1
|
Cashman-Kadri S, Fliss I, Beaulieu L, Lagüe P. Ergosterol depletion by fish AMP analogs likely enhances fungal membrane permeability. Biophys J 2025; 124:1105-1116. [PMID: 40007119 PMCID: PMC11993923 DOI: 10.1016/j.bpj.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/30/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
The molecular interactions between a fungal membrane model and SJGAP, a 32-amino-acid antimicrobial peptide (AMP) derived from skipjack tuna GAPDH, as well as four analogs, were investigated using molecular dynamics simulations and Fourier transform infrared (FTIR) spectroscopy. In a previous study, Analog 7, modified by replacing three alanine residues with leucine residues, exhibited unique antifungal activity without any antibacterial effect. This contrasts with other analogs, which showed both antifungal and antibacterial effects. In this study, Analog 7 displayed the strongest interactions with the membrane's hydrophobic core, inserting more deeply and causing significantly greater membrane deformation and thinning compared with the other analogs. Its presence caused significant membrane deformation, evident from the displacement of both the phosphate groups and terminal methyls of the lipids. Notably, Analog 7 was the only analog to induce a marked depletion of ergosterol around the peptide insertion site. FTIR spectroscopy experiments further confirmed the distinctive impact of Analog 7 on a fungal membrane model. The combined results from molecular dynamics simulations and spectroscopy emphasize the critical role of leucine substitutions in Analog 7, particularly at residues 18 and 19 within the central α helix, in promoting membrane thinning and inducing ergosterol depletion, suggesting increased membrane permeabilization, which could explain its previously reported antifungal specificity. This study provides the first insights into the molecular interactions between a GAPDH-derived AMP and a fungal membrane model, offering valuable information about its antifungal mechanism of action.
Collapse
Affiliation(s)
- Samuel Cashman-Kadri
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Quebec, Canada; Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, Quebec, Canada; Québec-Océan, Université Laval, Québec, Quebec, Canada
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Quebec, Canada; Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, Quebec, Canada
| | - Lucie Beaulieu
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Quebec, Canada; Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, Quebec, Canada; Québec-Océan, Université Laval, Québec, Quebec, Canada
| | - Patrick Lagüe
- Department of Biochemistry, Microbiology and Bioinformatics, Pavillon Alexandre-Vachon, Université Laval, Québec, Quebec, Canada; Institute for Integrative Systems Biology, Université Laval, Québec, Quebec, Canada; The Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Montréal, Quebec, Canada.
| |
Collapse
|
2
|
Mulla JA, Palod PS, Bhagwat SA, Sonawane AP, Acharya SK, Kulkarni AP, Tamhane VA. Genomic and functional insights into the diversity of Capsicum annuum defensin gene family. 3 Biotech 2025; 15:99. [PMID: 40144309 PMCID: PMC11933556 DOI: 10.1007/s13205-025-04256-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Plant defensins are known for their diverse functional roles in development and stress tolerance. We explored the structural and functional diversity of the defensin gene family in Capsicum annuum (CanDef) genomes (CM334 and UCD10Xv1.1). A total of 63 unique full-length CanDef genes were identified through BLASTn and BLASTp analysis. The CanDefs possessed ~ 46 to 88 amino acids and categorized into four groups based on their length, presence of C-terminal tail and gamma-core region. Their phylogenetic analysis with other plant and invertebrate defensin proteins resulted in seven clades of which 37 CanDefs aligned in the recently diversified clade. Most CanDefs localized to chromosome-7. CanDefs contained functional motifs like gamma thionin, knot domain or scorpion toxin domain. Cis-elements and miRNA target sites related to phytohormone signaling, stress responses and development were enriched in the upstream of CanDefs and indicated diverse biological functions. In silico RNA-seq analysis revealed unique expression of CanDefs in tissues under different stresses. CanDefs varied their gene expression in stress conditions significantly with CanDef20, CanDef45 and CanDef61 being the most prominently expressed. In choice assay, Helicoverpa armigera larvae were attracted towards Nicotiana tabacum leaves expressing CanDefs, whereas their growth reduced in the no-choice assay. In conclusion, the genomic, molecular and functional insights on CanDef diversity highlight their significance in plant development and response to biotic/abiotic stresses. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04256-y.
Collapse
Affiliation(s)
- Javed A. Mulla
- Department of Biotechnology (Institute of Bioinformatics and Biotechnology Building), Savitribai Phule Pune University, Pune, Maharashtra 411007 India
| | - Parag S. Palod
- Department of Biotechnology (Institute of Bioinformatics and Biotechnology Building), Savitribai Phule Pune University, Pune, Maharashtra 411007 India
| | - Srushti A. Bhagwat
- Department of Biotechnology (Institute of Bioinformatics and Biotechnology Building), Savitribai Phule Pune University, Pune, Maharashtra 411007 India
| | - Abhilasha P. Sonawane
- Department of Biotechnology (Institute of Bioinformatics and Biotechnology Building), Savitribai Phule Pune University, Pune, Maharashtra 411007 India
| | - Supriya K. Acharya
- Department of Biotechnology (Institute of Bioinformatics and Biotechnology Building), Savitribai Phule Pune University, Pune, Maharashtra 411007 India
| | - Abhijeet P. Kulkarni
- Department of Bioinformatics, Savitribai Phule Pune University, Pune, Maharashtra 411007 India
| | - Vaijayanti A. Tamhane
- Department of Biotechnology (Institute of Bioinformatics and Biotechnology Building), Savitribai Phule Pune University, Pune, Maharashtra 411007 India
| |
Collapse
|
3
|
Zhang Q, Choi K, Wang X, Xi L, Lu S. The Contribution of Human Antimicrobial Peptides to Fungi. Int J Mol Sci 2025; 26:2494. [PMID: 40141139 PMCID: PMC11941821 DOI: 10.3390/ijms26062494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Various species of fungi can be detected in the environment and within the human body, many of which may become pathogenic under specific conditions, leading to various forms of fungal infections. Antimicrobial peptides (AMPs) are evolutionarily ancient components of the immune response that are quickly induced in response to infections with many pathogens in almost all tissues. There is a wide range of AMP classes in humans, many of which exhibit broad-spectrum antimicrobial function. This review provides a comprehensive overview of the mechanisms of action of AMPs, their distribution in the human body, and their antifungal activity against a range of both common and rare clinical fungal pathogens. It also discusses the current research status of promising novel antifungal strategies, highlighting the challenges that must be overcome in the development of these therapies. The hope is that antimicrobial peptides, as a class of antimicrobial agents, will soon progress through large-scale clinical trials and be implemented in clinical practice, offering new treatment options for patients suffering from infections.
Collapse
Affiliation(s)
| | | | | | | | - Sha Lu
- Department of Dermatology and Venereology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, #107 Yanjiang West Rd., Guangzhou 510120, China; (Q.Z.); (K.C.); (X.W.); (L.X.)
| |
Collapse
|
4
|
Kharrat O, Yamaryo-Botté Y, Nasreddine R, Voisin S, Aumer T, Cammue BPA, Madinier JB, Knobloch T, Thevissen K, Nehmé R, Aucagne V, Botté C, Bulet P, Landon C. The antimicrobial activity of ETD151 defensin is dictated by the presence of glycosphingolipids in the targeted organisms. Proc Natl Acad Sci U S A 2025; 122:e2415524122. [PMID: 39937853 PMCID: PMC11848316 DOI: 10.1073/pnas.2415524122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/08/2025] [Indexed: 02/14/2025] Open
Abstract
Fungal infections represent a significant global health concern, with a growing prevalence of antifungal drug resistance. Targeting glucosylceramides (GlcCer), which are functionally important glycosphingolipids (GSL) present in fungal membranes, represents a promising strategy for the development of antifungal drugs. GlcCer are associated with the antifungal activity of certain plant and insect defensins. The 44-residue ETD151 peptide, optimized from butterfly defensins, is active against several fungal pathogens. ETD151 has been shown to induce a multifaceted mechanism of action (MOA) in Botrytis cinerea, a multiresistant phytopathogenic fungus. However, the target has yet to be identified. Our findings demonstrate that the presence of GlcCer in membranes determines the susceptibility of Pichia pastoris and Candida albicans toward ETD151. To ascertain whether this is due to direct molecular recognition, we demonstrate that ETD151 selectively recognizes liposomes containing GlcCer from B. cinerea, which reveals a methylated-sphingoid base structure. The dissociation constant was estimated by microscale thermophoresis to be in the µM range. Finally, fluorescence microscopy revealed that ETD151 localizes preferentially at the surface of B. cinerea. Furthermore, the majority of prokaryotic cells do not contain GSL, which explains their resistance to ETD151. We investigated the susceptibility of Novosphingobium capsulatum, one of the rare GSL-containing bacteria, to ETD151. ETD151 demonstrated transient morphological changes and inhibitory growth activity (IC50 ~75 µM) with an affinity for the cell surface, emphasizing the critical importance of GSL as target. Understanding the MOA of ETD151 could pave the way for new perspectives in human health and crop protection.
Collapse
Affiliation(s)
- Ons Kharrat
- Centre for Molecular Biophysics, CNRS, Orléans45071, France
| | - Yoshiki Yamaryo-Botté
- Institute for Advanced Biosciences, University of Grenoble Alpes, Grenoble38700, France
| | - Rouba Nasreddine
- Institute of Organic and Analytical Chemistry, University of Orléans, CNRS, Orléans45069, France
| | | | - Thomas Aumer
- Plateform BioPark Archamps, Archamps74160, France
- Bayer CropScience, Lyon69263, France
| | - Bruno P. A. Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Leuven3001, Belgium
| | | | | | - Karin Thevissen
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Leuven3001, Belgium
| | - Reine Nehmé
- Institute of Organic and Analytical Chemistry, University of Orléans, CNRS, Orléans45069, France
| | | | - Cyrille Botté
- Institute for Advanced Biosciences, University of Grenoble Alpes, Grenoble38700, France
| | - Philippe Bulet
- Institute for Advanced Biosciences, University of Grenoble Alpes, Grenoble38700, France
- Plateform BioPark Archamps, Archamps74160, France
| | - Céline Landon
- Centre for Molecular Biophysics, CNRS, Orléans45071, France
| |
Collapse
|
5
|
Gómez-Lama Cabanás C, Mercado-Blanco J. Groundbreaking Technologies and the Biocontrol of Fungal Vascular Plant Pathogens. J Fungi (Basel) 2025; 11:77. [PMID: 39852495 PMCID: PMC11766565 DOI: 10.3390/jof11010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/29/2024] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
This review delves into innovative technologies to improve the control of vascular fungal plant pathogens. It also briefly summarizes traditional biocontrol approaches to manage them, addressing their limitations and emphasizing the need to develop more sustainable and precise solutions. Powerful tools such as next-generation sequencing, meta-omics, and microbiome engineering allow for the targeted manipulation of microbial communities to enhance pathogen suppression. Microbiome-based approaches include the design of synthetic microbial consortia and the transplant of entire or customized soil/plant microbiomes, potentially offering more resilient and adaptable biocontrol strategies. Nanotechnology has also advanced significantly, providing methods for the targeted delivery of biological control agents (BCAs) or compounds derived from them through different nanoparticles (NPs), including bacteriogenic, mycogenic, phytogenic, phycogenic, and debris-derived ones acting as carriers. The use of biodegradable polymeric and non-polymeric eco-friendly NPs, which enable the controlled release of antifungal agents while minimizing environmental impact, is also explored. Furthermore, artificial intelligence and machine learning can revolutionize crop protection through early disease detection, the prediction of disease outbreaks, and precision in BCA treatments. Other technologies such as genome editing, RNA interference (RNAi), and functional peptides can enhance BCA efficacy against pathogenic fungi. Altogether, these technologies provide a comprehensive framework for sustainable and precise management of fungal vascular diseases, redefining pathogen biocontrol in modern agriculture.
