1
|
Chen Q, Zhuang S, Chen S, Wu B, Zhou Q, Wang W. Targeting the dual miRNA/BMP2 network: LncRNA H19-mediated temozolomide resistance unveils novel therapeutic strategies in glioblastoma. Front Oncol 2025; 15:1577221. [PMID: 40297808 PMCID: PMC12034693 DOI: 10.3389/fonc.2025.1577221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Background Long noncoding RNA (lncRNA) is known to not only be involved in various biological processes but also to play a crucial role in chemotherapy resistance. The development of resistance in glioblastoma (GBM) poses a significant challenge in clinical settings. Nonetheless, the mechanisms through which lncRNA contributes to acquired resistance to Temozolomide (TMZ) in GBM patients remain unclear. Methods We identified 265 upregulated and 396 downregulated lncRNAs associated with chemoresistance in GBM from the GEO database (GSE100736). Subsequently, we assessed the expression levels of lncRNA H19, hsa-miR-138-5p, hsa-miR-22-3p, and BMP2 mRNA through quantitative polymerase chain reaction (qPCR) in GBM cells and TMZ-resistant GBM cells. Cell viability and proliferation were evaluated using CCK-8 and cell colony formation assays, respectively. Apoptosis was determined through flow cytometry analysis. The impact of gene overexpression and knockdown on cell proliferation and apoptosis was examined via cell transfection experiments. Furthermore, we investigated the influence of lncRNA H19 on tumor development using an in vivo xenograft tumor model. Results The upregulation of lncRNA H19 was observed in TMZ-resistant GBM cell lines and tissues, suggesting its involvement in acquired TMZ resistance. Silencing lncRNA H19 restored TMZ sensitivity in resistant GBM cells in vitro. Conversely, overexpression of lncRNA H19 promoted GBM cell proliferation and hindered TMZ-triggered apoptosis, facilitating the acquisition of TMZ resistance. Notably, lncRNA H19 functions as a molecular decoy for hsa-miR-138-5p and hsa-miR-22-3p, and these miRNAs can reverse the acquired TMZ resistance induced by lncRNA H19 in GBM cells. Additionally, BMP2 gene expression is crucial in the lncRNA H19-mediated pathway of acquired TMZ resistance in GBM cells. Knockdown of lncRNA H19 reinstated TMZ sensitivity in vivo, whereas BMP2 overexpression reinstated TMZ resistance. Conclusion LncRNA H19 enhances TMZ resistance in glioblastoma through competitive RNA targeting of BMP2.
Collapse
Affiliation(s)
- Qiudan Chen
- Department of Clinical Laboratory, Central Laboratory, Jing’an District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Shihao Zhuang
- Department of Pediatrics, Fujian Children’s Hospital, Fuzhou, China
| | - Shuying Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Biying Wu
- Department of Clinical Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Qingyu Zhou
- Department of Clinical Laboratory, Central Laboratory, Jing’an District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Weifeng Wang
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Lorenz NI, Sauer B, Urban H, Weinem JB, Parmar BS, Zeiner PS, Strecker MI, Schulte D, Mittelbronn M, Alekseeva T, Sevenich L, Harter PN, Münch C, Steinbach JP, Luger AL, Heiland DH, Ronellenfitsch MW. AMP-activated protein kinase mediates adaptation of glioblastoma cells to conditions of the tumor microenvironment. J Exp Clin Cancer Res 2025; 44:104. [PMID: 40122814 PMCID: PMC11931870 DOI: 10.1186/s13046-025-03346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/22/2025] [Indexed: 03/25/2025] Open
Abstract
AMP-activated protein kinase (AMPK) is an energy sensor that regulates cellular metabolic activity. We hypothesized that in glioblastoma (GB), AMPK plays a pivotal role in balancing metabolism under conditions of the tumor microenvironment with fluctuating and often low nutrient and oxygen availability. Impairment of this network could thus interfere with tumor progression. AMPK activity was modulated genetically by CRISPR/Cas9-based double knockout (DKO) of the catalytic α1 and α2 subunits in human GB cells and effects were confirmed by pharmacological AMPK inhibition using BAY3827 and an inactive control compound in primary GB cell cultures. We found that metabolic adaptation of GB cells under energy stress conditions (hypoxia, glucose deprivation) was dependent on AMPK and accordingly that AMPK DKO cells were more vulnerable to glucose deprivation or inhibition of glycolysis and sensitized to hypoxia-induced cell death. This effect was rescued by reexpression of the AMPK α2 subunit. Similar results were observed using the selective pharmacological AMPK inhibitor BAY3827. Mitochondrial biogenesis was regulated AMPK-dependently with a reduced mitochondrial mass and mitochondrial membrane potential in AMPK DKO GB cells. In vivo, AMPK DKO GB cells showed impaired tumor growth and tumor formation in CAM assays as well as in an orthotopic glioma mouse model. Our study highlights the importance of AMPK for GB cell adaptation towards energy depletion and emphasizes the role of AMPK for tumor formation in vivo. Moreover, we identified mitochondria as central downstream effectors of AMPK signaling. The development of AMPK inhibitors could open opportunities for the treatment of hypoxic tumors.
Collapse
Affiliation(s)
- Nadja I Lorenz
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Benedikt Sauer
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Institute of Molecular Systems Medicine, Goethe University, Frankfurt am Main, Germany
| | - Hans Urban
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Jan-Béla Weinem
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Bhavesh S Parmar
- Institute of Molecular Systems Medicine, Goethe University, Frankfurt am Main, Germany
| | - Pia S Zeiner
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Department of Neurology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Maja I Strecker
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Michel Mittelbronn
- Luxembourg Centre of Neuropathology (LCNP), Dudelange, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur- Alzette, Luxembourg
- Department of Life Science and Medicine (DLSM), University of Luxembourg, Esch-sur- Alzette, Luxembourg
| | - Tijna Alekseeva
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Lisa Sevenich
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Patrick N Harter
- Center for Neuropathology and Prion Research, Faculty of Medicine, Ludwig-Maximilians- University of Munich, Munich, Germany
| | - Christian Münch
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Institute of Molecular Systems Medicine, Goethe University, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Frankfurt am Main, Germany
| | - Joachim P Steinbach
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Anna-Luisa Luger
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Dieter Henrik Heiland
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg, Freiburg, Germany
- Department of Neurosurgery, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael W Ronellenfitsch
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Mohamed Yusoff AA, Mohd Khair SZN, Abd Radzak SM. Mitochondrial DNA copy number alterations: Key players in the complexity of glioblastoma (Review). Mol Med Rep 2025; 31:78. [PMID: 39886971 PMCID: PMC11795256 DOI: 10.3892/mmr.2025.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025] Open
Abstract
Renowned as a highly invasive and lethal tumor derived from neural stem cells in the central nervous system, glioblastoma (GBM) exhibits substantial histopathological variation and genomic complexity, which drive its rapid progression and therapeutic resistance. Alterations in mitochondrial DNA (mtDNA) copy number (CN) serve a crucial role in GBM development and progression, affecting various aspects of tumor biology, including energy production, oxidative stress regulation and cellular adaptability. Fluctuations in mtDNA levels, whether elevated or diminished, can impair mitochondrial function, potentially disrupting oxidative phosphorylation and amplifying reactive oxygen species generation, thereby fueling tumor growth and influencing treatment responses. Understanding the mechanisms of mtDNA‑CN variations, and their interplay with genetic and environmental elements in the tumor microenvironment, is essential for advancing diagnostic and therapeutic strategies. Targeting mtDNA alterations could strengthen treatment efficacy, mitigate resistance and ultimately enhance the prognosis of patients with this aggressive brain tumor. The present review summarizes the existing literature on mtDNA alterations, specifically emphasizing variations in mtDNA‑CN and their association with GBM by surveying articles published between 1996 and 2024, sourced from databases such as Scopus, PubMed and Google Scholar. In addition, the review provides a brief overview of mitochondrial genome architecture, knowledge regarding the regulation of mtDNA integrity and CN, and how mitochondria significantly impact GBM tumorigenesis. This review further presents information on therapeutic approaches for restoring mtDNA‑CN that contribute to optimized mitochondrial function and improved health outcomes.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | | | - Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
4
|
Oliva CR, Ali MY, Flor S, Griguer CE. Copper-Induced Enhancement of Glioblastoma Tumorigenicity via Cytochrome C Oxidase. Antioxidants (Basel) 2025; 14:142. [PMID: 40002329 PMCID: PMC11851629 DOI: 10.3390/antiox14020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Copper is an essential trace element, yet chronic copper exposure can lead to toxicity in humans, and high levels of copper have been found in the blood or tumors of patients with various forms of cancer and may affect cancer severity and response to treatment. Copper is required for the activation of cytochrome c oxidase (CcO), the mitochondrial complex that facilitates oxidative phosphorylation (OXPHOS)-mediated ATP production. We recently reported that the increased activation of CcO underlies the acquisition of treatment resistance in glioblastoma (GBM) cells. However, the potential role of copper in GBM progression or treatment resistance has not been investigated. Here, we present evidence that exposure to 20 µM copper, the maximum allowable limit for public water supplies set by the U.S. Environmental Protection Agency, promotes GBM tumor growth and reduces overall survival in vivo and increases GBM cell resistance to radiation and chemotherapy in vitro. In vitro exposure to 20 µM copper substantially increased the activity of CcO, elevated the rate and level of ATP production, and triggered a metabolic shift to an OXPHOS phenotype in GBM cells. Furthermore, copper exposure led to a substantial increase in the accumulation of glutathione and glutathione precursors in these cells. These findings establish copper as a tumor promoter in GBM and suggest that copper mediates these effects through the upregulation of CcO activity, which enhances OXPHOS metabolism and glutathione production.
