India.
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| |
Collapse
|
33
|
Duchêne MC, Rolain T, Knoops A, Courtin P, Chapot-Chartier MP, Dufrêne YF, Hallet BF, Hols P. Distinct and Specific Role of NlpC/P60 Endopeptidases LytA and LytB in Cell Elongation and Division of Lactobacillus plantarum. Front Microbiol 2019; 10:713. [PMID: 31031721 PMCID: PMC6473061 DOI: 10.3389/fmicb.2019.00713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/21/2019] [Indexed: 11/22/2022] Open
Abstract
Peptidoglycan (PG) is an essential lattice of the bacterial cell wall that needs to be continuously remodeled to allow growth. This task is ensured by the concerted action of PG synthases that insert new material in the pre-existing structure and PG hydrolases (PGHs) that cleave the PG meshwork at critical sites for its processing. Contrasting with Bacillus subtilis that contains more than 35 PGHs, Lactobacillus plantarum is a non-sporulating rod-shaped bacterium that is predicted to possess a minimal set of 12 PGHs. Their role in morphogenesis and cell cycle remains mostly unexplored, except for the involvement of the glucosaminidase Acm2 in cell separation and the NlpC/P60 D, L-endopeptidase LytA in cell shape maintenance. Besides LytA, L. plantarum encodes three additional NlpC/P60 endopeptidases (i.e., LytB, LytC and LytD). The in silico analysis of these four endopeptidases suggests that they could have redundant functions based on their modular organization, forming two pairs of paralogous enzymes. In this work, we investigate the role of each Lyt endopeptidase in cell morphogenesis in order to evaluate their distinct or redundant functions, and eventually their synthetic lethality. We show that the paralogous LytC and LytD enzymes are not required for cell shape maintenance, which may indicate an accessory role such as in PG recycling. In contrast, LytA and LytB appear to be key players of the cell cycle. We show here that LytA is required for cell elongation while LytB is involved in the spatio-temporal regulation of cell division. In addition, both PGHs are involved in the proper positioning of the division site. The absence of LytA activity is responsible for the asymmetrical positioning of septa in round cells while the lack of LytB results in a lateral misplacement of division planes in rod-shaped cells. Finally, we show that the co-inactivation of LytA and LytB is synthetically affecting cell growth, which confirms the key roles played by both enzymes in PG remodeling during the cell cycle of L. plantarum. Based on the large distribution of NlpC/P60 endopeptidases in low-GC Gram-positive bacteria, these enzymes are attractive targets for the discovery of novel antimicrobial compounds.
Collapse
Affiliation(s)
- Marie-Clémence Duchêne
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Thomas Rolain
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Adrien Knoops
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Pascal Courtin
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Bernard F Hallet
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Pascal Hols
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| |
Collapse
|
34
|
Wang M, Zheng F, Wang T, Lyu YM, Alteen MG, Cai ZP, Cui ZL, Liu L, Voglmeir J. Characterization of Stackebrandtia nassauensis GH 20 Beta-Hexosaminidase, a Versatile Biocatalyst for Chitobiose Degradation. Int J Mol Sci 2019; 20:ijms20051243. [PMID: 30871033 PMCID: PMC6429369 DOI: 10.3390/ijms20051243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/31/2022] Open
Abstract
An unstudied β-N-acetylhexosaminidase (SnHex) from the soil bacterium Stackebrandtia nassauensis was successfully cloned and subsequently expressed as a soluble protein in Escherichia coli. Activity tests and the biochemical characterization of the purified protein revealed an optimum pH of 6.0 and a robust thermal stability at 50 °C within 24 h. The addition of urea (1 M) or sodium dodecyl sulfate (1% w/v) reduced the activity of the enzyme by 44% and 58%, respectively, whereas the addition of divalent metal ions had no effect on the enzymatic activity. PUGNAc (O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate) strongly inhibited the enzyme in sub-micromolar concentrations. The β-N-acetylhexosaminidase was able to hydrolyze β1,2-linked, β1,3-linked, β1,4-linked, and β1,6-linked GlcNAc residues from the non-reducing end of various tested glycan standards, including bisecting GlcNAc from one of the tested hybrid-type N-glycan substrates. A mutational study revealed that the amino acids D306 and E307 bear the catalytically relevant side acid/base side chains. When coupled with a chitinase, the β-N-acetylhexosaminidase was able to generate GlcNAc directly from colloidal chitin, which showed the potential of this enzyme for biotechnological applications.
