1
|
Courbon G, Kentrup D, Thomas JJ, Wang X, Tsai HH, Spindler J, Von Drasek J, Ndjonko LM, Martinez-Calle M, Lynch S, Hivert L, Wang X, Chang W, Feng JQ, David V, Martin A. FGF23 directly inhibits osteoprogenitor differentiation in Dmp1-knockout mice. JCI Insight 2023; 8:e156850. [PMID: 37943605 PMCID: PMC10807721 DOI: 10.1172/jci.insight.156850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) is a phosphate-regulating (Pi-regulating) hormone produced by bone. Hereditary hypophosphatemic disorders are associated with FGF23 excess, impaired skeletal growth, and osteomalacia. Blocking FGF23 became an effective therapeutic strategy in X-linked hypophosphatemia, but testing remains limited in autosomal recessive hypophosphatemic rickets (ARHR). This study investigates the effects of Pi repletion and bone-specific deletion of Fgf23 on bone and mineral metabolism in the dentin matrix protein 1-knockout (Dmp1KO) mouse model of ARHR. At 12 weeks, Dmp1KO mice showed increased serum FGF23 and parathyroid hormone levels, hypophosphatemia, impaired growth, rickets, and osteomalacia. Six weeks of dietary Pi supplementation exacerbated FGF23 production, hyperparathyroidism, renal Pi excretion, and osteomalacia. In contrast, osteocyte-specific deletion of Fgf23 resulted in a partial correction of FGF23 excess, which was sufficient to fully restore serum Pi levels but only partially corrected the bone phenotype. In vitro, we show that FGF23 directly impaired osteoprogenitors' differentiation and that DMP1 deficiency contributed to impaired mineralization independent of FGF23 or Pi levels. In conclusion, FGF23-induced hypophosphatemia is only partially responsible for the bone defects observed in Dmp1KO mice. Our data suggest that combined DMP1 repletion and FGF23 blockade could effectively correct ARHR-associated mineral and bone disorders.
Collapse
Affiliation(s)
- Guillaume Courbon
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jane Joy Thomas
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xueyan Wang
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hao-Hsuan Tsai
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jadeah Spindler
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John Von Drasek
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Laura Mazudie Ndjonko
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Marta Martinez-Calle
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sana Lynch
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lauriane Hivert
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xiaofang Wang
- Texas A&M School of Dentistry, Texas A&M University, Dallas, Texas, USA
| | - Wenhan Chang
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jian Q. Feng
- Shanxi Medical University School and Hospital of Stomatology, Clinical Medical Research Center of Oral Diseases of Shanxi Province, Taiyuan, China
| | - Valentin David
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Aline Martin
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
2
|
Jeong SH, Nguyen KT, Nguyen MT, You JS, Kim BH, Choe HC, Ahn SG. DMP1 and IFITM5 Regulate Osteogenic Differentiation of MC3T3-E1 on PEO-Treated Ti-6Al-4V-Ca 2+/P i surface. ACS Biomater Sci Eng 2023; 9:1377-1390. [PMID: 36802481 DOI: 10.1021/acsbiomaterials.2c01296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Despite numerous studies on various surface modifications on titanium and its alloys, it remains unclear what kind of titanium-based surface modifications are capable of controlling cell activity. This study aimed to understand the mechanism at the cellular and molecular levels and investigate the in vitro response of osteoblastic MC3T3-E1 cultured on the Ti-6Al-4V surface modified by plasma electrolytic oxidation (PEO) treatment. A Ti-6Al-4V surface was prepared by PEO at 180, 280, and 380 V for 3 or 10 min in an electrolyte containing Ca2+/Pi ions. Our results showed that PEO-treated Ti-6Al-4V-Ca2+/Pi surfaces enhanced the cell attachment and differentiation of MC3T3-E1 compared to the untreated Ti-6Al-4V control but did not affect cytotoxicity as shown by cell proliferation and cell death. Interestingly, on the Ti-6Al-4V-Ca2+/Pi surface treated by PEO at 280 V for 3 or 10 min, MC3T3-E1 showed a higher initial adhesion and mineralization. In addition, the alkaline phosphatase (ALP) activity significantly increased in MC3T3-E1 on the PEO-treated Ti-6Al-4V-Ca2+/Pi (280 V for 3 or 10 min). In RNA-seq analysis, the expression of dentin matrix protein 1 (DMP1), sortilin 1 (Sort1), signal-induced proliferation-associated 1 like 2 (SIPA1L2), and interferon-induced transmembrane protein 5 (IFITM5) was induced during the osteogenic differentiation of MC3T3-E1 on the PEO-treated Ti-6Al-4V-Ca2+/Pi. DMP1 and IFITM5 silencing decreased the expression of bone differentiation-related mRNAs and proteins and ALP activity in MC3T3-E1. These results suggest that the PEO-treated Ti-6Al-4V-Ca2+/Pi surface induces osteoblast differentiation by regulating the expression of DMP1 and IFITM5. Therefore, surface microstructure modification through PEO coatings with Ca2+/Pi ions could be used as a valuable method to improve biocompatibility properties of titanium alloys.
Collapse
Affiliation(s)
- Se-Ho Jeong
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Khanh Toan Nguyen
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Manh Tuong Nguyen
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Jae-Seek You
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Byung-Hoon Kim
- Advanced Functional Surface and Biomaterials Research Lab, Department of Dental Materials and Research Center of Surface Control for Oral Tissue Regeneration (BRL Center of NRF), College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Han-Cheol Choe
- Advanced Functional Surface and Biomaterials Research Lab, Department of Dental Materials and Research Center of Surface Control for Oral Tissue Regeneration (BRL Center of NRF), College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Sang-Gun Ahn
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
3
|
Ni X, Gong Y, Jiang Y, Li X, Pang Q, Liu W, Chi Y, Jiajue R, Wang O, Li M, Xing X, Xia W. The First Compound Heterozygous Mutations of DMP1 Causing Rare Autosomal Recessive Hypophosphatemic Rickets Type 1. J Clin Endocrinol Metab 2023; 108:791-801. [PMID: 36334264 DOI: 10.1210/clinem/dgac640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/11/2022] [Indexed: 11/08/2022]
Abstract
CONTEXT Hereditary hypophosphatemic rickets (HR) consists of a group of inherited hypophosphatemia due to mutations of different genes, which need genetic analysis to make a differential diagnosis. Among them, autosomal recessive hypophosphatemic rickets type 1 (ARHR1), caused by a homozygous mutation of dentin matrix protein 1 (DMP1), is extremely rare, with only 30 reported patients. To date, there has been no case with compound heterozygous DMP1 mutations. OBJECTIVE To report the first compound heterozygous mutations of DMP1 causing ARHR1 and confirm the effect of the mutation on DMP1 protein. METHODS We report the clinical features of a Chinese patient with HR. Whole-exome sequencing (WES) was performed on the proband. Then, Cytoscan HD array, Sanger sequencing, and genomic quantitative PCR (qPCR) were used to confirm the mutations. A cell experiment was conducted to explore the effect of the mutation. RESULTS The proband is a 4-year-old boy, who developed genu varum when he was able to walk at age 1 year and tooth loss after a mild hit at age 3.5 years. Physical examination, biochemical measurement, and imaging finding indicated HR. Family history was negative. WES performed on the proband revealed a novel start codon mutation (c.1A > T, p.Met1Leu) in DMP1 and a large deletion involving most of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family gene, including DSPP, DMP1, IBSP, and MEPE. The novel paternally inherited start codon mutation, which resulted in decreased expression of DMP1 protein with smaller molecular weight and cleavage defect, was confirmed by Sanger sequencing. The maternally inherited deletion was validated by Cytoscan and qPCR, and the breakpoint was finally identified by long-range PCR and Sanger sequencing. Manifestation of dentin dysplasia (DD) or dentinogenesis imperfecta (DGI) caused by DSPP mutations was absent in the patient and his mother, confirming that haploinsufficiency could not lead to DD or DGI. CONCLUSION We report for the first time compound heterozygous DMP1 mutations consisting of a large deletion and a novel start codon mutation (c.1A > T, p.Met1Leu) in a Chinese patient with ARHR1.
Collapse
Affiliation(s)
- Xiaolin Ni
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yiyi Gong
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiang Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qianqian Pang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wei Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yue Chi
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ruizhi Jiajue
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
4
|
Dzamukova M, Brunner TM, Miotla-Zarebska J, Heinrich F, Brylka L, Mashreghi MF, Kusumbe A, Kühn R, Schinke T, Vincent TL, Löhning M. Mechanical forces couple bone matrix mineralization with inhibition of angiogenesis to limit adolescent bone growth. Nat Commun 2022; 13:3059. [PMID: 35650194 PMCID: PMC9160028 DOI: 10.1038/s41467-022-30618-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Bone growth requires a specialised, highly angiogenic blood vessel subtype, so-called type H vessels, which pave the way for osteoblasts surrounding these vessels. At the end of adolescence, type H vessels differentiate into quiescent type L endothelium lacking the capacity to promote bone growth. Until now, the signals that switch off type H vessel identity and thus limit adolescent bone growth have remained ill defined. Here we show that mechanical forces, associated with increased body weight at the end of adolescence, trigger the mechanoreceptor PIEZO1 and thereby mediate enhanced production of the kinase FAM20C in osteoblasts. FAM20C, the major kinase of the secreted phosphoproteome, phosphorylates dentin matrix protein 1, previously identified as a key factor in bone mineralization. Thereupon, dentin matrix protein 1 is secreted from osteoblasts in a burst-like manner. Extracellular dentin matrix protein 1 inhibits vascular endothelial growth factor signalling by preventing phosphorylation of vascular endothelial growth factor receptor 2. Hence, secreted dentin matrix protein 1 transforms type H vessels into type L to limit bone growth activity and enhance bone mineralization. The discovered mechanism may suggest new options for the treatment of diseases characterised by aberrant activity of bone and vessels such as osteoarthritis, osteoporosis and osteosarcoma.
Collapse
Affiliation(s)
- Maria Dzamukova
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany.
