1
|
Isern JA, Porta EOJ, Kalesh K, Koutsogiannis Z, Cazzola D, Pohl E, Denny PW, Steel PG. Profiling Serine Hydrolases in the Leishmania Host-Pathogen Interactome Using Cell-Permeable Activity-Based Fluorophosphonate Probes. Chembiochem 2025; 26:e202500160. [PMID: 40146885 PMCID: PMC12117450 DOI: 10.1002/cbic.202500160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 03/29/2025]
Abstract
Leishmaniasis, a vector-borne neglected tropical disease, caused by the protozoan parasite Leishmania, is a major global public health challenge with millions of new cases annually. Treatment of leishmaniasis is difficult for many reasons including multiple lifecycle stages, involving both an infective insect vector form, the promastigote, and a disease-causing intracellular mammalian host form, the amastigote, and increasing drug tolerance that are all linked by the interplay between parasite and host. Activity-based protein profiling (ABPP) was employed using new cell-permeable fluorophosphonate probes to explore serine hydrolases (SHs) in Leishmania mexicana with subsequent analysis enabled by secondary reaction with an affinity reagent. Importantly, these cell-permeable probes are capable of accessing all lifecycle stages including the disease-critical intramacrophage amastigote. Probe efficacy is a combination of both target engagement and subsequent accessibility to the affinity agent. Fourteen SHs, including peptidases and lipases, were identified in the L. mexicana proteome with comparative profiling of different parasite life-stages revealing significant changes in SH activity across the lifecycle stages. This intracellular ABPP approach provides insights into the host-parasite interactome demonstrating that SHs function as important virulence factors with Z-Pro-Prolinal, a known prolyl-oligopeptidase inhibitor, being able to reduce parasite infectivity in the macrophage by altering multiple SH targets.
Collapse
Affiliation(s)
- Jaime A. Isern
- Department of ChemistryDurham UniversityStockton Rd.DurhamDH1 3LEUK
| | | | - Karunakaran Kalesh
- School of Health and Life SciencesTeesside UniversitySouthfield Rd.MiddlesbroughTS1 3BXUK
- National Horizons CentreDarlingtonDL1 1HGUK
| | | | - Davide Cazzola
- Department of ChemistryDurham UniversityStockton Rd.DurhamDH1 3LEUK
| | - Ehmke Pohl
- Department of ChemistryDurham UniversityStockton Rd.DurhamDH1 3LEUK
| | - Paul W. Denny
- Department of BiosciencesDurham UniversityDurhamDH1 3LEUK
| | - Patrick G. Steel
- Department of ChemistryDurham UniversityStockton Rd.DurhamDH1 3LEUK
| |
Collapse
|
2
|
Mohamed MS, Elsaman T, Mohamed MA, Eltayib EM, Abdalla AE, Idriss MT. Identification of Bacterial Oligopeptidase B Inhibitors from Microbial Natural Products: Molecular Insights, Docking Studies, MD Simulations, and ADMET Predictions. Pharmaceuticals (Basel) 2025; 18:709. [PMID: 40430528 PMCID: PMC12114661 DOI: 10.3390/ph18050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: The increasing threat of antibiotic resistance and the declining efficiency of traditional drug discovery pipelines highlight the urgent need for novel drug targets and effective enzyme inhibitors against infectious diseases. Oligopeptidase B (OPB), a serine protease with trypsin-like specificity that processes low-molecular-weight peptides and oligopeptides, is present in bacteria and certain parasites but absent in mammals. This unique distribution makes OPB an attractive and selective target for antimicrobial drug development. Methods: Three-dimensional models of OPB from Serratia marcescens and Stenotrophomonas maltophilia, previously identified by our research group, were constructed via homology modeling using the best available OPB template from the RCSB Protein Data Bank. The S. marcescens OPB model was subjected to high-throughput virtual screening (HTVS) against the Natural Products Atlas (npatlas) database. Top-ranking compounds were further evaluated using Glide standard precision (SP) and extra precision (XP) docking protocols. Binding affinities were refined using molecular mechanics with generalized born and surface area (MM-GBSA) calculations. Molecular dynamics (MD) simulations assessed binding stability, while absorption distribution metabolism excretion and toxicity (ADMET) profiling evaluated drug-likeness and pharmacokinetic properties. Results: Ten natural product compounds demonstrated stronger binding affinities than antipain, a well-known oligopeptide-based protease inhibitor, as indicated by their more favorable MM-GBSA scores of -60.90 kcal/mol (S. marcescens) and -27.07 kcal/mol (S. maltophilia). Among these, dichrysobactin and validamycin E consistently exhibited favorable binding profiles across both OPB models. MD simulations confirmed the stability of their interactions with OPB active sites, maintaining favorable binding conformations throughout the simulation period. ADMET analysis suggested that while both compounds show promise, lead optimization is required to enhance their drug-like characteristics. Conclusions: This study identifies dichrysobactin and validamycin E as promising OPB inhibitors with potential antimicrobial activity. These findings support their further development as selective and potent agents against bacterial pathogens, including resistant strains, and underscore the need for experimental validation to confirm their efficacy and safety.
Collapse
Affiliation(s)
- Malik Suliman Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Magdi Awadalla Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Eyman Mohamed Eltayib
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Abualgasim Elgaili Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Mona Timan Idriss
- Department of Nursing College, Northern Private College of Nursing, Arar 73312, Saudi Arabia;
| |
Collapse
|
3
|
de Albuquerque-Melo BC, Pereira BAS, Ennes-Vidal V, Gonçalves MEP, Côrtes LMDC, Cysne-Finkelstein L, Guedes HLDM, Dias-Lopes G, Alves CR. Assessing proteases and enzymes of the trypanothione system in subpopulations of Leishmania (Viannia) braziliensis Thor strain during macrophage infection. Mem Inst Oswaldo Cruz 2024; 119:e240038. [PMID: 38985089 PMCID: PMC11251415 DOI: 10.1590/0074-02760240038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/10/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Leishmania (Viannia) braziliensis Thor strain exhibits a heterogeneous composition comprised of subpopulations with varying levels of infectivity. Clonal subpopulations were previously obtained from the strain Thor by sorting single-parasites and proceeding cultivation. The subpopulations used in this study are named Thor03, Thor 10 and Thor22. OBJECTIVES Phenotypic characteristics of the parasite, specially focusing on virulence factors and resistance to the antimicrobial mechanisms of macrophages, were investigate in these subpopulations. METHODS Cellular and molecular biology, as well as biochemistry approaches were applied to obtain the data analysed in this study. FINDINGS Relative quantification of gene expression was measured for calpain, cysteine protease B (CPB), and subtilisin proteases but no significant differences in these genes' expression among subpopulations was observed. However, subtilisin and CPB proteins were assessed as more abundant in Thor03 by fluorescence-labelled flow cytometry technique. Western Blotting assays, as semi-quantitative analysis in gel, showed higher concentrations of subtilisin (110 to 50 kDa) and CPB (40 to 18 kDa) in extract of intracellular amastigotes from subpopulations Thor03 and Thor10 and calpain (60 to 25 kDa) showed no significant differences among subpopulations. Complementary, higher trypanothione reductase activity was observed in Thor10 intracellular amastigotes and assays of susceptibility to hydrogen peroxide-inducing agents and nitric oxide donors conducted with promastigotes revealed greater resistance to in vitro oxidative stress induction for Thor10, followed by Thor03. MAIN CONCLUSIONS The data obtained for the virulence factors explored here suggest how multiple coexisting phenotypic-distinct subpopulations may contribute in adaptability of a single L. (V.) braziliensis strain during infection in the host cells.
Collapse
Affiliation(s)
| | - Bernardo Acácio Santini Pereira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
- Universidade Federal Fluminense, Faculdade de Medicina, Departamento de Patologia, Niterói, RJ, Brasil
| | - Vítor Ennes-Vidal
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Doenças Parasitárias, Rio de Janeiro, RJ, Brasil
| | - Maria Eduarda Pinto Gonçalves
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Luzia Monteiro de Castro Côrtes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Léa Cysne-Finkelstein
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunoparasitologia, Rio de Janeiro, RJ, Brasil
| | - Herbert Leonel de Matos Guedes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunologia Clínica, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Imunobiotecnologia, Rio de Janeiro, RJ, Brasil
| | - Geovane Dias-Lopes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Carlos Roberto Alves
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
4
|
González-Matos M, Aguado ME, Izquierdo M, Monzote L, González-Bacerio J. Compounds with potentialities as novel chemotherapeutic agents in leishmaniasis at preclinical level. Exp Parasitol 2024; 260:108747. [PMID: 38518969 DOI: 10.1016/j.exppara.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Leishmaniasis are neglected infectious diseases caused by kinetoplastid protozoan parasites from the genus Leishmania. These sicknesses are present mainly in tropical regions and almost 1 million new cases are reported each year. The absence of vaccines, as well as the high cost, toxicity or resistance to the current drugs determines the necessity of new treatments against these pathologies. In this review, several compounds with potentialities as new antileishmanial drugs are presented. The discussion is restricted to the preclinical level and molecules are organized according to their chemical nature, source and molecular targets. In this manner, we present antimicrobial peptides, flavonoids, withanolides, 8-aminoquinolines, compounds from Leish-Box, pyrazolopyrimidines, and inhibitors of tubulin polymerization/depolymerization, topoisomerase IB, proteases, pteridine reductase, N-myristoyltransferase, as well as enzymes involved in polyamine metabolism, response against oxidative stress, signaling pathways, and sterol biosynthesis. This work is a contribution to the general knowledge of these compounds as antileishmanial agents.
Collapse
Affiliation(s)
- Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Mirtha Elisa Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Lianet Monzote
- Department of Parasitology, Center for Research, Diagnosis and Reference, Tropical Medicine Institute "Pedro Kourí", Autopista Novia Del Mediodía Km 6½, La Lisa, La Habana, Cuba.
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba; Department of Biochemistry, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba.
| |
Collapse
|
5
|
Rivara-Espasandín M, Palumbo MC, Sosa EJ, Radío S, Turjanski AG, Sotelo-Silveira J, Fernandez Do Porto D, Smircich P. Omics data integration facilitates target selection for new antiparasitic drugs against TriTryp infections. Front Pharmacol 2023; 14:1136321. [PMID: 37089958 PMCID: PMC10115950 DOI: 10.3389/fphar.2023.1136321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Introduction:Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp., commonly referred to as TriTryps, are a group of protozoan parasites that cause important human diseases affecting millions of people belonging to the most vulnerable populations worldwide. Current treatments have limited efficiencies and can cause serious side effects, so there is an urgent need to develop new control strategies. Presently, the identification and prioritization of appropriate targets can be aided by integrative genomic and computational approaches.Methods: In this work, we conducted a genome-wide multidimensional data integration strategy to prioritize drug targets. We included genomic, transcriptomic, metabolic, and protein structural data sources, to delineate candidate proteins with relevant features for target selection in drug development.Results and Discussion: Our final ranked list includes proteins shared by TriTryps and covers a range of biological functions including essential proteins for parasite survival or growth, oxidative stress-related enzymes, virulence factors, and proteins that are exclusive to these parasites. Our strategy found previously described candidates, which validates our approach as well as new proteins that can be attractive targets to consider during the initial steps of drug discovery.