Collapse
Affiliation(s)
- Meng Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng Zheng
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ting Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yong-Mei Lyu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Matthew G Alteen
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Zhi-Peng Cai
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhong-Li Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
35
|
Vermassen A, Leroy S, Talon R, Provot C, Popowska M, Desvaux M. Cell Wall Hydrolases in Bacteria: Insight on the Diversity of Cell Wall Amidases, Glycosidases and Peptidases Toward Peptidoglycan. Front Microbiol 2019; 10:331. [PMID: 30873139 PMCID: PMC6403190 DOI: 10.3389/fmicb.2019.00331] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
The cell wall (CW) of bacteria is an intricate arrangement of macromolecules, at least constituted of peptidoglycan (PG) but also of (lipo)teichoic acids, various polysaccharides, polyglutamate and/or proteins. During bacterial growth and division, there is a constant balance between CW degradation and biosynthesis. The CW is remodeled by bacterial hydrolases, whose activities are carefully regulated to maintain cell integrity or lead to bacterial death. Each cell wall hydrolase (CWH) has a specific role regarding the PG: (i) cell wall amidase (CWA) cleaves the amide bond between N-acetylmuramic acid and L-alanine residue at the N-terminal of the stem peptide, (ii) cell wall glycosidase (CWG) catalyses the hydrolysis of the glycosidic linkages, whereas (iii) cell wall peptidase (CWP) cleaves amide bonds between amino acids within the PG chain. After an exhaustive overview of all known conserved catalytic domains responsible for CWA, CWG, and CWP activities, this review stresses that the CWHs frequently display a modular architecture combining multiple and/or different catalytic domains, including some lytic transglycosylases as well as CW binding domains. From there, direct physiological and collateral roles of CWHs in bacterial cells are further discussed.
Collapse
Affiliation(s)
- Aurore Vermassen
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| | - Sabine Leroy
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| | - Régine Talon
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| | | | - Magdalena Popowska
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| |
Collapse
|
36
|
Jiang S, Jiang H, Zhou Y, Jiang S, Zhang G. High-level expression of β-N-Acetylglucosaminidase BsNagZ in Pichia pastoris to obtain GlcNAc. Bioprocess Biosyst Eng 2019; 42:611-619. [DOI: 10.1007/s00449-018-02067-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/21/2018] [Indexed: 01/11/2023]
|
37
|
Kluj RM, Ebner P, Adamek M, Ziemert N, Mayer C, Borisova M. Recovery of the Peptidoglycan Turnover Product Released by the Autolysin Atl in Staphylococcus aureus Involves the Phosphotransferase System Transporter MurP and the Novel 6-phospho- N-acetylmuramidase MupG. Front Microbiol 2018; 9:2725. [PMID: 30524387 PMCID: PMC6262408 DOI: 10.3389/fmicb.2018.02725] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/24/2018] [Indexed: 11/29/2022] Open
Abstract
The peptidoglycan of the bacterial cell wall undergoes a permanent turnover during cell growth and differentiation. In the Gram-positive pathogen Staphylococcus aureus, the major peptidoglycan hydrolase Atl is required for accurate cell division, daughter cell separation and autolysis. Atl is a bifunctional N-acetylmuramoyl-L-alanine amidase/endo-β-N-acetylglucosaminidase that releases peptides and the disaccharide N-acetylmuramic acid-β-1,4-N-acetylglucosamine (MurNAc-GlcNAc) from the peptido-glycan. Here we revealed the recycling pathway of the cell wall turnover product MurNAc-GlcNAc in S. aureus. The latter disaccharide is internalized and concomitantly phosphorylated by the phosphotransferase system (PTS) transporter MurP, which had been implicated previously in the uptake and phosphorylation of MurNAc. Since MurP mutant cells accumulate MurNAc-GlcNAc and not MurNAc in the culture medium during growth, the disaccharide represents the physiological substrate of the PTS transporter. We further identified and characterized a novel 6-phospho-N-acetylmuramidase, named MupG, which intracellularly hydrolyses MurNAc 6-phosphate-GlcNAc, the product of MurP-uptake and phosphorylation, yielding MurNAc 6-phosphate and GlcNAc. MupG is the first characterized representative of a novel family of glycosidases containing domain of unknown function 871 (DUF871). The corresponding gene mupG (SAUSA300_0192) of S. aureus strain USA300 is the first gene within a putative operon that also includes genes encoding the MurNAc 6-phosphate etherase MurQ, MurP, and the putative transcriptional regulator MurR. Using mass spectrometry, we observed cytoplasmic accumulation of MurNAc 6-phosphate-GlcNAc in ΔmupG and ΔmupGmurQ markerless non-polar deletion mutants, but not in the wild type or in the complemented ΔmupG strain. MurNAc 6-phosphate-GlcNAc levels in the mutants increased during stationary phase, in accordance with previous observations regarding peptidoglycan recycling in S. aureus.