Collapse
Affiliation(s)
- Carmen Gómez-Lama Cabanás
- Department of Crop Protection, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas (CSIC), Campus Alameda del Obispo, Avd. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Jesús Mercado-Blanco
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain;
| |
Collapse
|
6
|
Lei Y, Lyu A, Pan M, Shi Q, Xu H, Li D, Deng M. Control of Postharvest Green Mold in Citrus by the Antimicrobial Peptide BP15 and Its Lipopeptides. J Fungi (Basel) 2024; 10:837. [PMID: 39728333 DOI: 10.3390/jof10120837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
This study examined the efficacy and mechanisms of action of the antimicrobial peptide BP15 and its lipopeptides, HBP15 and LBP15, against Penicillium digitatum, the primary causative agent of green mold in citrus fruits. The findings revealed that all three antimicrobial peptides markedly inhibited the spore germination and mycelial growth of P. digitatum, with minimum inhibitory concentrations (MICs) of 3.12 μM for BP15, HBP15, and LBP15. The peptides induced morphological alterations in hyphae and elevated intracellular Sytox Green (SG) fluorescence signals, which is indicative of increased cell membrane permeability and disruption. This membrane damage was further supported by the heightened extracellular conductivity and the release of intracellular nucleic acid and protein. A gel retardation assay demonstrated that the peptides showed significant DNA binding and retardation effects. Furthermore, the peptides exhibited significantly lower hemolytic activity (p < 0.05) compared to commercial prochloraz in normal mammalian erythrocytes (sheep erythrocytes) at the tested concentrations. Therefore, BP15 and its lipopeptides, HBP15 and LBP15, show potential as effective agents for preventing green mold in citrus fruits.
Collapse
Affiliation(s)
- Yu Lei
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Aiyuan Lyu
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Mengjuan Pan
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Qingxia Shi
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Haowan Xu
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Dong Li
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Mengsheng Deng
- School of Biological Engineering, Sichuan University of Science & Engineering, Yibin 644000, China
| |
Collapse
|
7
|
Kuratani Y, Abematsu C, Ekino K, Oka T, Shin M, Iwata M, Ohta H, Ando S. Cylindracin, a Cys-rich protein expressed in the fruiting body of Cyclocybe cylindracea, inhibits growth of filamentous fungi but not yeasts or bacteria. FEBS Open Bio 2024; 14:1805-1824. [PMID: 39380157 PMCID: PMC11532979 DOI: 10.1002/2211-5463.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Mushrooms are the fruiting bodies of fungi and are important reproductive structures that produce and disseminate spores. The Pri3 gene was originally reported to be specifically expressed in the primordia (a precursor to the mature fruiting body) of the edible mushroom Cyclocybe aegerita. Here, we cloned a Pri3-related cDNA from Cyclocybe cylindracea, another species in the same genus, and showed that the gene is specifically expressed at the pileus surface of the immature fruiting body but not in the primordia. Immunohistochemistry showed that the translated protein is secreted into a polysaccharide layer of the pileus surface. The recombinant C-terminal Cys-rich domain of the protein showed antifungal activity against three filamentous fungi and inhibited hyphal growth and conidiogenesis. These results suggest that the PRI3-related protein of C. cylindracea, named cylindracin, plays an important role in the defense against pathogens.
Collapse
Affiliation(s)
- Yamato Kuratani
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Chika Abematsu
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Keisuke Ekino
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Takuji Oka
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Masashi Shin
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | | | - Hiroto Ohta
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| | - Shoji Ando
- Faculty of Biotechnology and Life ScienceSojo UniversityKumamotoJapan
| |
Collapse
|
8
|
Kim YM, Guk T, Jang MK, Park SC, Lee JR. Targeted delivery of amphotericin B-loaded PLGA micelles displaying lipopeptides to drug-resistant Candida-infected skin. Int J Biol Macromol 2024; 279:135402. [PMID: 39245114 DOI: 10.1016/j.ijbiomac.2024.135402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Amphotericin B (AmB) is an antifungal agent administered for the management of serious systemic fungal infections. However, its clinical application is limited because of its water insolubility and side effects. Herein, to apply the minimum dose of AmB that can be used to manage fungal infections, a targeted drug delivery system was designed using lipopeptides and poly(lactide-co-glycolide) (PLGA). Lipopeptides conjugated with PEGylated distearoyl phosphoethanolamine (DSPE) and short peptides via a maleimide-thiol reaction formed nanosized micelles with PLGA and AmB. The antifungal effects of AmB-loaded micelles containing lipopeptides were remarkably enhanced both in vitro and in vivo. Moreover, the intravenous injection of these micelles demonstrated their in vivo targeting capacity of short peptides in a mouse model infected with drug-resistant Candida albicans. Our findings suggest that short antifungal peptides displayed on the surfaces of micelles represent a promising therapeutic candidate for targeting drug-resistant fungal infections.
Collapse
Affiliation(s)
- Young-Min Kim
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Taeuk Guk
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Mi-Kyeong Jang
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea
| | - Seong-Cheol Park
- Department of Chemical Engineering, College of Engineering, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea.
| | - Jung Ro Lee
- National Institute of Ecology (NIE), Seocheon 33657, Republic of Korea.
| |
Collapse
|
9
|
Resende LM, de Oliveira Mello É, Zeraik AE, Oliveira APBF, Souza TAM, Taveira GB, Moreira FF, Seabra SH, Ferreira AT, Perales J, de Oliveira Carvalho A, Rodrigues R, Gomes VM. Defensin-like peptides from Capsicum chinense induce increased ROS, loss of mitochondrial functionality, and reduced growth of the fungus Colletotrichum scovillei. PEST MANAGEMENT SCIENCE 2024; 80:3567-3577. [PMID: 38459870 DOI: 10.1002/ps.8061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/09/2024] [Indexed: 03/11/2024]
Abstract
In the present study, we identified and characterized two defensin-like peptides in an antifungal fraction obtained from Capsicum chinense pepper fruits and inhibited the growth of Colletotrichum scovillei, which causes anthracnose. AMPs were extracted from the pericarp of C. chinense peppers and subjected to ion exchange, molecular exclusion, and reversed-phase in a high-performance liquid chromatography system. We investigated the endogenous increase in reactive oxygen species (ROS), the loss of mitochondrial functioning, and the ultrastructure of hyphae. The peptides obtained from the G3 fraction through molecular exclusion chromatography were subsequently fractionated using reverse-phase chromatography, resulting in the isolation of fractions F1, F2, F3, F4, and F5. The F1-Fraction suppressed C. scovillei growth by 90, 70.4, and 44% at 100, 50, and 25 μg mL-1, respectively. At 24 h, the IC50 and minimum inhibitory concentration were 21.5 μg mL-1 and 200 μg mL-1, respectively. We found an increase in ROS, which may have resulted in an oxidative burst, loss of mitochondrial functioning, and cytoplasm retraction, as well as an increase in autophagic vacuoles. MS/MS analysis of the F1-Fraction indicated the presence of two defensin-like proteins, and we were able to identify the expression of three defensin sequences in our C. chinense fruit extract. The F1-Fraction was also found to inhibit the activity of insect α-amylases. In summary, the F1-Fraction of C. chinense exhibits antifungal activity against a major pepper pathogen that causes anthracnose. These defensin-like compounds are promising prospects for further research into antifungal and insecticide biotechnology applications. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Larissa Maximano Resende
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Érica de Oliveira Mello
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Ana Eliza Zeraik
- Laboratório de Química e Função de Proteinas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Arielle Pinheiro Bessiati Fava Oliveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Thaynã Amanda Melo Souza
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Gabriel Bonan Taveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Felipe Figueiroa Moreira
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Sérgio Henrique Seabra
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | | | - Jonas Perales
- Laboratório de Toxinologia, Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Rosana Rodrigues
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
10
|
Panthi U, McCallum B, Kovalchuk I, Rampitsch C, Badea A, Yao Z, Bilichak A. Foliar application of plant-derived peptides decreases the severity of leaf rust (Puccinia triticina) infection in bread wheat (Triticum aestivum L.). J Genet Eng Biotechnol 2024; 22:100357. [PMID: 38494271 PMCID: PMC10903759 DOI: 10.1016/j.jgeb.2024.100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 02/02/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Screening and developing novel antifungal agents with minimal environmental impact are needed to maintain and increase crop production, which is constantly threatened by various pathogens. Small peptides with antimicrobial and antifungal activities have been known to play an important role in plant defense both at the pathogen level by suppressing its growth and proliferation as well as at the host level through activation or priming of the plant's immune system for a faster, more robust response against fungi. Rust fungi (Pucciniales) are plant pathogens that can infect key crops and overcome resistance genes introduced in elite wheat cultivars. RESULTS We performed an in vitro screening of 18 peptides predominantly of plant origin with antifungal or antimicrobial activity for their ability to inhibit leaf rust (Puccinia triticina, CCDS-96-14-1 isolate) urediniospore germination. Nine peptides demonstrated significant fungicidal properties compared to the control. Foliar application of the top three candidates, β-purothionin, Purothionin-α2 and Defensin-2, decreased the severity of leaf rust infection in wheat (Triticum aestivum L.) seedlings. Additionally, increased pathogen resistance was paralleled by elevated expression of defense-related genes. CONCLUSIONS Identified antifungal peptides could potentially be engineered in the wheat genome to provide an alternative source of genetic resistance to leaf rust.
Collapse
Affiliation(s)
- Urbashi Panthi
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Rte 100 #100, Morden, MB R6M 1Y5, Canada
| | - Brent McCallum
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Rte 100 #100, Morden, MB R6M 1Y5, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, 4401 University Dr W, Lethbridge, AB T1K 3M4, Canada
| | - Christof Rampitsch
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Rte 100 #100, Morden, MB R6M 1Y5, Canada
| | - Ana Badea
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, 2701 Grand Valley Road, P.O. Box 1000A, Brandon, MB R7A 5Y3, Canada
| | - Zhen Yao
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Rte 100 #100, Morden, MB R6M 1Y5, Canada
| | - Andriy Bilichak
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Rte 100 #100, Morden, MB R6M 1Y5, Canada.
| |
Collapse
|
11
|
Velayatipour F, Tarrahimofrad H, Zamani J, Fotouhi F, Aminzadeh S. In-vitro antimicrobial activity of AF-DP protein and in-silico approach of cell membrane disruption. J Biomol Struct Dyn 2024:1-18. [PMID: 38319027 DOI: 10.1080/07391102.2024.2308763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/14/2024] [Indexed: 02/07/2024]
Abstract
Microbial resistance against common antibiotics has become one of the most serious threats to human health. The increasing statistics on this problem show the necessity of finding a way to deal with it. In recent years, antimicrobial peptides with unique properties and the capability of targeting a wide range of pathogens, have been considered as a potential for replacing common antibiotics. A small chitin-binding protein with anticandidal activity was isolated from Moringa oleifera seeds by Neto and colleagues in 2017, which very much resembled antimicrobial peptides. In this study, the antimicrobial protein 'AF-DP' was identified and characterized. AF-DP was heterologously expressed, purified, and characterized, and its 3D structure was predicted. Six molecular dynamic simulations were performed to investigate how the protein interacts with Gram-negative inner and outer, Gram-positive, fungal, cancerous, and normal mammalian membranes. Also, its antimicrobial and anticancer activity was assessed in vitro via minimum inhibition concentration (MIC) and MTT assays, respectively. This protein with 111 amino acids and a total net charge (of 10.5) has been predicted to be mainly composed of alpha helix and random coils. Its MIC affecting the growth of Escherichia coli, Staphylococcus aureus, and Candida albicans was 30 µg/ml, 100 µg/ml, and 100 µg/ml, respectively; AF-DP showed anticancer activity against MCF-7 breast cancer cell line. Scanning electron microscopic analysis confirmed the creation of pores and scratches on the surface of the bacterial membrane. The results of this research show that AF-DP can be a candidate for the production of new drugs as an AMP with antimicrobial activity.