Collapse
Affiliation(s)
- Martin Rivara-Espasandín
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Miranda Clara Palumbo
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel J. Sosa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Santiago Radío
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Adrián G. Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Dario Fernandez Do Porto
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Dario Fernandez Do Porto, ; Pablo Smircich,
| | - Pablo Smircich
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Dario Fernandez Do Porto, ; Pablo Smircich,
| |
Collapse
|
6
|
Kotb E, El-Nogoumy BA, Alqahtani HA, Ahmed AA, Al-Shwyeh HA, Algarudi SM, Almahasheer H. A putative cytotoxic serine protease from Salmonella typhimurium UcB5 recovered from undercooked burger. Sci Rep 2023; 13:3926. [PMID: 36894576 PMCID: PMC9998444 DOI: 10.1038/s41598-023-29847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
A putative virulence exoprotease designated as UcB5 was successfully purified from the bacterium Salmonella typhimurium to the electrophoretic homogeneity with 13.2-fold and 17.1% recovery by hydrophobic, ion-exchange, and gel permeation chromatography using Phenyl-Sepharose 6FF, DEAE-Sepharose CL-6B, and Sephadex G-75, respectively. By applying SDS-PAGE, the molecular weight was confirmed at 35 kDa. The optimal temperature, pH, and isoelectric point were 35 °C, 8.0, 5.6 ± 0.2, respectively. UcB5 was found to have a broad substrate specificity against almost all the tested chromogenic substrates with maximal affinity against N-Succ-Ala-Ala-Pro-Phe-pNA achieving Km of 0.16 mM, Kcat/Km of 3.01 × 105 S-1 M-1, and amidolytic activity of 28.9 µmol min-1 L-1. It was drastically inhibited by TLCK, PMSF, SBTI, and aprotinin while, DTT, β-mercaptoethanol, 2,2'-bipyridine, o-phenanthroline, EDTA, and EGTA had no effect, which suggested a serine protease-type. Also, it has shown a broad substrate specificity against a broad range of natural proteins including serum proteins. A cytotoxicity and electron microscopy study revealed that UcB5 could cause subcellular proteolysis that finally led to liver necrosis. For this, future research should focus on using a combination of external antiproteases and antimicrobial agents for the treatment of microbial diseases instead of using drugs alone.
Collapse
Affiliation(s)
- Essam Kotb
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia. .,Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Baher A El-Nogoumy
- Department of Botany and Microbiology, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Haifa A Alqahtani
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Asmaa A Ahmed
- Department of Statistics, Faculty of Commerce, Al-Azhar University (Girls' Branch), P.O. Box 11751, Cairo, Egypt
| | - Hussah A Al-Shwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia.,Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Sakina M Algarudi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia.,Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Hanan Almahasheer
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441, Saudi Arabia
| |
Collapse
|
7
|
Gupta D, Singh PK, Yadav PK, Narender T, Patil UK, Jain SK, Chourasia MK. Emerging strategies and challenges of molecular therapeutics in antileishmanial drug development. Int Immunopharmacol 2023; 115:109649. [PMID: 36603357 DOI: 10.1016/j.intimp.2022.109649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
Molecular therapy refers to targeted therapies based on molecules which have been intelligently directed towards specific biomolecular structures and include small molecule drugs, monoclonal antibodies, proteins and peptides, DNA or RNA-based strategies, targeted chemotherapy and nanomedicines. Molecular therapy is emerging as the most effective strategy to combat the present challenges of life-threatening visceral leishmaniasis, where the successful human vaccine is currently unavailable. Moreover, current chemotherapy-based strategies are associated with the issues of ineffective targeting, unavoidable toxicities, invasive therapies, prolonged treatment, high treatment costs and the development of drug-resistant strains. Thus, the rational approach to antileishmanial drug development primarily demands critical exploration and exploitation of biochemical differences between host and parasite biology, immunocharacteristics of parasite homing, and host-parasite interactions at the molecular/cellular level. Following this, the novel technology-based designing and development of host and/or parasite-targeted therapeutics having leishmanicidal and immunomodulatory activity is utmost essential to improve treatment efficacy. Thus, the present review is focused on immunological and molecular checkpoint targets in host-pathogen interaction, and molecular therapeutic prospects for Leishmania intervention, and the challenges ahead.
Collapse
Affiliation(s)
- Deepak Gupta
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India; Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Pankaj K Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Tadigoppula Narender
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India.
| |
Collapse
|
8
|
Petrenko DE, Karlinsky DM, Gordeeva VD, Arapidi GP, Britikova EV, Britikov VV, Nikolaeva AY, Boyko KM, Timofeev VI, Kuranova IP, Mikhailova AG, Bocharov EV, Rakitina TV. Crystal Structure of Inhibitor-Bound Bacterial Oligopeptidase B in the Closed State: Similarity and Difference between Protozoan and Bacterial Enzymes. Int J Mol Sci 2023; 24:ijms24032286. [PMID: 36768612 PMCID: PMC9917282 DOI: 10.3390/ijms24032286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The crystal structure of bacterial oligopeptidase B from Serratia proteamaculans (SpOpB) in complex with a chloromethyl ketone inhibitor was determined at 2.2 Å resolution. SpOpB was crystallized in a closed (catalytically active) conformation. A single inhibitor molecule bound simultaneously to the catalytic residues S532 and H652 mimicked a tetrahedral intermediate of the catalytic reaction. A comparative analysis of the obtained structure and the structure of OpB from Trypanosoma brucei (TbOpB) in a closed conformation showed that in both enzymes, the stabilization of the D-loop (carrying the catalytic D) in a position favorable for the formation of a tetrahedral complex occurs due to interaction with the neighboring loop from the β-propeller. However, the modes of interdomain interactions were significantly different for bacterial and protozoan OpBs. Instead of a salt bridge (as in TbOpB), in SpOpB, a pair of polar residues following the catalytic D617 and a pair of neighboring arginine residues from the β-propeller domain formed complementary oppositely charged surfaces. Bioinformatics analysis and structural modeling show that all bacterial OpBs can be divided into two large groups according to these two modes of D-loop stabilization in closed conformations.
Collapse
Affiliation(s)
| | - David M. Karlinsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Veronika D. Gordeeva
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Georgij P. Arapidi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Phystech School of Biological and Medical Physics, 117303 Moscow, Russia
| | - Elena V. Britikova
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, 220141 Minsk, Belarus
| | - Vladimir V. Britikov
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, 220141 Minsk, Belarus
| | | | - Konstantin M. Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Vladimir I. Timofeev
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, 119333 Moscow, Russia
| | - Inna P. Kuranova
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, 119333 Moscow, Russia
| | - Anna G. Mikhailova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Eduard V. Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Phystech School of Biological and Medical Physics, 117303 Moscow, Russia
| | - Tatiana V. Rakitina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Correspondence:
| |
Collapse
|
9
|
Barbosa GR, Marana SR, Stolf BS. Characterization of Leishmania ( L.) amazonensis oligopeptidase B and its role in macrophage infection. Parasitology 2022; 149:1411-1418. [PMID: 35703092 PMCID: PMC11010554 DOI: 10.1017/s0031182022000816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/09/2022] [Accepted: 05/30/2022] [Indexed: 11/07/2022]
Abstract
Leishmania spp. are parasitic protozoa that cause leishmaniasis, a disease endemic in 98 countries. Leishmania promastigotes are transmitted by the vector and differentiate into amastigotes within phagocytic cells of the vertebrate host. To survive in multiple and hostile environments, the parasite has several virulence factors. Oligopeptidase B (OPB) is a serine peptidase present in prokaryotes, some eukaryotes and some higher plants. It has been considered a virulence factor in trypanosomatids, but only a few studies, performed with Old World species, analysed its role in Leishmania virulence or infectivity.L. (L.) amazonensis is an important agent of cutaneous leishmaniasis in Brazil. The L. (L.) amazonensis OPB encoding gene has been sequenced and analysed in silico but has never been expressed. In this work, we produced recombinant L. (L.) amazonensis OPB and showed that its pH preferences, Km and inhibition patterns are similar to those reported for L. (L.) major and L. (L.) donovani OPBs. Since Leishmania is known to secrete OPB, we performed in vitro infection assays using the recombinant enzyme. Our results showed that active OPB increased in vitro infection by L. (L.) amazonensis when present before and throughout infection. Our findings suggest that OPB is relevant to L. (L.) amazonensis infection, and that potential drugs acting through OPB will probably be effective for Old and New World Leishmania species. OPB inhibitors may eventually be explored for leishmaniasis chemotherapy.
Collapse
Affiliation(s)
- Gustavo Rolim Barbosa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sandro Roberto Marana
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Beatriz Simonsen Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Tano FT, Barbosa GR, de Rezende E, Souza ROO, Muxel SM, Silber AM, Palmisano G, Stolf BS. Proteome and morphological analysis show unexpected differences between promastigotes of Leishmania amazonensis PH8 and LV79 strains. PLoS One 2022; 17:e0271492. [PMID: 35998173 PMCID: PMC9398010 DOI: 10.1371/journal.pone.0271492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Leishmaniases are diseases caused by Leishmania protozoans that affect around 12 million people. Leishmania promastigotes are transmitted to vertebrates by female phlebotomine flies during their blood meal. Parasites attach to phagocytic cells, are phagocytosed and differentiate into amastigotes. We previously showed that PH8 and LV79 strains of Leishmania amazonensis have different virulence in mice and that their amastigotes differ in their proteomes. In this work, we compare promastigotes' infectivity in macrophages, their proteomes and morphologies. METHODS/PRINCIPAL FINDINGS Phagocytosis assays showed that promastigotes adhesion to and phagocytosis by macrophages is higher in PH8 than LV79. To identify proteins that differ between the two strains and that may eventually contribute for these differences we used a label-free proteomic approach to compare promastigote´s membrane-enriched fractions. Proteomic analysis enabled precise discrimination of PH8 and LV79 protein profiles and the identification of several differentially abundant proteins. The proteins more abundant in LV79 promastigotes participate mainly in translation and amino acid and nucleotide metabolism, while the more abundant in PH8 are involved in carbohydrate metabolism, cytoskeleton composition and vesicle/membrane trafficking. Interestingly, although the virulence factor GP63 was more abundant in the less virulent LV79 strain, zymography suggests a higher protease activity in PH8. Enolase, which may be related to virulence, was more abundant in PH8 promastigotes. Unexpectedly, flow cytometry and morphometric analysis indicate higher abundance of metacyclics in LV79. CONCLUSIONS/SIGNIFICANCE Proteome comparison of PH8 and LV79 promastigotes generated a list of differential proteins, some of which may be further prospected to affect the infectivity of promastigotes. Although proteomic profile of PH8 includes more proteins characteristic of metacyclics, flow cytometry and morphometric analysis indicate a higher abundance of metacyclics in LV79 cultures. These results shed light to the gaps in our knowledge of metacyclogenesis in L. amazonensis, and to proteins that should be studied in the context of infection by this species.