Collapse
Affiliation(s)
- Robert Maria Kluj
- Microbiology/Biotechnology, Department of Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Patrick Ebner
- Microbial Genetics, Department of Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Martina Adamek
- Microbiology/Biotechnology, Department of Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Nadine Ziemert
- Microbiology/Biotechnology, Department of Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christoph Mayer
- Microbiology/Biotechnology, Department of Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Marina Borisova
- Microbiology/Biotechnology, Department of Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
38
|
Reichenbach T, Kalyani D, Gandini R, Svartström O, Aspeborg H, Divne C. Structural and biochemical characterization of the Cutibacterium acnes exo-β-1,4-mannosidase that targets the N-glycan core of host glycoproteins. PLoS One 2018; 13:e0204703. [PMID: 30261037 PMCID: PMC6160142 DOI: 10.1371/journal.pone.0204703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Commensal and pathogenic bacteria have evolved efficient enzymatic pathways to feed on host carbohydrates, including protein-linked glycans. Most proteins of the human innate and adaptive immune system are glycoproteins where the glycan is critical for structural and functional integrity. Besides enabling nutrition, the degradation of host N-glycans serves as a means for bacteria to modulate the host's immune system by for instance removing N-glycans on immunoglobulin G. The commensal bacterium Cutibacterium acnes is a gram-positive natural bacterial species of the human skin microbiota. Under certain circumstances, C. acnes can cause pathogenic conditions, acne vulgaris, which typically affects 80% of adolescents, and can become critical for immunosuppressed transplant patients. Others have shown that C. acnes can degrade certain host O-glycans, however, no degradation pathway for host N-glycans has been proposed. To investigate this, we scanned the C. acnes genome and were able to identify a set of gene candidates consistent with a cytoplasmic N-glycan-degradation pathway of the canonical eukaryotic N-glycan core. We also found additional gene sequences containing secretion signals that are possible candidates for initial trimming on the extracellular side. Furthermore, one of the identified gene products of the cytoplasmic pathway, AEE72695, was produced and characterized, and found to be a functional, dimeric exo-β-1,4-mannosidase with activity on the β-1,4 glycosidic bond between the second N-acetylglucosamine and the first mannose residue in the canonical eukaryotic N-glycan core. These findings corroborate our model of the cytoplasmic part of a C. acnes N-glycan degradation pathway.
Collapse
Affiliation(s)
- Tom Reichenbach
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Dayanand Kalyani
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Rosaria Gandini
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Olov Svartström
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Henrik Aspeborg
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christina Divne
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
39
|
Ho LA, Winogrodzki JL, Debowski AW, Madden Z, Vocadlo DJ, Mark BL, Stubbs KA. A mechanism-based GlcNAc-inspired cyclophellitol inactivator of the peptidoglycan recycling enzyme NagZ reverses resistance to β-lactams in Pseudomonas aeruginosa. Chem Commun (Camb) 2018; 54:10630-10633. [PMID: 30178799 DOI: 10.1039/c8cc05281f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of a potent mechanism-based inactivator of NagZ, an enzyme critical to the production of inducible AmpC β-lactamase in Gram-negative bacteria, is presented. This inactivator significantly reduces MIC values for important β-lactams against a clinically relevant strain of Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Louisa A Ho
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia.
| | - Judith L Winogrodzki
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada.
| | - Aleksandra W Debowski
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia. and School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Zarina Madden
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A1S6, Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A1S6, Canada
| | - Brian L Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada.