Collapse
Affiliation(s)
- Claudia R. Oliva
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa, IA 52242, USA; (C.R.O.); (M.Y.A.); (S.F.)
| | - Md Yousuf Ali
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa, IA 52242, USA; (C.R.O.); (M.Y.A.); (S.F.)
- Mass General Hospital Center for Cancer Research, Harvard Medical School, Boston, MA 02129, USA
| | - Susanne Flor
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa, IA 52242, USA; (C.R.O.); (M.Y.A.); (S.F.)
| | - Corinne E. Griguer
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa, IA 52242, USA; (C.R.O.); (M.Y.A.); (S.F.)
| |
Collapse
|
5
|
Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, Poff A, Winter SF, Hu J, Klement RJ, Hickson A, Lee DC, Cooper I, Kofler B, Schwartz KA, Phillips MCL, Champ CE, Zupec-Kania B, Tan-Shalaby J, Serfaty FM, Omene E, Arismendi-Morillo G, Kiebish M, Cheng R, El-Sakka AM, Pflueger A, Mathews EH, Worden D, Shi H, Cincione RI, Spinosa JP, Slocum AK, Iyikesici MS, Yanagisawa A, Pilkington GJ, Chaffee A, Abdel-Hadi W, Elsamman AK, Klein P, Hagihara K, Clemens Z, Yu GW, Evangeliou AE, Nathan JK, Smith K, Fortin D, Dietrich J, Mukherjee P, Seyfried TN. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med 2024; 22:578. [PMID: 39639257 PMCID: PMC11622503 DOI: 10.1186/s12916-024-03775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic metabolic therapy (KMT) leverages diet-drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling while shifting energy metabolism to therapeutic ketosis. The glucose-ketone index (GKI) is a standardized biomarker for assessing biological compliance, ideally via real-time monitoring. KMT aims to increase substrate competition and normalize the tumor microenvironment through GKI-adjusted ketogenic diets, calorie restriction, and fasting, while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non-fermentable fuels, such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long-term bioenergetic and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic oncology, offering a shared, evidence-driven framework for observational and interventional studies.
Collapse
Affiliation(s)
- Tomás Duraj
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| | | | - Giulio Zuccoli
- Neuroradiology, Private Practice, Philadelphia, PA, 19103, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Adrienne C Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, 85004, USA
| | - Angela Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Sebastian F Winter
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Jethro Hu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422, Schweinfurt, Germany
| | | | - Derek C Lee
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Isabella Cooper
- Ageing Biology and Age-Related Diseases Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Kenneth A Schwartz
- Department of Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand
| | - Colin E Champ
- Exercise Oncology & Resiliency Center and Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | | | - Jocelyn Tan-Shalaby
- School of Medicine, University of Pittsburgh, Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Fabiano M Serfaty
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
- Serfaty Clínicas, Rio de Janeiro, RJ, 22440-040, Brazil
| | - Egiroh Omene
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Gabriel Arismendi-Morillo
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao (Bizkaia), Spain
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, 4005, Venezuela
| | | | - Richard Cheng
- Cheng Integrative Health Center, Columbia, SC, 29212, USA
| | - Ahmed M El-Sakka
- Metabolic Terrain Institute of Health, East Congress Street, Tucson, AZ, 85701, USA
| | - Axel Pflueger
- Pflueger Medical Nephrologyand , Internal Medicine Services P.L.L.C, 6 Nelson Road, Monsey, NY, 10952, USA
| | - Edward H Mathews
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Puglia, Italy
| | - Jean Pierre Spinosa
- Integrative Oncology, Breast and Gynecologic Oncology Surgery, Private Practice, Rue Des Terreaux 2, 1002, Lausanne, Switzerland
| | | | - Mehmet Salih Iyikesici
- Department of Medical Oncology, Altınbaş University Bahçelievler Medical Park Hospital, Istanbul, 34180, Turkey
| | - Atsuo Yanagisawa
- The Japanese College of Intravenous Therapy, Tokyo, 150-0013, Japan
| | | | - Anthony Chaffee
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, 6009, Australia
| | - Wafaa Abdel-Hadi
- Clinical Oncology Department, Cairo University, Giza, 12613, Egypt
| | - Amr K Elsamman
- Neurosurgery Department, Cairo University, Giza, 12613, Egypt
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Zsófia Clemens
- International Center for Medical Nutritional Intervention, Budapest, 1137, Hungary
| | - George W Yu
- George W, Yu Foundation For Nutrition & Health and Aegis Medical & Research Associates, Annapolis, MD, 21401, USA
| | - Athanasios E Evangeliou
- Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Papageorgiou Hospital, Efkarpia, 56403, Thessaloniki, Greece
| | - Janak K Nathan
- Dr. DY Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, 411018, India
| | - Kris Smith
- Barrow Neurological Institute, Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - David Fortin
- Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | | | | |
Collapse
|
6
|
He Q, Wang W, Xu D, Xiong Y, Tao C, Ma L, Ma J, Zheng S, You C, Zan X. Genetic association between mitochondrial DNA copy number and glioma risk: insights from causality. BMC Cancer 2024; 24:1439. [PMID: 39574033 PMCID: PMC11583505 DOI: 10.1186/s12885-024-13212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND The genetic causal association between the mitochondrial DNA copy number (mtDNA-CN) and the development of glioma and glioblastoma (GBM) remains unclear. METHODS The summary-level datasets for mtDNA-CN were obtained from participants in the UK Biobank and the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium. Additionally, summary statistics datasets related to glioma were collected from a comprehensive meta-analysis genome-wide association study, which included 12,488 cases and 18,169 controls. The main method employed was inverse variance weighting, supplemented by Bonferroni correction to account for multiple tests. Additionally, sensitivity analyses were performed to address potential pleiotropy and strengthen the reliability of the results. RESULTS In the primary analysis, no genetic causal association was found between mtDNA-CN and glioma (OR = 1.20, 95%CI = 0.94-1.52, P = 0.1394), nor with low-grade glioma (OR = 1.09, 95%CI = 0.79-1.51, P = 0.5588). However, a suggestive genetic relationship between mtDNA-CN and glioblastoma was observed (OR = 1.42, 95%CI = 1.02-1.96, P = 0.0347). These findings were replicated in the MR analysis. Comprehensive analyses, including heterogeneity and pleiotropy analyses, as well as reverse analysis, confirmed the robustness of these results. CONCLUSION Our MR study did not find a genetic causal association between mtDNA-CN and the risk of glioma. A suggestive causal association between GBM and mtDNA-CN was detected.
Collapse
Affiliation(s)
- Qiang He
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Wenjing Wang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, China
| | - Dingkang Xu
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Xiong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanyuan Tao
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Junpeng Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Songping Zheng
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Xin Zan
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Cai D, Xu X, Zeng W, Wang Z, Chen C, Mo Y, Meekrathok P, Wang D, Peng P, Peng Z, Qiu J. Deoxyarbutin targets mitochondria to trigger p53-dependent senescence of glioblastoma cells. Free Radic Biol Med 2024; 224:382-392. [PMID: 39209136 DOI: 10.1016/j.freeradbiomed.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Cellular senescence is a natural barrier of the transition from premalignant cells to invasive cancer. Pharmacological induction of senescence has been proposed as a possible anticancer strategy. In this study, we found that deoxyarbutin inhibited the growth of glioblastoma (GBM) cells by inducing cellular senescence, independent of tyrosinase expression. Instead, deoxyarbutin induced mitochondrial oxidative stress and damage. These aberrant mitochondria were key to the p53-dependent senescence of GBM cells. Facilitating autophagy or mitigating mitochondrial oxidative stress both suppressed p53 expression and alleviated cellular senescence induced by deoxyarbutin. Thus, our study reveals that deoxyarbutin induces mitochondrial oxidative stress to trigger the p53-dependent senescence of GBM cells. Importantly, deoxyarbutin treatment resulted in accumulation of p53, induction of cellular senescence, and inhibition of tumor growth in a subcutaneous tumor model of mouse. In conclusion, our study reveals that deoxyarbutin has therapeutic potential for GBM by inducing mitochondrial oxidative stress for p53-dependent senescence of GBM cells.