Collapse
Affiliation(s)
- Fatemeh Velayatipour
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Tarrahimofrad
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Javad Zamani
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fatemeh Fotouhi
- Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
12
|
Parisi K, McKenna JA, Lowe R, Harris KS, Shafee T, Guarino R, Lee E, van der Weerden NL, Bleackley MR, Anderson MA. Hyperpolarisation of Mitochondrial Membranes Is a Critical Component of the Antifungal Mechanism of the Plant Defensin, Ppdef1. J Fungi (Basel) 2024; 10:54. [PMID: 38248963 PMCID: PMC10817573 DOI: 10.3390/jof10010054] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Plant defensins are a large family of small cationic proteins with diverse functions and mechanisms of action, most of which assert antifungal activity against a broad spectrum of fungi. The partial mechanism of action has been resolved for a small number of members of plant defensins, and studies have revealed that many act by more than one mechanism. The plant defensin Ppdef1 has a unique sequence and long loop 5 with fungicidal activity against a range of human fungal pathogens, but little is known about its mechanism of action. We screened the S. cerevisiae non-essential gene deletion library and identified the involvement of the mitochondria in the mechanism of action of Ppdef1. Further analysis revealed that the hyperpolarisation of the mitochondrial membrane potential (MMP) activates ROS production, vacuolar fusion and cell death and is an important step in the mechanism of action of Ppdef1, and it is likely that a similar mechanism acts in Trichophyton rubrum.
Collapse
Affiliation(s)
- Kathy Parisi
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
- Hexima Ltd., Preston 3072, Australia
| | - James A. McKenna
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
- Hexima Ltd., Preston 3072, Australia
| | - Rohan Lowe
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
- Hexima Ltd., Preston 3072, Australia
| | - Karen S. Harris
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
- Hexima Ltd., Preston 3072, Australia
| | - Thomas Shafee
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Rosemary Guarino
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
- Hexima Ltd., Preston 3072, Australia
| | - Eunice Lee
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
- Hexima Ltd., Preston 3072, Australia
| | - Nicole L. van der Weerden
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
- Hexima Ltd., Preston 3072, Australia
| | - Mark R. Bleackley
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
- Hexima Ltd., Preston 3072, Australia
| | - Marilyn A. Anderson
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
- Hexima Ltd., Preston 3072, Australia
| |
Collapse
|
13
|
Memariani M, Memariani H. Antifungal properties of cathelicidin LL-37: current knowledge and future research directions. World J Microbiol Biotechnol 2023; 40:34. [PMID: 38057654 DOI: 10.1007/s11274-023-03852-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
The threat of fungal diseases is substantially underestimated worldwide, but they have serious consequences for humans, animals, and plants. Given the limited number of existing antifungal drugs together with the emergence of drug-resistant strains, many researchers have actively sought alternatives or adjuvants to antimycotics. The best way to tackle these issues is to unearth potential antifungal agents with new modes of action. Antimicrobial peptides are being hailed as a promising source of novel antimicrobials since they exhibit rapid and broad-spectrum microbicidal activities with a reduced likelihood of developing drug resistance. Recent years have witnessed an explosion in knowledge on microbicidal activity of LL-37, the sole human cathelicidin. Herein, we provide a summary of the current understanding about antifungal properties of LL-37, with particular emphasis on its molecular mechanisms. We further illustrate fruitful areas for future research. LL-37 is able to inhibit the growth of clinically and agronomically relevant fungi including Aspergillus, Candida, Colletotrichum, Fusarium, Malassezia, Pythium, and Trichophyton. Destruction of the cell wall integrity, membrane permeabilization, induction of oxidative stress, disruption of endoplasmic reticulum homeostasis, formation of autophagy-like structures, alterations in expression of numerous fungal genes, and inhibition of cell cycle progression are the key mechanisms underlying antifungal effects of LL-37. Burgeoning evidence also suggests that LL-37 may act as a potential anti-virulence peptide. It is hoped that this review will not only motivate researchers to conduct more detailed studies in this field, but also inspire further innovations in the design of LL-37-based drugs for the treatment of fungal infections.
Collapse
Affiliation(s)
- Mojtaba Memariani
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Memariani
- Department of Medical Microbiology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Wang JS, Peng X, Zhao Z, Wang C, Xie HT, Zhang MC. Differential expression of antimicrobial peptides in human fungal keratitis. Int J Ophthalmol 2023; 16:1630-1635. [PMID: 37854369 PMCID: PMC10559020 DOI: 10.18240/ijo.2023.10.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/03/2023] [Indexed: 10/20/2023] Open
Abstract
AIM To analyze a series of antimicrobial peptides (AMPs) in corneal tissue from individuals with fungal keratitis (FK) during the active phase of the fungus infection and after healing. METHODS Patients undergone lamellar keratoplasty for the treatment of severe FK or corneal scar had their corneal buttons sampled. Quantitative real-time polymerase chain reaction (PCR) was used to ascertain the gene expression of human beta-defensin (HBD)-1, -2, -3, -9, S100A7, 8, 9, and LL-37. RESULTS All AMPs' messenger ribonucleic acid (mRNA) expression was considerably elevated in all samples (n=12). In contrast to controls, where HBD-2, -3, and S100A7 mRNAs were expressed at very low levels, it was discovered that HBD-1, -9, S100A8, S100A9, and LL-37 were constitutively expressed in all healed samples (n=4). HBD-1, -2 -3, S100A7, and LL-37 mRNAs were significantly increased in all active FK samples (n=8). The levels of HBD-9, S100A8, and S100A9 mRNAs were moderately upregulated in all active FK samples. Subgroup comparison showed that HBD-2 was significantly increased in Fusarium keratitis samples (n=5), and LL-37 mRNAs were significantly enhanced in Aspergillus keratitis samples (n=3). Whereas there was not significantly increased of HBD-1, -3, -9, S100A7, 8, 9 mRNA in Aspergillus keratitis samples compared with Fusarium keratitis samples. CONCLUSION AMPs expression is increased in active FK, but not all AMPs are equally expressed. HBD-2 and LL-37 expression levels are the highest, showing some specificity of AMP expression related to FK. Human AMPs, particularly HBD-2 may play a significant role in Fusarium keratitis and LL-37 might be the key player in Aspergillus keratitis.
Collapse
Affiliation(s)
- Jia-Song Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xi Peng
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Zhao Zhao
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Chao Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Hua-Tao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Ming-Chang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
15
|
Chandrasekhar G, Pengyong H, Pravallika G, Hailei L, Caixia X, Rajasekaran R. Defensin-based therapeutic peptide design in attenuating V30M TTR-induced Familial Amyloid Polyneuropathy. 3 Biotech 2023; 13:227. [PMID: 37304406 PMCID: PMC10250285 DOI: 10.1007/s13205-023-03646-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/24/2023] [Indexed: 06/13/2023] Open
Abstract
In the present study, we aimed to formulate an effective therapeutic candidate against V30M mutant transthyretin (TTR) protein to hinder its pathogenic misfolding. Nicotiana alata Defensin 1 (NaD1) Antimicrobial Peptide (AMP) was availed due to its tendency to aggregate, which may compete for aggregation-prone regions of pathogenic TTR protein. Based on NaD1's potential to bind to V30M TTR, we proposed NaD1-derived tetra peptides: CKTE and SKIL to be initial therapeutic candidates. Based on their association with mutant TTR protein, CKTE tetra peptide showed considerable interaction and curative potential as compared to SKIL tetra peptide. Further analyses from discrete molecular dynamics simulation corroborate CKTE tetra peptide's effectiveness as a 'beta-sheet breaker' against V30M TTR. Various post-simulation trajectory analyses suggested that CKTE tetra peptide alters the structural dynamics of pathogenic V30M TTR protein, thereby potentially attenuating its beta-sheets and impeding its aggregation. Normal mode analysis simulation corroborated that V30M TTR conformation is altered upon its interaction with CKTE peptide. Moreover, simulated thermal denaturation findings suggested that CKTE-V30M TTR complex is more susceptible to simulated denaturation, relative to pathogenic V30M TTR; further substantiating CKTE peptide's potential to alter V30M TTR's pathogenic conformation. Moreover, the residual frustration analysis augmented CKTE tetra peptide's proclivity in reorienting the conformation of V30M TTR. Therefore, we predicted that the tetra peptide, CKTE could be a promising therapeutic candidate in mitigating the amyloidogenic detrimental effects of V30M TTR-mediated familial amyloid polyneuropathy (FAP). Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03646-4.
Collapse
Affiliation(s)
- G. Chandrasekhar
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to Be University), Vellore, Tamil Nadu 632014 India
| | - H. Pengyong
- Changzhi Medical College, Changzhi, 046000 China
| | - G. Pravallika
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to Be University), Vellore, Tamil Nadu 632014 India
| | - L. Hailei
- Changzhi Medical College, Changzhi, 046000 China
| | - X. Caixia
- Changzhi Medical College, Changzhi, 046000 China
| | - R. Rajasekaran
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to Be University), Vellore, Tamil Nadu 632014 India
| |
Collapse
|
16
|
Shah ST, Basit A, Mohamed HI, Ullah I, Sajid M, Sohrab A. Use of Mulches in Various Tillage Conditions Reduces the Greenhouse Gas Emission—an Overview. GESUNDE PFLANZEN 2023; 75:455-477. [DOI: 10.1007/s10343-022-00719-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/25/2022] [Indexed: 10/26/2023]
|
17
|
Dho M, Candian V, Tedeschi R. Insect Antimicrobial Peptides: Advancements, Enhancements and New Challenges. Antibiotics (Basel) 2023; 12:952. [PMID: 37370271 DOI: 10.3390/antibiotics12060952] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Several insects are known as vectors of a wide range of animal and human pathogens causing various diseases. However, they are also a source of different substances, such as the Antimicrobial Peptides (AMPs), which can be employed in the development of natural bioactive compounds for medical, veterinary and agricultural applications. It is well known that AMP activity, in contrast to most classical antibiotics, does not lead to the development of natural bacterial resistance, or at least the frequency of resistance is considered to be low. Therefore, there is a strong interest in assessing the efficacy of the various peptides known to date, identifying new compounds and evaluating possible solutions in order to increase their production. Moreover, implementing AMP modulation in insect rearing could preserve insect health in large-scale production. This review describes the current knowledge on insect AMPs, presenting the validated ones for the different insect orders. A brief description of their mechanism of action is reported with focus on proposed applications. The possible effects of insect diet on AMP translation and synthesis have been discussed.