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Tobias M Brunner
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jadwiga Miotla-Zarebska
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Frederik Heinrich
- Therapeutic Gene Regulation, Regine von Ramin Lab Molecular Rheumatology, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Laura Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, Regine von Ramin Lab Molecular Rheumatology, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anjali Kusumbe
- Tissue and Tumour Microenvironments Group, University of Oxford, Oxford, UK
| | - Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tonia L Vincent
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Max Löhning
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany.
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Yan X, Fan D, Pi Y, Zhang Y, Fu P, Zhang H. ERα/β/DMP1 axis promotes trans-differentiation of chondrocytes to bone cells through GSK-3β/β-catenin pathway. J Anat 2022; 240:1152-1161. [PMID: 35081258 PMCID: PMC9119614 DOI: 10.1111/joa.13612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Estrogen-induced premature closing of the growth plate in the long bones is a major cause of short stature after premature puberty. Recent studies have found that chondrocytes can directly trans-differentiate into osteoblasts in the process of endochondral bone formation, which indicates that cartilage formation and osteogenesis may be a continuous biological process. However, whether estrogen promotes the direct trans-differentiation of chondrocytes into osteoblasts remains largely unknown. Chondrocytes were treated with different concentrations of 17β-estradiol, and Alizarin Red staining and alkaline phosphatase activity assay were used to detected osteogenesis. Specific short hairpin RNA and tamoxifen were used to block the estrogen receptor (ER) pathway and osteogenic marker genes and downstream gene expression were detected using real-time quantitative polymerase chain reaction, western blot, and immunohistochemistry staining. The findings showed that 17β-estradiol promoted the chondrocyte osteogenesis in vitro, even at high concentrations. In addition, blocking of the ERα/β pathway inhibited the trans-differentiation of chondrocytes into osteogenic cells. Furthermore, we found that dentin matrix protein 1 (DMP1), which is a direct downstream molecular of ER, was involved in 17β-estradiol/ER pathway-regulated osteogenesis. As well, glycogen synthase kinase-3 beta (GSK-3β)/β-catenin signal pathway also participates in ERα/β/DMP1-regulated chondrocyte osteogenesis. The GSK-3β/β-catenin signal pathway was involved in ERα/β/DMP1-regulated chondrocyte osteogenesis. These findings suggest that ER/DMP1/GSK-3β/β-catenin plays a vital role in estrogen regulation of chondrocyte osteogenesis and provide a therapeutic target for short stature caused by epiphyseal fusion.
Collapse
Affiliation(s)
- Xue Yan
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Deng‐Yun Fan
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ya‐Lei Pi
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ya‐Nan Zhang
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Peng‐Jiu Fu
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Hui‐Feng Zhang
- Department of PediatricsThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
6
|
Zhang Q, Huang Z, Zuo H, Lin Y, Xiao Y, Yan Y, Cui Y, Lin C, Pei F, Chen Z, Liu H. Chromatin Accessibility Predetermines Odontoblast Terminal Differentiation. Front Cell Dev Biol 2021; 9:769193. [PMID: 34901015 PMCID: PMC8655119 DOI: 10.3389/fcell.2021.769193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/29/2021] [Indexed: 12/03/2022] Open
Abstract
Embryonic development and stem cell differentiation are orchestrated by changes in sequential binding of regulatory transcriptional factors to their motifs. These processes are invariably accompanied by the alternations in chromatin accessibility, conformation, and histone modification. Odontoblast lineage originates from cranial neural crest cells and is crucial in dentinogenesis. Our previous work revealed several transcription factors (TFs) that promote odontoblast differentiation. However, it remains elusive as to whether chromatin accessibility affects odontoblast terminal differentiation. Herein, integration of single-cell RNA-seq and bulk RNA-seq revealed that in vitro odontoblast differentiation using dental papilla cells at E18.5 was comparable to the crown odontoblast differentiation trajectory of OC (osteocalcin)-positive odontogenic lineage. Before in vitro odontoblast differentiation, ATAC-seq and H3K27Ac CUT and Tag experiments demonstrated high accessibility of chromatin regions adjacent to genes associated with odontogenic potential. However, following odontoblastic induction, regions near mineralization-related genes became accessible. Integration of RNA-seq and ATAC-seq results further revealed that the expression levels of these genes were correlated with the accessibility of nearby chromatin. Time-course ATAC-seq experiments further demonstrated that odontoblast terminal differentiation was correlated with the occupation of the basic region/leucine zipper motif (bZIP) TF family, whereby we validated the positive role of ATF5 in vitro. Collectively, this study reports a global mapping of open chromatin regulatory elements during dentinogenesis and illustrates how these regions are regulated via dynamic binding of different TF families, resulting in odontoblast terminal differentiation. The findings also shed light on understanding the genetic regulation of dentin regeneration using dental mesenchymal stem cells.
Collapse
Affiliation(s)
- Qian Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhen Huang
- Fujian Key Laboratory of Developmental and Neuro Biology, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Huanyan Zuo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuxiu Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yao Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yanan Yan
- Fujian Key Laboratory of Developmental and Neuro Biology, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yu Cui
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chujiao Lin
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Fei Pei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huan Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Chronic kidney disease-mineral and bone disorder (CKD-MBD) has become a global health crisis with very limited therapeutic options. Dentin matrix protein 1 (DMP1) is a matrix extracellular protein secreted by osteocytes that has generated recent interest for its possible involvement in CKD-MBD pathogenesis. This is a review of DMP1 established regulation and function, and early studies implicating DMP1 in CKD-MBD. RECENT FINDINGS Patients and mice with CKD show perturbations of DMP1 expression in bone, associated with impaired osteocyte maturation, mineralization, and increased fibroblast growth factor 23 (FGF23) production. In humans with CKD, low circulating DMP1 levels are independently associated with increased cardiovascular events. We recently showed that DMP1 supplementation lowers circulating FGF23 levels and improves bone mineralization and cardiac outcomes in mice with CKD. Mortality rates are extremely high among patients with CKD and have only marginally improved over decades. Bone disease and FGF23 excess contribute to mortality in CKD by increasing the risk of bone fractures and cardiovascular disease, respectively. Previous studies focused on DMP1 loss-of-function mutations have established its role in the regulation of FGF23 and bone mineralization. Recent studies show that DMP1 supplementation may fill a crucial therapeutic gap by improving bone and cardiac health in CKD.
Collapse
Affiliation(s)
- Aline Martin
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA.
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
8
|
Zhang S, Li X, Qi Y, Ma X, Qiao S, Cai H, Zhao BC, Jiang HB, Lee ES. Comparison of Autogenous Tooth Materials and Other Bone Grafts. Tissue Eng Regen Med 2021; 18:327-341. [PMID: 33929713 PMCID: PMC8169722 DOI: 10.1007/s13770-021-00333-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 10/21/2022] Open
Abstract
Autogenous odontogenic materials are a new, highly biocompatible option for jaw restoration. The inorganic component of autogenous teeth acts as a scaffold to maintain the volume and enable donor cell attachment and proliferation; the organic component contains various growth factors that promote bone reconstruction and repair. The composition of dentin is similar to that of bone, which can be a rationale for promoting bone reconstruction. Recent advances have been made in the field of autogenous odontogenic materials, and studies have confirmed their safety and feasibility after successful clinical application. Autogenous odontogenic materials have unique characteristics compared with other bone-repair materials, such as the conventional autogenous, allogeneic, xenogeneic, and alloplastic bone substitutes. To encourage further research into odontogenic bone grafts, we compared the composition, osteogenesis, and development of autogenous odontogenic materials with those of other bone grafts. In conclusion, odontogenic bone grafts should be classified as a novel bone substitute.
Collapse
Affiliation(s)
- Shuxin Zhang
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University, Tai’an, 271016 Shandong China
| | - Xuehan Li
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University, Tai’an, 271016 Shandong China
| | - Yanxin Qi
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University, Tai’an, 271016 Shandong China
| | - Xiaoqian Ma
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University, Tai’an, 271016 Shandong China
| | - Shuzhan Qiao
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University, Tai’an, 271016 Shandong China
| | - HongXin Cai
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University, Tai’an, 271016 Shandong China
| | - Bing Cheng Zhao
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University, Tai’an, 271016 Shandong China
| | - Heng Bo Jiang
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University, Tai’an, 271016 Shandong China
| | - Eui-Seok Lee
- Department of Oral and Maxillofacial Surgery, Graduate School of Clinical Dentistry, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
9
|
Abstract
Purpose of review Chronic kidney disease (CKD) is a condition associated with bone disease and fibroblast growth factor 23 (FGF23) excess that contributes to cardiovascular mortality. Dentin matrix protein 1 (DMP1) is an established regulator of bone mineralization and FGF23 production in osteocytes. To date, DMP1 function has mainly been studied in the context of hereditary hypophosphatemic rickets diseases. This review describes the role of DMP1 as a potential strong candidate to prevent bone disorders, FGF23 elevation and associated cardiac outcomes in CKD. Recent findings Patients and mice with CKD show impaired osteocyte maturation and impaired regulation of DMP1 and FGF23 in bone. New data suggest that impaired DMP1 production contributes to CKD-associated bone and mineral metabolism disorders and we show that DMP1 repletion improves osteocyte alterations, bone mineralization and partially prevents FGF23 elevation. As a result, mice with CKD show attenuated left ventricular hypertrophy and improved survival. Summary There is an urgent need for new therapeutic strategies to improve bone quality and to lower FGF23 levels in CKD. By preventing osteocyte apoptosis and inhibiting Fgf23 transcription, DMP1 supplementation may represent an ideal approach to improve CKD-associated bone and cardiac outcomes.