Collapse
Affiliation(s)
- Dongjing Cai
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xia Xu
- Department of General Practice, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Weiqian Zeng
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zheng Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Cheng Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunan Mo
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Piyanat Meekrathok
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Dandan Wang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Pengwei Peng
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhigang Peng
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jian Qiu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China; MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410008, China; NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
8
|
Trejo-Solís C, Serrano-García N, Castillo-Rodríguez RA, Robledo-Cadena DX, Jimenez-Farfan D, Marín-Hernández Á, Silva-Adaya D, Rodríguez-Pérez CE, Gallardo-Pérez JC. Metabolic dysregulation of tricarboxylic acid cycle and oxidative phosphorylation in glioblastoma. Rev Neurosci 2024; 35:813-838. [PMID: 38841811 DOI: 10.1515/revneuro-2024-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Glioblastoma multiforme (GBM) exhibits genetic alterations that induce the deregulation of oncogenic pathways, thus promoting metabolic adaptation. The modulation of metabolic enzyme activities is necessary to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates essential for fulfilling the biosynthetic needs of glioma cells. Moreover, the TCA cycle produces intermediates that play important roles in the metabolism of glucose, fatty acids, or non-essential amino acids, and act as signaling molecules associated with the activation of oncogenic pathways, transcriptional changes, and epigenetic modifications. In this review, we aim to explore how dysregulated metabolic enzymes from the TCA cycle and oxidative phosphorylation, along with their metabolites, modulate both catabolic and anabolic metabolic pathways, as well as pro-oncogenic signaling pathways, transcriptional changes, and epigenetic modifications in GBM cells, contributing to the formation, survival, growth, and invasion of glioma cells. Additionally, we discuss promising therapeutic strategies targeting key players in metabolic regulation. Therefore, understanding metabolic reprogramming is necessary to fully comprehend the biology of malignant gliomas and significantly improve patient survival.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Neurobiología Molecular y Celular, Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico
| | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Neurobiología Molecular y Celular, Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico
| | - Rosa Angelica Castillo-Rodríguez
- CICATA Unidad Morelos, Instituto Politécnico Nacional, Boulevard de la Tecnología, 1036 Z-1, P 2/2, Atlacholoaya, Xochitepec 62790, Mexico
| | - Diana Xochiquetzal Robledo-Cadena
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México 14080, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, Mexico
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Álvaro Marín-Hernández
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México 14080, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, Mexico
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Neurobiología Molecular y Celular, Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Neurobiología Molecular y Celular, Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico
| | - Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México 14080, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, Mexico
| |
Collapse
|
9
|
Wang N, Yuan Y, Hu T, Xu H, Piao H. Metabolism: an important player in glioma survival and development. Discov Oncol 2024; 15:577. [PMID: 39436434 PMCID: PMC11496451 DOI: 10.1007/s12672-024-01402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Gliomas are malignant tumors originating from both neuroglial cells and neural stem cells. The involvement of neural stem cells contributes to the tumor's heterogeneity, affecting its metabolic features, development, and response to therapy. This review provides a brief introduction to the importance of metabolism in gliomas before systematically categorizing them into specific groups based on their histological and molecular genetic markers. Metabolism plays a critical role in glioma biology, as tumor cells rely heavily on altered metabolic pathways to support their rapid growth, survival, and progression. Dysregulated metabolic processes, involving carbohydrates, lipids, and amino acids not only fuel tumor development but also contribute to therapy resistance and metastatic potential. By understanding these metabolic changes, key intervention points, such as mutations in genes like RTK, EGFR, RAS, and IDH can be identified, paving the way for novel therapeutic strategies. This review emphasizes the connection between metabolic pathways and clinical challenges, offering actionable insights for future research and therapeutic development in gliomas.
Collapse
Affiliation(s)
- Ning Wang
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Yiru Yuan
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Tianhao Hu
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Huizhe Xu
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China.
- Central Laboratory, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Liaoning Province, 110042, P R China.
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China.
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China.
| |
Collapse
|
10
|
Cortes Ballen AI, Amosu M, Ravinder S, Chan J, Derin E, Slika H, Tyler B. Metabolic Reprogramming in Glioblastoma Multiforme: A Review of Pathways and Therapeutic Targets. Cells 2024; 13:1574. [PMID: 39329757 PMCID: PMC11430559 DOI: 10.3390/cells13181574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and highly malignant primary brain tumor characterized by rapid growth and a poor prognosis for patients. Despite advancements in treatment, the median survival time for GBM patients remains low. One of the crucial challenges in understanding and treating GBMs involves its remarkable cellular heterogeneity and adaptability. Central to the survival and proliferation of GBM cells is their ability to undergo metabolic reprogramming. Metabolic reprogramming is a process that allows cancer cells to alter their metabolism to meet the increased demands of rapid growth and to survive in the often oxygen- and nutrient-deficient tumor microenvironment. These changes in metabolism include the Warburg effect, alterations in several key metabolic pathways including glutamine metabolism, fatty acid synthesis, and the tricarboxylic acid (TCA) cycle, increased uptake and utilization of glutamine, and more. Despite the complexity and adaptability of GBM metabolism, a deeper understanding of its metabolic reprogramming offers hope for developing more effective therapeutic interventions against GBMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (A.I.C.B.); (M.A.); (S.R.); (J.C.); (E.D.); (H.S.)
| |
Collapse
|
11
|
Ionescu CM, Kovacevic B, Jones MA, Wagle SR, Foster T, Mikov M, Mooranian A, Al-Salami H. Probucol-Ursodeoxycholic Acid Otic Formulations: Stability and In Vitro Assessments for Hearing Loss Treatment. J Pharm Sci 2024; 113:2595-2604. [PMID: 38734207 DOI: 10.1016/j.xphs.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Targeted drug delivery is an ongoing aspect of scientific research that is expanding through the design of micro- and nanoparticles. In this paper, we focus on spray dried microparticles as carriers for a repurposed lipophilic antioxidant (probucol). We characterise the microparticles and quantify probucol prior to assessing cytotoxicity on both control and cisplatin treated hair cells (known as House Ear Institute-Organ of Corti 1; HEI-OC1). The addition of water-soluble polymers to 2% β-cyclodextrin resulted in a stable probucol formulation. Ursodeoxycholic acid (UDCA) used as formulation excipient increases probucol miscibility and microparticle drug content. Formulation characterisations reveals spray drying results in spherical UDCA-drug microparticles with a mean size distribution of ∼5-12 μm. Probucol microparticles show stable short-term storage conditions accounting for only ∼10% loss over seven days. By mimicking cell culture conditions, both UDCA-probucol (67%) and probucol only (82%) microparticles show drug release in the initial two hours. Furthermore, probucol formulations with or without UDCA preserve cell viability and reduce cisplatin-induced oxidative stress. Mitochondrial bioenergetics results in lower basal respiration and non-mitochondrial respiration, with higher maximal respiration, spare capacity, ATP production and proton leak within cisplatin challenged UDCA-probucol groups. Overall, we present a facile method for incorporating lipophilic antioxidant carriers in polymer-based particles that are tolerated by HEI-OC1 cells and show stable drug release, sufficient in reducing cisplatin-induced reactive oxygen species accumulation.
Collapse
Affiliation(s)
- Corina M Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Melissa A Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Susbin R Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia; School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand.