Collapse
Affiliation(s)
- Fabia Tomie Tano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gustavo Rolim Barbosa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eloiza de Rezende
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Sandra Marcia Muxel
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ariel Mariano Silber
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Beatriz Simonsen Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
11
|
Downregulation of gamma subunit of TCP1 chaperonin of Leishmania donovani modulates extracellular vesicles-mediated macrophage microbicidal function. Microb Pathog 2022; 169:105616. [DOI: 10.1016/j.micpath.2022.105616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/29/2022] [Accepted: 06/04/2022] [Indexed: 11/18/2022]
|
12
|
Elucidation of the Conformational Transition of Oligopeptidase B by an Integrative Approach Based on the Combination of X-ray, SAXS, and Essential Dynamics Sampling Simulation. CRYSTALS 2022. [DOI: 10.3390/cryst12050712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oligopeptidase B (OPB) is the least studied group from the prolyl oligopeptidase family. OPBs are found in bacteria and parasitic protozoa and represent pathogenesis factors of the corresponding infections. OPBs consist of two domains connected by a hinge region and have the characteristics of conformational dynamics, which include two types of movements: the bridging/separation of α/β-hydrolase catalytic and β-propeller-regulatory domains and the movement of a loop carrying catalytic histidine, which regulates an assembly/disassembly of the catalytic triad. In this work, an elucidation of the interdomain dynamics of OPB from Serratia proteamaculans (SpOPB) with and without modification of the hinge region was performed using a combination of X-ray diffraction analysis and small-angle X-ray scattering, which was complemented with an essential dynamics sampling (EDS) simulation. The first crystal structure of catalytically deficient SpOPB (SpOPBS532A) with an intact hinge sequence is reported. Similarly to SpOPB with modified hinges, SpOPBS532A was crystallized in the presence of spermine and adopted an intermediate conformation in the crystal lattice. Despite the similarity of the crystal structures, a difference in the catalytic triad residue arrangement was detected, which explained the inhibitory effect of the hinge modification. The SpOPBS532A structure reconstituted to the wild-type form was used as a starting point to the classical MD followed by EDS simulation, which allowed us to simulate the domain separation and the transition of the enzyme from the intermediate to open conformation. The obtained open state model was in good agreement with the experimental SAXS data.
Collapse
|
13
|
Gupta AK, Das S, Kamran M, Ejazi SA, Ali N. The Pathogenicity and Virulence of Leishmania - interplay of virulence factors with host defenses. Virulence 2022; 13:903-935. [PMID: 35531875 PMCID: PMC9154802 DOI: 10.1080/21505594.2022.2074130] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Leishmaniasis is a group of disease caused by the intracellular protozoan parasite of the genus Leishmania. Infection by different species of Leishmania results in various host immune responses, which usually lead to parasite clearance and may also contribute to pathogenesis and, hence, increasing the complexity of the disease. Interestingly, the parasite tends to reside within the unfriendly environment of the macrophages and has evolved various survival strategies to evade or modulate host immune defense. This can be attributed to the array of virulence factors of the vicious parasite, which target important host functioning and machineries. This review encompasses a holistic overview of leishmanial virulence factors, their role in assisting parasite-mediated evasion of host defense weaponries, and modulating epigenetic landscapes of host immune regulatory genes. Furthermore, the review also discusses the diagnostic potential of various leishmanial virulence factors and the advent of immunomodulators as futuristic antileishmanial drug therapy.
Collapse
Affiliation(s)
- Anand Kumar Gupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sonali Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
14
|
Zabala-Peñafiel A, Cysne-Finkelstein L, Conceição-Silva F, Fagundes A, Miranda LDFC, Souza-Silva F, Brandt AAML, Dias-Lopes G, Alves CR. Novel Insights Into Leishmania (Viannia) braziliensis In Vitro Fitness Guided by Temperature Changes Along With Its Subtilisins and Oligopeptidase B. Front Cell Infect Microbiol 2022; 12:805106. [PMID: 35531337 PMCID: PMC9069558 DOI: 10.3389/fcimb.2022.805106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Proteases are virulence factors with a recognized impact on the Leishmania spp. life cycle. This study considers a set of analyses measuring phenotypic factors of L. (V.) braziliensis clinical isolates as promastigotes growth curves, murine peritoneal macrophages infection, inflammatory mediators production, and serine proteases gene expression (subtilisin 13: S13, subtilisin 28: S28, oligopeptidase B: OPB) assessing these isolates’ fitness on in vitro conditions. Parasites had different behavior during the early growth phase from day zero to day three, and all isolates reached the stationary growth phase between days four and seven. Macrophages infection showed two tendencies, one of decreased infection rate and number of parasites per macrophage (Infection Index <1000) and another with a constant infection index (≥1400). TNF-α (≥10 pg/mL) detected in infections by 75% of isolates, IL-6 (≥80 pg/mL) by 30% of isolates and low levels of NO (≥0.01µM) in almost all infections. Gene expression showed higher values of S13 (≥2RQ) in the intracellular amastigotes of all the isolates evaluated. On the contrary, S28 expression was low (≤1RQ) in all isolates. OPB expression was different between promastigotes and intracellular amastigotes, being significantly higher (≥2RQ) in the latter form of 58% of the isolates. Predictive structural assays of S13 and OPB were performed to explore temperature influence on gene expression and the encoded proteases. Gene expression data is discussed based on in silico predictions of regulatory regions that show plasticity in the linearity index of secondary structures of S13 and OPB 3’-untranslated regions of mRNA, dependent on temperature changes. While hairpin structures suggest an active region of mRNA for both genes above 26°C, pseudoknot structure found in S13 is an indication of a particular profile of this gene at mammalian host temperatures (37°C). Furthermore, the predicted 3D structures are in accordance with the influence of these temperatures on the catalytic site stability of both enzymes, favoring their action over peptide substrates. Data gathered here suggest that L. (V.) braziliensis serine proteases can be influenced by the temperature conditions affecting parasite fitness throughout its life cycle.
Collapse
Affiliation(s)
- Anabel Zabala-Peñafiel
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lea Cysne-Finkelstein
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fatima Conceição-Silva
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Aline Fagundes
- Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luciana de Freitas Campos Miranda
- Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Franklin Souza-Silva
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Universidade Iguaçu, Dom Rodrigo, Nova Iguaçu, Rio de Janeiro, Brazil
| | - Artur A. M. L. Brandt
- Departamento de Computação e Sistemas, Faculdade de Educação Tecnológica do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Ciência da Computação, Univeritas-Rio, Rio de Janeiro, Brazil
| | - Geovane Dias-Lopes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Geovane Dias-Lopes, ; Carlos Roberto Alves,
| | - Carlos Roberto Alves
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Geovane Dias-Lopes, ; Carlos Roberto Alves,
| |
Collapse
|
15
|
Ambaru B, Gangadharan GM, Subramanya HS, Gupta CM. Profilin is involved in G1 to S phase progression and mitotic spindle orientation during Leishmania donovani cell division cycle. PLoS One 2022; 17:e0265692. [PMID: 35316283 PMCID: PMC8939790 DOI: 10.1371/journal.pone.0265692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/04/2022] [Indexed: 11/27/2022] Open
Abstract
Profilin is a multi-ligand binding protein, which is a key regulator of actin dynamics and involved in regulating several cellular functions. It is present in all eukaryotes, including trypanosomatids such as Leishmania. However, not much is known about its functions in these organisms. Our earlier studies have shown that Leishmania parasites express a single homologue of profilin (LdPfn) that binds actin, phosphoinositides and poly- L- proline motives, and depletion of its intracellular pool to 50%of normal levels affects the cell growth and intracellular trafficking. Here, we show, employing affinity pull-down and mass spectroscopy, that LdPfn interacted with a large number of proteins, including those involved in mRNA processing and protein translation initiation, such as eIF4A1. Further, we reveal, using mRNA Seq analysis, that depletion of LdPfn in Leishmania cells (LdPfn+/-) resulted in significantly reduced expression of genes which encode proteins involved in cell cycle regulation, mRNA translation initiation, nucleosides and amino acids transport. In addition, we show that in LdPfn+/- cells, cellular levels of eIF4A1 protein were significantly decreased, and during their cell division cycle, G1-to-S phase progression was delayed and orientation of mitotic spindle altered. These changes were, however, reversed to normal by episomal expression of GFP-LdPfn in LdPfn+/- cells. Taken together, our results indicate that profilin is involved in regulation of G1-to-S phase progression and mitotic spindle orientation in Leishmania cell cycle, perhaps through its interaction with elF4A1 protein.
Collapse
Affiliation(s)
- Bindu Ambaru
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | | | - Chhitar M. Gupta
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
- * E-mail:
| |
Collapse
|
16
|
Ramu D, Singh S. Potential molecular targets of Leishmania pathways in developing novel antileishmanials. Future Microbiol 2021; 17:41-57. [PMID: 34877877 DOI: 10.2217/fmb-2021-0094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The illness known as leishmaniasis has not become a household name like malaria, although it stands as the second-largest parasitic disease, surpassed only by malaria. As no licensed vaccine is available, treatment for leishmaniasis mostly relies on chemotherapy. Inefficiency and drug resistance are the major impediments in current therapeutics. In this scenario, identification of novel molecular drug candidates is indispensable to develop robust antileishmanials. The exploration of structure-based drugs to target enzymes/molecules of Leishmania which differ structurally/functionally from their equivalents in mammalian hosts not only helps in developing a new class of antileishmanials, but also paves the way to understand Leishmania biology. This review provides a comprehensive overview on possible drug candidates relating to various Leishmania molecular pathways.
Collapse
Affiliation(s)
- Dandugudumula Ramu
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, 201314, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
17
|
Petrenko DE, Timofeev VI, Britikov VV, Britikova EV, Kleymenov SY, Vlaskina AV, Kuranova IP, Mikhailova AG, Rakitina TV. First Crystal Structure of Bacterial Oligopeptidase B in an Intermediate State: The Roles of the Hinge Region Modification and Spermine. BIOLOGY 2021; 10:biology10101021. [PMID: 34681120 PMCID: PMC8533160 DOI: 10.3390/biology10101021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Oligopeptidase B is a two-domain, trypsin-like peptidase from parasitic protozoa and bacteria which belongs to the least studied group of prolyloligopeptidases. In this study, we describe for the first time a crystal structure of bacterial oligopeptidase B and compare it with those of protozoan oligopeptidases B and related prolyloligopeptidases. The enzyme was crystallized in the presence of spermine and contained a modified sequence of the interdomain linker. Both factors were key for crystallization. The structure showed an uncommon intermediate conformation with a domain arrangement intermediate between open and closed conformations found in the crystals of ligand-free and inhibitor-bound prolyloligopeptidases, respectively. To evaluate the impact of the modification and spermine in the obtained conformation, small-angle X-ray scattering was applied, which showed that in solution wild-type enzymes adopt the open conformation and spermine causes a transition to the intermediate state, while the modification is associated with a partial transition. We suggest that spermine-dependent conformational transition replicates the behavior of the enzyme in bacterial cells and the intermediate state, which is rarely detected in vitro, and might be widely distributed in vivo, and so should be considered during computational studies, including those aimed wanting to develop the small molecule inhibitors targeting prolyloligopeptidases. Abstract Oligopeptidase B (OpB) is a two-domain, trypsin-like serine peptidase belonging to the S9 prolyloligopeptidase (POP) family. Two domains are linked by a hinge region that participates in the transition of the enzyme between two major states—closed and open—in which domains and residues of the catalytic triad are located close to each other and separated, respectively. In this study, we described, for the first time, a structure of OpB from bacteria obtained for an enzyme from Serratia proteomaculans with a modified hinge region (PSPmod). PSPmod was crystallized in a conformation characterized by a disruption of the catalytic triad together with a domain arrangement intermediate between open and closed states found in crystals of ligand-free and inhibitor-bound POP, respectively. Two additional derivatives of PSPmod were crystallized in the same conformation. Neither wild-type PSP nor its corresponding mutated variants were susceptible to crystallization, indicating that the hinge region modification was key in the crystallization process. The second key factor was suggested to be polyamine spermine since all crystals were grown in its presence. The influences of the hinge region modification and spermine on the conformational state of PSP in solution were evaluated by small-angle X-ray scattering. SAXS showed that, in solution, wild-type PSP adopted the open state, spermine caused the conformational transition to the intermediate state, and spermine-free PSPmod contained molecules in the open and intermediate conformations in dynamic equilibrium.