| | - Keith A Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
40
|
Davidi D, Longo LM, Jabłońska J, Milo R, Tawfik DS. A Bird’s-Eye View of Enzyme Evolution: Chemical, Physicochemical, and Physiological Considerations. Chem Rev 2018; 118:8786-8797. [DOI: 10.1021/acs.chemrev.8b00039] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Bouquet J, King DT, Vadlamani G, Benzie GR, Iorga B, Ide D, Adachi I, Kato A, Vocadlo DJ, Mark BL, Blériot Y, Désiré J. Selective trihydroxylated azepane inhibitors of NagZ, a glycosidase involved in Pseudomonas aeruginosa resistance to β-lactam antibiotics. Org Biomol Chem 2018; 15:4609-4619. [PMID: 28513749 DOI: 10.1039/c7ob00838d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of a series of d-gluco-like configured 4,5,6-trihydroxyazepanes bearing a triazole, a sulfonamide or a fluorinated acetamide moiety at C-3 is described. These synthetic derivatives have been tested for their ability to selectively inhibit the muropeptide recycling glucosaminidase NagZ and to thereby increase sensitivity of Pseudomonas aeruginosa to β-lactams, a pathway with substantial therapeutic potential. While introduction of triazole and sulfamide groups failed to lead to glucosaminidase inhibitors, the NHCOCF3 analog proved to be a selective inhibitor of NagZ over other glucosaminidases including human O-GlcNAcase and lysosomal hexosaminidases HexA and B.
Collapse
Affiliation(s)
- J Bouquet
- Equipe Synthèse Organique, Groupe Glycochimie, IC2MP, UMR CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, 86073 Poitiers cedex 09, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Suzuki R, Fujimoto Z, Kaneko S, Hasegawa T, Kuno A. Enhanced Azidolysis by the Formation of Stable Ser-His Catalytic Dyad in a Glycoside Hydrolase Family 10 Xylanase Mutant. J Appl Glycosci (1999) 2018; 65:1-8. [PMID: 34354506 PMCID: PMC8056907 DOI: 10.5458/jag.jag.jag-2017_011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/27/2017] [Indexed: 11/04/2022] Open
Abstract
Glycoside hydrolases require carboxyl groups as catalysts for their activity. A retaining xylanase from Streptomyces olivaceoviridis E-86 belonging to glycoside hydrolase family 10 possesses Glu128 and Glu236 that respectively function as acid/base and nucleophile. We previously developed a unique mutant of the retaining xylanase, N127S/E128H, whose deglycosylation is triggered by azide. A crystallographic study reported that the transient formation of a Ser–His catalytic dyad in the reaction cycle possibly reduced the azidolysis reaction. In the present study, we engineered a catalytic dyad with enhanced stability by site-directed mutagenesis and crystallographic study of N127S/E128H. Comparison of the Michaelis complexes of N127S/E128H with pNP-X2 and with xylopentaose showed that Ser127 could form an alternative hydrogen bond with Thr82, which disrupts the formation of the Ser–His catalytic dyad. The introduction of T82A mutation in N127S/E128H produces an enhanced first-order rate constant (6 times that of N127S/E128H). We confirmed the presence of a stable Ser–His hydrogen bond in the Michaelis complex of the triple mutant, which forms the productive tautomer of His128 that acts as an acid catalyst. Because the glycosyl azide is applicable in the bioconjugation of glycans by using click chemistry, the enzyme-assisted production of the glycosyl azide may contribute to the field of glycobiology.
Collapse
Affiliation(s)
- Ryuichiro Suzuki
- 1 Department of Biological Production, Akita Prefectural University.,2 Department of Material and Biological Chemistry, Faculty of Science, Yamagata University
| | - Zui Fujimoto
- 3 Advanced Analysis Center, National Agriculture and Food Research Organization (NARO)
| | - Satoshi Kaneko
- 4 Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus
| | - Tsunemi Hasegawa
- 2 Department of Material and Biological Chemistry, Faculty of Science, Yamagata University
| | - Atsushi Kuno
- 5 Biotechnology Research Institute for Drug Discovery (BRD), National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
43
|
Macdonald SS, Patel A, Larmour VLC, Morgan-Lang C, Hallam SJ, Mark BL, Withers SG. Structural and mechanistic analysis of a β-glycoside phosphorylase identified by screening a metagenomic library. J Biol Chem 2018; 293:3451-3467. [PMID: 29317495 DOI: 10.1074/jbc.ra117.000948] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/04/2018] [Indexed: 11/06/2022] Open
Abstract
Glycoside phosphorylases have considerable potential as catalysts for the assembly of useful glycans for products ranging from functional foods and prebiotics to novel materials. However, the substrate diversity of currently identified phosphorylases is relatively small, limiting their practical applications. To address this limitation, we developed a high-throughput screening approach using the activated substrate 2,4-dinitrophenyl β-d-glucoside (DNPGlc) and inorganic phosphate for identifying glycoside phosphorylase activity and used it to screen a large insert metagenomic library. The initial screen, based on release of 2,4-dinitrophenyl from DNPGlc in the presence of phosphate, identified the gene bglP, encoding a retaining β-glycoside phosphorylase from the CAZy GH3 family. Kinetic and mechanistic analysis of the gene product, BglP, confirmed a double displacement ping-pong mechanism involving a covalent glycosyl-enzyme intermediate. X-ray crystallographic analysis provided insights into the phosphate-binding mode and identified a key glutamine residue in the active site important for substrate recognition. Substituting this glutamine for a serine swapped the substrate specificity from glucoside to N-acetylglucosaminide. In summary, we present a high-throughput screening approach for identifying β-glycoside phosphorylases, which was robust, simple to implement, and useful in identifying active clones within a metagenomics library. Implementation of this screen enabled discovery of a new glycoside phosphorylase class and has paved the way to devising simple ways in which enzyme specificity can be encoded and swapped, which has implications for biotechnological applications.