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia, Australia; Medical School, University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
12
|
Zhang Y, Xi K, Zhang Y, Fang Z, Zhang Y, Zhao K, Feng F, Shen J, Wang M, Zhang R, Cheng B, Geng H, Li X, Huang B, Wang KN, Ni S. Blood-Brain Barrier Penetrating Nanovehicles for Interfering with Mitochondrial Electron Flow in Glioblastoma. ACS NANO 2024; 18:9511-9524. [PMID: 38499440 DOI: 10.1021/acsnano.3c12434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and lethal form of human brain tumors. Dismantling the suppressed immune microenvironment is an effective therapeutic strategy against GBM; however, GBM does not respond to exogenous immunotherapeutic agents due to low immunogenicity. Manipulating the mitochondrial electron transport chain (ETC) elevates the immunogenicity of GBM, rendering previously immune-evasive tumors highly susceptible to immune surveillance, thereby enhancing tumor immune responsiveness and subsequently activating both innate and adaptive immunity. Here, we report a nanomedicine-based immunotherapeutic approach that targets the mitochondria in GBM cells by utilizing a Trojan-inspired nanovector (ABBPN) that can cross the blood-brain barrier. We propose that the synthetic photosensitizer IrPS can alter mitochondrial electron flow and concurrently interfere with mitochondrial antioxidative mechanisms by delivering si-OGG1 to GBM cells. Our synthesized ABBPN coloaded with IrPS and si-OGG1 (ISA) disrupts mitochondrial electron flow, which inhibits ATP production and induces mitochondrial DNA oxidation, thereby recruiting immune cells and endogenously activating intracranial antitumor immune responses. The results of our study indicate that strategies targeting the mitochondrial ETC have the potential to treat tumors with limited immunogenicity.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan 250117, Shandong, China
| | - Kaiyan Xi
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
- Department of Pediatrics, Qilu hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Yuying Zhang
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Road, Jinan 250033, Shandong, China
| | - Zezheng Fang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Yi Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Kaijie Zhao
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Fan Feng
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Jianyu Shen
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Mingrui Wang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Runlu Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Bo Cheng
- Department of Radiation Oncology, Qilu hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Huimin Geng
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan 250117, Shandong, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan 250117, Shandong, China
| | - Kang-Nan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan 250012, Shandong, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan 250117, Shandong, China
| |
Collapse
|
13
|
Vella V, Ditsiou A, Chalari A, Eravci M, Wooller SK, Gagliano T, Bani C, Kerschbamer E, Karakostas C, Xu B, Zhang Y, Pearl FM, Lopez G, Peng L, Stebbing J, Klinakis A, Giamas G. Kinome-Wide Synthetic Lethal Screen Identifies PANK4 as a Modulator of Temozolomide Resistance in Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306027. [PMID: 38353396 PMCID: PMC11022721 DOI: 10.1002/advs.202306027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/23/2023] [Indexed: 02/17/2024]
Abstract
Temozolomide (TMZ) represents the cornerstone of therapy for glioblastoma (GBM). However, acquisition of resistance limits its therapeutic potential. The human kinome is an undisputable source of druggable targets, still, current knowledge remains confined to a limited fraction of it, with a multitude of under-investigated proteins yet to be characterized. Here, following a kinome-wide RNAi screen, pantothenate kinase 4 (PANK4) isuncovered as a modulator of TMZ resistance in GBM. Validation of PANK4 across various TMZ-resistant GBM cell models, patient-derived GBM cell lines, tissue samples, as well as in vivo studies, corroborates the potential translational significance of these findings. Moreover, PANK4 expression is induced during TMZ treatment, and its expression is associated with a worse clinical outcome. Furthermore, a Tandem Mass Tag (TMT)-based quantitative proteomic approach, reveals that PANK4 abrogation leads to a significant downregulation of a host of proteins with central roles in cellular detoxification and cellular response to oxidative stress. More specifically, as cells undergo genotoxic stress during TMZ exposure, PANK4 depletion represents a crucial event that can lead to accumulation of intracellular reactive oxygen species (ROS) and subsequent cell death. Collectively, a previously unreported role for PANK4 in mediating therapeutic resistance to TMZ in GBM is unveiled.
Collapse
Affiliation(s)
- Viviana Vella
- Department of Biochemistry and BiomedicineSchool of Life SciencesUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | - Angeliki Ditsiou
- Department of Biochemistry and BiomedicineSchool of Life SciencesUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | - Anna Chalari
- Center of Basic ResearchBiomedical Research Foundation of the Academy of AthensAthens11527Greece
| | - Murat Eravci
- Department of Biochemistry and BiomedicineSchool of Life SciencesUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | - Sarah K. Wooller
- School of Life SciencesBioinformatics GroupUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | | | - Cecilia Bani
- Department of Biochemistry and BiomedicineSchool of Life SciencesUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | | | - Christos Karakostas
- Center of Basic ResearchBiomedical Research Foundation of the Academy of AthensAthens11527Greece
| | - Bin Xu
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhanHubei430064China
| | - Yongchang Zhang
- Department of Medical OncologyLung Cancer and Gastrointestinal UnitHunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan430064China
| | - Frances M.G. Pearl
- School of Life SciencesBioinformatics GroupUniversity of Sussex, FalmerBrightonBN1 9QGUK
| | - Gianluca Lopez
- Division of PathologyFondazione IRCCS Ca' Granda – Ospedale Maggiore PoliclinicoMilan20122Italy
- Department of Biomedical, Surgical and Dental SciencesUniversity of MilanMilan20122Italy
| | - Ling Peng
- Department of Respiratory DiseaseZhejiang Provincial People's HospitalHangzhouZhejiang310003China
| | - Justin Stebbing
- Department of Life SciencesAnglia Ruskin UniversityEast RoadCambridgeCB1 1PTUK
| | - Apostolos Klinakis
- Center of Basic ResearchBiomedical Research Foundation of the Academy of AthensAthens11527Greece
| | - Georgios Giamas
- Department of Biochemistry and BiomedicineSchool of Life SciencesUniversity of Sussex, FalmerBrightonBN1 9QGUK
| |
Collapse
|
14
|
Li HY, Feng YH, Lin CL, Hsu TI. Mitochondrial Mechanisms in Temozolomide Resistance: Unraveling the Complex Interplay and Therapeutic Strategies in Glioblastoma. Mitochondrion 2024; 75:101836. [PMID: 38158149 DOI: 10.1016/j.mito.2023.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive and lethal brain tumor, with temozolomide (TMZ) being the standard chemotherapeutic agent for its treatment. However, TMZ resistance often develops, limiting its therapeutic efficacy and contributing to poor patient outcomes. Recent evidence highlights the crucial role of mitochondria in the development of TMZ resistance through various mechanisms, including alterations in reactive oxygen species (ROS) production, metabolic reprogramming, apoptosis regulation, biogenesis, dynamics, stress response, and mtDNA mutations. This review article aims to provide a comprehensive overview of the mitochondrial mechanisms involved in TMZ resistance and discuss potential therapeutic strategies targeting these mechanisms to overcome resistance in GBM. We explore the current state of clinical trials targeting mitochondria or related pathways in primary GBM or recurrent GBM, as well as the challenges and future perspectives in this field. Understanding the complex interplay between mitochondria and TMZ resistance will facilitate the development of more effective therapeutic strategies and ultimately improve the prognosis for GBM patients.
Collapse
Affiliation(s)
- Hao-Yi Li
- Department of Biochemistry, Ludwig-Maximilians-University, Munich 81377, Germany; Gene Center, Ludwig-Maximilians-University, Munich 81377, Germany
| | | | | | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei 110, Taiwan.
| |
Collapse
|
15
|
Shaw R, Basu M, Karmakar S, Ghosh MK. MGMT in TMZ-based glioma therapy: Multifaceted insights and clinical trial perspectives. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119673. [PMID: 38242327 DOI: 10.1016/j.bbamcr.2024.119673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Temozolomide (TMZ) is the most preferred and approved chemotherapeutic drug for either first- or second-line chemotherapy for glioma patients across the globe. In glioma patients, resistance to treatment with alkylating drugs like TMZ is known to be conferred by exalted levels of MGMT gene expression. On the contrary, epigenetic silencing through MGMT gene promoter methylation leading to subsequent reduction in MGMT transcription and protein expression, is predicted to have a response favoring TMZ treatment. Thus, MGMT protein level in cancer cells is a crucial determining factor in indicating and predicting the choice of alkylating agents in chemotherapy or choosing glioma patients directly for a second line of treatment. Thus, in-depth research is necessary to achieve insights into MGMT gene regulation that has recently enticed a fascinating interest in epigenetic, transcriptional, post-transcriptional, and post-translational levels. Furthermore, MGMT promoter methylation, stability of MGMT protein, and related subsequent adaptive responses are also important contributors to strategic developments in glioma therapy. With applications to its identification as a prognostic biomarker, thus predicting response to advanced glioma therapy, this review aims to concentrate on the mechanistic role and regulation of MGMT gene expression at epigenetic, transcriptional, post-transcriptional, and post-translational levels functioning under the control of multiple signaling dynamics.