Collapse
|
10
|
Zhang H, Li L, Kesterke MJ, Lu Y, Qin C. High-Phosphate Diet Improved the Skeletal Development of Fam20c-Deficient Mice. Cells Tissues Organs 2020; 208:25-36. [PMID: 32101876 DOI: 10.1159/000506005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/19/2020] [Indexed: 12/29/2022] Open
Abstract
FAM20C (family with sequence similarity 20 - member C) is a protein kinase that phosphorylates secretory proteins, including the proteins that are essential to the formation and mineralization of calcified tissues. Previously, we reported that inactivation of Fam20c in mice led to hypophosphatemic rickets/osteomalacia along with increased circulating fibroblast growth factor 23 (FGF23) levels and dental defects. In this study, we examined whether a high-phosphate (hPi) diet could rescue the skeletal defects in Fam20c-deficient mice. Fam20c conditional knockout (cKO) mice were generated by crossing female Fam20c-floxed mice (Fam20cfl/fl) with male Sox2-Cre;Fam20cfl/+ mice. The pregnant female Fam20cfi/fl mice were fed either a normal or hPi diet until the litters were weaned. The cKO and control offspring were continuously given a normal or hPi diet for 4 weeks after weaning. Plain X-ray radiography, micro-CT, histology, immunohistochemistry (FGF23, DMP1, OPN, and SOX9), and in situ hybridization (type II and type X collagen) analyses were performed to evaluate the effects of an hPi diet on the mouse skeleton. Plain X-ray radiography and micro-CT radiography analyses showed that the hPi diet improved the shape and mineral density of the Fam20c-deficient femurs/tibiae, and rescued the growth plate defects in the long bone. Histology analyses further demonstrated that an hPi diet nearly completely rescued the growth plate-widening defects in the long bone and restored the expanded hypertrophic zone to nearly normal width. These results suggested that the hPi diet significantly improved the skeletal development of the Fam20c-deficient mice, implying that hypophosphatemia partially contributed to the skeletal defects in Fam20c-deficient subjects.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA,
| | - Lili Li
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Matthew J Kesterke
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Yongbo Lu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Chunlin Qin
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| |
Collapse
|
11
|
DMP1 prevents osteocyte alterations, FGF23 elevation and left ventricular hypertrophy in mice with chronic kidney disease. Bone Res 2019; 7:12. [PMID: 31044094 PMCID: PMC6483996 DOI: 10.1038/s41413-019-0051-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
During chronic kidney disease (CKD), alterations in bone and mineral metabolism include increased production of the hormone fibroblast growth factor 23 (FGF23) that may contribute to cardiovascular mortality. The osteocyte protein dentin matrix protein 1 (DMP1) reduces FGF23 and enhances bone mineralization, but its effects in CKD are unknown. We tested the hypothesis that DMP1 supplementation in CKD would improve bone health, prevent FGF23 elevations and minimize consequent adverse cardiovascular outcomes. We investigated DMP1 regulation and effects in wild-type (WT) mice and the Col4a3−/− mouse model of CKD. Col4a3−/− mice demonstrated impaired kidney function, reduced bone DMP1 expression, reduced bone mass, altered osteocyte morphology and connectivity, increased osteocyte apoptosis, increased serum FGF23, hyperphosphatemia, left ventricular hypertrophy (LVH), and reduced survival. Genetic or pharmacological supplementation of DMP1 in Col4a3−/− mice prevented osteocyte apoptosis, preserved osteocyte networks, corrected bone mass, partially lowered FGF23 levels by attenuating NFAT-induced FGF23 transcription, and further increased serum phosphate. Despite impaired kidney function and worsened hyperphosphatemia, DMP1 prevented development of LVH and improved Col4a3−/− survival. Our data suggest that CKD reduces DMP1 expression, whereas its restoration represents a potential therapeutic approach to lower FGF23 and improve bone and cardiac health in CKD. Therapies based on a bone growth protein could prevent heart failure in chronic kidney disease (CKD) patients, say researchers in the USA. CKD often causes reduced bone mass and leads to left ventricular hypertrophy, a dangerous thickening of heart muscle related to over-production of the FGF23 hormone. In contrast, the dentin matrix protein DMP1, produced by bone cells, is known to reduce FGF23 levels and enhance bone growth. Aline Martin at Northwestern University in Chicago and co-workers increased the DMP1 levels in CKD mouse models through genetic modification and drugs, and found that this treatment restored regular bone mass, lowered FGF23 levels, reduced the occurrence of heart problems and led to longer lives. The findings suggest that therapies that restore DMP1 have the potential to improve both bone and heart health in CKD patients.
Collapse
|
12
|
Bi J, Liu Y, Liu XM, Jiang LM, Chen X. iRoot FM exerts an antibacterial effect on Porphyromonas endodontalis
and improves the properties of stem cells from the apical papilla. Int Endod J 2018. [DOI: 10.1111/iej.12923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- J. Bi
- Department of Paediatric Dentistry; School of Stomatology; China Medical University; Shenyang China
- Liaoning Province Key Laboratory of Oral Disease; Shenyang China
| | - Y. Liu
- Department of Paediatric Dentistry; School of Stomatology; China Medical University; Shenyang China
- Liaoning Province Key Laboratory of Oral Disease; Shenyang China
| | - X. M. Liu
- Department of Paediatric Dentistry; School of Stomatology; China Medical University; Shenyang China
- Liaoning Province Key Laboratory of Oral Disease; Shenyang China
| | - L. M. Jiang
- Department of Paediatric Dentistry; School of Stomatology; China Medical University; Shenyang China
- Liaoning Province Key Laboratory of Oral Disease; Shenyang China
| | - X. Chen
- Department of Paediatric Dentistry; School of Stomatology; China Medical University; Shenyang China
- Liaoning Province Key Laboratory of Oral Disease; Shenyang China
| |
Collapse
|
13
|
Periostin, dentin matrix protein 1 and P2rx7 ion channel in human teeth and periodontal ligament. Ann Anat 2018; 216:103-111. [DOI: 10.1016/j.aanat.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
|
14
|
Lv K, Huang H, Yi X, Chertoff ME, Li C, Yuan B, Hinton RJ, Feng JQ. A novel auditory ossicles membrane and the development of conductive hearing loss in Dmp1-null mice. Bone 2017; 103:39-46. [PMID: 28603080 PMCID: PMC5568469 DOI: 10.1016/j.bone.2017.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 10/19/2022]
Abstract
Genetic mouse models are widely used for understanding human diseases but we know much less about the anatomical structure of the auditory ossicles in the mouse than we do about human ossicles. Furthermore, current studies have mainly focused on disease conditions such as osteomalacia and rickets in patients with hypophosphatemia rickets, although the reason that these patients develop late-onset hearing loss is unknown. In this study, we first analyzed Dmp1 lac Z knock-in auditory ossicles (in which the blue reporter is used to trace DMP1 expression in osteocytes) using X-gal staining and discovered a novel bony membrane surrounding the mouse malleus. This finding was further confirmed by 3-D micro-CT, X-ray, and alizarin red stained images. We speculate that this unique structure amplifies and facilitates sound wave transmissions in two ways: increasing the contact surface between the eardrum and malleus and accelerating the sound transmission due to its mineral content. Next, we documented a progressive deterioration in the Dmp1-null auditory ossicle structures using multiple imaging techniques. The auditory brainstem response test demonstrated a conductive hearing loss in the adult Dmp1-null mice. This finding may help to explain in part why patients with DMP1 mutations develop late-onset hearing loss, and supports the critical role of DMP1 in maintaining the integrity of the auditory ossicles and its bony membrane.
Collapse
Affiliation(s)
- Kun Lv
- Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX 75246, USA; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Haiyang Huang
- Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX 75246, USA
| | - Xing Yi
- Department of Hearing and Speech, KU Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 6616, USA
| | - Mark E Chertoff
- Department of Hearing and Speech, KU Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 6616, USA
| | - Chaoyuan Li
- Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX 75246, USA
| | - Baozhi Yuan
- Department of Medicine, School of Medicine and Public Health, Univ. Wisconsin, Madison, WI 53726, USA
| | - Robert J Hinton
- Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX 75246, USA
| | - Jian Q Feng
- Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX 75246, USA.
| |
Collapse
|
15
|
Asadzadeh Manjili F, Bakhshi Aliabad MH, Kalantar SM, Sahebzamani A, Safa A. Molecular and Biochemical Aspects of Hypophosphatemic Rickets; an Updated Review. INTERNATIONAL JOURNAL OF BASIC SCIENCE IN MEDICINE 2017. [DOI: 10.15171/ijbsm.2017.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
16
|
Glycosylation of Dentin Matrix Protein 1 is critical for osteogenesis. Sci Rep 2015; 5:17518. [PMID: 26634432 PMCID: PMC4669440 DOI: 10.1038/srep17518] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/05/2015] [Indexed: 01/23/2023] Open
Abstract
Proteoglycans play important roles in regulating osteogenesis. Dentin matrix protein 1 (DMP1) is a highly expressed bone extracellular matrix protein that regulates both bone development and phosphate metabolism. After glycosylation, an N-terminal fragment of DMP1 protein was identified as a new proteoglycan (DMP1-PG) in bone matrix. In vitro investigations showed that Ser89 is the key glycosylation site in mouse DMP1. However, the specific role of DMP1 glycosylation is still not understood. In this study, a mutant DMP1 mouse model was developed in which the glycosylation site S89 was substituted with G89 (S89G-DMP1). The glycosylation level of DMP1 was down-regulated in the bone matrix of S89G-DMP1 mice. Compared with wild type mice, the long bones of S89G-DMP1 mice showed developmental changes, including the speed of bone remodeling and mineralization, the morphology and activities of osteocytes, and activities of both osteoblasts and osteoclasts. These findings indicate that glycosylation of DMP1 is a key posttranslational modification process during development and that DMP1-PG functions as an indispensable proteoglycan in osteogenesis.