Collapse
Affiliation(s)
- Matteo Dho
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - Valentina Candian
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - Rosemarie Tedeschi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
18
|
Mazurkiewicz-Pisarek A, Baran J, Ciach T. Antimicrobial Peptides: Challenging Journey to the Pharmaceutical, Biomedical, and Cosmeceutical Use. Int J Mol Sci 2023; 24:ijms24109031. [PMID: 37240379 DOI: 10.3390/ijms24109031] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial peptides (AMPs), or host defence peptides, are short proteins in various life forms. Here we discuss AMPs, which may become a promising substitute or adjuvant in pharmaceutical, biomedical, and cosmeceutical uses. Their pharmacological potential has been investigated intensively, especially as antibacterial and antifungal drugs and as promising antiviral and anticancer agents. AMPs exhibit many properties, and some of these have attracted the attention of the cosmetic industry. AMPs are being developed as novel antibiotics to combat multidrug-resistant pathogens and as potential treatments for various diseases, including cancer, inflammatory disorders, and viral infections. In biomedicine, AMPs are being developed as wound-healing agents because they promote cell growth and tissue repair. The immunomodulatory effects of AMPs could be helpful in the treatment of autoimmune diseases. In the cosmeceutical industry, AMPs are being investigated as potential ingredients in skincare products due to their antioxidant properties (anti-ageing effects) and antibacterial activity, which allows the killing of bacteria that contribute to acne and other skin conditions. The promising benefits of AMPs make them a thrilling area of research, and studies are underway to overcome obstacles and fully harness their therapeutic potential. This review presents the structure, mechanisms of action, possible applications, production methods, and market for AMPs.
Collapse
Affiliation(s)
- Anna Mazurkiewicz-Pisarek
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Joanna Baran
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Tomasz Ciach
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
19
|
Shahmiri M, Bleackley MR, Dawson CS, van der Weerden NL, Anderson MA, Mechler A. Membrane binding properties of plant defensins. PHYTOCHEMISTRY 2023; 209:113618. [PMID: 36828099 DOI: 10.1016/j.phytochem.2023.113618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The membrane interaction characteristics of five antifungal plant defensin peptides: NaD1, and the related HXP4 and L5, as well as NaD2 and the related ZmD32 were studied. These peptides were chosen to cover a broad range of cationic charges with little structural variations, allowing for assessment of the role of charge in their membrane interactions. Membrane permeabilizing activity against C. albicans was confirmed and quantified for benchmarking purposes. Viscoelastic characteristics of the membrane interactions were studied in typical neutral and charged model membranes using quartz crystal microbalance with dissipation (QCM-D. Frequency-dissipation fingerprinting analysis of the QCM-D results revealed that all of the peptides were able to bind to all studied model membranes albeit with slightly different viscoelastic character for each membrane type. However, characteristic disruption patterns were not observed suggesting that the membrane disrupting activity of these defensins is mostly specific to fungal membranes, and that increasing the peptide charge does not enhance their action. The results also show that the presence of specific sterols has a profound effect on the ability of the peptides to disrupt the membrane.
Collapse
Affiliation(s)
- Mahdi Shahmiri
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic, 3086, Australia; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - Mark R Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic, 3086, Australia
| | - Charlotte S Dawson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic, 3086, Australia
| | - Nicole L van der Weerden
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic, 3086, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic, 3086, Australia
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic, 3086, Australia.
| |
Collapse
|
20
|
Aaghaz S, Sharma K, Maurya IK, Rudramurthy SM, Singh S, Kumar V, Tikoo K, Jain R. Synthetic amino acids-based short amphipathic peptides exhibit antifungal activity by targeting cell membrane disruption. Drug Dev Res 2023; 84:514-526. [PMID: 36757096 DOI: 10.1002/ddr.22041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/21/2022] [Accepted: 01/22/2023] [Indexed: 02/10/2023]
Abstract
Availability of a limited number of antifungal drugs created a necessity to develop new antifungals with distinct mode of action. Investigation on a new series of peptides led us to identify Boc-His-Trp-His[1-(4-tert-butylphenyl)] (10g) as the most promising inhibitor exhibiting IC50 value of 4.4 µg/mL against Cryptococcus neoformans. Analog 10g exhibit high selectivity to fungal cells and was nonhemolytic and noncytotoxic at its minimum inhibitory concentration. 10g produced fungicidal effect on growing cryptococcal cells and displayed synergistic effect with amphotericin B. Overall cationic character of 10g resulted in interaction with negatively charged fungal membrane while hydrophobicity enhanced penetration inside the cryptococcal cells causing hole(s) formation and disruption to the membrane as evident by the scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy analyses. Flow cytometric investigation revealed rapid death of fungal cells by apopotic pathway.
Collapse
Affiliation(s)
- Shams Aaghaz
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Indresh K Maurya
- Center of Infectious Diseases, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shreya Singh
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vinod Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India.,Center of Infectious Diseases, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| |
Collapse
|
21
|
Arulrajah B, Qoms MS, Muhialdin BJ, Zarei M, Hussin ASM, Hasan H, Chau DM, Ramasamy R, Saari N. Antifungal efficacy of kenaf seed peptides mixture in cheese, safety assessment and unravelling its action mechanism against food spoilage fungi. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Characterization of Defensin-like Protein 1 for Its Anti-Biofilm and Anti-Virulence Properties for the Development of Novel Antifungal Drug against Candida auris. J Fungi (Basel) 2022; 8:jof8121298. [PMID: 36547631 PMCID: PMC9786216 DOI: 10.3390/jof8121298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Candida auris has emerged as a pan-resistant pathogenic yeast among immunocompromised patients worldwide. As this pathogen is involved in biofilm-associated infections with serious medical manifestations due to the collective expression of pathogenic attributes and factors associated with drug resistance, successful treatment becomes a major concern. In the present study, we investigated the candidicidal activity of a plant defensin peptide named defensin-like protein 1 (D-lp1) against twenty-five clinical strains of C. auris. Furthermore, following the standard protocols, the D-lp1 was analyzed for its anti-biofilm and anti-virulence properties. The impact of these peptides on membrane integrity was also evaluated. For cytotoxicity determination, a hemolytic assay was conducted using horse blood. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values ranged from 0.047-0.78 mg/mL and 0.095-1.56 mg/mL, respectively. D-lp1 at sub-inhibitory concentrations potentially abrogated both biofilm formation and 24-h mature biofilms. Similarly, the peptide severely impacted virulence attributes in the clinical strain of C. auris. For the insight mechanism, D-lp1 displayed a strong impact on the cell membrane integrity of the test pathogen. It is important to note that D-lp1 at sub-inhibitory concentrations displayed minimal hemolytic activity against horse blood cells. Therefore, it is highly useful to correlate the anti-Candida property of D-lp1 along with anti-biofilm and anti-virulent properties against C. auris, with the aim of discovering an alternative strategy for combating serious biofilm-associated infections caused by C. auris.
Collapse
|
23
|
Histidine 19 Residue Is Essential for Cell Internalization of Antifungal Peptide SmAPα1-21 Derived from the α-Core of the Silybum marianum Defensin DefSm2-D in Fusarium graminearum. Antibiotics (Basel) 2022; 11:antibiotics11111501. [PMID: 36358156 PMCID: PMC9686561 DOI: 10.3390/antibiotics11111501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/30/2022] Open
Abstract
The synthetic peptide SmAPα1-21 (KLCEKPSKTWFGNCGNPRHCG) derived from DefSm2-D defensin α-core is active at micromolar concentrations against the phytopathogenic fungus Fusarium graminearum and has a multistep mechanism of action that includes alteration of the fungal cell wall and membrane permeabilization. Here, we continued the study of this peptide’s mode of action and explored the correlation between the biological activity and its primary structure. Transmission electron microscopy was used to study the ultrastructural effects of SmAPα1-21 in conidial cells. New peptides were designed by modifying the parent peptide SmAPα1-21 (SmAPH19R and SmAPH19A, where His19 was replaced by Arg or Ala, respectively) and synthesized by the Fmoc solid phase method. Antifungal activity was determined against F. graminearum. Membrane permeability and subcellular localization in conidia were studied by confocal laser scanning microscopy (CLSM). Reactive oxygen species (ROS) production was assessed by fluorescence spectroscopy and CLSM. SmAPα1-21 induced peroxisome biogenesis and oxidative stress through ROS production in F. graminearum and was internalized into the conidial cells’ cytoplasm. SmAPH19R and SmAPH19A were active against F. graminearum with minimal inhibitory concentrations (MICs) of 38 and 100 µM for SmAPH19R and SmAPH19A, respectively. The replacement of His19 by Ala produced a decrease in the net charge with a significant increase in the MIC, thus evidencing the importance of the positive charge in position 19 of the antifungal peptide. Like SmAPα1-21, SmAP2H19A and SmAP2H19R produced the permeabilization of the conidia membrane and induced oxidative stress through ROS production. However, SmAPH19R and SmAPH19A were localized in the conidia cell wall. The replacement of His19 by Ala turned all the processes slower. The extracellular localization of peptides SmAPH19R and SmAPH19A highlights the role of the His19 residue in the internalization.
Collapse
|
24
|
Häring M, Amann V, Kissmann AK, Herberger T, Synatschke C, Kirsch-Pietz N, Perez-Erviti JA, Otero-Gonzalez AJ, Morales-Vicente F, Andersson J, Weil T, Stenger S, Rodríguez A, Ständker L, Rosenau F. Combination of Six Individual Derivatives of the Pom-1 Antibiofilm Peptide Doubles Their Efficacy against Invasive and Multi-Resistant Clinical Isolates of the Pathogenic Yeast Candida albicans. Pharmaceutics 2022; 14:pharmaceutics14071332. [PMID: 35890228 PMCID: PMC9319270 DOI: 10.3390/pharmaceutics14071332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
In previous studies, derivatives of the peptide Pom-1, which was originally extracted from the freshwater mollusk Pomacea poeyana, showed an exceptional ability to specifically inhibit biofilm formation of the laboratory strain ATCC 90028 as a model strain of the pathogenic yeast Candida albicans. In follow-up, here, we demonstrate that the derivatives Pom-1A to Pom-1F are also active against biofilms of invasive clinical C. albicans isolates, including strains resistant against fluconazole and/or amphotericin B. However, efficacy varied strongly between the isolates, as indicated by large deviations in the experiments. This lack of robustness could be efficiently bypassed by using mixtures of all peptides. These mixed peptide preparations were active against biofilm formation of all the isolates with uniform efficacies, and the total peptide concentration could be halved compared to the original MIC of the individual peptides (2.5 µg/mL). Moreover, mixing the individual peptides restored the antifungal effect of fluconazole against fluconazole-resistant isolates even at 50% of the standard therapeutic concentration. Without having elucidated the reason for these synergistic effects of the peptides yet, both the gain of efficacy and the considerable increase in efficiency by combining the peptides indicate that Pom-1 and its derivatives in suitable formulations may play an important role as new antibiofilm antimycotics in the fight against invasive clinical infections with (multi-) resistant C. albicans.
Collapse
Affiliation(s)
- Michelle Häring
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (M.H.); (V.A.)
| | - Valerie Amann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (M.H.); (V.A.)
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (M.H.); (V.A.)
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany; (T.H.); (C.S.); (N.K.-P.); (T.W.)