Collapse
Affiliation(s)
- Dmitry E. Petrenko
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (D.E.P.); (A.V.V.)
| | - Vladimir I. Timofeev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, 117997 Moscow, Russia;
- Federal Scientific Research Center “Crystallography and Photonics”, RAS, 119333 Moscow, Russia;
- Correspondence: (V.I.T.); (T.V.R.)
| | - Vladimir V. Britikov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (V.V.B.); (E.V.B.)
| | - Elena V. Britikova
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (V.V.B.); (E.V.B.)
| | - Sergey Y. Kleymenov
- Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology”, RAS, 119071 Moscow, Russia;
- Koltzov Institute of Developmental Biology, RAS, 119334 Moscow, Russia
| | - Anna V. Vlaskina
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (D.E.P.); (A.V.V.)
| | - Inna P. Kuranova
- Federal Scientific Research Center “Crystallography and Photonics”, RAS, 119333 Moscow, Russia;
| | - Anna G. Mikhailova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, 117997 Moscow, Russia;
| | - Tatiana V. Rakitina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, 117997 Moscow, Russia;
- Correspondence: (V.I.T.); (T.V.R.)
| |
Collapse
|
18
|
Elmahallawy EK, Alkhaldi AAM. Insights into Leishmania Molecules and Their Potential Contribution to the Virulence of the Parasite. Vet Sci 2021; 8:vetsci8020033. [PMID: 33672776 PMCID: PMC7924612 DOI: 10.3390/vetsci8020033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
Neglected parasitic diseases affect millions of people worldwide, resulting in high morbidity and mortality. Among other parasitic diseases, leishmaniasis remains an important public health problem caused by the protozoa of the genus Leishmania, transmitted by the bite of the female sand fly. The disease has also been linked to tropical and subtropical regions, in addition to being an endemic disease in many areas around the world, including the Mediterranean basin and South America. Although recent years have witnessed marked advances in Leishmania-related research in various directions, many issues have yet to be elucidated. The intention of the present review is to give an overview of the major virulence factors contributing to the pathogenicity of the parasite. We aimed to provide a concise picture of the factors influencing the reaction of the parasite in its host that might help to develop novel chemotherapeutic and vaccine strategies.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Correspondence: (E.K.E.); (A.A.M.A.)
| | - Abdulsalam A. M. Alkhaldi
- Biology Department, College of Science, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
- Correspondence: (E.K.E.); (A.A.M.A.)
| |
Collapse
|
19
|
Lasse C, Azevedo CS, de Araújo CN, Motta FN, Andrade MA, Rocha AP, Sampaio I, Charneau S, Gèze M, Grellier P, Santana JM, Bastos IMD. Prolyl Oligopeptidase From Leishmania infantum: Biochemical Characterization and Involvement in Macrophage Infection. Front Microbiol 2020; 11:1060. [PMID: 32547514 PMCID: PMC7271538 DOI: 10.3389/fmicb.2020.01060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/29/2020] [Indexed: 11/13/2022] Open
Abstract
Leishmania infantum is a flagellated protozoan and one of the main causative agents of visceral leishmaniasis. This disease usually affects the human reticuloendothelial system, can cause death and available therapies may lead to serious side effects. Since it is a neglected tropical disease, the incentives for the development of new drugs are insufficient. It is important to know Leishmania virulence factors that contribute most to the disease in order to develop drugs. In the present work, we have produced L. infantum prolyl oligopeptidase (rPOPLi) in Escherichia coli, and investigated its biochemical properties as well as the effect of POP inhibitors on its enzymatic activity and on the inhibition of the macrophage infection by L. infantum. The optimal activity occurred at pH 7.5 and 37°C in the presence of DTT, the latter increased rPOPLi catalytic efficiency 5-fold on the substrate N-Suc-Gly-Pro-Leu-Gly-Pro-AMC. The enzyme was inhibited by TPCK, TLCK and by two POP specific inhibitors, Z-Pro-prolinal (ZPP, IC50 4.2 nM) and S17092 (IC50 3.5 nM). Besides being a cytoplasmic enzyme, POPLi is also found in punctuate structures within the parasite cytoplasm or associated with the parasite plasma membrane in amastigotes and promastigotes, respectively. Interestingly, S17092 and ZPP prevented parasite invasion in murine macrophages, supporting the involvement of POPLi in the invasive process of L. infantum. These data suggest POPLi as a virulence factor that offers potential as a target for designing new antileishmanial drugs.
Collapse
Affiliation(s)
- Camila Lasse
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasília, Brasília, Brazil
| | - Clênia S Azevedo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasília, Brasília, Brazil.,UMR 7245 MCAM, Musèum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Carla N de Araújo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasília, Brasília, Brazil.,Faculty of Ceilandia, University of Brasília, Brasília, Brazil
| | - Flávia N Motta
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasília, Brasília, Brazil.,Faculty of Ceilandia, University of Brasília, Brasília, Brazil
| | - Milene A Andrade
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasília, Brasília, Brazil.,UMR 7245 MCAM, Musèum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Amanda Pereira Rocha
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasília, Brasília, Brazil
| | - Iracyara Sampaio
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasília, Brasília, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasília, Brazil
| | - Marc Gèze
- UMR 7245 MCAM, Musèum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France.,CeMIM, Musèum National d'Histoire Naturelle, Paris, France
| | - Philippe Grellier
- UMR 7245 MCAM, Musèum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Jaime M Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasília, Brasília, Brazil
| | - Izabela M D Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasília, Brasília, Brazil
| |
Collapse
|
20
|
Motta FN, Azevedo CDS, Neves BP, Araújo CND, Grellier P, Santana JMD, Bastos IMD. Oligopeptidase B, a missing enzyme in mammals and a potential drug target for trypanosomatid diseases. Biochimie 2019; 167:207-216. [DOI: 10.1016/j.biochi.2019.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022]
|
21
|
Capelli-Peixoto J, Mule SN, Tano FT, Palmisano G, Stolf BS. Proteomics and Leishmaniasis: Potential Clinical Applications. Proteomics Clin Appl 2019; 13:e1800136. [PMID: 31347770 DOI: 10.1002/prca.201800136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 07/02/2019] [Indexed: 02/06/2023]
Abstract
Leishmaniases are diseases caused by protozoan parasites of the genus Leishmania. They are endemic in 98 countries, affect around 12 million people worldwide and may present several distinct clinical forms. Unfortunately, there are only a few drugs available for treatment of leishmaniasis, which are toxic and not always effective. Different parasite species and different clinical forms require optimization of the treatment or more specific therapies, which are not available. The emergence of resistance is also a matter of concern. Besides, diagnosis can sometimes be complicated due to atypical manifestations and associations with other pathologies. In this review, proteomic data are presented and discussed in terms of their application in important issues in leishmaniasis such as parasite resistance to chemotherapy, diagnosis of active disease in patients and dogs, markers for different clinical forms, identification of virulence factors, and their potential use in vaccination. It is shown that proteomics has contributed to the discovery of potential biomarkers for prognosis, diagnosis, therapeutics, monitoring of disease progression, treatment follow-up and identification of vaccine candidates for specific diseases. However, the authors believe its capabilities have not yet been fully explored for routine clinical analysis for several reasons, which will be presented in this review.
Collapse
Affiliation(s)
- Janaína Capelli-Peixoto
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Fabia Tomie Tano
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | - Beatriz Simonsen Stolf
- Leishmaniasis laboratory, Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Kiss-Szemán AJ, Harmat V, Menyhárd DK. Achieving Functionality Through Modular Build-up: Structure and Size Selection of Serine Oligopeptidases. Curr Protein Pept Sci 2019; 20:1089-1101. [PMID: 31553292 DOI: 10.2174/1389203720666190925103339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/13/2019] [Accepted: 04/12/2019] [Indexed: 01/13/2023]
Abstract
Enzymes of the prolyl oligopeptidase family (S9 family) recognize their substrates not only by the specificity motif to be cleaved but also by size - they hydrolyze oligopeptides smaller than 30 amino acids. They belong to the serine-protease family, but differ from classical serine-proteases in size (80 kDa), structure (two domains) and regulation system (size selection of substrates). This group of enzymes is an important target for drug design as they are linked to amnesia, schizophrenia, type 2 diabetes, trypanosomiasis, periodontitis and cell growth. By comparing the structure of various members of the family we show that the most important features contributing to selectivity and efficiency are: (i) whether the interactions weaving the two domains together play a role in stabilizing the catalytic triad and thus their absence may provide for its deactivation: these oligopeptidases can screen their substrates by opening up, and (ii) whether the interaction-prone β-edge of the hydrolase domain is accessible and thus can guide a multimerization process that creates shielded entrance or intricate inner channels for the size-based selection of substrates. These cornerstones can be used to estimate the multimeric state and selection strategy of yet undetermined structures.
Collapse
Affiliation(s)
- Anna J Kiss-Szemán
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eotvos Lorand University, Budapest, Hungary
| | - Veronika Harmat
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eotvos Lorand University, Budapest, Hungary.,MTA-ELTE Protein Modelling Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Dóra K Menyhárd
- MTA-ELTE Protein Modelling Research Group, Eotvos Lorand University, Budapest, Hungary
| |
Collapse
|
23
|
da Silva E Silva JV, Cordovil Brigido HP, Oliveira de Albuquerque KC, Miranda Carvalho J, Ferreira Reis J, Vinhal Faria L, Coelho-Ferreira M, Silveira FT, da Silva Carneiro A, Percário S, do Rosário Marinho AM, Dolabela MF. Flavopereirine-An Alkaloid Derived from Geissospermum vellosii-Presents Leishmanicidal Activity In Vitro. Molecules 2019; 24:molecules24040785. [PMID: 30795632 PMCID: PMC6412932 DOI: 10.3390/molecules24040785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 01/06/2023] Open
Abstract
Chemotherapy is limited in the treatment of leishmaniasis due to the toxic effects of drugs, low efficacy of alternative treatments, and resistance of the parasite. This work assesses the in vitro activity of flavopereirine on promastigote cultures of Leishmania amazonensis. In addition, an in silico evaluation of the physicochemical characteristics of this alkaloid is performed. The extract and fractions were characterized by thin-layer chromatography and HPLC-DAD, yielding an alkaloid identified by NMR. The antileishmanial activity and cytotoxicity were assayed by cell viability test (MTT). The theoretical molecular properties were calculated on the Molinspiration website. The fractionation made it possible to isolate a beta-carboline alkaloid (flavopereirine) in the alkaloid fraction. Moreover, it led to obtaining a fraction with greater antileishmanial activity, since flavopereirine is very active. Regarding the exposure time, a greater inhibitory effect of flavopereirine was observed at 24 h and 72 h (IC50 of 0.23 and 0.15 μg/mL, respectively). The extract, fractions, and flavopereirine presented low toxicity, with high selectivity for the alkaloid. Furthermore, flavopereirine showed no violation of Lipinski's rule of five, showing even better results than the known inhibitor of oligopeptidase B, antipain, with three violations. Flavopereirine also interacted with residue Tyr-499 of oligopeptidase B during the molecular dynamics simulations, giving a few insights of a possible favorable mechanism of interaction and a possible inhibitory pathway. Flavopereirine proved to be a promising molecule for its antileishmanial activity.
Collapse
Affiliation(s)
- João Victor da Silva E Silva
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pará, Belém, 66075-110 PA, Brazil.
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil.
| | | | | | | | | | - Lara Vinhal Faria
- Faculty of Pharmacy, Federal University of Pará, Belém, 66075-110 PA, Brazil.
| | - Márlia Coelho-Ferreira
- Emílio Goeldi Paraense Museum, Coordination of Botany, Ministry of Science, Technology, Innovation and Communications. Belém, 66077-530 PA, Brazil.
| | - Fernando Tobias Silveira
- Evandro Chagas Institute, National Health Foundation, BR-316 Highway km 7, Ananindeua, 67030-000 PA, Brazil.
| | | | - Sandro Percário
- US Centers for Disease Control and Prevention (CDC), Atlanta, 30329 GA, USA.