Collapse
|
17
|
Yang X, Yan W, Tian Y, Ma P, Opperman LA, Wang X. Family with sequence similarity member 20C is the primary but not the only kinase for the small-integrin-binding ligand N-linked glycoproteins in bone. FASEB J 2015; 30:121-8. [PMID: 26324849 DOI: 10.1096/fj.15-273607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/17/2015] [Indexed: 12/27/2022]
Abstract
Recent studies have identified family with sequence similarity member 20C (FAM20C) as a kinase that phosphorylates the Ser in Ser-X-Glu/phospho-Ser (pSer) motifs in the small-integrin-binding ligand N-linked glycoproteins (SIBLINGs). There is no in vivo evidence that validates this finding, and it is unclear whether FAM20C is the only kinase for SIBLINGs. We extracted bone noncollagenous proteins (NCPs) from Fam20C-knockout (KO) mice and analyzed the phosphorylation levels. The total NCPs were separated into osteopontin-, bone sialoprotein-, and dentin matrix protein-1-enriched fractions by anion-exchange chromatography and analyzed by SDS-PAGE, native PAGE, and Western immunoblot analysis. The NCP phosphorylation level in the KO mice was lower than that in the wild-type (WT). On the native gel, the SIBLINGs from KO mice showed a lower migration rate (Mr) than those from the WT. Calf intestine phosphatase treatment shifted SIBLINGs from the WT mice to the level adjacent to the KO, but failed to shift the latter, suggesting a phosphorylation loss of SIBLINGs in the KO mice. Mass spectrometry identified less pSers in the SIBLINGs from the KO mice [including the region of the acidic Ser- and aspartate-rich motif (ASARM) peptides]. In an intriguing finding, several pSers in the Ser-X-Glu motifs in the KO mice maintained their phosphorylation, whereas several others in non-Ser-X-Glu motifs did not. Phospho-Tyrs and phospho-Thrs in the SIBLINGs did not appear to be associated with FAM20C. Our results indicate that FAM20C is the primary, but not the only, kinase for the SIBLINGs.-Yang, X., Yan, W., Tian, Y., Ma, P., Opperman, L. A., Wang, X. Family with sequence similarity member 20C is the primary but not the only kinase for the small-integrin-binding ligand N-linked glycoproteins in bone.
Collapse
Affiliation(s)
- Xiudong Yang
- *Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas, USA; Southern Medical University, Guangdong, People's Republic of China; Sichuan University, Sichuan, People's Republic of China; and Capital Medical University, Beijing, People's Republic of China
| | - Wenjuan Yan
- *Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas, USA; Southern Medical University, Guangdong, People's Republic of China; Sichuan University, Sichuan, People's Republic of China; and Capital Medical University, Beijing, People's Republic of China
| | - Ye Tian
- *Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas, USA; Southern Medical University, Guangdong, People's Republic of China; Sichuan University, Sichuan, People's Republic of China; and Capital Medical University, Beijing, People's Republic of China
| | - Pan Ma
- *Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas, USA; Southern Medical University, Guangdong, People's Republic of China; Sichuan University, Sichuan, People's Republic of China; and Capital Medical University, Beijing, People's Republic of China
| | - Lynne A Opperman
- *Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas, USA; Southern Medical University, Guangdong, People's Republic of China; Sichuan University, Sichuan, People's Republic of China; and Capital Medical University, Beijing, People's Republic of China
| | - Xiaofang Wang
- *Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas, USA; Southern Medical University, Guangdong, People's Republic of China; Sichuan University, Sichuan, People's Republic of China; and Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
18
|
Mao Y, Satchell PG, Luan X, Diekwisch TGH. SM50 repeat-polypeptides self-assemble into discrete matrix subunits and promote appositional calcium carbonate crystal growth during sea urchin tooth biomineralization. Ann Anat 2015; 203:38-46. [PMID: 26194158 DOI: 10.1016/j.aanat.2015.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
The two major proteins involved in vertebrate enamel formation and echinoderm sea urchin tooth biomineralization, amelogenin and SM50, are both characterized by elongated polyproline repeat domains in the center of the macromolecule. To determine the role of polyproline repeat polypeptides in basal deuterostome biomineralization, we have mapped the localization of SM50 as it relates to crystal growth, conducted self-assembly studies of SM50 repeat polypeptides, and examined their effect on calcium carbonate and apatite crystal growth. Electron micrographs of the growth zone of Strongylocentrotus purpuratus sea urchin teeth documented a series of successive events from intravesicular mineral nucleation to mineral deposition at the interface between tooth surface and odontoblast syncytium. Using immunohistochemistry, SM50 was detected within the cytoplasm of cells associated with the developing tooth mineral, at the mineral secreting front, and adjacent to initial mineral deposits, but not in muscles and ligaments. Polypeptides derived from the SM50 polyproline alternating hexa- and hepta-peptide repeat region (SM50P6P7) formed highly discrete, donut-shaped self-assembly patterns. In calcium carbonate crystal growth studies, SM50P6P7 repeat peptides triggered the growth of expansive networks of fused calcium carbonate crystals while in apatite growth studies, SM50P6P7 peptides facilitated the growth of needle-shaped and parallel arranged crystals resembling those found in developing vertebrate enamel. In comparison, SM50P6P7 surpassed the PXX24 polypeptide repeat region derived from the vertebrate enamel protein amelogenin in its ability to promote crystal nucleation and appositional crystal growth. Together, these studies establish the SM50P6P7 polyproline repeat region as a potent regulator in the protein-guided appositional crystal growth that occurs during continuous tooth mineralization and eruption. In addition, our studies highlight the role of species-specific polyproline repeat motifs in the formation of discrete self-assembled matrices and the resulting control of mineral growth.
Collapse
Affiliation(s)
- Yelin Mao
- UIC College of Dentistry, Department of Orthodontics, USA
| | | | - Xianghong Luan
- UIC College of Dentistry, Department of Orthodontics, USA; UIC College of Dentistry, Department of Oral Biology, USA
| | - Thomas G H Diekwisch
- UIC College of Dentistry, Department of Oral Biology, USA; Baylor College of Dentistry, Department of Periodontics, USA.
| |
Collapse
|
19
|
Zhu L, Yang J, Zhang J, Lei D, Xiao L, Cheng X, Lin Y, Peng B. In vitro and in vivo evaluation of a nanoparticulate bioceramic paste for dental pulp repair. Acta Biomater 2014; 10:5156-5168. [PMID: 25182220 DOI: 10.1016/j.actbio.2014.08.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/21/2014] [Accepted: 08/12/2014] [Indexed: 12/18/2022]
Abstract
Bioactive materials play an important role in facilitating dental pulp repair when living dental pulp is exposed after injuries. Mineral trioxide aggregate is the currently recommended material of choice for pulp repair procedures though has several disadvantages, especially the inconvenience of handling. Little information is yet available about the early events and molecular mechanisms involved in bioceramic-mediated dental pulp repair. We aimed to characterize and determine the apatite-forming ability of the novel ready-to-use nanoparticulate bioceramic iRoot BP Plus, and investigate its effects on the in vitro recruitment of human dental pulp stem cells (DPSCs), as well as its capacity to induce dentin bridge formation in an in vivo model of pulp repair. It was found that iRoot BP Plus was nanosized and had excellent apatite-forming ability in vitro. Treatment with iRoot BP Plus extracts promoted the adhesion, migration and attachment of DPSCs, and optimized focal adhesion formation (Vinculin, p-Paxillin and p-Focal adhesion kinase) and stress fibre assembly. Consistent with the in vitro results, we observed the formation of a homogeneous dentin bridge and the expression of odontogenic (dentin sialoprotein, dentin matrix protein 1) and focal adhesion molecules (Vinculin, p-Paxillin) at the injury site of pulp repair model by iRoot BP Plus. Our findings provide valuable insights into the mechanism of bioceramic-mediated dental pulp repair, and the novel revolutionary ready-to-use nanoparticulate bioceramic paste shows promising therapeutic potential in dental pulp repair application.
Collapse
|
20
|
Lin SX, Zhang Q, Zhang H, Yan K, Ward L, Lu YB, Feng JQ. Nucleus-targeted Dmp1 transgene fails to rescue dental defects in Dmp1 null mice. Int J Oral Sci 2014; 6:133-41. [PMID: 25105818 PMCID: PMC4170153 DOI: 10.1038/ijos.2014.44] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2014] [Indexed: 01/06/2023] Open
Abstract
Dentin matrix protein 1 (DMP1) is essential to odontogenesis. Its mutations in human subjects lead to dental problems such as dental deformities, hypomineralization and periodontal impairment. Primarily, DMP1 is considered as an extracellular matrix protein that promotes hydroxyapatite formation and activates intracellular signaling pathway via interacting with αvβ3 integrin. Recent in vitro studies suggested that DMP1 might also act as a transcription factor. In this study, we examined whether full-length DMP1 could function as a transcription factor in the nucleus and regulate odontogenesis in vivo. We first demonstrated that a patient with the DMP1 M1V mutation, which presumably causes a loss of the secretory DMP1 but does not affect the nuclear translocation of DMP1, shows a typical rachitic tooth defect. Furthermore, we generated transgenic mice expressing (NLS)DMP1, in which the endoplasmic reticulum (ER) entry signal sequence of DMP1 was replaced by a nuclear localization signal (NLS) sequence, under the control of a 3.6 kb rat type I collagen promoter plus a 1.6 kb intron 1. We then crossbred the (NLS)DMP1 transgenic mice with Dmp1 null mice to express the (NLS)DMP1 in Dmp1-deficient genetic background. Although immunohistochemistry demonstrated that (NLS)DMP1 was localized in the nuclei of the preodontoblasts and odontoblasts, the histological, morphological and biochemical analyses showed that it failed to rescue the dental and periodontal defects as well as the delayed tooth eruption in Dmp1 null mice. These data suggest that the full-length DMP1 plays no apparent role in the nucleus during odontogenesis.