Collapse
Affiliation(s)
- Rajni Shaw
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24, Paraganas 743372, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
16
|
Wang R, Chen Y, Kuang W, Jiang W, Zeng W, Chen Y, Liu Z. Valproic acid regulates the miR-155/Jarid2 axis by affecting miR-155 promoter methylation in glioma. Acta Biochim Biophys Sin (Shanghai) 2024; 56:174-183. [PMID: 38273784 PMCID: PMC10984859 DOI: 10.3724/abbs.2023259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/05/2023] [Indexed: 01/27/2024] Open
Abstract
The most frequent primary brain tumor in adults is glioma, yet no effective curative treatments are currently available. Our previous study demonstrated the enhancing effects of JARID2 on glioma sensitivity to TMZ treatment. In this study, miR-155 is predicted to target JARID2. miR-155 is overexpressed in clinical glioma specimens and cell lines. miR-155 overexpression in glioma cells enhances cell viability and represses cell apoptosis. Through targeting, miR-155 inhibits JARID2 expression. miR-155 inhibition inhibits glioma cell viability and enhances cell apoptosis, whereas JARID2 knockdown enhances cell viability and inhibits cell apoptosis; JARID2 knockdown partially reverses miR-155 inhibition effects on glioma phenotypes. miR-155 inhibition reduces but knockdown of JARID2 promotes the tumor formation ability of glioma cells in vivo. Valproic acid (VPA) upregulates JARID2 expression, inhibits glioma cell viability and enhances cell apoptosis. VPA downregulates the expression level of miR-155 by increasing the methylation level of the miR-155 promoter, suggesting that the miR-155/JARID2 axis is implicated in VPA inhibition of glioma cell viability and enhancement of glioma cell apoptosis. This study demonstrates a new mechanism of VPA treatment of gliomas by affecting the miR-155/JARID2 axis, which could be regarded as a new strategy for the prevention and treatment of glioma.
Collapse
Affiliation(s)
- Ruixuan Wang
- Department of OncologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Yanhong Chen
- Department of Clinical PharmacologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Weilu Kuang
- Department of OncologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Wuzhong Jiang
- Department of OncologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Wenjing Zeng
- Department of Clinical PharmacologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Yinyun Chen
- The Third Department of GastroenterologyHunan Provincial People’s HospitalChangsha410000China
| | - Zhengzheng Liu
- Department of OncologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| |
Collapse
|
17
|
Tarallo D, Martínez J, Leyva A, Mónaco A, Perroni C, Tassano M, Gambini JP, Cappetta M, Durán R, Moreno M, Quijano C. Mitofusin 1 silencing decreases the senescent associated secretory phenotype, promotes immune cell recruitment and delays melanoma tumor growth after chemotherapy. Sci Rep 2024; 14:909. [PMID: 38195762 PMCID: PMC10776601 DOI: 10.1038/s41598-024-51427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
Cellular senescence is a therapy endpoint in melanoma, and the senescence-associated secretory phenotype (SASP) can affect tumor growth and microenvironment, influencing treatment outcomes. Metabolic interventions can modulate the SASP, and mitochondrial energy metabolism supports resistance to therapy in melanoma. In a previous report we showed that senescence, induced by the DNA methylating agent temozolomide, increased the level of fusion proteins mitofusin 1 and 2 in melanoma, and silencing Mfn1 or Mfn2 expression reduced interleukin-6 secretion by senescent cells. Here we expanded these observations evaluating the secretome of senescent melanoma cells using shotgun proteomics, and explored the impact of silencing Mfn1 on the SASP. A significant increase in proteins reported to reduce the immune response towards the tumor was found in the media of senescent cells. The secretion of several of these immunomodulatory proteins was affected by Mfn1 silencing, among them was galectin-9. In agreement, tumors lacking mitofusin 1 responded better to treatment with the methylating agent dacarbazine, tumor size was reduced and a higher immune cell infiltration was detected in the tumor. Our results highlight mitochondrial dynamic proteins as potential pharmacological targets to modulate the SASP in the context of melanoma treatment.
Collapse
Affiliation(s)
- Doménica Tarallo
- Departamento de Bioquímica, Facultad de Medicina, and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Jennyfer Martínez
- Departamento de Bioquímica, Facultad de Medicina, and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Alejandro Leyva
- Institut Pasteur de Montevideo and Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Amy Mónaco
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carolina Perroni
- Area Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Marcos Tassano
- Area Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Juan Pablo Gambini
- Centro Uruguayo de Imagenología Molecular (CUDIM) and Centro de Medicina Nuclear (CMN), Hospital de Clínicas Dr. Manuel Quintela, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mónica Cappetta
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rosario Durán
- Institut Pasteur de Montevideo and Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - María Moreno
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Celia Quijano
- Departamento de Bioquímica, Facultad de Medicina, and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
18
|
Lenz LS, Torgo D, Buss JH, Pereira LC, Bueno M, Filippi-Chiela EC, Lenz G. Mitochondrial response of glioma cells to temozolomide. Exp Cell Res 2023; 433:113825. [PMID: 37866459 DOI: 10.1016/j.yexcr.2023.113825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Metabolic adaptations are central for carcinogenesis and response to therapy, but little is known about the contribution of mitochondrial dynamics to the response of glioma cells to the standard treatment with temozolomide (TMZ). Glioma cells responded to TMZ with mitochondrial mass increased and the production of round structures of dysfunctional mitochondria. At single-cell level, asymmetric mitosis contributed to the heterogeneity of mitochondrial levels. It affected the fitness of cells in control and treated condition, indicating that the mitochondrial levels are relevant for glioma cell fitness in the presence of TMZ.
Collapse
Affiliation(s)
- Luana Suéling Lenz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Daphne Torgo
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Julieti Huch Buss
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiza Cherobini Pereira
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Mardja Bueno
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Eduardo Cremonese Filippi-Chiela
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Rio Grande do Sul, Brazil
| | - Guido Lenz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
19
|
Jones AB, Schanel TL, Rigsby MR, Griguer CE, McFarland BC, Anderson JC, Willey CD, Hjelmeland AB. Tumor Treating Fields Alter the Kinomic Landscape in Glioblastoma Revealing Therapeutic Vulnerabilities. Cells 2023; 12:2171. [PMID: 37681903 PMCID: PMC10486683 DOI: 10.3390/cells12172171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Treatment for the deadly brain tumor glioblastoma (GBM) has been improved through the non-invasive addition of alternating electric fields, called tumor treating fields (TTFields). Improving both progression-free and overall survival, TTFields are currently approved for treatment of recurrent GBMs as a monotherapy and in the adjuvant setting alongside TMZ for newly diagnosed GBMs. These TTFields are known to inhibit mitosis, but the full molecular impact of TTFields remains undetermined. Therefore, we sought to understand the ability of TTFields to disrupt the growth patterns of and induce kinomic landscape shifts in TMZ-sensitive and -resistant GBM cells. We determined that TTFields significantly decreased the growth of TMZ-sensitive and -resistant cells. Kinomic profiling predicted kinases that were induced or repressed by TTFields, suggesting possible therapy-specific vulnerabilities. Serving as a potential pro-survival mechanism for TTFields, kinomics predicted the increased activity of platelet-derived growth-factor receptor alpha (PDGFRα). We demonstrated that the addition of the PDGFR inhibitor, crenolanib, to TTFields further reduced cell growth in comparison to either treatment alone. Collectively, our data suggest the efficacy of TTFields in vitro and identify common signaling responses to TTFields in TMZ-sensitive and -resistant populations, which may support more personalized medicine approaches.
Collapse
Affiliation(s)
- Amber B. Jones
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.B.J.); (M.R.R.); (B.C.M.)
| | - Taylor L. Schanel
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (T.L.S.); (J.C.A.)
| | - Mikayla R. Rigsby
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.B.J.); (M.R.R.); (B.C.M.)
| | - Corinne E. Griguer
- Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA;
| | - Braden C. McFarland
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.B.J.); (M.R.R.); (B.C.M.)
| | - Joshua C. Anderson
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (T.L.S.); (J.C.A.)
| | - Christopher D. Willey
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (T.L.S.); (J.C.A.)
| | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.B.J.); (M.R.R.); (B.C.M.)
| |
Collapse
|
20
|
Honc O, Novotny J. Methadone Potentiates the Cytotoxicity of Temozolomide by Impairing Calcium Homeostasis and Dysregulation of PARP in Glioblastoma Cells. Cancers (Basel) 2023; 15:3567. [PMID: 37509230 PMCID: PMC10377588 DOI: 10.3390/cancers15143567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Methadone is commonly used as an alternative to morphine in patients with pain associated with glioblastoma and other cancers. Although concomitant administration of methadone and cytostatics is relatively common, the effect of methadone on the efficacy of cytostatic drugs has not been well studied until recently. Moreover, the mechanism behind the effect of methadone on temozolomide efficacy has not been investigated in previous studies, or this effect has been automatically attributed to opioid receptors. Our findings indicate that methadone potentiates the effect of temozolomide on rat C6 glioblastoma cells and on human U251 and T98G glioblastoma cells and increases cell mortality by approximately 50% via a mechanism of action independent of opioid receptors. Our data suggest that methadone acts by affecting mitochondrial potential, the level of oxidative stress, intracellular Ca2+ concentration and possibly intracellular ATP levels. Significant effects were also observed on DNA integrity and on cleavage and expression of the DNA repair protein PARP-1. None of these effects were attributed to the activation of opioid receptors and Toll-like receptor 4. Our results provide an alternative perspective on the mechanism of action of methadone in combination with temozolomide and a potential strategy for the treatment of glioblastoma cell resistance to temozolomide.