Collapse
Affiliation(s)
- Spencer S Macdonald
- From the Departments of Chemistry and Biochemistry and.,the Genome Science and Technology Program.,ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, and
| | - Ankoor Patel
- the Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2
| | - Veronica L C Larmour
- the Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2
| | | | - Steven J Hallam
- the Genome Science and Technology Program.,ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, and.,Graduate Program in Bioinformatics, and.,the Department of Microbiology and Immunology and.,Peter Wall Institute for Advanced Studies, University of British Columbia, Vancouver, British Columbia V6T 1Z1
| | - Brian L Mark
- the Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2
| | - Stephen G Withers
- From the Departments of Chemistry and Biochemistry and .,the Genome Science and Technology Program.,ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia V6T 1Z3, and.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
44
|
Pereira SA, Jerônimo GT, Marchiori NC, Oliveira HM, Jesus GFA, Schmidt EC, Bouzon ZL, Vieira FN, Martins ML, Mouriño JLP. Tadpoles fed supplemented diet with probiotic bacterium isolated from the intestinal tract of bullfrog Lithobates catesbeianus: Haematology, cell activity and electron microscopy. Microb Pathog 2017; 114:255-263. [PMID: 29174701 DOI: 10.1016/j.micpath.2017.11.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 10/17/2017] [Accepted: 11/22/2017] [Indexed: 11/24/2022]
Abstract
The aim of this study is to select and isolate autochthonous bacteria with probiotic potential for use in a supplemented diet for bullfrog tadpoles, Lithobates catesbeianus. A total of 20 strains of lactic acid bacteria were isolated. Nine out of these were used in the following in vitro assays: antagonism against pathogenic bacteria (ANT), antimicrobial activity from extracellular compounds (MIC), tolerance to bile salts (TBS), pH reduction, protease production, sensitivity to antimicrobial tetracycline, cell viability, growth rate and doubling time. Using these data was defined an ideotype (ideal strain) based on the best results. Distances were estimated with the Mahalanobis (D2) test, and the best candidates, presenting the shortest ideotype distances, were considered to be used. The best strain was found to be Lactobacillus plantarum because it presented 10.00 ± 0.50 mm of ANT against Aeromonas hydrophila, 3.99 ± 0.01 of MIC independent of pathogenic bacteria, 85.07 ± 0.01 of TBS, 4.20 ± 0.02 of final pH, 17.67 ± 1.15 of protease production, 13.50 ± 2.00 sensitivity to antimicrobial tetracycline, 9.36 ± 0.04 of cell viability, 0.20 ± 0.00 of growth rate and 3.46 ± 0.00 doubling time. Therefore this probiotic candidate was then supplemented (2.045 ± 1.07 × 107 colony forming unities. g-1) into the diets of bullfrog tadpoles for a period of 42 days. At the end of the trial, samples of blood and intestines were collected to verify the haematological alterations and the intestinal morphology using transmission and scanning electron microscopy. Tadpoles fed the supplemented diet showed successful lactic acid bacterium colonisation, an increased number of circulating thrombocytes, monocytes, eosinophil and LG-PAS+ and also an increase in the length and density of intestinal microvilli. This study shows the feasibility of using probiotics isolated from farmed bullfrogs as a supplement in the diets of tadpoles, providing a promising alternative for modulating the health of these animals.