Collapse
Affiliation(s)
- Shu-Xian Lin
- 1] Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, USA [2] The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qi Zhang
- Laboratory of Oral Biomedical Science and Translational Medicine, Department of Endodontics, School of Stomatology, Tongji University, Shanghai, China
| | - Hua Zhang
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, USA
| | - Kevin Yan
- Department of Biological Sciences, Columbia University, New York, USA
| | - Leanne Ward
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Canada
| | - Yong-Bo Lu
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, USA
| | - Jian-Quan Feng
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, USA
| |
Collapse
|
21
|
Lin S, Zhang Q, Cao Z, Lu Y, Zhang H, Yan K, Liu Y, McKee MD, Qin C, Chen Z, Feng JQ. Constitutive nuclear expression of dentin matrix protein 1 fails to rescue the Dmp1-null phenotype. J Biol Chem 2014; 289:21533-43. [PMID: 24917674 PMCID: PMC4118114 DOI: 10.1074/jbc.m113.543330] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 06/02/2014] [Indexed: 12/12/2022] Open
Abstract
Dentin matrix protein 1 (DMP1) plays multiple roles in bone, tooth, phosphate homeostasis, kidney, salivary gland, reproductive cycles, and the development of cancer. In vitro studies have indicated two different biological mechanisms: 1) as a matrix protein, DMP1 interacts with αvβ3 integrin and activates MAP kinase signaling; and 2) DMP1 serves as a transcription co-factor. In vivo studies have demonstrated its key role in osteocytes. This study attempted to determine whether DMP1 functions as a transcription co-factor and regulates osteoblast functions. For gene expression comparisons using adenovirus constructs, we targeted the expression of DMP1 either to the nucleus only by replacing the endogenous signal peptide with a nuclear localization signal (NLS) sequence (referred to as (NLS)DMP1) or to the extracellular matrix as the WT type (referred to as (SP)DMP1) in MC3T3 osteoblasts. High levels of DMP1 in either form greatly increased osteogenic gene expression in an identical manner. However, the targeted (NLS)DMP1 transgene driven by a 3.6-kb rat Col 1α1 promoter in the nucleus of osteoblasts and osteocytes failed to rescue the phenotyope of Dmp1-null mice, whereas the (SP)DMP1 transgene rescued the rickets defect. These studies support the notion that DMP1 functions as an extracellular matrix protein, rather than as a transcription co-factor in vivo. We also show that DMP1 continues its expression in osteoblasts during postnatal development and that the deletion of Dmp1 leads to an increase in osteoblast proliferation. However, poor mineralization in the metaphysis indicates a critical role for DMP1 in both osteoblasts and osteocytes.
Collapse
Affiliation(s)
- Shuxian Lin
- From the Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, Texas 75246, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430072, Hubei, China
| | - Qi Zhang
- Laboratory of Oral Biomedical Science and Translational Medicine, Department of Endodontics, School of Stomatology, Tongji University, Shanghai 200092, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430072, Hubei, China
| | - Yongbo Lu
- From the Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, Texas 75246
| | - Hua Zhang
- From the Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, Texas 75246
| | - Kevin Yan
- the Department of Biological Sciences, Columbia University, New York, New York 10027, and
| | - Ying Liu
- From the Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, Texas 75246
| | - Marc D McKee
- the Faculty of Dentistry, and Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Chunlin Qin
- From the Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, Texas 75246
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430072, Hubei, China,
| | - Jian Q Feng
- From the Department of Biomedical Sciences, Texas A&M University, Baylor College of Dentistry, Dallas, Texas 75246,
| |
Collapse
|
22
|
Xie X, Ma S, Li C, Liu P, Wang H, Chen L, Qin C. Expression of Small Integrin-Binding LIgand N-linked Glycoproteins (SIBLINGs) in the reparative dentin of rat molars. Dent Traumatol 2014; 30:285-95. [PMID: 24502800 DOI: 10.1111/edt.12093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2013] [Indexed: 12/27/2022]
Abstract
AIM To analyze the expression and distribution of Small Integrin-Binding LIgand N-linked Glycoproteins (SIBLINGs) in reparative dentin (RepD). METHODOLOGY Cavities on the mesial surfaces of rat molars were prepared to expose the pulp, and a calcium hydroxide agent was applied to cap the exposed pulp. The molars with pulp capping were extracted at postoperative 1, 2, and 4 weeks. The immunolocalization of four SIBLINGs, dentin matrix protein 1 (DMP1), dentin sialoprotein (DSP), bone sialoprotein (BSP), and osteopontin (OPN) in RepD, was analyzed in comparison with reactionary dentin (ReaD) and primary dentin (PD). RESULTS At two weeks after operation, the region of the exposed pulp formed a layer of reparative dentin bridge sealing the communication between the cavity and pulp chamber. Dentinal tubules in RepD were more irregular in shape and fewer in number than PD. At postoperative 2 and 4 weeks, RepD had lower levels of DMP1 and DSP than PD. BSP and OPN were present in RepD, but not in PD. RepD showed certain similarities to ReaD in the expression of SIBLINGs. CONCLUSIONS The reduced levels of DMP1 and DSP may be associated with the decreased number of dentinal tubules in RepD. The expression of BSP and OPN in RepD indicates that the odontoblast-like cells were attempting to produce a hard tissue at a very rapid pace. These findings suggest that in response to the surgical injury, the newly differentiated odontoblast-like cells altered their synthesis of the dentinogenesis-related proteins and produced a hard tissue that is an intermediate between dentin and bone.
Collapse
Affiliation(s)
- Xiaohua Xie
- Longjiang Scholar Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Endodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Muir AM, Ren Y, Butz DH, Davis NA, Blank RD, Birk DE, Lee SJ, Rowe D, Feng JQ, Greenspan DS. Induced ablation of Bmp1 and Tll1 produces osteogenesis imperfecta in mice. Hum Mol Genet 2014; 23:3085-101. [PMID: 24419319 DOI: 10.1093/hmg/ddu013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Osteogenesis imperfecta (OI), or brittle bone disease, is most often caused by dominant mutations in the collagen I genes COL1A1/COL1A2, whereas rarer recessive OI is often caused by mutations in genes encoding collagen I-interacting proteins. Recently, mutations in the gene for the proteinase bone morphogenetic 1 (BMP1) were reported in two recessive OI families. BMP1 and the closely related proteinase mammalian tolloid-like 1 (mTLL1) are co-expressed in various tissues, including bone, and have overlapping activities that include biosynthetic processing of procollagen precursors into mature collagen monomers. However, early lethality of Bmp1- and Tll1-null mice has precluded use of such models for careful study of in vivo roles of their protein products. Here we employ novel mouse strains with floxed Bmp1 and Tll1 alleles to induce postnatal, simultaneous ablation of the two genes, thus avoiding barriers of Bmp1(-/-) and Tll1(-/-) lethality and issues of functional redundancy. Bones of the conditionally null mice are dramatically weakened and brittle, with spontaneous fractures-defining features of OI. Additional skeletal features include osteomalacia, thinned/porous cortical bone, reduced processing of procollagen and dentin matrix protein 1, remarkably high bone turnover and defective osteocyte maturation that is accompanied by decreased expression of the osteocyte marker and Wnt-signaling inhibitor sclerostin, and by marked induction of canonical Wnt signaling. The novel animal model presented here provides new opportunities for in-depth analyses of in vivo roles of BMP1-like proteinases in bone and other tissues, and for their roles, and for possible therapeutic interventions, in OI.
Collapse
Affiliation(s)
- Alison M Muir
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA, Laboratory of Genetics, University of Wisconsin, Madison, WI, USA
| | - Yinshi Ren
- Department of Biomedical Sciences, Baylor College of Dentistry Texas A&M Health Science Center, Dallas, TX, USA
| | - Delana Hopkins Butz
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Nicholas A Davis
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Robert D Blank
- Geriatrics Research, Education, and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, USA, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - David E Birk
- Department of Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Se-Jin Lee
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA and
| | - David Rowe
- Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Baylor College of Dentistry Texas A&M Health Science Center, Dallas, TX, USA
| | - Daniel S Greenspan
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA,
| |
Collapse
|
24
|
Sato S, Hashimoto J, Usami Y, Ohyama K, Isogai Y, Hagiwara Y, Maruyama N, Komori T, Kuroda T, Toyosawa S. Novel sandwich ELISAs for rat DMP1: age-related decrease of circulatory DMP1 levels in male rats. Bone 2013; 57:429-36. [PMID: 24076023 DOI: 10.1016/j.bone.2013.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/14/2013] [Accepted: 09/20/2013] [Indexed: 12/17/2022]
Abstract
Dentin matrix protein 1 (DMP1), a noncollagenous bone matrix protein produced by osteocytes, regulates matrix mineralization and phosphate homeostasis. The lack of a precise assay for circulating DMP1 levels impairs further investigation of the protein's biological significance. Because full-length precursor DMP1 is cleaved into NH2- and COOH-terminal fragments during the secretory process, we developed two new sandwich ELISAs for the NH2- and COOH-terminal fragments of rat DMP1. One of these ELISAs, ELISA 1-2, is based on two affinity-purified polyclonal antibodies against the DMP1-1 and DMP1-2 peptides of the NH2-terminal fragment, whereas the other, ELISA 4-3, is based on two affinity-purified polyclonal antibodies against the DMP1-3 and DMP1-4 peptides of the COOH-terminal fragment. The polyclonal antibodies were characterized in immunohistochemical and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS/MS) studies. Immunohistochemical analyses of rat bone using these polyclonal antibodies revealed DMP1 immunoreactivity in osteocytes and pericanalicular matrix, consistent with the previously reported osteocyte-specific expression of DMP1. LC-MS/MS analyses of rat plasma-derived immunoreactive products affinity-extracted with these antibodies revealed the presence of DMP1 in circulating blood. The ELISAs established with these antibodies met accepted standards for reproducibility, repeatability, precision, and accuracy. Circulating DMP1 and levels of other biochemical markers (osteocalcin, Trap5b, Dkk-1, and SOST) were measured in 2-, 4-, 8-, 12-, 18-, 24-, 72-, and 96-week-old Wistar male rats. Circulating DMP1 levels determined by ELISAs 1-2 and 4-3 significantly decreased with age. During rapid skeletal growth (2-12weeks), DMP1 levels measured by ELISA 4-3 were over three times higher than those measured by ELISA 1-2; however, DMP1 levels in old animals (72 and 96weeks) were almost the same when measured by either ELISA. DMP1 levels determined by both ELISAs were most highly positively correlated with the level of Dkk-1, second most highly correlated with the level of osteocalcin, and less highly correlated with the levels of Trap5b and SOST. These novel sandwich ELISAs for rat DMP1 are highly specific and allow precise measurements of circulating DMP1, which may be a new biochemical marker for osteocyte-mediated bone turnover.