- Oxidative Stress Research Lab, Institute of Biological Sciences (ICB), Federal University of Pará, Belém, 66075-110 PA, Brazil.
| | | | - Maria Fâni Dolabela
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pará, Belém, 66075-110 PA, Brazil.
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém, 66075-110 PA, Brazil.
| |
Collapse
|
24
|
Leishmanicidal therapy targeted to parasite proteases. Life Sci 2019; 219:163-181. [PMID: 30641084 DOI: 10.1016/j.lfs.2019.01.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/31/2022]
Abstract
Leishmaniasis is considered a serious public health problem and the current available therapy has several disadvantages, which makes the search for new therapeutic targets and alternative treatments extremely necessary. In this context, this review focuses on the importance of parasite proteases as target drugs against Leishmania parasites, as a chemotherapy approach. Initially, we discuss about the current scenario for the treatment of leishmaniasis, highlighting the main drugs used and the problems related to their use. Subsequently, we describe the inhibitors of major proteases of Leishmania already discovered, such as Compound s9 (aziridine-2,3-dicarboxylate), Compound 1c (benzophenone derivative), Au2Phen (gold complex), AubipyC (gold complex), MDL 28170 (dipeptidyl aldehyde), K11777, Hirudin, diazo-acetyl norleucine methyl ester, Nelfinavir, Saquinavir, Nelfinavir, Saquinavir, Indinavir, Saquinavir, GNF5343 (azabenzoxazole), GNF6702 (azabenzoxazole), Benzamidine and TPCK. Next, we discuss the importance of the protease gene to parasite survival and the aspects of the validation of proteases as target drugs, with emphasis on gene disruption. Then, we describe novel important strategies that can be used to support the research of new antiparasitic drugs, such as molecular modeling and nanotechnology, whose main targets are parasitic proteases. And finally, we discuss possible perspectives to improve drug development. Based on all findings, proteases could be considered potential targets against leishmaniasis.
Collapse
|
25
|
Hernandez HW, Soeung M, Zorn KM, Ashoura N, Mottin M, Andrade CH, Caffrey CR, de Siqueira-Neto JL, Ekins S. High Throughput and Computational Repurposing for Neglected Diseases. Pharm Res 2018; 36:27. [PMID: 30560386 PMCID: PMC6792295 DOI: 10.1007/s11095-018-2558-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/09/2018] [Indexed: 12/21/2022]
Abstract
Purpose Neglected tropical diseases (NTDs) represent are a heterogeneous group of communicable diseases that are found within the poorest populations of the world. There are 23 NTDs that have been prioritized by the World Health Organization, which are endemic in 149 countries and affect more than 1.4 billion people, costing these developing economies billions of dollars annually. The NTDs result from four different causative pathogens: protozoa, bacteria, helminth and virus. The majority of the diseases lack effective treatments. Therefore, new therapeutics for NTDs are desperately needed. Methods We describe various high throughput screening and computational approaches that have been performed in recent years. We have collated the molecules identified in these studies and calculated molecular properties. Results Numerous global repurposing efforts have yielded some promising compounds for various neglected tropical diseases. These compounds when analyzed as one would expect appear drug-like. Several large datasets are also now in the public domain and this enables machine learning models to be constructed that then facilitate the discovery of new molecules for these pathogens. Conclusions In the space of a few years many groups have either performed experimental or computational repurposing high throughput screens against neglected diseases. These have identified compounds which in many cases are already approved drugs. Such approaches perhaps offer a more efficient way to develop treatments which are generally not a focus for global pharmaceutical companies because of the economics or the lack of a viable market. Other diseases could perhaps benefit from these repurposing approaches. Electronic supplementary material The online version of this article (10.1007/s11095-018-2558-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Melinda Soeung
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Kimberley M Zorn
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina, 27606, USA
| | | | - Melina Mottin
- LabMol - Laboratory for Molecular Modeling and Drug Design Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO, 74605-170, Brazil
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling and Drug Design Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO, 74605-170, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, 92093, USA
| | - Jair Lage de Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, 92093, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina, 27606, USA.
| |
Collapse
|
26
|
Xu J, Huang X, Dong X, Ren Y, Wu M, Shen N, Xie Y, Gu X, Lai W, Jing B, Peng X, Yang G. Serodiagnostic Potential of Alpha-Enolase From Sarcoptes scabiei and Its Possible Role in Host-Mite Interactions. Front Microbiol 2018; 9:1024. [PMID: 29887838 PMCID: PMC5981165 DOI: 10.3389/fmicb.2018.01024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/30/2018] [Indexed: 12/15/2022] Open
Abstract
Infestation of the epidermis with the highly contagious ectoparasite, Sarcoptes scabiei, causes scabies, which is characterized by intense itching, pruritus, and secondary infection. This condition affects humans, livestock, and wildlife worldwide, incurring large economic losses and reducing the quality of human life. In the present study, we cloned the alpha-enolase, a key enzyme in the glycolytic and gluconeogenesis pathways, from S. scabiei var. cuniculi, characterized it and produced soluble recombinant enolase protein (rSsc-eno). We determined the localization of Ssc-eno in isolated mites and mites in lesioned skin. The results showed that native enolase was intensely localized in the tegument of the mouthparts, the entire legs, and the whole mites' body, as well as in the gut and reproduction system. Interestingly, we found that native enolase was widely distributed in mites in lesioned skin, with obvious high protein intensity compared with isolated mites. Building on good immunoreactivity, an indirect enzyme-linked immunosorbent assay (ELISA) based on rSsc-eno showed 92% sensitivity and 95.8% specificity, compared with other indirect ELISA in this study, rSsc-eno based ELISA is better in detecting scabies in rabbits. Besides, this method can detect S. scabiei infection as early as 1 week post infection. Compared with other detection methods, such as traditional microscopic examination and recently published universal conventional PCR, rSsc-eno ELISA was more effective to detect early infection in rabbits. Additionally, in vitro incubation experiments demonstrated the concentration-dependent acaricidal activity of rabbit anti-rSsc-eno sera against larval mites, suggested its potential as a vaccine candidate.
Collapse
Affiliation(s)
- Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xing Huang
- Chengdu Agricultural College, Chengdu, China
| | - Xiaowei Dong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yongjun Ren
- Sichuan Animal Sciences Academy, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Maodi Wu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Weiming Lai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuerong Peng
- College of Science, Sichuan Agricultural University, Ya'an, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
27
|
Aguayo-Ortiz R, Meza-Cervantez P, Castillo R, Hernández-Campos A, Dominguez L, Yépez-Mulia L. Insights into the Giardia intestinalis enolase and human plasminogen interaction. MOLECULAR BIOSYSTEMS 2018; 13:2015-2023. [PMID: 28770921 DOI: 10.1039/c7mb00252a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Giardia intestinalis is an intestinal parasite that causes diarrhea in humans and animals worldwide. The enolase of G. intestinalis (GiENO) participates in its glycolysis pathway and is abundantly expressed in the parasite cytosol; however, its localization on the surface of trophozoites and cysts has been demonstrated. Enolases from bacteria and parasites can have different functions and are considered moonlighting proteins, for example, as a cell surface plasminogen receptor. In relation to GiENO, no studies have been performed about its possible participation as a plasminogen receptor. In this work, we employed molecular docking and multiscale molecular dynamics (MD) simulations to explore the possible interactions of human plasminogen (HsPLG) with the open and closed GiENO conformations. Our proposed GiENO plasminogen binding site (PLGBs) was identified at Lys266 based on the sequence comparison with bacterial enolase known to act as a plasminogen receptor. Our docking results performed with multiple MD snapshots of the closed GiENO conformation showed that Lys266 preferentially binds to the K5 domain of HsPLG. On the other hand, open GiENO conformations from all-atom and coarse-grained simulations indicated a high preference of the HsPLG K4 domain for lysine residues 186 and 188. Furthermore, we identified a potential N-glycosylation site of GiENO which suggests a possible explanation for the parasite cell surface localization or host mucin oligosaccharide adhesion mechanism. Our study constitutes the first multiscale computational study to explore the plasminogen receptor function of GiENO for its further consideration as a potential therapeutic target for giardiasis treatment.
Collapse
Affiliation(s)
- R Aguayo-Ortiz
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, CDMX, México 04510, Mexico.
| | | | | | | | | | | |
Collapse
|
28
|
Vijayakumar S, Das P. Recent progress in drug targets and inhibitors towards combating leishmaniasis. Acta Trop 2018; 181:95-104. [PMID: 29452111 DOI: 10.1016/j.actatropica.2018.02.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/24/2018] [Accepted: 02/11/2018] [Indexed: 12/22/2022]
Abstract
Lesihmaniasis is one of the major neglected tropical disease caused by the parasite of the genus Leishmania. The disease has more than one clinical forms and the visceral form is considered fatal. With the lack of potential vaccine, chemotherapy is the major treatment source considered for the control of the disease in the infected people. Drugs including amphotericin B and miltefosine are widely used for the treatment, however, development of resistance by the parasite towards the administered drug and high-toxicity of the drug are of major concern. Hence, more attention has been shown on identifying new targets, effective inhibitors, and better drug delivery system against the disease. This review deals with recent studies on drug targets and exploring their essentiality for the survival of Leishmania. Further, new inhibitors for those targets, novel anti-leishmanial peptides and vaccines against leishmaniasis were discussed. We believe that this pool of information will ease the researchers to gain knowledge and help in choosing right targets and design of new inhibitors against Leishmaniasis.
Collapse
|
29
|
Anu PV, Madanan MG, Nair AJ, Nair GA, Nair GPM, Sudhakaran PR, Satheeshkumar PK. Heterologous Expression, Purification and Characterization of an Oligopeptidase A from the Pathogen Leptospira interrogans. Mol Biotechnol 2018; 60:302-309. [PMID: 29502205 DOI: 10.1007/s12033-018-0073-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oligopeptidases are enzymes involved in the degradation of short peptides (generally less than 30 amino acids in size) which help pathogens evade the host defence mechanisms. Leptospira is a zoonotic pathogen and causes leptospirosis in mammals. Proteome analysis of Leptospira revealed the presence of oligopeptidase A (OpdA) among other membrane proteins. To study the role of oligopeptidase in leptospirosis, the OpdA of L. interrogans was cloned and expressed in Escherichia coli with a histidine tag (His-tag). The protein showed maximum expression at 37 °C with 0.5 mM of IPTG after 2 h of induction. Recombinant OpdA protein was purified to homogeneity using Ni-affinity chromatography. The purified OpdA showed more than 80% inhibition with a serine protease inhibitor but the activity was reduced to 30% with the cysteine protease inhibitor. The peptidase activity was increased significantly in the presence of Zn2+ at a neutral pH. Inhibitor assay indicate the presence of more than one active sites for peptidase activity as reported with the OpdA of E. coli and Salmonella. Over-expression of OpdA in E. coli BL21 (DE3) did not cause any negative effects on normal cell growth and viability. The role of OpdA as virulence factor in Leptospira and its potential as a therapeutic and diagnostic target in leptospirosis is yet to be identified.