Collapse
Affiliation(s)
- S A Pereira
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, 88040-900, Florianópolis, SC, Brazil.
| | - G T Jerônimo
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, 88040-900, Florianópolis, SC, Brazil; Aquatic Organisms Health Laboratory, Post Graduate in Aquaculture, Nilton Lins University, Av. Nilton Lins 3259, 69058-030, Manaus, AM, Brazil
| | - N C Marchiori
- EPAGRI - Company of Agricultural Research and Rural Extension of Santa Catarina, Rua Joaquim Garcia, s/n, 88340-000, Camboriú, SC, Brazil
| | - H M Oliveira
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, 88040-900, Florianópolis, SC, Brazil
| | - G F A Jesus
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, 88040-900, Florianópolis, SC, Brazil
| | - E C Schmidt
- Department of Cell Biology, Embryology and Genetics (BEG), Central Laboratory of Electron Microscopy, UFSC, Florianópolis, Brazil
| | - Z L Bouzon
- Department of Cell Biology, Embryology and Genetics (BEG), Central Laboratory of Electron Microscopy, UFSC, Florianópolis, Brazil
| | - F N Vieira
- LCM - Marine Shrimp Laboratory, Microbiology Section, Aquaculture Department, UFSC, Beco dos Coroas 503, Barra da Lagoa, 88061-600, Florianópolis, SC, Brazil
| | - M L Martins
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, 88040-900, Florianópolis, SC, Brazil
| | - J L P Mouriño
- AQUOS - Aquatic Organisms Health Laboratory, Aquaculture Department, Federal University of Santa Catarina (UFSC), Rod. Admar Gonzaga 1346, 88040-900, Florianópolis, SC, Brazil
| |
Collapse
|
45
|
Enzymatic properties of β-N-acetylglucosaminidases. Appl Microbiol Biotechnol 2017; 102:93-103. [PMID: 29143882 DOI: 10.1007/s00253-017-8624-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 01/27/2023]
Abstract
β-N-Acetylglucosaminidases (GlcNAcases) hydrolyse N-acetylglucosamine-containing oligosaccharides and proteins. These enzymes produce N-acetylglucosamine (GlcNAc) and have a wide range of promising applications in the food, energy, and pharmaceutical industries, such as synergistic degradation of chitin with endo-chitinases and using GlcNAc to produce sialic acid, bioethanol, single-cell proteins, and pharmaceutical therapeutics. GlcNAcases also play an important role in the dynamic balance of cellular O-linked GlcNAc levels, catabolism of ganglioside storage in Tay-Sachs disease, and bacterial cell wall recycling and flagellar assembly. In view of these important biological functions and the wide range of industrial applications of GlcNAcases, this review aims to provide a better understanding of various advances for these enzymes. It focuses on enzymatic properties of GlcNAcases, including substrate specificity, catalytic activity, pH optimum, temperature optimum, thermostability, the effects of various metal ions and organic reagents, and transglycosylation.
Collapse
|
46
|
A Novel Multifunctional β-N-Acetylhexosaminidase Revealed through Metagenomics of an Oil-Spilled Mangrove. Bioengineering (Basel) 2017; 4:bioengineering4030062. [PMID: 28952541 PMCID: PMC5615308 DOI: 10.3390/bioengineering4030062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/25/2017] [Accepted: 07/06/2017] [Indexed: 11/22/2022] Open
Abstract
The use of culture-independent approaches, such as metagenomics, provides complementary access to environmental microbial diversity. Mangrove environments represent a highly complex system with plenty of opportunities for finding singular functions. In this study we performed a functional screening of fosmid libraries obtained from an oil contaminated mangrove site, with the purpose of identifying clones expressing hydrolytic activities. A novel gene coding for a β-N-acetylhexosaminidase with 355 amino acids and 43KDa was retrieved and characterized. The translated sequence showed only 38% similarity to a β-N-acetylhexosaminidase gene in the genome of Veillonella sp. CAG:933, suggesting that it might constitute a novel enzyme. The enzyme was expressed, purified, and characterized for its enzymatic activity on carboxymethyl cellulose, p-Nitrophenyl-2acetamide-2deoxy-β-d-glucopyranoside, p-Nitrophenyl-2acetamide-2deoxy-β-d-galactopyranoside, and 4-Nitrophenyl β-d-glucopyranoside, presenting β-N-acetylglucosaminidase, β-glucosidase, and β-1,4-endoglucanase activities. The enzyme showed optimum activity at 30 °C and pH 5.5. The characterization of the putative novel β-N-acetylglucosaminidase enzyme reflects similarities to characteristics of the environment explored, which differs from milder conditions environments. This work exemplifies the application of cultivation-independent molecular techniques to the mangrove microbiome for obtaining a novel biotechnological product.