- Correspondence: (A.-K.K.); (F.R.)
| | - Tilmann Herberger
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany; (T.H.); (C.S.); (N.K.-P.); (T.W.)
| | - Christopher Synatschke
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany; (T.H.); (C.S.); (N.K.-P.); (T.W.)
| | - Nicole Kirsch-Pietz
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany; (T.H.); (C.S.); (N.K.-P.); (T.W.)
| | - Julio A. Perez-Erviti
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Street, Havana 10400, Cuba; (J.A.P.-E.); (A.J.O.-G.)
| | - Anselmo J. Otero-Gonzalez
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Street, Havana 10400, Cuba; (J.A.P.-E.); (A.J.O.-G.)
| | - Fidel Morales-Vicente
- Synthetic Peptides Group, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba;
| | - Jakob Andersson
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria;
| | - Tanja Weil
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany; (T.H.); (C.S.); (N.K.-P.); (T.W.)
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany;
| | - Armando Rodríguez
- Core Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP), Faculty of Medicine, Ulm University, 89081 Ulm, Germany; (A.R.); (L.S.)
- Core Unit of Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Ludger Ständker
- Core Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP), Faculty of Medicine, Ulm University, 89081 Ulm, Germany; (A.R.); (L.S.)
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (M.H.); (V.A.)
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany; (T.H.); (C.S.); (N.K.-P.); (T.W.)
- Correspondence: (A.-K.K.); (F.R.)
| |
Collapse
|
25
|
Hein MJA, Kvansakul M, Lay FT, Phan TK, Hulett MD. Defensin-lipid interactions in membrane targeting: mechanisms of action and opportunities for the development of antimicrobial and anticancer therapeutics. Biochem Soc Trans 2022; 50:423-437. [PMID: 35015081 PMCID: PMC9022979 DOI: 10.1042/bst20200884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022]
Abstract
Defensins are a class of host defence peptides (HDPs) that often harbour antimicrobial and anticancer activities, making them attractive candidates as novel therapeutics. In comparison with current antimicrobial and cancer treatments, defensins uniquely target specific membrane lipids via mechanisms distinct from other HDPs. Therefore, defensins could be potentially developed as therapeutics with increased selectivity and reduced susceptibility to the resistance mechanisms of tumour cells and infectious pathogens. In this review, we highlight recent advances in defensin research with a particular focus on membrane lipid-targeting in cancer and infection settings. In doing so, we discuss strategies to harness lipid-binding defensins for anticancer and anti-infective therapies.
Collapse
Affiliation(s)
- Matthew J. A. Hein
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Fung T. Lay
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Mark D. Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| |
Collapse
|
26
|
Corrêa-Almeida C, Borba-Santos LP, Rollin-Pinheiro R, Barreto-Bergter E, Rozental S, Kurtenbach E. Characterization of Aspergillus nidulans Biofilm Formation and Structure and Their Inhibition by Pea Defensin Psd2. Front Mol Biosci 2022; 9:795255. [PMID: 35155575 PMCID: PMC8830917 DOI: 10.3389/fmolb.2022.795255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Approximately four million people contract fungal infections every year in Brazil, primarily caused by Aspergillus spp. The ability of these fungi to form biofilms in tissues and medical devices complicates treatment and contributes to high rates of morbidity and mortality in immunocompromised patients. Psd2 is a pea defensin of 5.4 kDa that possesses good antifungal activity against planktonic cells of representative pathogenic fungi. Its function depends on interactions with membrane and cell wall lipid components such as glucosylceramide and ergosterol. In the present study, we characterized Aspergillus nidulans biofilm formation and determined the effect of Psd2 on A. nidulans biofilms. After 4 hours, A. nidulans conidia adhered to polystyrene surfaces and formed a robust extracellular matrix-producing biofilm at 24 h, increasing thickness until 48 h Psd2 inhibited A. nidulans biofilm formation in a dose-dependent manner. Most notably, at 10 μM Psd2 inhibited 50% of biofilm viability and biomass and 40% of extracellular matrix production. Psd2 significantly decreased the colonized surface area by the biofilm and changed its level of organization, causing a shortening of length and diameter of hyphae and inhibition of conidiophore formation. This activity against A. nidulans biofilm suggests a potential use of Psd2 as a prototype to design new antifungal agents to prevent biofilm formation by A. nidulans and related species.
Collapse
Affiliation(s)
- Caroline Corrêa-Almeida
- Laboratório de Biologia Molecular e Bioquímica de Proteínas, Programa de Biologia Molecular e Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Luana P. Borba-Santos
- Laboratório de Biologia Celular de Fungos, Programa de Parasitologia e Biologia Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Rodrigo Rollin-Pinheiro
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Eliana Barreto-Bergter
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Sonia Rozental
- Laboratório de Biologia Celular de Fungos, Programa de Parasitologia e Biologia Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Eleonora Kurtenbach
- Laboratório de Biologia Molecular e Bioquímica de Proteínas, Programa de Biologia Molecular e Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brasil
- *Correspondence: Eleonora Kurtenbach,
| |
Collapse
|
27
|
Mbuayama KR, Taute H, Strӧmstedt AA, Bester MJ, Gaspar ARM. Antifungal activity and mode of action of synthetic peptides derived from the tick OsDef2 defensin. J Pept Sci 2021; 28:e3383. [PMID: 34866278 DOI: 10.1002/psc.3383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 01/29/2023]
Abstract
Candida albicans is the principal opportunistic fungal pathogen in nosocomial settings and resistance to antifungal drugs is on the rise. Antimicrobial peptides from natural sources are promising novel therapeutics against C. albicans. OsDef2 defensin was previously found to be active against only Gram-positive bacteria, whereas derived fragments Os and its cysteine-free analogue, Os-C, are active against Gram-positive and Gram-negative bacteria at low micromolar concentrations. In this study, OsDef2-derived analogues and fragments were screened for anticandidal activity with the aim to identify peptides with antifungal activity and in so doing obtain a better understanding of the structural requirements for activity and modes of action. Os, Os-C and Os(11-22)NH2 , a Os-truncated carboxy-terminal-amidated fragment, had the most significant antifungal activities, with minimum fungicidal concentrations (MFCs) in the micromolar range (6-28 μM). C. albicans killing was rapid and occurred within 30-60 min. Further investigations showed all three peptides interacted with cell wall derived polysaccharides while both Os and Os(11-22)NH2 permeabilized fungal liposomes. Confocal laser scanning microscopy confirmed that Os-C and Os(11-22)NH2 could enter the cytosol of live cells and subsequent findings suggest that the uptake of Os and Os-C, in contrast to Os(11-22)NH2 , is energy dependent. Although Os, Os-C and Os(11-22)NH2 induced the production of reactive oxygen species (ROS), co-incubation with ascorbic acid revealed that only ROS generated by Os-C and to a lesser extent Os(11-22)NH2 resulted in cell death. Overall, Os, Os-C and Os(11-22)NH2 are promising candidacidal agents.
Collapse
Affiliation(s)
- Kabuzi R Mbuayama
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Helena Taute
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Adam A Strӧmstedt
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Megan J Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Anabella R M Gaspar
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
28
|
Ma L, Li R, Ma L, Song N, Xu Z, Wu J. Involvement of NAC transcription factor NaNAC29 in Alternaria alternata resistance and leaf senescence in Nicotiana attenuata. PLANT DIVERSITY 2021; 43:502-509. [PMID: 35024519 PMCID: PMC8720690 DOI: 10.1016/j.pld.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/16/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
NAC-LIKE, ACTIVATED BY AP3/PI (NAP) is a NAC transcription factor regulating leaf senescence in Arabidopsis thaliana. In wild tobacco Nicotiana attenuata, a nuclear localized NAC transcription factor NaNAC29 was identified to be highly elicited after inoculation of Alternaria alternata, a notorious necrotic fungus on tobacco species. The NaNAC29 possesses similar tertiary structure to NAP with 60% amino acid identity. However, it remains unknown the role of NaNAC29 in plant defense responses to A. alternata and leaf senescence in N. attenuata. In this paper, Defensin-like protein 1 (NaDLP1) was highly induced in N. attenuata after A. alternata inoculation and bigger lesions were developed in NaDLP1-silenced plants. Interestingly, A. alternata-induced NaDLP1 was reduced by 76% in VIGS NaNAC29 plants and by 61% in JA deficient irAOC plants at 3 days post inoculation. The regulation of NaDLP1 expression by NaNAC29 was clearly independent on JA pathway, since exogenous methyl jasmonate treatment could not complement the induction levels of NaDLP1 in NaNAC29-silenced plants to the levels in WT plants. Otherwise, the expression of NaNAC29 was low expressed in young leaves but highly in senescent leaves and dark-treated leaves. NaNAC29-silenced plants, which were generated by virus-induced gene silencing (VIGS NaNAC29), showed delayed senescence phenotype. In addition, constitutive over-expression of NaNAC29 in A. thaliana could rescue the delayed-senescence phenotype of nap and caused precocious leaf senescence of wild-type Col-0 plants. All the data above demonstrate that NaNAC29 is a NAP homolog in N. attenuata participating in the defense responses to A. alternata by regulation of a defensin protein NaDLP1 and promoting leaf senescence.
Collapse
Affiliation(s)
- Lan Ma
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
| | - Rongping Li
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Luoyan Ma
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
| | - Na Song
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Zhen Xu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, 650201, Kunming, China
| |
Collapse
|
29
|
Luo X, Wu W, Feng L, Treves H, Ren M. Short Peptides Make a Big Difference: The Role of Botany-Derived AMPs in Disease Control and Protection of Human Health. Int J Mol Sci 2021; 22:11363. [PMID: 34768793 PMCID: PMC8583512 DOI: 10.3390/ijms222111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Botany-derived antimicrobial peptides (BAMPs), a class of small, cysteine-rich peptides produced in plants, are an important component of the plant immune system. Both in vivo and in vitro experiments have demonstrated their powerful antimicrobial activity. Besides in plants, BAMPs have cross-kingdom applications in human health, with toxic and/or inhibitory effects against a variety of tumor cells and viruses. With their diverse molecular structures, broad-spectrum antimicrobial activity, multiple mechanisms of action, and low cytotoxicity, BAMPs provide ideal backbones for drug design, and are potential candidates for plant protection and disease treatment. Lots of original research has elucidated the properties and antimicrobial mechanisms of BAMPs, and characterized their surface receptors and in vivo targets in pathogens. In this paper, we review and introduce five kinds of representative BAMPs belonging to the pathogenesis-related protein family, dissect their antifungal, antiviral, and anticancer mechanisms, and forecast their prospects in agriculture and global human health. Through the deeper understanding of BAMPs, we provide novel insights for their applications in broad-spectrum and durable plant disease prevention and control, and an outlook on the use of BAMPs in anticancer and antiviral drug design.