Collapse
Affiliation(s)
- Ondrej Honc
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| |
Collapse
|
21
|
Salarinejad A, Esmaeilpour K, Shabani M, Jafarinejad-Farsangi S, Pardakhty A, Asadi-Shekaari M, Ahmadi-Zeidabadi M. Effect of l-Dopa in acute temozolomide-induced cognitive impairment in male mice: a possible antineuroinflammatory role. Behav Pharmacol 2023:00008877-990000000-00047. [PMID: 37401406 DOI: 10.1097/fbp.0000000000000733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Temozolomide is used commonly in the treatment of some types of cancers, but it may also result in cognitive impairments such as memory deficits. l-Dopa, a well known medicine for the central nervous system, has been shown to have positive effects on some cognitive disorders. Here we sought to investigate the effect of l-Dopa on temozolomide-induced cognitive impairments. BALB/c mice were subjected to 3-days temozolomide and 6-days concomitant l-Dopa/benserazide administration in six groups (control, l-Dopa 25 mg/kg, l-Dopa 75 mg/kg, temozolomide, temozolomide + l-Dopa 25 mg/kg, and temozolomide + l-Dopa 75 mg/kg). Open field test, object location recognition, novel object recognition test, and shuttle-box test were carried out to determine the locomotor, anxiety-like behavior, and memory function of subjects. TNF-α and brain-derived neurotrophic factor (BDNF) gene expression in the hippocampus was measured by real-time PCR. Mice treated with temozolomide showed recognition memory impairment, along with hippocampal TNF-α and BDNF mRNA expression level raise, and detection of histological insults in hematoxylin and eosin hippocampal slides. Mice that received temozolomide + l-Dopa showed normal behavioral function and lower TNF-α and BDNF hippocampal mRNA expression levels, and histologically normal hippocampal CA1 region in comparison with mice in the temozolomide group. Our results provide evidence that l-Dopa prevents temozolomide-induced recognition memory deficit in mice at the acute phase probably via l-Dopa antineuroinflammatory effects.
Collapse
Affiliation(s)
| | | | | | | | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | | | | |
Collapse
|
22
|
Pibuel MA, Poodts D, Sias SA, Byrne A, Hajos SE, Franco PG, Lompardía SL. 4-Methylumbelliferone enhances the effects of chemotherapy on both temozolomide-sensitive and resistant glioblastoma cells. Sci Rep 2023; 13:9356. [PMID: 37291120 PMCID: PMC10249561 DOI: 10.1038/s41598-023-35045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023] Open
Abstract
Glioblastoma (GBM) is the most frequent malignant primary tumor of the CNS in adults, with a median survival of 14.6 months after diagnosis. The effectiveness of GBM therapies remains poor, highlighting the need for new therapeutic alternatives. In this work, we evaluated the effect of 4-methylumbelliferone (4MU), a coumarin derivative without adverse effects reported, in combination with temozolomide (TMZ) or vincristine (VCR) on U251, LN229, U251-TMZ resistant (U251-R) and LN229-TMZ resistant (LN229-R) human GBM cells. We determined cell proliferation by BrdU incorporation, migration through wound healing assay, metabolic and MMP activity by XTT and zymography assays, respectively, and cell death by PI staining and flow cytometry. 4MU sensitizes GBM cell lines to the effect of TMZ and VCR and inhibits metabolic activity and cell proliferation on U251-R cells. Interestingly, the lowest doses of TMZ enhance U251-R and LN229-R cell proliferation, while 4MU reverts this and even sensitizes both cell lines to TMZ and VCR effects. We showed a marked antitumor effect of 4MU on GBM cells alone and in combination with chemotherapy and proved, for the first time, the effect of 4MU on TMZ-resistant models, demonstrating that 4MU would be a potential therapeutic alternative for improving GBM therapy even on TMZ-refractory patients.
Collapse
Affiliation(s)
- Matías A Pibuel
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET, Universidad de Buenos Aires, Junín 956 4° Piso, 1113, Capital Federal, Argentina.
| | - Daniela Poodts
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET, Universidad de Buenos Aires, Junín 956 4° Piso, 1113, Capital Federal, Argentina
| | - Sofía A Sias
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET, Universidad de Buenos Aires, Junín 956 4° Piso, 1113, Capital Federal, Argentina
| | - Agustín Byrne
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET, Universidad de Buenos Aires, 1113, Capital Federal, Argentina
| | - Silvia E Hajos
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET, Universidad de Buenos Aires, Junín 956 4° Piso, 1113, Capital Federal, Argentina
| | - Paula G Franco
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB)-CONICET, Universidad de Buenos Aires, 1113, Capital Federal, Argentina
| | - Silvina L Lompardía
- Cátedra de Inmunología, Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)- CONICET, Universidad de Buenos Aires, Junín 956 4° Piso, 1113, Capital Federal, Argentina
| |
Collapse
|
23
|
Khan ZM, Munson JM, Long TE, Vlaisavljevich E, Verbridge SS. Development of a Synthetic, Injectable Hydrogel to Capture Residual Glioblastoma and Glioblastoma Stem-Like Cells with CXCL12-Mediated Chemotaxis. Adv Healthc Mater 2023; 12:e2300671. [PMID: 37014179 PMCID: PMC11469263 DOI: 10.1002/adhm.202300671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Glioblastoma (GBM), characterized by high infiltrative capacity, is the most common and deadly type of primary brain tumor in adults. GBM cells, including therapy-resistant glioblastoma stem-like cells (GSCs), invade the healthy brain parenchyma to form secondary tumors even after patients undergo surgical resection and chemoradiotherapy. New techniques are therefore urgently needed to eradicate these residual tumor cells. A thiol-Michael addition injectable hydrogel for compatibility with GBM therapy is previously characterized and optimized. This study aims to develop the hydrogel further to capture GBM/GSCs through CXCL12-mediated chemotaxis. The release kinetics of hydrogel payloads are investigated, migration and invasion assays in response to chemoattractants are performed, and the GBM-hydrogel interactions in vitro are studied. With a novel dual-layer hydrogel platform, it is demonstrated that CXCL12 released from the synthetic hydrogel can induce the migration of U251 GBM cells and GSCs from the extracellular matrix microenvironment and promote invasion into the synthetic hydrogel via amoeboid migration. The survival of GBM cells entrapped deep into the synthetic hydrogel is limited, while live cells near the surface reinforce the hydrogel through fibronectin deposition. This synthetic hydrogel, therefore, demonstrates a promising method to attract and capture migratory GBM cells and GSCs responsive to CXCL12 chemotaxis.
Collapse
Affiliation(s)
- Zerin Mahzabin Khan
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
| | - Jennifer M. Munson
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
- Wake Forest Baptist Comprehensive Cancer CenterWake Forest UniversityWinston‐SalemNC27157USA
- Fralin Biomedical Research Institute at Virginia Tech – CarillionRoanokeVA24016USA
| | - Timothy E. Long
- Biodesign Center for Sustainable Macromolecular Materials and ManufacturingArizona State UniversityTempeAZ85287USA
| | - Eli Vlaisavljevich
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
| | - Scott S. Verbridge
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
- Wake Forest Baptist Comprehensive Cancer CenterWake Forest UniversityWinston‐SalemNC27157USA
| |
Collapse
|
24
|
Bernhard C, Reita D, Martin S, Entz-Werle N, Dontenwill M. Glioblastoma Metabolism: Insights and Therapeutic Strategies. Int J Mol Sci 2023; 24:ijms24119137. [PMID: 37298093 DOI: 10.3390/ijms24119137] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Tumor metabolism is emerging as a potential target for cancer therapies. This new approach holds particular promise for the treatment of glioblastoma, a highly lethal brain tumor that is resistant to conventional treatments, for which improving therapeutic strategies is a major challenge. The presence of glioma stem cells is a critical factor in therapy resistance, thus making it essential to eliminate these cells for the long-term survival of cancer patients. Recent advancements in our understanding of cancer metabolism have shown that glioblastoma metabolism is highly heterogeneous, and that cancer stem cells exhibit specific metabolic traits that support their unique functionality. The objective of this review is to examine the metabolic changes in glioblastoma and investigate the role of specific metabolic processes in tumorigenesis, as well as associated therapeutic approaches, with a particular focus on glioma stem cell populations.