Collapse
Affiliation(s)
- Prasannan V Anu
- Department of Biotechnology, Interuniversity Centre for Genomics and Gene Technology, University of Kerala, Trivandrum, Kerala, India
| | | | - Ananthakrishnan J Nair
- Department of Biotechnology, Interuniversity Centre for Genomics and Gene Technology, University of Kerala, Trivandrum, Kerala, India
| | - Gangaprasad A Nair
- Department of Biotechnology, Interuniversity Centre for Genomics and Gene Technology, University of Kerala, Trivandrum, Kerala, India
| | - Govinda Pillai M Nair
- Department of Biotechnology, Interuniversity Centre for Genomics and Gene Technology, University of Kerala, Trivandrum, Kerala, India
| | - Perumana R Sudhakaran
- Department of Biotechnology, Interuniversity Centre for Genomics and Gene Technology, University of Kerala, Trivandrum, Kerala, India
| | - Padikara K Satheeshkumar
- Department of Biotechnology, Interuniversity Centre for Genomics and Gene Technology, University of Kerala, Trivandrum, Kerala, India. .,Centre for Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, India.
| |
Collapse
|
30
|
Dipeptidyl peptidase 3, a novel protease from Leishmania braziliensis. PLoS One 2018; 13:e0190618. [PMID: 29304092 PMCID: PMC5755878 DOI: 10.1371/journal.pone.0190618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022] Open
Abstract
The increase of leishmaniasis cases worldwide and the emergence of Leishmania strains resistant to current treatments make necessary to find new therapeutic targets. Proteases are appealing drug targets because they play pivotal roles in facilitating parasite survival and promoting pathogenesis. Enzymes belonging to the dipeptidyl peptidase 3 (DPP3) group have been described in different organisms such as mammals, insects and yeast, in which these enzymes have been involved in both protein turnover and protection against oxidative damage. The aim of this work was to characterize the structure and function of the Leishmania braziliensis DPP3 (LbDPP3) protein as the first step to elucidate its suitability as a potential drug target. Sequence alignment showed 43% of identity between LbDPP3 and its human orthologous (hDPP3) enzyme. Although the modeled protein adopted a globally conserved three-dimensional (3D) structure, structural differences were found in the vicinity of the active site and the substrate binding-cleft. In addition, the Leishmania protein was expressed as a soluble recombinant protein and its kinetics parameters were determined using the z-Arginine-Arginine-AMC substrate. The LbDPP3 activity was maximal at pH values between 8.0–8.5. Interestingly, classical enzyme inhibitors such as the tynorphin and its derivative peptide IVYPW were found to actively inhibit the LbDPP3 activity. Moreover, these DPP3 inhibitors showed a detrimental effect upon parasite survival, decreasing the viability of promastigotes by up to 29%. Finally, it was observed that LbDPP3 was equally expressed along the in vitro differentiation from promastigotes to axenic amastigotes. In conclusion, these findings suggest that the L. brazileinsis DPP3 could be a promising drug target.
Collapse
|
31
|
Understanding serine proteases implications on Leishmania spp lifecycle. Exp Parasitol 2018; 184:67-81. [DOI: 10.1016/j.exppara.2017.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022]
|
32
|
Mahato JP, Rana S, Kumar M, Sarsaiya S. Homology Modeling of Leishmania donovani Enolase and its Molecular Interaction with Novel Inhibitors. J Pharm Bioallied Sci 2017; 9:99-105. [PMID: 28717332 PMCID: PMC5508423 DOI: 10.4103/jpbs.jpbs_241_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: The treatment of Indian tropical disease such as kala-azar is likely to be troublesome to the clinicians as AmpB- and miltefosine-resistant Leishmania donovani has been reported. The rationale behind designed a novel inhibitors of model of L. donovani enolase and performing a binding study with its inhibitors to gain details of the interaction between protein residues and ligand molecules. Methods and Materials: The L. donovani enolase model consists of two typical domains. The N-terminal one contains three-stranded antiparallel β-sheets, followed by six α-helices. The C-terminal domain composes of eleven-stranded mixed α/β-barrel with connectivity. The first α-helix within the C-terminal domain, H7, and the second β-strand, S7, of the barrel domain was arranged in an antiparallel fashion compared to all other α-helices and β-strands. The root-mean-square deviation between predicted model and template is 0.4 Å. The overall conformation of L. donovani enolase model is similar to those of Trypanosoma cruzi enolase and Streptococcus pneumoniae enolase crystal structures. Result: The key amino acid residues within the docking complex model involved in the interaction between model enolase structure and ligand molecule are Lys70, Asn165, Ala168, Asp17, and Asn213. Conclusion: Our theoretical prediction may lead to the establishment of prophylactic and therapeutic approaches for the treatment of kala-azar. This biomedical informatics analysis will help us to combat future kala-azar.
Collapse
Affiliation(s)
- Jay Prakash Mahato
- Department of Biotechnology, Sri Satya Sai University of Technology and Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Sindhuprava Rana
- Department of Biotechnology, Sri Satya Sai University of Technology and Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Maneesh Kumar
- Department of Biotechnology, College of Commerce, Arts and Science (Magadh University, Bodh Gaya), Patna, Bihar, India
| | - Surendra Sarsaiya
- Department of Biotechnology, College of Commerce, Arts and Science (Magadh University, Bodh Gaya), Patna, Bihar, India
| |
Collapse
|
33
|
Mi R, Yang X, Huang Y, Cheng L, Lu K, Han X, Chen Z. Immunolocation and enzyme activity analysis of Cryptosporidium parvum enolase. Parasit Vectors 2017; 10:273. [PMID: 28569179 PMCID: PMC5452291 DOI: 10.1186/s13071-017-2200-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/16/2017] [Indexed: 12/27/2022] Open
Abstract
Background Enolase is an essential multifunctional glycolytic enzyme that is involved in many biological processes of apicomplexan protozoa, such as adhesion and invasion. However, the characteristics of enolase in Cryptosporidium parvum, including the location on the oocyst and the enzyme activity, remain unclear. Methods The C. parvum enolase gene (cpeno) was amplified by RT-PCR and sequenced. The deduced amino acid sequence was analysed by bioinformatics software. The gene was expressed in Escherichia coli BL21 (DE3) and purified recombinant protein was used for enzyme activity analysis, binding experiments and antibody preparation. The localisation of enolase on oocysts was examined via immunofluorescence techniques. Results A 1,350 bp DNA sequence was amplified from cDNA taken from C. parvum oocysts. The deduced amino acids sequence of C. parvum enolase (CpEno) had 82.1% homology with Cryptosporidium muris enolase, and 54.7–68.0% homology with others selected species. Western blot analysis indicated that recombinant C. parvum enolase (rCpEno) could be recognised by C. parvum-infected cattle sera. Immunolocalization testing showed that CpEno was found to locate mainly on the surface of oocysts. The enzyme activity was 33.5 U/mg, and the Michaelis constant (Km) was 0.571 mM/l. Kinetic measurements revealed that the most suitable pH value was 7.0–7.5, and there were only minor effects on the activity of rCpEno with a change in the reaction temperature. The enzyme activity decreased when the Ca2+, K+, Mg2+ and Na+ concentrations of the reaction solution increased. The binding assays demonstrated that rCpEno could bind to human plasminogen. Conclusion This study is the first report of immunolocation, binding activity and enzyme characteristics of CpEno. The results of this study suggest that the surface-associated CpEno not only functions as a glycolytic enzyme but may also participate in attachment and invasion process of the parasite. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2200-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rongsheng Mi
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou, 730046, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xiaojiao Yang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Yan Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Long Cheng
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Ke Lu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xiangan Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Zhaoguo Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou, 730046, China. .,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
34
|
Zheng Y, Guo X, Su M, Guo A, Ding J, Yang J, Xiang H, Cao X, Zhang S, Ayaz M, Luo X. Regulatory effects of Echinococcus multilocularis extracellular vesicles on RAW264.7 macrophages. Vet Parasitol 2017; 235:29-36. [PMID: 28215864 DOI: 10.1016/j.vetpar.2017.01.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) play a role in intercellular communications via exchanging biological molecules, being involved in host-parasite interplay. Little is to date known about E. multilocularis EVs and their biological activities. Here spherical EVs secreted by E. multilocularis metacestodes were shown to range predominately from 34nm to 95nm in diameter. A total of 433 proteins were identified in the EVs, and the proteins involved in binding (42%) and catalytic activity (41%) were most frequently represented. Moreover, the proteins associated with EV biogenesis and trafficking, including annexin, 14-3-3, tetraspanin and heat shock protein 70kDa, were highly enriched. It was shown that the EVs remarkably suppressed NO produced by activated RAW macrophages via downregulation of inducible nitric oxide synthase expression (p <0.01). Suppression of pro-inflammatory cytokines, especially IL-1α and IL-1β, was also observed post treatment with the EVs. Conversely, increased expression of the majority (10/11) of key components involved in the LPS/TLR4 pathway was induced by the EVs. These results demonstrate a regulatory effect of E. multilocularis EVs on macrophages, suggesting a role in parasite-host interactions.
Collapse
Affiliation(s)
- Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Xiaola Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Meng Su
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Aijiang Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Juntao Ding
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Haitao Xiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoan Cao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Shaohua Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Mazhar Ayaz
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
35
|
Pramanik A, Paik D, Naskar K, Chakraborti T. Coccinia grandis (L.) Voigt Leaf Extract Exhibits Antileishmanial Effect Through Pro-inflammatory Response: An In Vitro Study. Curr Microbiol 2016; 74:59-67. [DOI: 10.1007/s00284-016-1151-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
|
36
|
Exploiting death: apoptotic immunity in microbial pathogenesis. Cell Death Differ 2016; 23:990-6. [PMID: 26943319 DOI: 10.1038/cdd.2016.17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 12/27/2022] Open
Abstract
Innate immunity typically is responsible for initial host responses against infections. Independently, nucleated cells that die normally as part of the physiological process of homeostasis in mammals (including humans) suppress immunity. Specifically, the physiological process of cell death (apoptosis) generates cells that are recognized specifically by viable cells of all types and elicit a profound transient suppression of host immunity (termed 'innate apoptotic immunity' (IAI)). IAI appears to be important normally for the maintenance of self-tolerance and for the resolution of inflammation. In addition, pathogens are able to take advantage of IAI through a variety of distinct mechanisms, to enable their proliferation within the host and enhance pathogenicity. For example, the protist pathogen Leishmania amazonensis, at its infective stage, mimics apoptotic cells by expressing apoptotic-like protein determinants on the cell surface, triggering immunosuppression directly. In contrast, the pathogenic bacterium Listeria monocytogenes triggers cell death in host lymphocytes, relying on those apoptotic cells to suppress host immune control and facilitate bacterial expansion. Finally, although the inhibition of apoptotic cell death is a common attribute of many viruses which facilitates their extended replication, it is clear that adenoviruses also reprogram the non-apoptotic dead cells that arise subsequently to manifest apoptotic-like immunosuppressive properties. These three instances represent diverse strategies used by microbial pathogens to exploit IAI, focusing attention on the potency of this facet of host immune control. Further examination of these cases will be revealing both of varied mechanisms of pathogenesis and the processes involved in IAI control.