Collapse
Affiliation(s)
- Sunao Sato
- Department of Oral Pathology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
McKee MD, Hoac B, Addison WN, Barros NM, Millán JL, Chaussain C. Extracellular matrix mineralization in periodontal tissues: Noncollagenous matrix proteins, enzymes, and relationship to hypophosphatasia and X-linked hypophosphatemia. Periodontol 2000 2013; 63:102-22. [PMID: 23931057 PMCID: PMC3766584 DOI: 10.1111/prd.12029] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2012] [Indexed: 12/26/2022]
Abstract
As broadly demonstrated for the formation of a functional skeleton, proper mineralization of periodontal alveolar bone and teeth - where calcium phosphate crystals are deposited and grow within an extracellular matrix - is essential for dental function. Mineralization defects in tooth dentin and cementum of the periodontium invariably lead to a weak (soft or brittle) dentition in which teeth become loose and prone to infection and are lost prematurely. Mineralization of the extremities of periodontal ligament fibers (Sharpey's fibers) where they insert into tooth cementum and alveolar bone is also essential for the function of the tooth-suspensory apparatus in occlusion and mastication. Molecular determinants of mineralization in these tissues include mineral ion concentrations (phosphate and calcium), pyrophosphate, small integrin-binding ligand N-linked glycoproteins and matrix vesicles. Amongst the enzymes important in regulating these mineralization determinants, two are discussed at length here, with clinical examples given, namely tissue-nonspecific alkaline phosphatase and phosphate-regulating gene with homologies to endopeptidases on the X chromosome. Inactivating mutations in these enzymes in humans and in mouse models lead to the soft bones and teeth characteristic of hypophosphatasia and X-linked hypophosphatemia, respectively, where the levels of local and systemic circulating mineralization determinants are perturbed. In X-linked hypophosphatemia, in addition to renal phosphate wasting causing low circulating phosphate levels, phosphorylated mineralization-regulating small integrin-binding ligand N-linked glycoproteins, such as matrix extracellular phosphoglycoprotein and osteopontin, and the phosphorylated peptides proteolytically released from them, such as the acidic serine- and aspartate-rich-motif peptide, may accumulate locally to impair mineralization in this disease.
Collapse
Affiliation(s)
- Marc D. McKee
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Betty Hoac
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - William N. Addison
- Department of Oral Medicine, Infection and Immunity, Harvard University School of Dental Medicine, Boston, MA, USA
| | - Nilana M.T. Barros
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brasil, and Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, SP, Brasil
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Catherine Chaussain
- EA 2496, UFR Odontologie, University Paris Descartes PRES Sorbonne Paris Cité; AP-HP: Odontology Department Bretonneau, Paris and Centre de Référence des Maladies Rares du Métabolisme du Phosphore et du Calcium, Kremlin Bicêtre, France
| |
Collapse
|
26
|
Lim YH, Ovejero D, Sugarman JS, Deklotz CMC, Maruri A, Eichenfield LF, Kelley PK, Jüppner H, Gottschalk M, Tifft CJ, Gafni RI, Boyce AM, Cowen EW, Bhattacharyya N, Guthrie LC, Gahl WA, Golas G, Loring EC, Overton JD, Mane SM, Lifton RP, Levy ML, Collins MT, Choate KA. Multilineage somatic activating mutations in HRAS and NRAS cause mosaic cutaneous and skeletal lesions, elevated FGF23 and hypophosphatemia. Hum Mol Genet 2013; 23:397-407. [PMID: 24006476 DOI: 10.1093/hmg/ddt429] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pathologically elevated serum levels of fibroblast growth factor-23 (FGF23), a bone-derived hormone that regulates phosphorus homeostasis, result in renal phosphate wasting and lead to rickets or osteomalacia. Rarely, elevated serum FGF23 levels are found in association with mosaic cutaneous disorders that affect large proportions of the skin and appear in patterns corresponding to the migration of ectodermal progenitors. The cause and source of elevated serum FGF23 is unknown. In those conditions, such as epidermal and large congenital melanocytic nevi, skin lesions are variably associated with other abnormalities in the eye, brain and vasculature. The wide distribution of involved tissues and the appearance of multiple segmental skin and bone lesions suggest that these conditions result from early embryonic somatic mutations. We report five such cases with elevated serum FGF23 and bone lesions, four with large epidermal nevi and one with a giant congenital melanocytic nevus. Exome sequencing of blood and affected skin tissue identified somatic activating mutations of HRAS or NRAS in each case without recurrent secondary mutation, and we further found that the same mutation is present in dysplastic bone. Our finding of somatic activating RAS mutation in bone, the endogenous source of FGF23, provides the first evidence that elevated serum FGF23 levels, hypophosphatemia and osteomalacia are associated with pathologic Ras activation and may provide insight in the heretofore limited understanding of the regulation of FGF23.
Collapse
|
27
|
Feng JQ, Clinkenbeard EL, Yuan B, White KE, Drezner MK. Osteocyte regulation of phosphate homeostasis and bone mineralization underlies the pathophysiology of the heritable disorders of rickets and osteomalacia. Bone 2013; 54:213-21. [PMID: 23403405 PMCID: PMC3672228 DOI: 10.1016/j.bone.2013.01.046] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 12/13/2022]
Abstract
Although recent studies have established that osteocytes function as secretory cells that regulate phosphate metabolism, the biomolecular mechanism(s) underlying these effects remain incompletely defined. However, investigations focusing on the pathogenesis of X-linked hypophosphatemia (XLH), autosomal dominant hypophosphatemic rickets (ADHR), and autosomal recessive hypophosphatemic rickets (ARHR), heritable disorders characterized by abnormal renal phosphate wasting and bone mineralization, have clearly implicated FGF23 as a central factor in osteocytes underlying renal phosphate wasting, documented new molecular pathways regulating FGF23 production, and revealed complementary abnormalities in osteocytes that regulate bone mineralization. The seminal observations leading to these discoveries were the following: 1) mutations in FGF23 cause ADHR by limiting cleavage of the bioactive intact molecule, at a subtilisin-like protein convertase (SPC) site, resulting in increased circulating FGF23 levels and hypophosphatemia; 2) mutations in DMP1 cause ARHR, not only by increasing serum FGF23, albeit by enhanced production and not limited cleavage, but also by limiting production of the active DMP1 component, the C-terminal fragment, resulting in dysregulated production of DKK1 and β-catenin, which contributes to impaired bone mineralization; and 3) mutations in PHEX cause XLH both by altering FGF23 proteolysis and production and causing dysregulated production of DKK1 and β-catenin, similar to abnormalities in ADHR and ARHR, but secondary to different central pathophysiological events. These discoveries indicate that ADHR, XLH, and ARHR represent three related heritable hypophosphatemic diseases that arise from mutations in, or dysregulation of, a single common gene product, FGF23 and, in ARHR and XLH, complimentary DMP1 and PHEX directed events that contribute to abnormal bone mineralization.
Collapse
Affiliation(s)
- Jian Q Feng
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, TX 75246, USA
| | | | | | | | | |
Collapse
|
28
|
Yuan B, Feng JQ, Bowman S, Liu Y, Blank RD, Lindberg I, Drezner MK. Hexa-D-arginine treatment increases 7B2•PC2 activity in hyp-mouse osteoblasts and rescues the HYP phenotype. J Bone Miner Res 2013; 28:56-72. [PMID: 22886699 PMCID: PMC3523095 DOI: 10.1002/jbmr.1738] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 12/24/2022]
Abstract
Inactivating mutations of the "phosphate regulating gene with homologies to endopeptidases on the X chromosome" (PHEX/Phex) underlie disease in patients with X-linked hypophosphatemia (XLH) and the hyp-mouse, a murine homologue of the human disorder. Although increased serum fibroblast growth factor 23 (FGF-23) underlies the HYP phenotype, the mechanism(s) by which PHEX mutations inhibit FGF-23 degradation and/or enhance production remains unknown. Here we show that treatment of wild-type mice with the proprotein convertase (PC) inhibitor, decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone (Dec), increases serum FGF-23 and produces the HYP phenotype. Because PC2 is uniquely colocalized with PHEX in osteoblasts/bone, we examined if PC2 regulates PHEX-dependent FGF-23 cleavage and production. Transfection of murine osteoblasts with PC2 and its chaperone protein 7B2 cleaved FGF-23, whereas Signe1 (7B2) RNA interference (RNAi) transfection, which limited 7B2 protein production, decreased FGF-23 degradation and increased Fgf-23 mRNA and protein. The mechanism by which decreased 7B2•PC2 activity influences Fgf-23 mRNA was linked to reduced conversion of the precursor to bone morphogenetic protein 1 (proBMP1) to active BMP1, which resulted in limited cleavage of dentin matrix acidic phosphoprotein 1 (DMP1), and consequent increased Fgf-23 mRNA. The significance of decreased 7B2•PC2 activity in XLH was confirmed by studies of hyp-mouse bone, which revealed significantly decreased Sgne1 (7B2) mRNA and 7B2 protein, and limited cleavage of proPC2 to active PC2. The expected downstream effects of these changes included decreased FGF-23 cleavage and increased FGF-23 synthesis, secondary to decreased BMP1-mediated degradation of DMP1. Subsequent Hexa-D-Arginine treatment of hyp-mice enhanced bone 7B2•PC2 activity, normalized FGF-23 degradation and production, and rescued the HYP phenotype. These data suggest that decreased PHEX-dependent 7B2•PC2 activity is central to the pathogenesis of XLH.