Collapse
Affiliation(s)
- Chloé Bernhard
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
| | - Damien Reita
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
- Laboratory of Biochemistry and Molecular Biology, Department of Cancer Molecular Genetics, University Hospital of Strasbourg, 67200 Strasbourg, France
| | - Sophie Martin
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
| | - Natacha Entz-Werle
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France
| | - Monique Dontenwill
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
| |
Collapse
|
25
|
Park JW. Metabolic Rewiring in Adult-Type Diffuse Gliomas. Int J Mol Sci 2023; 24:ijms24087348. [PMID: 37108511 PMCID: PMC10138713 DOI: 10.3390/ijms24087348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Multiple metabolic pathways are utilized to maintain cellular homeostasis. Given the evidence that altered cell metabolism significantly contributes to glioma biology, the current research efforts aim to improve our understanding of metabolic rewiring between glioma's complex genotype and tissue context. In addition, extensive molecular profiling has revealed activated oncogenes and inactivated tumor suppressors that directly or indirectly impact the cellular metabolism that is associated with the pathogenesis of gliomas. The mutation status of isocitrate dehydrogenases (IDHs) is one of the most important prognostic factors in adult-type diffuse gliomas. This review presents an overview of the metabolic alterations in IDH-mutant gliomas and IDH-wildtype glioblastoma (GBM). A particular focus is placed on targeting metabolic vulnerabilities to identify new therapeutic strategies for glioma.
Collapse
Affiliation(s)
- Jong-Whi Park
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
26
|
Montiel-Dávalos A, Ayala Y, Hernández G. The dark side of mRNA translation and the translation machinery in glioblastoma. Front Cell Dev Biol 2023; 11:1086964. [PMID: 36994107 PMCID: PMC10042294 DOI: 10.3389/fcell.2023.1086964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
Among the different types of cancer affecting the central nervous system (CNS), glioblastoma (GB) is classified by the World Health Organization (WHO) as the most common and aggressive CNS cancer in adults. GB incidence is more frequent among persons aged 45–55 years old. GB treatments are based on tumor resection, radiation, and chemotherapies. The current development of novel molecular biomarkers (MB) has led to a more accurate prediction of GB progression. Moreover, clinical, epidemiological, and experimental studies have established genetic variants consistently associated with the risk of suffering GB. However, despite the advances in these fields, the survival expectancy of GB patients is still shorter than 2 years. Thus, fundamental processes inducing tumor onset and progression remain to be elucidated. In recent years, mRNA translation has been in the spotlight, as its dysregulation is emerging as a key cause of GB. In particular, the initiation phase of translation is most involved in this process. Among the crucial events, the machinery performing this phase undergoes a reconfiguration under the hypoxic conditions in the tumor microenvironment. In addition, ribosomal proteins (RPs) have been reported to play translation-independent roles in GB development. This review focuses on the research elucidating the tight relationship between translation initiation, the translation machinery, and GB. We also summarize the state-of-the-art drugs targeting the translation machinery to improve patients’ survival. Overall, the recent advances in this field are shedding new light on the dark side of translation in GB.
Collapse
|
27
|
Burko P, D’Amico G, Miltykh I, Scalia F, Conway de Macario E, Macario AJL, Giglia G, Cappello F, Caruso Bavisotto C. Molecular Pathways Implicated in Radioresistance of Glioblastoma Multiforme: What Is the Role of Extracellular Vesicles? Int J Mol Sci 2023; 24:ijms24054883. [PMID: 36902314 PMCID: PMC10003080 DOI: 10.3390/ijms24054883] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a primary brain tumor that is very aggressive, resistant to treatment, and characterized by a high degree of anaplasia and proliferation. Routine treatment includes ablative surgery, chemotherapy, and radiotherapy. However, GMB rapidly relapses and develops radioresistance. Here, we briefly review the mechanisms underpinning radioresistance and discuss research to stop it and install anti-tumor defenses. Factors that participate in radioresistance are varied and include stem cells, tumor heterogeneity, tumor microenvironment, hypoxia, metabolic reprogramming, the chaperone system, non-coding RNAs, DNA repair, and extracellular vesicles (EVs). We direct our attention toward EVs because they are emerging as promising candidates as diagnostic and prognostication tools and as the basis for developing nanodevices for delivering anti-cancer agents directly into the tumor mass. EVs are relatively easy to obtain and manipulate to endow them with the desired anti-cancer properties and to administer them using minimally invasive procedures. Thus, isolating EVs from a GBM patient, supplying them with the necessary anti-cancer agent and the capability of recognizing a specified tissue-cell target, and reinjecting them into the original donor appears, at this time, as a reachable objective of personalized medicine.
Collapse
Affiliation(s)
- Pavel Burko
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Giuseppa D’Amico
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Ilia Miltykh
- Department of Human Anatomy, Institute of Medicine, Penza State University, 440026 Penza, Russia
| | - Federica Scalia
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Alberto J. L. Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Giuseppe Giglia
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Section of Human Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
| | - Francesco Cappello
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Correspondence: ; Tel.: +39-0916553501
| |
Collapse
|
28
|
Cooper E, Choi PJ, Hwang K, Nam KM, Kim CY, Shaban T, Schweder P, Mee E, Correia J, Turner C, Faull RLM, Denny WA, Noguchi K, Dragunow M, Jose J, Park TIH. Elucidating the cellular uptake mechanisms of heptamethine cyanine dye analogues for their use as an anticancer drug-carrier molecule for the treatment of glioblastoma. Chem Biol Drug Des 2023; 101:696-716. [PMID: 36323652 DOI: 10.1111/cbdd.14171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
The development of chemotherapies for glioblastoma is hindered by their limited bioavailability and toxicity on normal brain function. To overcome these limitations, we investigated the structure-dependent activity of heptamethine cyanine dyes (HMCD), a group of tumour-specific and BBB permeable near-infrared fluorescent dyes, in both commercial (U87MG) and patient-derived GBM cell lines. HMCD analogues with strongly ionisable sulphonic acid groups were not taken up by patient-derived GBM cells, but were taken up by the U87MG cell line. HMCD uptake relies on a combination of transporter uptake through organic anion-transporting polypeptides (OATPs) and endocytosis into GBM cells. The uptake of HMCDs was not affected by p-glycoprotein efflux in GBM cells. Finally, we demonstrate structure-dependent cytotoxic activity at high concentrations (EC50 : 1-100 μM), likely due to mitochondrial damage-induced apoptosis. An in vivo orthotopic glioblastoma model highlights tumour-specific accumulation of our lead HMCD, MHI-148, for up to 7 days following a single intraperitoneal injection. These studies suggest that strongly ionisable groups like sulphonic acids hamper the cellular uptake of HMCDs in patient-derived GBM cell lines, highlighting cell line-specific differences in HMCD uptake. We envisage these findings will help in the design and structural modifications of HMCDs for drug-delivery applications for glioblastoma.
Collapse
Affiliation(s)
- Elizabeth Cooper
- Department of Pharmacology, University of Auckland, Auckland, New Zealand.,Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,The Hugh Green Biobank, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Peter J Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Kihwan Hwang
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Kyung M Nam
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Tina Shaban
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Patrick Schweder
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Edward Mee
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Jason Correia
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Clinton Turner
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomical Pathology, Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| | - Richard L M Faull
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Katsuya Noguchi
- Dojindo Laboratories Co., Ltd, Techno-Research Park, Kumamoto, Japan
| | - Mike Dragunow
- Department of Pharmacology, University of Auckland, Auckland, New Zealand.,Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,The Hugh Green Biobank, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Thomas I-H Park
- Department of Pharmacology, University of Auckland, Auckland, New Zealand.,Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand.,The Hugh Green Biobank, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
29
|
Ali MY, Griguer CE, Flor S, Oliva CR. Mitoferrin-1 Promotes Proliferation and Abrogates Protein Oxidation via the Glutathione Pathway in Glioblastoma. Antioxidants (Basel) 2023; 12:antiox12020349. [PMID: 36829908 PMCID: PMC9952016 DOI: 10.3390/antiox12020349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Median overall survival is very low in patients with glioblastoma (GBM), largely because these tumors become resistant to therapy. Recently, we found that a decrease in the cytosolic labile iron pool underlies the acquisition of radioresistance. Both cytosolic and mitochondrial iron are important for regulating ROS production, which largely facilitates tumor progression and response to therapy. Here, we investigated the role of the mitochondrial iron transporters mitoferrin-1 (MFRN1) and mitoferrin-2 (MFRN2) in GBM progression. Analysis of The Cancer Genome Atlas database revealed upregulation of MFRN1 mRNA and downregulation of MFRN2 mRNA in GBM tumor tissue compared with non-GBM tissue, yet only the tumor expression level of MFRN1 mRNA negatively correlated with overall survival in patients. Overexpression of MFRN1 in glioma cells significantly increased the level of mitochondrial iron, enhanced the proliferation rate and anchorage-independent growth of these cells, and significantly decreased mouse survival in an orthotopic model of glioma. Finally, MFRN1 overexpression stimulated the upregulation of glutathione, which protected glioma cells from 4-hydroxynonenal-induced protein damage. Overall, these results demonstrate a mechanistic link between MFRN1-mediated mitochondrial iron metabolism and GBM progression. Manipulation of MFRN1 may provide a new therapeutic strategy for improving clinical outcomes in patients with GBM.