Collapse
Affiliation(s)
- Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China
| | - Wenxian Wu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
| | - Li Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
| | - Haim Treves
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel;
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
30
|
Liu Y, Hua YP, Chen H, Zhou T, Yue CP, Huang JY. Genome-scale identification of plant defensin ( PDF) family genes and molecular characterization of their responses to diverse nutrient stresses in allotetraploid rapeseed. PeerJ 2021; 9:e12007. [PMID: 34603847 PMCID: PMC8445089 DOI: 10.7717/peerj.12007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022] Open
Abstract
Plant defensins (PDFs), short peptides with strong antibacterial activity, play important roles in plant growth, development, and stress resistance. However, there are few systematic analyses on PDFs in Brassica napus. Here, bioinformatics methods were used to identify genome-wide PDFs in Brassica napus, and systematically analyze physicochemical properties, expansion pattern, phylogeny, and expression profiling of BnaPDFs under diverse nutrient stresses. A total of 37 full-length PDF homologs, divided into two subgroups (PDF1s and PDF2s), were identified in the rapeseed genome. A total of two distinct clades were identified in the BnaPDF phylogeny. Clade specific conserved motifs were identified within each clade respectively. Most BnaPDFs were proved to undergo powerful purified selection. The PDF members had enriched cis-elements related to growth and development, hormone response, environmental stress response in their promoter regions. GO annotations indicate that the functional pathways of BnaPDFs are mainly involved in cells killing and plant defense responses. In addition, bna-miRNA164 and bna-miRNA172 respectively regulate the expression of their targets BnaA2.PDF2.5 and BnaC7.PDF2.6. The expression patterns of BnaPDFs were analyzed in different tissues. BnaPDF1.2bs was mainly expressed in the roots, whereas BnaPDF2.2s and BnaPDF2.3s were both expressed in stamen, pericarp, silique, and stem. However, the other BnaPDF members showed low expression levels in various tissues. Differential expression of BnaPDFs under nitrate limitation, ammonium excess, phosphorus starvation, potassium deficiency, cadmium toxicity, and salt stress indicated that they might participate in different nutrient stress resistance. The genome-wide identification and characterization of BnaPDFs will enrich understanding of their molecular characteristics and provide elite gene resources for genetic improvement of rapeseed resistance to nutrient stresses.
Collapse
Affiliation(s)
- Ying Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Huan Chen
- National Tobacco Quality Supervision and Inspection Center, Zhengzhou, China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jin-Yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Rosa S, Pesaresi P, Mizzotti C, Bulone V, Mezzetti B, Baraldi E, Masiero S. Game-changing alternatives to conventional fungicides: small RNAs and short peptides. Trends Biotechnol 2021; 40:320-337. [PMID: 34489105 DOI: 10.1016/j.tibtech.2021.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022]
Abstract
Fungicide use is one of the core elements of intensive agriculture because it is necessary to fight pathogens that would otherwise cause large production losses. Oomycete and fungal pathogens are kept under control using several active compounds, some of which are predicted to be banned in the near future owing to serious concerns about their impact on the environment, non-targeted organisms, and human health. To avoid detrimental repercussions for food security, it is essential to develop new biomolecules that control existing and emerging pathogens but are innocuous to human health and the environment. This review presents and discusses the use of novel low-risk biological compounds based on small RNAs and short peptides that are attractive alternatives to current contentious fungicides.
Collapse
Affiliation(s)
- Stefano Rosa
- Department of Biosciences, University of Milano, I-20133, Milano, Italy
| | - Paolo Pesaresi
- Department of Biosciences, University of Milano, I-20133, Milano, Italy
| | - Chiara Mizzotti
- Department of Biosciences, University of Milano, I-20133, Milano, Italy
| | - Vincent Bulone
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia; Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 10691 Stockholm, Sweden
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, I-60131, Ancona, Italy
| | - Elena Baraldi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, I-40126 Bologna, Italy.
| | - Simona Masiero
- Department of Biosciences, University of Milano, I-20133, Milano, Italy.
| |
Collapse
|
32
|
Jadi PK, Sharma P, Bhogapurapu B, Roy S. Alternative Therapeutic Interventions: Antimicrobial Peptides and Small Molecules to Treat Microbial Keratitis. Front Chem 2021; 9:694998. [PMID: 34458234 PMCID: PMC8386189 DOI: 10.3389/fchem.2021.694998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023] Open
Abstract
Microbial keratitis is a leading cause of blindness worldwide and results in unilateral vision loss in an estimated 2 million people per year. Bacteria and fungus are two main etiological agents that cause corneal ulcers. Although antibiotics and antifungals are commonly used to treat corneal infections, a clear trend with increasing resistance to these antimicrobials is emerging at rapid pace. Extensive research has been carried out to determine alternative therapeutic interventions, and antimicrobial peptides (AMPs) are increasingly recognized for their clinical potential in treating infections. Small molecules targeted against virulence factors of the pathogens and natural compounds are also explored to meet the challenges and growing demand for therapeutic agents. Here we review the potential of AMPs, small molecules, and natural compounds as alternative therapeutic interventions for the treatment of corneal infections to combat antimicrobial resistance. Additionally, we have also discussed about the different formats of drug delivery systems for optimal administration of drugs to treat microbial keratitis.
Collapse
Affiliation(s)
- Praveen Kumar Jadi
- Prof, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Prerana Sharma
- Prof, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
- Department of Animal Sciences, University of Hyderabad, Hyderabad, India
| | - Bharathi Bhogapurapu
- Prof, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Sanhita Roy
- Prof, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
33
|
Sarkar T, Chetia M, Chatterjee S. Antimicrobial Peptides and Proteins: From Nature's Reservoir to the Laboratory and Beyond. Front Chem 2021; 9:691532. [PMID: 34222199 PMCID: PMC8249576 DOI: 10.3389/fchem.2021.691532] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Rapid rise of antimicrobial resistance against conventional antimicrobials, resurgence of multidrug resistant microbes and the slowdown in the development of new classes of antimicrobials, necessitates the urgent development of alternate classes of therapeutic molecules. Antimicrobial peptides (AMPs) are small proteins present in different lifeforms in nature that provide defense against microbial infections. They have been effective components of the host defense system for a very long time. The fact that the development of resistance by the microbes against the AMPs is relatively slower or delayed compared to that against the conventional antibiotics, makes them prospective alternative therapeutics of the future. Several thousands of AMPs have been isolated from various natural sources like microorganisms, plants, insects, crustaceans, animals, humans, etc. to date. However, only a few of them have been translated commercially to the market so far. This is because of some inherent drawbacks of the naturally obtained AMPs like 1) short half-life owing to the susceptibility to protease degradation, 2) inactivity at physiological salt concentrations, 3) cytotoxicity to host cells, 4) lack of appropriate strategies for sustained and targeted delivery of the AMPs. This has led to a surge of interest in the development of synthetic AMPs which would retain or improve the antimicrobial potency along with circumventing the disadvantages of the natural analogs. The development of synthetic AMPs is inspired by natural designs and sequences and strengthened by the fusion with various synthetic elements. Generation of the synthetic designs are based on various strategies like sequence truncation, mutation, cyclization and introduction of unnatural amino acids and synthons. In this review, we have described some of the AMPs isolated from the vast repertoire of natural sources, and subsequently described the various synthetic designs that have been developed based on the templates of natural AMPs or from de novo design to make commercially viable therapeutics of the future. This review entails the journey of the AMPs from their natural sources to the laboratory.
Collapse
Affiliation(s)
| | | | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology, Guwahati, India
| |
Collapse
|
34
|
Mahgoub S, Alagawany M, Nader M, Omar SM, Abd El-Hack ME, Swelum A, Elnesr SS, Khafaga AF, Taha AE, Farag MR, Tiwari R, Marappan G, El-Sayed AS, Patel SK, Pathak M, Michalak I, Al-Ghamdi ES, Dhama K. Recent Development in Bioactive Peptides from Plant and Animal Products and Their Impact on the Human Health. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1923027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Samir Mahgoub
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig Egypt
| | - Maha Nader
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Safaa M. Omar
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Ayman Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina’ Egypt
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina’ Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig’ Egypt
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Up Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - Gopi Marappan
- Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Ashraf S. El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Shailesh K. Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly- Uttar Pradesh, India
| | - Mamta Pathak
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly- Uttar Pradesh, India
| | - Izabela Michalak
- Department of Advanced Material Technologies,Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław’, Poland
| | - Etab S. Al-Ghamdi
- Department of Food and Nutrition, College of Human Sciences and Design, King Abdualziz University, Jeddah, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly- Uttar Pradesh, India
| |
Collapse
|
35
|
Tick defensin γ-core reduces Fusarium graminearum growth and abrogates mycotoxins production with high efficiency. Sci Rep 2021; 11:7962. [PMID: 33846413 PMCID: PMC8042122 DOI: 10.1038/s41598-021-86904-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/19/2021] [Indexed: 11/27/2022] Open
Abstract
Fusarium graminearum is a major fungal pathogen affecting crops of worldwide importance. F. graminearum produces type B trichothecene mycotoxins (TCTB), which are not fully eliminated during food and feed processing. Therefore, the best way to minimize TCTB contamination is to develop prevention strategies. Herein we show that treatment with the reduced form of the γ-core of the tick defensin DefMT3, referred to as TickCore3 (TC3), decreases F. graminearum growth and abrogates TCTB production. The oxidized form of TC3 loses antifungal activity, but retains anti-mycotoxin activity. Molecular dynamics show that TC3 is recruited by specific membrane phospholipids in F. graminearum and that membrane binding of the oxidized form of TC3 is unstable. Capping each of the three cysteine residues of TC3 with methyl groups reduces its inhibitory efficacy. Substitutions of the positively-charged residues lysine (Lys) 6 or arginine 7 by threonine had the highest and the lesser impact, respectively, on the anti-mycotoxin activity of TC3. We conclude that the binding of linear TC3 to F. graminearum membrane phospholipids is required for the antifungal activity of the reduced peptide. Besides, Lys6 appears essential for the anti-mycotoxin activity of the reduced peptide. Our results provide foundation for developing novel and environment-friendly strategies for controlling F. graminearum.
Collapse
|
36
|
Struyfs C, Cammue BPA, Thevissen K. Membrane-Interacting Antifungal Peptides. Front Cell Dev Biol 2021; 9:649875. [PMID: 33912564 PMCID: PMC8074791 DOI: 10.3389/fcell.2021.649875] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of invasive fungal infections is increasing worldwide, resulting in more than 1.6 million deaths every year. Due to growing antifungal drug resistance and the limited number of currently used antimycotics, there is a clear need for novel antifungal strategies. In this context, great potential is attributed to antimicrobial peptides (AMPs) that are part of the innate immune system of organisms. These peptides are known for their broad-spectrum activity that can be directed toward bacteria, fungi, viruses, and/or even cancer cells. Some AMPs act via rapid physical disruption of microbial cell membranes at high concentrations causing cell leakage and cell death. However, more complex mechanisms are also observed, such as interaction with specific lipids, production of reactive oxygen species, programmed cell death, and autophagy. This review summarizes the structure and mode of action of antifungal AMPs, thereby focusing on their interaction with fungal membranes.
Collapse
Affiliation(s)
- Caroline Struyfs
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Heymich ML, Nißl L, Hahn D, Noll M, Pischetsrieder M. Antioxidative, Antifungal and Additive Activity of the Antimicrobial Peptides Leg1 and Leg2 from Chickpea. Foods 2021; 10:foods10030585. [PMID: 33799496 PMCID: PMC7998185 DOI: 10.3390/foods10030585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/29/2023] Open
Abstract
The fight against food waste benefits from novel agents inhibiting spoilage. The present study investigated the preservative potential of the antimicrobial peptides Leg1 (RIKTVTSFDLPALRFLKL) and Leg2 (RIKTVTSFDLPALRWLKL) recently identified in chickpea legumin hydrolysates. Checkerboard assays revealed strong additive antimicrobial effects of Leg1/Leg2 with sodium benzoate against Escherichia coli and Bacillus subtilis with fractional inhibitory concentrations of 0.625 and 0.75. Additionally, Leg1/Leg2 displayed antifungal activity with minimum inhibitory concentrations of 500/250 µM against Saccharomyces cerevisiae and 250/125 µM against Zygosaccharomyces bailii. In contrast, no cytotoxic effects were observed against human Caco-2 cells at concentrations below 2000 µM (Leg1) and 1000 µM (Leg2). Particularly Leg2 showed antioxidative activity by radical scavenging and reducing mechanisms (maximally 91.5/86.3% compared to 91.2/94.7% for the control ascorbic acid). The present results demonstrate that Leg1/Leg2 have the potential to be applied as preservatives protecting food and other products against bacterial, fungal and oxidative spoilage.