Collapse
|
37
|
Teixeira PC, Velasquez LG, Lepique AP, de Rezende E, Bonatto JMC, Barcinski MA, Cunha-Neto E, Stolf BS. Regulation of Leishmania (L.) amazonensis protein expression by host T cell dependent responses: differential expression of oligopeptidase B, tryparedoxin peroxidase and HSP70 isoforms in amastigotes isolated from BALB/c and BALB/c nude mice. PLoS Negl Trop Dis 2015; 9:e0003411. [PMID: 25692783 PMCID: PMC4333223 DOI: 10.1371/journal.pntd.0003411] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/12/2014] [Indexed: 12/21/2022] Open
Abstract
Leishmaniasis is an important disease that affects 12 million people in 88 countries, with 2 million new cases every year. Leishmania amazonensis is an important agent in Brazil, leading to clinical forms varying from localized (LCL) to diffuse cutaneous leishmaniasis (DCL). One interesting issue rarely analyzed is how host immune response affects Leishmania phenotype and virulence. Aiming to study the effect of host immune system on Leishmania proteins we compared proteomes of amastigotes isolated from BALB/c and BALB/c nude mice. The athymic nude mice may resemble patients with diffuse cutaneous leishmaniasis, considered T-cell hyposensitive or anergic to Leishmania's antigens. This work is the first to compare modifications in amastigotes' proteomes driven by host immune response. Among the 44 differentially expressed spots, there were proteins related to oxidative/nitrosative stress and proteases. Some correspond to known Leishmania virulence factors such as OPB and tryparedoxin peroxidase. Specific isoforms of these two proteins were increased in parasites from nude mice, suggesting that T cells probably restrain their posttranslational modifications in BALB/c mice. On the other hand, an isoform of HSP70 was increased in amastigotes from BALB/c mice. We believe our study may allow identification of potential virulence factors and ways of regulating their expression.
Collapse
Affiliation(s)
| | - Leonardo Garcia Velasquez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Paula Lepique
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eloiza de Rezende
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Edecio Cunha-Neto
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, São Paulo, Brazil
| | - Beatriz Simonsen Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
38
|
Epoxy-α-lapachone has in vitro and in vivo anti-leishmania (Leishmania) amazonensis effects and inhibits serine proteinase activity in this parasite. Antimicrob Agents Chemother 2015; 59:1910-8. [PMID: 25583728 DOI: 10.1128/aac.04742-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Leishmania (Leishmania) amazonensis is a protozoan that causes infections with a broad spectrum of clinical manifestations. The currently available chemotherapeutic treatments present many problems, such as several adverse side effects and the development of resistant strains. Natural compounds have been investigated as potential antileishmanial agents, and the effects of epoxy-α-lapachone on L. (L.) amazonensis were analyzed in the present study. This compound was able to cause measurable effects on promastigote and amastigote forms of the parasite, affecting plasma membrane organization and leading to death after 3 h of exposure. This compound also had an effect in experimentally infected BALB/c mice, causing reductions in paw lesions 6 weeks after treatment with 0.44 mM epoxy-α-lapachone (mean lesion area, 24.9 ± 2.0 mm(2)), compared to untreated animals (mean lesion area, 30.8 ± 2.6 mm(2)) or animals treated with Glucantime (mean lesion area, 28.3 ± 1.5 mm(2)). In addition, the effects of this compound on the serine proteinase activities of the parasite were evaluated. Serine proteinase-enriched fractions were extracted from both promastigotes and amastigotes and were shown to act on specific serine proteinase substrates and to be sensitive to classic serine proteinase inhibitors (phenylmethylsulfonyl fluoride, aprotinin, and antipain). These fractions were also affected by epoxy-α-lapachone. Furthermore, in silico simulations indicated that epoxy-α-lapachone can bind to oligopeptidase B (OPB) of L. (L.) amazonensis, a serine proteinase, in a manner similar to that of antipain, interacting with an S1 binding site. This evidence suggests that OPB may be a potential target for epoxy-α-lapachone and, as such, may be related to the compound's effects on the parasite.
Collapse
|
39
|
Nagle A, Khare S, Kumar AB, Supek F, Buchynskyy A, Mathison CJN, Chennamaneni N, Pendem N, Buckner FS, Gelb M, Molteni V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem Rev 2014; 114:11305-47. [PMID: 25365529 PMCID: PMC4633805 DOI: 10.1021/cr500365f] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Indexed: 02/08/2023]
Affiliation(s)
- Advait
S. Nagle
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shilpi Khare
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Arun Babu Kumar
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frantisek Supek
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Andriy Buchynskyy
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Casey J. N. Mathison
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Naveen
Kumar Chennamaneni
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Nagendar Pendem
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frederick S. Buckner
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Michael
H. Gelb
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Valentina Molteni
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|
40
|
Why strategies to control Leishmania spp. multiplication based on the use of proteinase inhibitors should consider multiple targets and not only a single enzyme. J Mol Model 2014; 20:2465. [PMID: 25296889 DOI: 10.1007/s00894-014-2465-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
The use of proteinases as targets to develop novel chemotherapies against Leishmania spp. infections is a very promising strategy. Based on a previous study by Goyal et al. [J Mol Model (2014) 20:2099], we discuss herein the idea that only a combined treatment with distinct proteinase inhibitors would be an effective antileishmanial therapy.
Collapse
|
41
|
Proteomic analysis of metacyclogenesis in Leishmania infantum wild-type and PTR1 null mutant. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
42
|
Polle JEW, Neofotis P, Huang A, Chang W, Sury K, Wiech EM. Carbon partitioning in green algae (chlorophyta) and the enolase enzyme. Metabolites 2014; 4:612-28. [PMID: 25093929 PMCID: PMC4192683 DOI: 10.3390/metabo4030612] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 02/08/2023] Open
Abstract
The exact mechanisms underlying the distribution of fixed carbon within photoautotrophic cells, also referred to as carbon partitioning, and the subcellular localization of many enzymes involved in carbon metabolism are still unknown. In contrast to the majority of investigated green algae, higher plants have multiple isoforms of the glycolytic enolase enzyme, which are differentially regulated in higher plants. Here we report on the number of gene copies coding for the enolase in several genomes of species spanning the major classes of green algae. Our genomic analysis of several green algae revealed the presence of only one gene coding for a glycolytic enolase [EC 4.2.1.11]. Our predicted cytosolic localization would require export of organic carbon from the plastid to provide substrate for the enolase and subsequent re-import of organic carbon back into the plastids. Further, our comparative sequence study of the enolase and its 3D-structure prediction may suggest that the N-terminal extension found in green algal enolases could be involved in regulation of the enolase activity. In summary, we propose that the enolase represents one of the crucial regulatory bottlenecks in carbon partitioning in green algae.
Collapse
Affiliation(s)
- Jürgen E W Polle
- Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Avenue 200NE, Brooklyn, NY 11210, USA.
| | - Peter Neofotis
- Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Avenue 200NE, Brooklyn, NY 11210, USA.
| | - Andy Huang
- Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Avenue 200NE, Brooklyn, NY 11210, USA.
| | - William Chang
- Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Avenue 200NE, Brooklyn, NY 11210, USA.
| | - Kiran Sury
- Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Avenue 200NE, Brooklyn, NY 11210, USA.
| | - Eliza M Wiech
- Department of Biology, Brooklyn College of the City University of New York, 2900 Bedford Avenue 200NE, Brooklyn, NY 11210, USA.
| |
Collapse
|
43
|
Braga MS, Neves LX, Campos JM, Roatt BM, de Oliveira Aguiar Soares RD, Braga SL, de Melo Resende D, Reis AB, Castro-Borges W. Shotgun proteomics to unravel the complexity of the Leishmania infantum exoproteome and the relative abundance of its constituents. Mol Biochem Parasitol 2014; 195:43-53. [PMID: 25017697 DOI: 10.1016/j.molbiopara.2014.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 01/27/2023]
Abstract
The exoproteome of some Leishmania species has revealed important insights into host-parasite interaction, paving the way for the proposal of novel disease-oriented interventions. The focus of the present investigation constituted the molecular profile of the L. infantum exoproteome revealed by a shotgun proteomic approach. Promastigotes under logarithmic phase of growth were obtained and harvested by centrifugation at different time points. Cell integrity was evaluated through the counting of viable parasites using propidium iodide labeling, followed by flow cytometry analysis. The 6h culture supernatant, operationally defined here as exoproteome, was then conditioned to in solution digestion and the resulting peptides submitted to mass spectrometry. A total of 102 proteins were identified and categorized according to their cellular function. Their relative abundance index (emPAI) allowed inference that the L. infantum exoproteome is a complex mixture dominated by molecules particularly involved in nucleotide metabolism and antioxidant activity. Bioinformatic analyses support that approximately 60% of the identified proteins are secreted, of which, 85% possibly reach the extracellular milieu by means of non-classic pathways. At last, sera from naturally infected animals, carriers of differing clinical forms of Canine Visceral Leishmaniasis (CVL), were used to test the immunogenicity associated to the L. infantum exoproteome. Western blotting experiments revealed that this sub-proteome was useful at discriminating symptomatic animals from those exhibiting other clinical forms of the disease. Collectively, the molecular characterization of the L. infantum exoproteome and the preliminary immunoproteomic assays opened up new research avenues related to treatment, prognosis and diagnosis of CVL.
Collapse
Affiliation(s)
- Micheline Soares Braga
- Laboratório de Enzimologia e Proteômica, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Leandro Xavier Neves
- Laboratório de Enzimologia e Proteômica, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Jonatan Marques Campos
- Laboratório de Enzimologia e Proteômica, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Bruno Mendes Roatt
- Laboratório de Imunopatologia, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | - Samuel Leôncio Braga
- Laboratório de Imunopatologia, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Daniela de Melo Resende
- Laboratório de Pesquisas Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Grupo Informática de Biossistemas, Centro de Pesquisas René Rachou - Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Laboratório de Pesquisas Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - William Castro-Borges
- Laboratório de Enzimologia e Proteômica, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
44
|
Selvapandiyan A, Dey R, Gannavaram S, Solanki S, Salotra P, Nakhasi HL. Generation of growth arrested Leishmania amastigotes: a tool to develop live attenuated vaccine candidates against visceral leishmaniasis. Vaccine 2014; 32:3895-901. [PMID: 24837513 DOI: 10.1016/j.vaccine.2014.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/19/2014] [Accepted: 05/01/2014] [Indexed: 12/24/2022]
Abstract
Visceral leishmaniasis (VL) is fatal if not treated and is prevalent widely in the tropical and sub-tropical regions of world. VL is caused by the protozoan parasite Leishmania donovani or Leishmania infantum. Although several second generation vaccines have been licensed to protect dogs against VL, there are no effective vaccines against human VL [1]. Since people cured of leishmaniasis develop lifelong protection, development of live attenuated Leishmania parasites as vaccines, which can have controlled infection, may be a close surrogate to leishmanization. This can be achieved by deletion of genes involved in the regulation of growth and/or virulence of the parasite. Such mutant parasites generally do not revert to virulence in animal models even under conditions of induced immune suppression due to complete deletion of the essential gene(s). In the Leishmania life cycle, the intracellular amastigote form is the virulent form and causes disease in the mammalian hosts. We developed centrin gene deleted L. donovani parasites that displayed attenuated growth only in the amastigote stage and were found safe and efficacious against virulent challenge in the experimental animal models. Thus, targeting genes differentially expressed in the amastigote stage would potentially attenuate only the amastigote stage and hence controlled infectivity may be effective in developing immunity. This review lays out the strategies for attenuation of the growth of the amastigote form of Leishmania for use as live vaccine against leishmaniasis, with a focus on visceral leishmaniasis.