Collapse
|
47
|
Acebrón I, Mahasenan KV, De Benedetti S, Lee M, Artola-Recolons C, Hesek D, Wang H, Hermoso JA, Mobashery S. Catalytic Cycle of the N-Acetylglucosaminidase NagZ from Pseudomonas aeruginosa. J Am Chem Soc 2017; 139:6795-6798. [PMID: 28482153 DOI: 10.1021/jacs.7b01626] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The N-acetylglucosaminidase NagZ of Pseudomonas aeruginosa catalyzes the first cytoplasmic step in recycling of muropeptides, cell-wall-derived natural products. This reaction regulates gene expression for the β-lactam resistance enzyme, β-lactamase. The enzyme catalyzes hydrolysis of N-acetyl-β-d-glucosamine-(1→4)-1,6-anhydro-N-acetyl-β-d-muramyl-peptide (1) to N-acetyl-β-d-glucosamine (2) and 1,6-anhydro-N-acetyl-β-d-muramyl-peptide (3). The structural and functional aspects of catalysis by NagZ were investigated by a total of seven X-ray structures, three computational models based on the X-ray structures, molecular-dynamics simulations and mutagenesis. The structural insights came from the unbound state and complexes of NagZ with the substrate, products and a mimetic of the transient oxocarbenium species, which were prepared by synthesis. The mechanism involves a histidine as acid/base catalyst, which is unique for glycosidases. The turnover process utilizes covalent modification of D244, requiring two transition-state species and is regulated by coordination with a zinc ion. The analysis provides a seamless continuum for the catalytic cycle, incorporating large motions by four loops that surround the active site.
Collapse
Affiliation(s)
- Iván Acebrón
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC , 28006 Madrid, Spain
| | - Kiran V Mahasenan
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Stefania De Benedetti
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Cecilia Artola-Recolons
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC , 28006 Madrid, Spain
| | - Dusan Hesek
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Huan Wang
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC , 28006 Madrid, Spain
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
48
|
Unusual active site location and catalytic apparatus in a glycoside hydrolase family. Proc Natl Acad Sci U S A 2017; 114:4936-4941. [PMID: 28396425 DOI: 10.1073/pnas.1701130114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human gut microbiota use complex carbohydrates as major nutrients. The requirement for an efficient glycan degrading systems exerts a major selection pressure on this microbial community. Thus, we propose that these bacteria represent a substantial resource for discovering novel carbohydrate active enzymes. To test this hypothesis, we focused on enzymes that hydrolyze rhamnosidic bonds, as cleavage of these linkages is chemically challenging and there is a paucity of information on l-rhamnosidases. Here we screened the activity of enzymes derived from the human gut microbiota bacterium Bacteroides thetaiotaomicron, which are up-regulated in response to rhamnose-containing glycans. We identified an α-l-rhamnosidase, BT3686, which is the founding member of a glycoside hydrolase (GH) family, GH145. In contrast to other rhamnosidases, BT3686 cleaved l-Rha-α1,4-d-GlcA linkages through a retaining double-displacement mechanism. The crystal structure of BT3686 showed that the enzyme displayed a type A seven-bladed β-propeller fold. Mutagenesis and crystallographic studies, including the structure of BT3686 in complex with the reaction product GlcA, revealed a location for the active site among β-propeller enzymes cited on the posterior surface of the rhamnosidase. In contrast to the vast majority of GH, the catalytic apparatus of BT3686 does not comprise a pair of carboxylic acid residues but, uniquely, a single histidine functions as the only discernable catalytic amino acid. Intriguingly, the histidine, His48, is not invariant in GH145; however, when engineered into structural homologs lacking the imidazole residue, α-l-rhamnosidase activity was established. The potential contribution of His48 to the catalytic activity of BT3686 is discussed.