Collapse
Affiliation(s)
- Marie-Louise Heymich
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (M.-L.H.); (D.H.)
| | - Laura Nißl
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, Friedrich-Streib-Str. 2, 96450 Coburg, Germany; (L.N.); (M.N.)
| | - Dominik Hahn
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (M.-L.H.); (D.H.)
| | - Matthias Noll
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, Friedrich-Streib-Str. 2, 96450 Coburg, Germany; (L.N.); (M.N.)
| | - Monika Pischetsrieder
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (M.-L.H.); (D.H.)
- Correspondence:
| |
Collapse
|
38
|
Parthasarathy A, Borrego EJ, Savka MA, Dobson RCJ, Hudson AO. Amino acid-derived defense metabolites from plants: A potential source to facilitate novel antimicrobial development. J Biol Chem 2021; 296:100438. [PMID: 33610552 PMCID: PMC8024917 DOI: 10.1016/j.jbc.2021.100438] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
For millennia, humanity has relied on plants for its medicines, and modern pharmacology continues to reexamine and mine plant metabolites for novel compounds and to guide improvements in biological activity, bioavailability, and chemical stability. The critical problem of antibiotic resistance and increasing exposure to viral and parasitic diseases has spurred renewed interest into drug treatments for infectious diseases. In this context, an urgent revival of natural product discovery is globally underway with special attention directed toward the numerous and chemically diverse plant defensive compounds such as phytoalexins and phytoanticipins that combat herbivores, microbial pathogens, or competing plants. Moreover, advancements in “omics,” chemistry, and heterologous expression systems have facilitated the purification and characterization of plant metabolites and the identification of possible therapeutic targets. In this review, we describe several important amino acid–derived classes of plant defensive compounds, including antimicrobial peptides (e.g., defensins, thionins, and knottins), alkaloids, nonproteogenic amino acids, and phenylpropanoids as potential drug leads, examining their mechanisms of action, therapeutic targets, and structure–function relationships. Given their potent antibacterial, antifungal, antiparasitic, and antiviral properties, which can be superior to existing drugs, phytoalexins and phytoanticipins are an excellent resource to facilitate the rational design and development of antimicrobial drugs.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eli J Borrego
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Michael A Savka
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - André O Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA.
| |
Collapse
|
39
|
The Antifungal Protein AfpB Induces Regulated Cell Death in Its Parental Fungus Penicillium digitatum. mSphere 2020; 5:5/4/e00595-20. [PMID: 32848004 PMCID: PMC7449623 DOI: 10.1128/msphere.00595-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Disease-causing fungi pose a serious threat to human health and food safety and security. The limited number of licensed antifungals, together with the emergence of pathogenic fungi with multiple resistance to available antifungals, represents a serious challenge for medicine and agriculture. Therefore, there is an urgent need for new compounds with high fungal specificity and novel antifungal mechanisms. Antifungal proteins in general, and AfpB from Penicillium digitatum in particular, are promising molecules for the development of novel antifungals. This study on AfpB’s mode of action demonstrates its potent, specific fungicidal activity through the interaction with multiple targets, presumably reducing the risk of evolving fungal resistance, and through a regulated cell death process, uncovering this protein as an excellent candidate for a novel biofungicide. The in-depth knowledge on AfpB mechanistic function presented in this work is important to guide its possible future clinical and agricultural applications. Filamentous fungi produce small cysteine-rich proteins with potent, specific antifungal activity, offering the potential to fight fungal infections that severely threaten human health and food safety and security. The genome of the citrus postharvest fungal pathogen Penicillium digitatum encodes one of these antifungal proteins, namely AfpB. Biotechnologically produced AfpB inhibited the growth of major pathogenic fungi at minimal concentrations, surprisingly including its parental fungus, and conferred protection to crop plants against fungal infections. This study reports an in-depth characterization of the AfpB mechanism of action, showing that it is a cell-penetrating protein that triggers a regulated cell death program in the target fungus. We prove the importance of AfpB interaction with the fungal cell wall to exert its killing activity, for which protein mannosylation is required. We also show that the potent activity of AfpB correlates with its rapid and efficient uptake by fungal cells through an energy-dependent process. Once internalized, AfpB induces a transcriptional reprogramming signaled by reactive oxygen species that ends in cell death. Our data show that AfpB activates a self-injury program, suggesting that this protein has a biological function in the parental fungus beyond defense against competitors, presumably more related to regulation of the fungal population. Our results demonstrate that this protein is a potent antifungal that acts through various targets to kill fungal cells through a regulated process, making AfpB a promising compound for the development of novel biofungicides with multiple fields of application in crop and postharvest protection, food preservation, and medical therapies. IMPORTANCE Disease-causing fungi pose a serious threat to human health and food safety and security. The limited number of licensed antifungals, together with the emergence of pathogenic fungi with multiple resistance to available antifungals, represents a serious challenge for medicine and agriculture. Therefore, there is an urgent need for new compounds with high fungal specificity and novel antifungal mechanisms. Antifungal proteins in general, and AfpB from Penicillium digitatum in particular, are promising molecules for the development of novel antifungals. This study on AfpB’s mode of action demonstrates its potent, specific fungicidal activity through the interaction with multiple targets, presumably reducing the risk of evolving fungal resistance, and through a regulated cell death process, uncovering this protein as an excellent candidate for a novel biofungicide. The in-depth knowledge on AfpB mechanistic function presented in this work is important to guide its possible future clinical and agricultural applications.
Collapse
|
40
|
Ramamourthy G, Park J, Seo C, J. Vogel H, Park Y. Antifungal and Antibiofilm Activities and the Mechanism of Action of Repeating Lysine-Tryptophan Peptides against Candida albicans. Microorganisms 2020; 8:E758. [PMID: 32443520 PMCID: PMC7285485 DOI: 10.3390/microorganisms8050758] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/06/2020] [Accepted: 05/16/2020] [Indexed: 11/29/2022] Open
Abstract
The rapid increase in the emergence of antifungal-resistant Candida albicans strains is becoming a serious health concern. Because antimicrobial peptides (AMPs) may provide a potential alternative to conventional antifungal agents, we have synthesized a series of peptides with a varying number of lysine and tryptophan repeats (KWn-NH2). The antifungal activity of these peptides increased with peptide length, but only the longest KW5 peptide displayed cytotoxicity towards a human keratinocyte cell line. The KW4 and KW5 peptides exhibited strong antifungal activity against C. albicans, even under conditions of high-salt and acidic pH, or the addition of fungal cell wall components. Moreover, KW4 inhibited biofilm formation by a fluconazole-resistant C. albicans strain. Circular dichroism and fluorescence spectroscopy indicated that fungal liposomes could interact with the longer peptides but that they did not release the fluorescent dye calcein. Subsequently, fluorescence assays with different dyes revealed that KW4 did not disrupt the membrane integrity of intact fungal cells. Scanning electron microscopy showed no changes in fungal morphology, while laser-scanning confocal microscopy indicated that KW4 can localize into the cytosol of C. albicans. Gel retardation assays revealed that KW4 can bind to fungal RNA as a potential intracellular target. Taken together, our data indicate that KW4 can inhibit cellular functions by binding to RNA and DNA after it has been translocated into the cell, resulting in the eradication of C. albicans.
Collapse
Affiliation(s)
- Gopal Ramamourthy
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (G.R.); (H.J.V.)
- Department of Biomedical Science and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju 61452, Korea
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju 38065, Korea; (J.P.); (C.S.)
| | - Changho Seo
- Department of Bioinformatics, Kongju National University, Kongju 38065, Korea; (J.P.); (C.S.)
| | - Hans J. Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (G.R.); (H.J.V.)
| | - Yoonkyung Park
- Department of Biomedical Science and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju 61452, Korea
- Research Center for Proteineous Materials, Chosun University, Gwangju 61452, Korea
| |
Collapse
|
41
|
Pacheco-Cano RD, Salcedo-Hernández R, Casados-Vázquez LE, Wrobel K, Bideshi DK, Barboza-Corona JE. Class I defensins (BraDef) from broccoli (Brassica oleracea var. italica) seeds and their antimicrobial activity. World J Microbiol Biotechnol 2020; 36:30. [PMID: 32025825 DOI: 10.1007/s11274-020-2807-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/31/2020] [Indexed: 12/24/2022]
Abstract
The objective of this study was to determine whether seeds of Brassica oleracea var. italica (i.e. broccoli, an edible plant) produce defensins that inhibit phytopathogenic fungi and pathogenic bacteria of clinical significance. Crude extracts obtained from broccoli seeds were fractioned by molecular exclusion techniques and analyzed by liquid chromatography-high-resolution mass spectrometry. Two peptides were identified, BraDef1 (10.68 kDa) and BraDef2 (9.9 kDa), which were categorized as Class I defensins based on (a) their primary structure, (b) the presence of four putative cysteine disulfide bridges, and (c) molecular modeling predictions. BraDef1 and BraDef2 show identities of, respectively, 98 and 71%, and 67 and 85%, with defensins from Brassica napus and Arabidopsis thaliana. BraDef (BraDef1 + BraDef2) disrupted membranes of Colletotrichum gloeosporioides and Alternaria alternata and also reduced hyphal growth of C. gloeosporioides by ~ 56% after 120 h of incubation. Pathogenic bacteria (Bacillus cereus 183, Listeria monocytogenes, Salmonella typhimurium, Pseudomonas aeruginosa, and Vibrio parahaemolitycus) were susceptible to BraDef, but probiotic bacteria such as Bifidobacterium animalis, Lactobacillus acidophilus, and Lactobacillus casei were not inhibited. To our knowledge, this is the first report of defensins present in seeds of B. oleracea var. italica (i.e. edible broccoli). Our findings suggest an applied value for BraDef1/BraDef2 in controlling phytopathogenic fungi and pathogenic bacteria of clinical significance.
Collapse
Affiliation(s)
- Rubén D Pacheco-Cano
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, 36500, Guanajuato, Mexico
| | - Rubén Salcedo-Hernández
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, 36500, Guanajuato, Mexico
- Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, 36500, Guanajuato, Mexico
| | - Luz E Casados-Vázquez
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, 36500, Guanajuato, Mexico
- Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, 36500, Guanajuato, Mexico
| | - Kazimierz Wrobel
- Department of Chemistry, University of Guanajuato Campus Guanajuato, Lascurain de Retana 5, Guanajuato, 36000, Guanajuato, Mexico
| | - Dennis K Bideshi
- Department of Biological Sciences, California Baptist University, 8432 Magnolia Avenue, Riverside, CA, 92504, USA
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - José E Barboza-Corona
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, 36500, Guanajuato, Mexico.
- Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Irapuato, 36500, Guanajuato, Mexico.
| |
Collapse
|
42
|
Seyedjavadi SS, Khani S, Eslamifar A, Ajdary S, Goudarzi M, Halabian R, Akbari R, Zare-Zardini H, Imani Fooladi AA, Amani J, Razzaghi-Abyaneh M. The Antifungal Peptide MCh-AMP1 Derived From Matricaria chamomilla Inhibits Candida albicans Growth via Inducing ROS Generation and Altering Fungal Cell Membrane Permeability. Front Microbiol 2020; 10:3150. [PMID: 32038583 PMCID: PMC6985553 DOI: 10.3389/fmicb.2019.03150] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 12/29/2019] [Indexed: 01/22/2023] Open
Abstract
The rise of antifungal drug resistance in Candida species responsible for life threatening candidiasis is considered as an increasing challenge for the public health. MCh-AMP1 has previously been reported as a natural peptide from Matricaria chamomilla L. flowers with broad-spectrum antifungal activity against human pathogenic molds and yeasts. In the current study, the mode of action of synthetic MCh-AMP1 was investigated against Candida albicans, the major etiologic agent of life-threatening nosocomial candidiasis at cellular and molecular levels. Candida albicans ATCC 10231 was cultured in presence of various concentrations of MCh-AMP1 (16-64 μg/mL) and its mode of action was investigated using plasma membrane permeabilization assays, reactive oxygen species (ROS) induction, potassium ion leakage and ultrastructural analyses by electron microscopy. MCh-AMP1 showed fungicidal activity against Candida albicans at the concentrations of 32 and 64 μg/mL. The peptide increased fungal cell membrane permeability as evidenced by elevating of PI uptake and induced potassium leakage from the yeast cells. ROS production was induced by the peptide inside the fungal cells to a maximum of 64.8% at the concentration of 64 μg/mL. Scanning electron microscopy observations showed cell deformation as shrinkage and folding of treated yeast cells. Transmission electron microscopy showed detachment of plasma membrane from the cell wall, cell depletion and massive destruction of intracellular organelles and cell membrane of the fungal cells. Our results demonstrated that MCh-AMP1 caused Candida albicans cell death via increasing cell membrane permeability and inducing ROS production. Therefore, MCh-AMP1 could be considered as a promising therapeutic agent to combat Candida albicans infections.
Collapse
Affiliation(s)
| | - Soghra Khani
- Department of Mycology, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Eslamifar
- Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Akbari
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Zare-Zardini
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
43
|
Das K, Datta K, Karmakar S, Datta SK. Antimicrobial Peptides - Small but Mighty Weapons for Plants to Fight Phytopathogens. Protein Pept Lett 2019; 26:720-742. [PMID: 31215363 DOI: 10.2174/0929866526666190619112438] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/27/2019] [Accepted: 04/25/2019] [Indexed: 11/22/2022]
Abstract
Antimicrobial Peptides (AMPs) have diverse structures, varied modes of actions, and can inhibit the growth of a wide range of pathogens at low concentrations. Plants are constantly under attack by a wide range of phytopathogens causing massive yield losses worldwide. To combat these pathogens, nature has armed plants with a battery of defense responses including Antimicrobial Peptides (AMPs). These peptides form a vital component of the two-tier plant defense system. They are constitutively expressed as part of the pre-existing first line of defense against pathogen entry. When a pathogen overcomes this barrier, it faces the inducible defense system, which responds to specific molecular or effector patterns by launching an arsenal of defense responses including the production of AMPs. This review emphasizes the structural and functional aspects of different plant-derived AMPs, their homology with AMPs from other organisms, and how their biotechnological potential could generate durable resistance in a wide range of crops against different classes of phytopathogens in an environmentally friendly way without phenotypic cost.
Collapse
Affiliation(s)
- Kaushik Das
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Karabi Datta
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Subhasis Karmakar
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Swapan K Datta
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| |
Collapse
|
44
|
Screening the Saccharomyces cerevisiae Nonessential Gene Deletion Library Reveals Diverse Mechanisms of Action for Antifungal Plant Defensins. Antimicrob Agents Chemother 2019; 63:AAC.01097-19. [PMID: 31451498 DOI: 10.1128/aac.01097-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/14/2019] [Indexed: 12/28/2022] Open
Abstract
Plant defensins are a large family of proteins, most of which have antifungal activity against a broad spectrum of fungi. However, little is known about how they exert their activity. The mechanisms of action of only a few members of the family have been investigated and, in most cases, there are still a number of unknowns. To gain a better understanding of the antifungal mechanisms of a set of four defensins, NaD1, DmAMP1, NbD6, and SBI6, we screened a pooled collection of the nonessential gene deletion set of Saccharomyces cerevisiae Strains with increased or decreased ability to survive defensin treatment were identified based on the relative abundance of the strain-specific barcode as determined by MiSeq next-generation sequencing. Analysis of the functions of genes that are deleted in strains with differential growth in the presence of defensin provides insight into the mechanism of action. The screen identified a novel role for the vacuole in the mechanisms of action for defensins NbD6 and SBI6. The effect of these defensins on vacuoles was further confirmed by using confocal microscopy in both S. cerevisiae and the cereal pathogen Fusarium graminearum These results demonstrate the utility of this screening method to identify novel mechanisms of action for plant defensins.
Collapse
|
45
|
Oshiro KGN, Rodrigues G, Monges BED, Cardoso MH, Franco OL. Bioactive Peptides Against Fungal Biofilms. Front Microbiol 2019; 10:2169. [PMID: 31681179 PMCID: PMC6797862 DOI: 10.3389/fmicb.2019.02169] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022] Open
Abstract
Infections caused by invasive fungal biofilms have been widely associated with high morbidity and mortality rates, mainly due to the advent of antibiotic resistance. Moreover, fungal biofilms impose an additional challenge, leading to multidrug resistance. This fact, along with the contamination of medical devices and the limited number of effective antifungal agents available on the market, demonstrates the importance of finding novel drug candidates targeting pathogenic fungal cells and biofilms. In this context, an alternative strategy is the use of antifungal peptides (AFPs) against fungal biofilms. AFPs are considered a group of bioactive molecules with broad-spectrum activities and multiple mechanisms of action that have been widely used as template molecules for drug design strategies aiming at greater specificity and biological efficacy. Among the AFP classes most studied in the context of fungal biofilms, defensins, cathelicidins and histatins have been described. AFPs can also act by preventing the formation of fungal biofilms and eradicating preformed biofilms through mechanisms associated with cell wall perturbation, inhibition of planktonic fungal cells’ adhesion onto surfaces, gene regulation and generation of reactive oxygen species (ROS). Thus, considering the critical scenario imposed by fungal biofilms and associated infections and the application of AFPs as a possible treatment, this review will focus on the most effective AFPs described to date, with a core focus on antibiofilm peptides, as well as their efficacy in vivo, application on surfaces and proposed mechanisms of action.
Collapse
Affiliation(s)
- Karen G N Oshiro
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Bruna Estéfani D Monges
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octávio Luiz Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.,S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
46
|
Thery T, Lynch KM, Arendt EK. Natural Antifungal Peptides/Proteins as Model for Novel Food Preservatives. Compr Rev Food Sci Food Saf 2019; 18:1327-1360. [DOI: 10.1111/1541-4337.12480] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 05/17/2019] [Accepted: 07/04/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Thibaut Thery
- School of Food and Nutritional SciencesUniv. College Cork Ireland
| | - Kieran M. Lynch
- School of Food and Nutritional SciencesUniv. College Cork Ireland
| | - Elke K. Arendt
- School of Food and Nutritional SciencesUniv. College Cork Ireland
- Microbiome IrelandUniv. College Cork Ireland
| |
Collapse
|
47
|
Barreto-Santamaría A, Patarroyo ME, Curtidor H. Designing and optimizing new antimicrobial peptides: all targets are not the same. Crit Rev Clin Lab Sci 2019; 56:351-373. [DOI: 10.1080/10408363.2019.1631249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Adriana Barreto-Santamaría
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad del Rosario, School of Medicine and Health Sciences, Bogotá D.C., Colombia
| | - Manuel E. Patarroyo
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad Nacional de Colombia - Bogotá, Faculty of Medicine, Bogotá D.C., Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia - FIDIC, Receptor-Ligand Department, Bogotá D.C, Colombia
- Universidad del Rosario, School of Medicine and Health Sciences, Bogotá D.C., Colombia
| |
Collapse
|
48
|
Silva RN, Monteiro VN, Steindorff AS, Gomes EV, Noronha EF, Ulhoa CJ. Trichoderma/pathogen/plant interaction in pre-harvest food security. Fungal Biol 2019; 123:565-583. [PMID: 31345411 DOI: 10.1016/j.funbio.2019.06.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/17/2023]
Abstract
Large losses before crop harvesting are caused by plant pathogens, such as viruses, bacteria, oomycetes, fungi, and nematodes. Among these, fungi are the major cause of losses in agriculture worldwide. Plant pathogens are still controlled through application of agrochemicals, causing human disease and impacting environmental and food security. Biological control provides a safe alternative for the control of fungal plant pathogens, because of the ability of biocontrol agents to establish in the ecosystem. Some Trichoderma spp. are considered potential agents in the control of fungal plant diseases. They can interact directly with roots, increasing plant growth, resistance to diseases, and tolerance to abiotic stress. Furthermore, Trichoderma can directly kill fungal plant pathogens by antibiosis, as well as via mycoparasitism strategies. In this review, we will discuss the interactions between Trichoderma/fungal pathogens/plants during the pre-harvest of crops. In addition, we will highlight how these interactions can influence crop production and food security. Finally, we will describe the future of crop production using antimicrobial peptides, plants carrying pathogen-derived resistance, and plantibodies.
Collapse
Affiliation(s)
- Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Valdirene Neves Monteiro
- Campus of Exact Sciences and Technologies, Campus Henrique Santillo, Anapolis, Goiás State, Brazil
| | - Andrei Stecca Steindorff
- U.S. Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Eriston Vieira Gomes
- Department of Biofunctional, Center of Higher Education Morgana Potrich Eireli, Morgana Potrich College, Mineiros, Goiás, Brazil
| | | | - Cirano J Ulhoa
- Department of Biochemistry and Cellular Biology, Biological Sciences Institute, Campus Samambaia, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| |
Collapse
|
49
|
The interaction with fungal cell wall polysaccharides determines the salt tolerance of antifungal plant defensins. ACTA ACUST UNITED AC 2019; 5:100026. [PMID: 32743142 PMCID: PMC7389181 DOI: 10.1016/j.tcsw.2019.100026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/04/2019] [Accepted: 05/06/2019] [Indexed: 01/10/2023]
Abstract
The fungal cell wall is the first point of contact between fungal pathogens and host organisms. It serves as a protective barrier against biotic and abiotic stresses and as a signal to the host that a fungal pathogen is present. The fungal cell wall is made predominantly of carbohydrates and glycoproteins, many of which serve as binding receptors for host defence molecules or activate host immune responses through interactions with membrane-bound receptors. Plant defensins are a large family of cationic antifungal peptides that protect plants against fungal disease. Binding of the plant defensin NaD1 to the fungal cell wall has been described but the specific component of the cell wall with which this interaction occurred was unknown. The effect of binding was also unclear, that is whether the plant defensin used fungal cell wall components as a recognition motif for the plant to identify potential pathogens or if the cell wall acted to protect the fungus against the defensin. Here we describe the interaction between the fungal cell wall polysaccharides chitin and β-glucan with NaD1 and other plant defensins. We discovered that the β-glucan layer protects the fungus against plant defensins and the loss of activity experienced by many cationic antifungal peptides at elevated salt concentrations is due to sequestration by fungal cell wall polysaccharides. This has limited the development of cationic antifungal peptides for the treatment of systemic fungal diseases in humans as the level of salt in serum is enough to inactivate most cationic peptides.
Collapse
|
50
|
Ermakova E, Kurbanov R, Zuev Y. Coarse-grained molecular dynamics of membrane semitoroidal pore formation in model lipid-peptide systems. J Mol Graph Model 2019; 87:1-10. [DOI: 10.1016/j.jmgm.2018.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 12/31/2022]
|