Collapse
Affiliation(s)
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Bethesda, MD, USA
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Bethesda, MD, USA
| | - Sumit Solanki
- Institute of Molecular Medicine, New Delhi, India; C.G. Bhakta Institute of Biotechnology, Tarsadi, Gujarat, India
| | - Poonam Salotra
- National Institute of Pathology (ICMR), New Delhi, India
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Bethesda, MD, USA
| |
Collapse
|
45
|
Chhajer R, Ali N. Genetically modified organisms and visceral leishmaniasis. Front Immunol 2014; 5:213. [PMID: 24860575 PMCID: PMC4030198 DOI: 10.3389/fimmu.2014.00213] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/28/2014] [Indexed: 11/18/2022] Open
Abstract
Vaccination is the most effective method of preventing infectious diseases. Since the eradication of small pox in 1976, many other potentially life compromising if not threatening diseases have been dealt with subsequently. This event was a major leap not only in the scientific world already burdened with many diseases but also in the mindset of the common man who became more receptive to novel treatment options. Among the many protozoan diseases, the leishmaniases have emerged as one of the largest parasite killers of the world, second only to malaria. There are three types of leishmaniasis namely cutaneous (CL), mucocutaneous (ML), and visceral (VL), caused by a group of more than 20 species of Leishmania parasites. Visceral leishmaniasis, also known as kala-azar is the most severe form and almost fatal if untreated. Since the first attempts at leishmanization, we have killed parasite vaccines, subunit protein, or DNA vaccines, and now we have live recombinant carrier vaccines and live attenuated parasite vaccines under various stages of development. Although some research has shown promising results, many more potential genes need to be evaluated as live attenuated vaccine candidates. This mini-review attempts to summarize the success and failures of genetically modified organisms used in vaccination against some of major parasitic diseases for their application in leishmaniasis.
Collapse
Affiliation(s)
- Rudra Chhajer
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology , Kolkata , India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology , Kolkata , India
| |
Collapse
|
46
|
Magalhães RDM, Duarte MC, Mattos EC, Martins VT, Lage PS, Chávez-Fumagalli MA, Lage DP, Menezes-Souza D, Régis WCB, Manso Alves MJ, Soto M, Tavares CAP, Nagen RAP, Coelho EAF. Identification of differentially expressed proteins from Leishmania amazonensis associated with the loss of virulence of the parasites. PLoS Negl Trop Dis 2014; 8:e2764. [PMID: 24699271 PMCID: PMC3974679 DOI: 10.1371/journal.pntd.0002764] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/16/2014] [Indexed: 11/18/2022] Open
Abstract
Background The present study analyzed whether or not the in vitro cultivation for long periods of time of pre-isolated Leishmania amazonensis from lesions of chronically infected BALB/c mice was able to interfere in the parasites' infectivity using in vivo and in vitro experiments. In addition, the proteins that presented a significant decrease or increase in their protein expression content were identified applying a proteomic approach. Methodology/Principal Findings Parasites were cultured in vitro for 150 days. Aliquots were collected on the day 0 of culture (R0), as well as after ten (R10; 50 days of culture), twenty (R20; 100 days of culture), and thirty (R30; 150 days of culture) passages, and were used to analyze the parasites' in vitro and in vivo infectivity, as well as to perform the proteomic approach. Approximately 837, 967, 935, and 872 spots were found in 2-DE gels prepared from R0, R10, R20, and R30 samples, respectively. A total of 37 spots presented a significant decrease in their intensity of expression, whereas a significant increase in protein content during cultivation could be observed for 19 proteins (both cases >2.0 folds). Some of these identified proteins can be described, such as diagnosis and/or vaccine candidates, while others are involved in the infectivity of Leishmania. It is interesting to note that six proteins, considered hypothetical in Leishmania, showed a significant decrease in their expression and were also identified. Conclusions/Significance The present study contributes to the understanding that the cultivation of parasites over long periods of time may well be related to the possible loss of infectivity of L. amazonensis. The identified proteins that presented a significant decrease in their expression during cultivation, including the hypothetical, may also be related to this loss of parasites' infectivity, and applied in future studies, including vaccine candidates and/or immunotherapeutic targets against leishmaniasis. Leishmania amazonensis can induce a diversity of clinical manifestations in mammal hosts, including tegumentary and visceral leishmaniasis. The present study evaluated the variation of infectivity of L. amazonensis, which was pre-isolated from lesions of chronically infected mice and in vitro cultured for 150 days, in turn connecting these results with the profile of parasite protein expression using a proteomic approach. Parasites were recovered after the first passage, as well as after 50, 100, and 150 days of axenic cultures, and were subsequently evaluated. A total of 37 proteins presented a significant decrease, whereas 19 proteins presented a significant increase in their protein expression content in the assays (both cases >2.0 fold). Some of the identified proteins have been reported in prior literature, including diagnosis and/or vaccine candidates for leishmaniasis, while others proved to be involved in the infectivity of Leishmania. It is interesting to note that proteins related to the parasites' metabolism were also the majority of the proteins identified in the old cultures of L. amazonensis, suggesting a possible relation between the metabolic state of parasites and their possible loss of infectivity. In conclusion, the proteins identified in this study represent a contribution to the discovery of new vaccine candidates and/or immunotherapeutic targets against leishmaniasis.
Collapse
Affiliation(s)
- Rubens D. M. Magalhães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana C. Duarte
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eliciane C. Mattos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Vivian T. Martins
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula S. Lage
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A. Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P. Lage
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Wiliam C. B. Régis
- Departamento de Bioquímica, PUC Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Maria J. Manso Alves
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos A. P. Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ronaldo A. P. Nagen
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A. F. Coelho
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
47
|
da Fonseca Pires S, Fialho LC, Silva SO, Melo MN, de Souza CC, Tafuri WL, Bruna Romero O, de Andrade HM. Identification of virulence factors in Leishmania infantum strains by a proteomic approach. J Proteome Res 2014; 13:1860-72. [PMID: 24617796 DOI: 10.1021/pr400923g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Knowledge of Leishmania virulence is essential for understanding how the contact between the pathogen and host cells can lead to pathogenesis. Virulence in two L. infantum strains was characterized using macrophages and hamsters. Next, we used difference gel electrophoresis (DIGE) and mass spectrometry to identify the differentially expressed proteins. A total of 63 spots were identified corresponding to 36 proteins; 20 were up-regulated, in which 16 had been previously associated with Leishmania virulence. Considering our results and what has been reported before, we suggest the hypothesis that L. infatum virulence could be a result of the increased expression of KMP-11 and metallopeptidase, associated with an improved parasite-host interacting efficiency and degradation of the protective host proteins and peptides, respectively. Other factors are tryparedoxin peroxidase and peroxidoxin, which protect the parasite against the stress response, and 14-3-3 protein-like, which can prolong infected host cell lifetime. Proteins as chaperones and endoribonuclease L-PSP can increase parasite survival. Enolase is able to perform versatile functions in the cell, acting as a chaperone or in the transcription process, or as a plasminogen receptor or in cell migration events. As expected in more invasive cells with high replication rates, energy consumption and protein synthesis are higher, with up-regulation of Rieske iron-sulfur protein precursor, EF-2, S-adenosylhomocysteine, and phosphomannomutase.
Collapse
Affiliation(s)
- Simone da Fonseca Pires
- Departamento de Parasitologia, ‡Departamento de Patologia, and §Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , 31270-910, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Gómez-Arreaza A, Acosta H, Quiñones W, Concepción JL, Michels PAM, Avilán L. Extracellular functions of glycolytic enzymes of parasites: unpredicted use of ancient proteins. Mol Biochem Parasitol 2014; 193:75-81. [PMID: 24602601 DOI: 10.1016/j.molbiopara.2014.02.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/10/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
Abstract
In addition of their usual intracellular localization where they are involved in catalyzing reactions of carbohydrate and energy metabolism by glycolysis, multiple studies have shown that glycolytic enzymes of many organisms, but notably pathogens, can also be present extracellularly. In the case of parasitic protists and helminths, they can be found either secreted or attached to the surface of the parasites. At these extracellular localizations, these enzymes have been shown to perform additional, very different so-called "moonlighting" functions, such as acting as ligands for a variety of components of the host. Due to this recognition, different extracellular glycolytic enzymes participate in various important parasite-host interactions such as adherence and invasion of parasites, modulation of the host's immune and haemostatic systems, promotion of angiogenesis, and acquisition of specific nutrients by the parasites. Accordingly, extracellular glycolytic enzymes are important for the invasion of the parasites and their establishment in the host, and in determining their virulence.
Collapse
Affiliation(s)
- Amaranta Gómez-Arreaza
- Laboratorio de Fisiología Animal, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Hector Acosta
- Laboratorio de Fisiología Animal, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Paul A M Michels
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela; Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JU, Scotland, UK
| | - Luisana Avilán
- Laboratorio de Fisiología Animal, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela.
| |
Collapse
|
49
|
Mechanistic insights into mode of actions of novel oligopeptidase B inhibitors for combating leishmaniasis. J Mol Model 2014; 20:2099. [PMID: 24567150 DOI: 10.1007/s00894-014-2099-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/30/2013] [Indexed: 10/25/2022]
Abstract
Leishmaniasis is an endemic disease caused by infection with one of several different species of protozoan parasite Leishmania. Oligopeptidase B (OPB) is a serine peptidase which plays a vital role in survival of the Leishmania parasite in the host (human) macrophage and help in attaining complete virulence. Inhibition of this peptidase would check the parasite growth inside the host organism and would thus control its infection. Lack of efficient and cheap drugs has led to an urgent need for development of new anti-leishmanial drugs and this study is a step forward in this direction. Using a structure-based approach we virtually screened a large naturally-occurring compound library against OPB and subjected two top scoring compounds with high binding affinity to molecular dynamics simulations which showed a stable RMSD trajectory. The first compound COP (Glide score: -13.183) was found stable for 15 ns at RMSD of 2.5 Å while the second compound TOA (Glide score: -10.308) was stable for 8 ns at RMSD of 1.5 Å. The screened compounds interacted with some crucial residues of OPB such as COP interacted with Ser577 and His697 (part of the catalytic triad), Tyr499 (responsible for substrate stability), Arg576 (conserved in protozoan family) and Arg664 (plays a role in stabilization of the bound inhibitor). TOA also interacted with Glu669 (conserved in protozoan family) in addition to the residues interacted with COA. These interactions are crucial for OPB inhibition. This study identified naturally-occurring compound leads against OPB with good binding affinity and low toxicity to human cells.
Collapse
|
50
|
Bastos IMD, Motta FN, Grellier P, Santana JM. Parasite prolyl oligopeptidases and the challenge of designing chemotherapeuticals for Chagas disease, leishmaniasis and African trypanosomiasis. Curr Med Chem 2014; 20:3103-15. [PMID: 23514419 PMCID: PMC3778648 DOI: 10.2174/0929867311320250006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/16/2012] [Indexed: 11/22/2022]
Abstract
The trypanosomatids Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp. cause Chagas disease, leishmaniasis and human African trypanosomiasis, respectively. It is estimated that over 10 million people worldwide suffer from these neglected diseases, posing enormous social and economic problems in endemic areas. There are no vaccines to prevent these infections and chemotherapies are not adequate. This picture indicates that new chemotherapeutic agents must be developed to treat these illnesses. For this purpose, understanding the biology of the pathogenic trypanosomatid-host cell interface is fundamental for molecular and functional characterization of virulence factors that may be used as targets for the development of inhibitors to be used for effective chemotherapy. In this context, it is well known that proteases have crucial functions for both metabolism and infectivity of pathogens and are thus potential drug targets. In this regard, prolyl oligopeptidase and oligopeptidase B, both members of the S9 serine protease family, have been shown to play important roles in the interactions of pathogenic protozoa with their mammalian hosts and may thus be considered targets for drug design. This review aims to discuss structural and functional properties of these intriguing enzymes and their potential as targets for the development of drugs against Chagas disease, leishmaniasis and African trypanosomiasis.
Collapse
Affiliation(s)
- I M D Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasília, Brasília, Brazil
| | | | | | | |
Collapse
|