Collapse
|
49
|
Vadlamani G, Stubbs KA, Désiré J, Blériot Y, Vocadlo DJ, Mark BL. Conformational flexibility of the glycosidase NagZ allows it to bind structurally diverse inhibitors to suppress β-lactam antibiotic resistance. Protein Sci 2017; 26:1161-1170. [PMID: 28370529 DOI: 10.1002/pro.3166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 11/10/2022]
Abstract
NagZ is an N-acetyl-β-d-glucosaminidase that participates in the peptidoglycan (PG) recycling pathway of Gram-negative bacteria by removing N-acetyl-glucosamine (GlcNAc) from PG fragments that have been excised from the cell wall during growth. The 1,6-anhydromuramoyl-peptide products generated by NagZ activate β-lactam resistance in many Gram-negative bacteria by inducing the expression of AmpC β-lactamase. Blocking NagZ activity can thereby suppress β-lactam antibiotic resistance in these bacteria. The NagZ active site is dynamic and it accommodates distortion of the glycan substrate during catalysis using a mobile catalytic loop that carries a histidine residue which serves as the active site general acid/base catalyst. Here, we show that flexibility of this catalytic loop also accommodates structural differences in small molecule inhibitors of NagZ, which could be exploited to improve inhibitor specificity. X-ray structures of NagZ bound to the potent yet non-selective N-acetyl-β-glucosaminidase inhibitor PUGNAc (O-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino-N-phenylcarbamate), and two NagZ-selective inhibitors - EtBuPUG, a PUGNAc derivative bearing a 2-N-ethylbutyryl group, and MM-156, a 3-N-butyryl trihydroxyazepane, revealed that the phenylcarbamate moiety of PUGNAc and EtBuPUG completely displaces the catalytic loop from the NagZ active site to yield a catalytically incompetent form of the enzyme. In contrast, the catalytic loop was found positioned in the catalytically active conformation within the NagZ active site when bound to MM-156, which lacks the phenylcarbamate extension. Displacement of the catalytic loop by PUGNAc and its N-acyl derivative EtBuPUG alters the active site conformation of NagZ, which presents an additional strategy to improve the potency and specificity of NagZ inhibitors.
Collapse
Affiliation(s)
- Grishma Vadlamani
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada, R3T2N2
| | - Keith A Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Jérôme Désiré
- IC2MP, UMR CNRS 7285, Équipe "Synthèse Organique" Groupe Glycochimie, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France
| | - Yves Blériot
- IC2MP, UMR CNRS 7285, Équipe "Synthèse Organique" Groupe Glycochimie, Université de Poitiers, 4 rue Michel Brunet, 86073, Poitiers cedex 9, France
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5S 1P6
| | - Brian L Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada, R3T2N2
| |
Collapse
|
50
|
Regulation of Hyphal Growth and N-Acetylglucosamine Catabolism by Two Transcription Factors in Candida albicans. Genetics 2017; 206:299-314. [PMID: 28348062 DOI: 10.1534/genetics.117.201491] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/24/2017] [Indexed: 02/07/2023] Open
Abstract
The amino sugar N-acetylglucosamine (GlcNAc) is increasingly recognized as an important signaling molecule in addition to its well-known structural roles at the cell surface. In the human fungal pathogen Candida albicans, GlcNAc stimulates several responses including the induction of the genes needed for its catabolism and a switch from budding to filamentous hyphal growth. We identified two genes needed for growth on GlcNAc (RON1 and NGS1) and found that mutants lacking these genes fail to induce the genes needed for GlcNAc catabolism. NGS1 was also important for growth on other sugars, such as maltose, but RON1 appeared to be specific for GlcNAc. Both mutants could grow on nonfermentable carbon sources indicating that they do not affect mitochondrial function, which we show is important for growth on GlcNAc but not for GlcNAc induction of hyphal morphogenesis. Interestingly, both the ron1Δ and ngs1Δ mutants were defective in forming hyphae in response to GlcNAc, even though GlcNAc catabolism is not required for induction of hyphal morphogenesis. The ron1Δ mutant showed a partial defect in forming hyphae, which was surprising since it displayed an elevated level of filamentous cells under noninducing conditions. The ron1Δ mutant also displayed an elevated basal level of expression of genes that are normally upregulated during hyphal growth. Consistent with this, Ron1 contains an Ndt80-like DNA-binding domain, indicating that it regulates gene expression. Thus, Ron1 is a key new component of the GlcNAc response pathway that acts as both an activator and a repressor of hyphal morphogenesis.
Collapse
|