Collapse
Affiliation(s)
- Baozhi Yuan
- Department of Medicine, University of Wisconsin-Madison and Geriatric Research and Education Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53792
| | - Jian Q. Feng
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, TX 75246
| | - Stephen Bowman
- Department of Medicine, University of Wisconsin-Madison and Geriatric Research and Education Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53792
| | - Ying Liu
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, TX 75246
| | - Robert D. Blank
- Department of Medicine, University of Wisconsin-Madison and Geriatric Research and Education Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53792
| | - Iris Lindberg
- Dept. of Anatomy and Neurobiology, University of Maryland Baltimore, Baltimore, MD 21201
| | - Marc K. Drezner
- Department of Medicine, University of Wisconsin-Madison and Geriatric Research and Education Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53792
| |
Collapse
|
29
|
Staines KA, MacRae VE, Farquharson C. The importance of the SIBLING family of proteins on skeletal mineralisation and bone remodelling. J Endocrinol 2012; 214:241-55. [PMID: 22700194 DOI: 10.1530/joe-12-0143] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The small integrin-binding ligand N-linked glycoprotein (SIBLING) family consists of osteopontin, bone sialoprotein, dentin matrix protein 1, dentin sialophosphoprotein and matrix extracellular phosphoglycoprotein. These proteins share many structural characteristics and are primarily located in bone and dentin. Accumulating evidence has implicated the SIBLING proteins in matrix mineralisation. Therefore, in this review, we discuss the individual role that each of the SIBLING proteins has in this highly orchestrated process. In particular, we emphasise how the nature and extent of their proteolytic processing and post-translational modification affect their functional role. Finally, we describe the likely roles of the SIBLING proteins in clinical disorders of hypophosphataemia and their potential therapeutic use.
Collapse
Affiliation(s)
- Katherine A Staines
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Edinburgh, Midlothian EH25 9RG, UK.
| | | | | |
Collapse
|
30
|
Wang X, Wang S, Lu Y, Gibson MP, Liu Y, Yuan B, Feng JQ, Qin C. FAM20C plays an essential role in the formation of murine teeth. J Biol Chem 2012; 287:35934-42. [PMID: 22936805 DOI: 10.1074/jbc.m112.386862] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FAM20C is highly expressed in bone and tooth. Previously, we showed that Fam20C conditional knock-out (KO) mice manifest hypophosphatemic rickets, which highlights the crucial roles of this molecule in promoting bone formation and mediating phosphate homeostasis. In this study, we characterized the dentin, enamel, and cementum of Sox2-Cre-mediated Fam20C KO mice. The KO mice exhibited small malformed teeth, severe enamel defects, very thin dentin, less cementum than normal, and overall hypomineralization in the dental mineralized tissues. In situ hybridization and immunohistochemistry analyses revealed remarkable down-regulation of dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein in odontoblasts, along with a sharply reduced expression of ameloblastin and amelotin in ameloblasts. Collectively, these data indicate that FAM20C is essential to the differentiation and mineralization of dental tissues through the regulation of molecules critical to the differentiation of tooth-formative cells.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M Health Science Center Baylor College of Dentistry, Dallas, Texas 75246, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Inactivation of a novel FGF23 regulator, FAM20C, leads to hypophosphatemic rickets in mice. PLoS Genet 2012; 8:e1002708. [PMID: 22615579 PMCID: PMC3355082 DOI: 10.1371/journal.pgen.1002708] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 03/28/2012] [Indexed: 12/11/2022] Open
Abstract
Family with sequence similarity 20,-member C (FAM20C) is highly expressed in the mineralized tissues of mammals. Genetic studies showed that the loss-of-function mutations in FAM20C were associated with human lethal osteosclerotic bone dysplasia (Raine Syndrome), implying an inhibitory role of this molecule in bone formation. However, in vitro gain- and loss-of-function studies suggested that FAM20C promotes the differentiation and mineralization of mouse mesenchymal cells and odontoblasts. Recently, we generated Fam20c conditional knockout (cKO) mice in which Fam20c was globally inactivated (by crossbreeding with Sox2-Cre mice) or inactivated specifically in the mineralized tissues (by crossbreeding with 3.6 kb Col 1a1-Cre mice). Fam20c transgenic mice were also generated and crossbred with Fam20c cKO mice to introduce the transgene in the knockout background. In vitro gain- and loss-of-function were examined by adding recombinant FAM20C to MC3T3-E1 cells and by lentiviral shRNA–mediated knockdown of FAM20C in human and mouse osteogenic cell lines. Surprisingly, both the global and mineralized tissue-specific cKO mice developed hypophosphatemic rickets (but not osteosclerosis), along with a significant downregulation of osteoblast differentiation markers and a dramatic elevation of fibroblast growth factor 23 (FGF23) in the serum and bone. The mice expressing the Fam20c transgene in the wild-type background showed no abnormalities, while the expression of the Fam20c transgene fully rescued the skeletal defects in the cKO mice. Recombinant FAM20C promoted the differentiation and mineralization of MC3T3-E1 cells. Knockdown of FAM20C led to a remarkable downregulation of DMP1, along with a significant upregulation of FGF23 in both human and mouse osteogenic cell lines. These results indicate that FAM20C is a bone formation “promoter” but not an “inhibitor” in mouse osteogenesis. We conclude that FAM20C may regulate osteogenesis through its direct role in facilitating osteoblast differentiation and its systemic regulation of phosphate homeostasis via the mediation of FGF23. A recent study demonstrated that the inactivating mutations in the FAM20C gene were associated with lethal osteosclerotic bone dysplasia characterized by a generalized hardening of all bones; this observation implied an inhibitory role of FAM20C during bone formation. However, in vitro studies revealed a contradictory finding that FAM20C accelerated the differentiation of cells forming the mineralized tissues. Here we generated Fam20c conditional knockout (cKO) mice, in which the gene was inactivated either in all tissues or specifically in the mineralized tissues. We also generated recombinant FAM20C protein and Fam20c transgenic mice. The cKO mice did not mimic the human skeleton abnormalities of osteosclerotic bone dysplasia, but exhibited rickets (softer bone) along with a significant reduction of serum phosphate level and a remarkable elevation of serum FGF23, a hormone known to promote phosphate wasting. A number of differentiation markers of the bone-forming cells were downregulated in the cKO mice. Recombinant FAM20C promoted the differentiation of mouse preosteoblasts. Introducing the Fam20c transgene did not lead to any abnormalities but rescued the bone defects of the cKO mice. Taken together, we conclude that FAM20C promotes the differentiation of osteoblast lineages and regulates phosphate homeostasis via the mediation of FGF23.
Collapse
|
32
|
Suzuki S, Haruyama N, Nishimura F, Kulkarni AB. Dentin sialophosphoprotein and dentin matrix protein-1: Two highly phosphorylated proteins in mineralized tissues. Arch Oral Biol 2012; 57:1165-75. [PMID: 22534175 DOI: 10.1016/j.archoralbio.2012.03.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/23/2012] [Accepted: 03/20/2012] [Indexed: 12/15/2022]
Abstract
Dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) are highly phosphorylated proteins that belong to the family of small integrin-binding ligand N-linked glycoproteins (SIBLINGs), and are essential for proper development of hard tissues such as teeth and bones. In order to understand how they contribute to tissue organization, DSPP and DMP-1 have been analyzed for over a decade using both in vivo and in vitro techniques. Among the five SIBLINGs, the DSPP and DMP-1 genes are located next to each other and their gene and protein structures are most similar. In this review we examine the phenotypes of the genetically engineered mouse models of DSPP and DMP-1 and also introduce complementary in vitro studies into the molecular mechanisms underlying these phenotypes. DSPP affects the mineralization of dentin more profoundly than DMP-1. In contrast, DMP-1 significantly affects bone mineralization and importantly controls serum phosphate levels by regulating serum FGF-23 levels, whereas DSPP does not show any systemic effects. DMP-1 activates integrin signalling and is endocytosed into the cytoplasm whereupon it is translocated to the nucleus. In contrast, DSPP only activates integrin-dependent signalling. Thus it is now clear that both DSPP and DMP-1 contribute to hard tissue mineralization and the tissues affected by each are different presumably as a result of their different expression levels. In fact, in comparison with DMP-1, the functional analysis of cell signalling by DSPP remains relatively unexplored.
Collapse
Affiliation(s)
- Shigeki Suzuki
- Department of Dental Science for Health Promotion, Division of Cervico-Gnathostomatology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan.
| | | | | | | |
Collapse
|
33
|
Vital SO, Gaucher C, Bardet C, Rowe P, George A, Linglart A, Chaussain C. Tooth dentin defects reflect genetic disorders affecting bone mineralization. Bone 2012; 50:989-97. [PMID: 22296718 PMCID: PMC3345892 DOI: 10.1016/j.bone.2012.01.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/06/2012] [Accepted: 01/14/2012] [Indexed: 01/27/2023]
Abstract
Several genetic disorders affecting bone mineralization may manifest during dentin mineralization. Dentin and bone are similar in several aspects, especially pertaining to the composition of the extracellular matrix (ECM) which is secreted by well-differentiated odontoblasts and osteoblasts, respectively. However, unlike bone, dentin is not remodelled and is not involved in the regulation of calcium and phosphate metabolism. In contrast to bone, teeth are accessible tissues with the shedding of deciduous teeth and the extractions of premolars and third molars for orthodontic treatment. The feasibility of obtaining dentin makes this a good model to study biomineralization in physiological and pathological conditions. In this review, we focus on two genetic diseases that disrupt both bone and dentin mineralization. Hypophosphatemic rickets is related to abnormal secretory proteins involved in the ECM organization of both bone and dentin, as well as in the calcium and phosphate metabolism. Osteogenesis imperfecta affects proteins involved in the local organization of the ECM. In addition, dentin examination permits evaluation of the effects of the systemic treatment prescribed to hypophosphatemic patients during growth. In conclusion, dentin constitutes a valuable tool for better understanding of the pathological processes affecting biomineralization.
Collapse
Affiliation(s)
- S. Opsahl Vital
- Dental School University Paris Descartes PRES Sorbonne Paris Cité, EA 2496, Montrouge, F-92120, France
- AP-HP, Odontology Department, Hôpitaux Universitaires Paris Nord Val de Seine (Bretonneau- Louis Mourier), F-75018, France
- Centre de référence des maladies rares du métabolisme du phosphore et du calcium, Kremlin Bicêtre, AP-HP, F-94275, France
| | - C. Gaucher
- Dental School University Paris Descartes PRES Sorbonne Paris Cité, EA 2496, Montrouge, F-92120, France
- AP-HP, Odontology Department, Hôpital Albert Chennevier, Créteil, F-94010, France
- Centre de référence des maladies rares du métabolisme du phosphore et du calcium, Kremlin Bicêtre, AP-HP, F-94275, France
| | - C. Bardet
- Dental School University Paris Descartes PRES Sorbonne Paris Cité, EA 2496, Montrouge, F-92120, France
| | - P.S. Rowe
- The Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - A. George
- Department of Oral Biology, University of Illinois in Chicago, Illinois 60612, USA
| | - A. Linglart
- Inserm, U986 Hôpital St Vincent de Paul AP-HP, Paris, F-75014, France
- Centre de référence des maladies rares du métabolisme du phosphore et du calcium, Kremlin Bicêtre, AP-HP, F-94275, France
| | - C. Chaussain
- Dental School University Paris Descartes PRES Sorbonne Paris Cité, EA 2496, Montrouge, F-92120, France
- AP-HP, Odontology Department, Hôpitaux Universitaires Paris Nord Val de Seine (Bretonneau- Louis Mourier), F-75018, France
- Centre de référence des maladies rares du métabolisme du phosphore et du calcium, Kremlin Bicêtre, AP-HP, F-94275, France
- Corresponding author at: Dental school University Paris Descartes PRES Sorbonne Paris Cité, EA 2496, Montrouge, France 2120. Fax: +33 158076724. (C. Chaussain)
| |
Collapse
|
34
|
|
35
|
Abstract
Calcium (Ca(2+)) and phosphate (PO(4)(3-)) homeostasis are coordinated by systemic and local factors that regulate intestinal absorption, influx and efflux from bone, and kidney excretion and reabsorption of these ions through a complex hormonal network. Traditionally, the parathyroid hormone (PTH)/vitamin D axis provided the conceptual framework to understand mineral metabolism. PTH secreted by the parathyroid gland in response to hypocalcemia functions to maintain serum Ca(2+) levels by increasing Ca(2+) reabsorption and 1,25-dihydroxyvitamin D [1,25(OH)(2)D] production by the kidney, enhancing Ca(2+) and PO(4)(3-) intestinal absorption and increasing Ca(2+) and PO(4)(3-) efflux from bone, while maintaining neutral phosphate balance through phosphaturic effects. FGF23 is a recently discovered hormone, predominately produced by osteoblasts/osteocytes, whose major functions are to inhibit renal tubular phosphate reabsorption and suppress circulating 1,25(OH)(2)D levels by decreasing Cyp27b1-mediated formation and stimulating Cyp24-mediated catabolism of 1,25(OH)(2)D. FGF23 participates in a new bone/kidney axis that protects the organism from excess vitamin D and coordinates renal PO(4)(3-) handling with bone mineralization/turnover. Abnormalities of FGF23 production underlie many inherited and acquired disorders of phosphate homeostasis. This review discusses the known and emerging functions of FGF23, its regulation in response to systemic and local signals, as well as the implications of FGF23 in different pathological and physiological contexts.
Collapse
Affiliation(s)
- Aline Martin
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | |
Collapse
|
36
|
Zhu Q, Prasad M, Kong H, Lu Y, Sun Y, Wang X, Yamoah A, Feng JQ, Qin C. Partial blocking of mouse DSPP processing by substitution of Gly(451)-Asp(452) bond suggests the presence of secondary cleavage site(s). Connect Tissue Res 2012; 53:307-12. [PMID: 22175728 PMCID: PMC3676176 DOI: 10.3109/03008207.2011.650301] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dentin sialophosphoprotein (DSPP) in the extracellular matrix of dentin is cleaved into dentin sialoprotein and dentin phosphoprotein, which originate from the NH(2)-terminal and COOH-terminal regions of DSPP, respectively. In the proteolytic processing of mouse DSPP, the peptide bond at Gly(451)-Asp(452) has been shown to be cleaved by bone morphogenetic protein 1 (BMP1)/Tolloid-like metalloproteinases. In this study, we generated transgenic mice expressing a mutant DSPP in which Asp(452) was substituted by Ala(452). Protein chemistry analyses of extracts from the long bone of these transgenic mice showed that the D452A substitution partially blocked DSPP processing in vivo. When the full-length form of mutant DSPP (designated "D452A-DSPP") isolated from the transgenic mice was treated with BMP1 in vitro, a portion of the D452A-DSPP was cleaved, suggesting the presence of secondary peptide bond(s) that can be broken by BMP1. To identify the potential secondary DSPP cleavage site(s), site-directed mutagenesis was performed to generate nine DNA constructs expressing DSPP-bearing substitutions at potential scission sites. These different types of mutant DSPP made in eukaryotic cell lines were treated with BMP1 and the digestion products were assessed by Western immunoblotting. All of the mutant DSPP molecular species were partially cleaved by BMP1, giving rise to a protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis similar to that of normal dentin sialoprotein. Taken together, we concluded that in addition to the peptide bond Gly(451)-Asp(452), there must be a cryptic cleavage site or sites close to Asp(452) in the mouse DSPP that can be cleaved by BMP1.
Collapse
Affiliation(s)
- Qinglin Zhu
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246,Department of Operative Dentistry and Endodontics, The Fourth Military Medical University, School of Stomatology, Xi’an, Shaanxi 710032, China
| | - Monica Prasad
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| | - Hui Kong
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| | - Yongbo Lu
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| | - Yao Sun
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| | - Xiaofang Wang
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| | - Albert Yamoah
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| | - Jian Q. Feng
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| | - Chunlin Qin
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| |
Collapse
|
37
|
Sun Y, Chen L, Ma S, Zhou J, Zhang H, Feng JQ, Qin C. Roles of DMP1 processing in osteogenesis, dentinogenesis and chondrogenesis. Cells Tissues Organs 2011; 194:199-204. [PMID: 21555863 PMCID: PMC3178078 DOI: 10.1159/000324672] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Dentin matrix protein 1 (DMP1) is an acidic protein that plays critical roles in osteogenesis and dentinogenesis. Protein chemistry studies have demonstrated that DMP1 primarily exists as processed NH₂⁻ and COOH-terminal fragments in the extracellular matrix of bone and dentin. Our earlier work showed that the substitution of Asp²¹³ (a residue at a cleavage site) by Ala²¹³ blocks the processing of mouse DMP1 in vitro. Recently, we generated transgenic mice expressing this mutant DMP1 (designated 'D213A-DMP1'). By crossbreeding these transgenic mice with Dmp1-knockout (Dmp1-KO) mice, we obtained mice expressing the D213A-DMP1 transgene in the Dmp1-null background (named 'Dmp1-KO/D213A-Tg' mice). In this study, we analyzed the long bone, mandible, dentin, and cartilage of Dmp1-KO/D213A-Tg mice in comparison with wild-type, Dmp1-KO, and Dmp1-KO mice expressing the normal DMP1 transgene (Dmp1-KO/normal-Tg). Our results showed that D213A-DMP1 was barely cleaved in the dentin matrix of Dmp1-KO/D213A-Tg mice and the expression of D213A-DMP1 failed to rescue the developmental defects in Dmp1-null mice. Interestingly, enlarged growth plates and condylar cartilages were observed in Dmp1-KO/D213A-Tg mice, indicating a potential role of the full-length form of DMP1 in chondrogenesis.
Collapse
Affiliation(s)
- Yao Sun
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Tex., USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Sun Y, Lu Y, Chen L, Gao T, D’Souza R, Feng J, Qin C. DMP1 processing is essential to dentin and jaw formation. J Dent Res 2011; 90:619-24. [PMID: 21297011 PMCID: PMC3077457 DOI: 10.1177/0022034510397839] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 01/18/2023] Open
Abstract
Dentin matrix protein 1 (DMP1), an acidic protein that is essential to the mineralization of bone and dentin, exists as proteolytically processed fragments in the mineralized tissues. In this study, we characterized the tooth and jaw phenotypes in transgenic mice containing no wild-type DMP1, but expressing a mutant DMP1 in which Asp(213), a residue at one cleavage site, was replaced by Ala(213) (named "Dmp1-KO/D213A-Tg" mice). The teeth and mandible of Dmp1-KO/D213A-Tg mice were compared with those of wild-type, Dmp1-knockout (Dmp1-KO), and Dmp1-KO mice expressing the normal Dmp1 transgene. The results showed that D213A-DMP1 was not cleaved in dentin, and the expression of D213A-DMP1 failed to rescue the defects in the dentin, cementum, and alveolar bones in the Dmp1-KO mice. These findings indicate that the proteolytic processing of DMP1 is essential to the formation and mineralization of dentin, cementum, and jaw bones.
Collapse
Affiliation(s)
- Y. Sun
- Department of Biomedical Sciences, Texas A&M Health Science Center Baylor College of Dentistry, 3302 Gaston Ave., Dallas, TX 75246, USA
| | - Y. Lu
- Department of Biomedical Sciences, Texas A&M Health Science Center Baylor College of Dentistry, 3302 Gaston Ave., Dallas, TX 75246, USA
| | - L. Chen
- Department of Endodontics, School of Stomatology, Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - T. Gao
- Department of Biomedical Sciences, Texas A&M Health Science Center Baylor College of Dentistry, 3302 Gaston Ave., Dallas, TX 75246, USA
| | - R. D’Souza
- Department of Biomedical Sciences, Texas A&M Health Science Center Baylor College of Dentistry, 3302 Gaston Ave., Dallas, TX 75246, USA
| | - J.Q. Feng
- Department of Biomedical Sciences, Texas A&M Health Science Center Baylor College of Dentistry, 3302 Gaston Ave., Dallas, TX 75246, USA
| | - C. Qin
- Department of Biomedical Sciences, Texas A&M Health Science Center Baylor College of Dentistry, 3302 Gaston Ave., Dallas, TX 75246, USA
| |
Collapse
|