Collapse
Affiliation(s)
- Md Yousuf Ali
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, USA
| | - Corinne E. Griguer
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, USA
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - Susanne Flor
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, USA
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - Claudia R. Oliva
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
30
|
Hou L, Xing N, Yue Z, Wu J, Wang F, Guo Z. Dicer induced reactive oxygen species inhibit hepatocellular carcinoma through interacting with cytochrome c oxidase. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2082318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Lin Hou
- Department of Endocrine and Metabolic Disease, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Na Xing
- Department of Endocrine and Metabolic Disease, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Zhao Yue
- Department of Gastroenterology and Hepatology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Jianhua Wu
- Animal Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Fujun Wang
- Department of Endocrine and Metabolic Disease, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| | - Zhanjun Guo
- Department of Immunology and Rheumatology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P. R. China
| |
Collapse
|
31
|
Expression of ABCB1, ABCC1 and 3 and ABCG2 in glioblastoma and their relevance in relation to clinical survival surrogates. J Neurooncol 2022; 160:601-609. [DOI: 10.1007/s11060-022-04179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
|
32
|
Association between XRCC3 p.Thr241Met polymorphism and risk of glioma: A systematic review and meta-analysis. PLoS One 2022; 17:e0276313. [PMID: 36264998 PMCID: PMC9584405 DOI: 10.1371/journal.pone.0276313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 10/04/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The XRCC3 p.Thr241Met (rs861539) polymorphism has been extensively studied for its association with glioma risk, but results remain conflicting. Therefore, we performed a systematic review and meta-analysis to resolve this inconsistency. METHODS Studies published up to June 10, 2022, were searched in PubMed, Web of Science, Scopus, VIP, Wanfang, and China National Knowledge Infrastructure databases and screened for eligibility. Then, the combined odds ratio (OR) of the included studies was estimated based on five genetic models, i.e., homozygous (Met/Met vs. Thr/Thr), heterozygous (Thr/Met vs. Thr/Thr), dominant (Thr/Met + Met/Met vs. Thr/Thr), recessive (Met/Met vs. Thr/Thr + Thr/Met) and allele (Met vs. Thr). The study protocol was preregistered at PROSPERO (registration number: CRD42021235704). RESULTS Overall, our meta-analysis of 14 eligible studies involving 12,905 subjects showed that the p.Thr241Met polymorphism was significantly associated with increased glioma risk in both homozygous and recessive models (homozygous, OR = 1.381, 95% CI = 1.081-1.764, P = 0.010; recessive, OR = 1.305, 95% CI = 1.140-1.493, P<0.001). Subgroup analyses by ethnicity also revealed a statistically significant association under the two aforementioned genetic models, but only in the Asian population and not in Caucasians (P>0.05). CONCLUSION We demonstrated that the XRCC3 p.Thr241Met polymorphism is associated with an increased risk of glioma only in the homozygous and recessive models.
Collapse
|
33
|
Su J, Li Y, Liu Q, Peng G, Qin C, Li Y. Identification of SSBP1 as a ferroptosis-related biomarker of glioblastoma based on a novel mitochondria-related gene risk model and in vitro experiments. J Transl Med 2022; 20:440. [PMID: 36180956 PMCID: PMC9524046 DOI: 10.1186/s12967-022-03657-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common primary malignant brain tumor that leads to lethality. Several studies have demonstrated that mitochondria play an important role in GBM and that mitochondria-related genes (MRGs) are potential therapeutic targets. However, the role of MRGs in GBM remains unclear. Methods Differential expression and univariate Cox regression analyses were combined to screen for prognostic differentially-expressed (DE)-MRGs in GBM. Based on LASSO Cox analysis, 12 DE-MRGs were selected to construct a risk score model. Survival, time dependent ROC, and stratified analyses were performed to evaluate the performance of this risk model. Mutation and functional enrichment analyses were performed to determine the potential mechanism of the risk score. Immune cell infiltration analysis was used to determine the association between the risk score and immune cell infiltration levels. CCK-8 and transwell assays were performed to evaluate cell proliferation and migration, respectively. Mitochondrial reactive oxygen species (ROS) levels and morphology were measured using a confocal laser scanning microscope. Genes and proteins expression levels were investigated by quantitative PCR and western blotting, respectively. Results We identified 21 prognostic DE-MRGs, of which 12 DE-MRGs were selected to construct a prognostic risk score model for GBM. This model presented excellent performance in predicting the prognosis of patients with GBM and acted as an independent predictive factor. Functional enrichment analysis revealed that the risk score was enriched in the inflammatory response, extracellular matrix, and pro-cancer-related and immune related pathways. Additionally, the risk score was significantly associated with gene mutations and immune cell infiltration in GBM. Single-stranded DNA-binding protein 1 (SSBP1) was considerably upregulated in GBM and associated with poor prognosis. Furthermore, SSBP1 knockdown inhibited GBM cell progression and migration. Mechanistically, SSBP1 knockdown resulted in mitochondrial dysfunction and increased ROS levels, which, in turn, increased temozolomide (TMZ) sensitivity in GBM cells by enhancing ferroptosis. Conclusion Our 12 DE-MRGs-based prognostic model can predict the GBM patients prognosis and 12 MRGs are potential targets for the treatment of GBM. SSBP1 was significantly upregulated in GBM and protected U87 cells from TMZ-induced ferroptosis, which could serve as a prognostic and therapeutic target/biomarker for GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03657-4.
Collapse
Affiliation(s)
- Jun Su
- Department of Neurosurgery, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, Hunan, China
| | - Yue Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Gang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Chaoying Qin
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
34
|
Seyfried TN, Arismendi-Morillo G, Zuccoli G, Lee DC, Duraj T, Elsakka AM, Maroon JC, Mukherjee P, Ta L, Shelton L, D'Agostino D, Kiebish M, Chinopoulos C. Metabolic management of microenvironment acidity in glioblastoma. Front Oncol 2022; 12:968351. [PMID: 36059707 PMCID: PMC9428719 DOI: 10.3389/fonc.2022.968351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma (GBM), similar to most cancers, is dependent on fermentation metabolism for the synthesis of biomass and energy (ATP) regardless of the cellular or genetic heterogeneity seen within the tumor. The transition from respiration to fermentation arises from the documented defects in the number, the structure, and the function of mitochondria and mitochondrial-associated membranes in GBM tissue. Glucose and glutamine are the major fermentable fuels that drive GBM growth. The major waste products of GBM cell fermentation (lactic acid, glutamic acid, and succinic acid) will acidify the microenvironment and are largely responsible for drug resistance, enhanced invasion, immunosuppression, and metastasis. Besides surgical debulking, therapies used for GBM management (radiation, chemotherapy, and steroids) enhance microenvironment acidification and, although often providing a time-limited disease control, will thus favor tumor recurrence and complications. The simultaneous restriction of glucose and glutamine, while elevating non-fermentable, anti-inflammatory ketone bodies, can help restore the pH balance of the microenvironment while, at the same time, providing a non-toxic therapeutic strategy for killing most of the neoplastic cells.
Collapse
Affiliation(s)
- Thomas N. Seyfried
- Biology Department, Boston College, Chestnut Hill, MA, United States
- *Correspondence: Thomas N. Seyfried,
| | - Gabriel Arismendi-Morillo
- Instituto de Investigaciones Biológicas, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Giulio Zuccoli
- The Program for the Study of Neurodevelopment in Rare Disorders (NDRD), University of Pittsburgh, Pittsburgh, PA, United States
| | - Derek C. Lee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Tomas Duraj
- Faculty of Medicine, Institute for Applied Molecular Medicine (IMMA), CEU San Pablo University, Madrid, Spain
| | - Ahmed M. Elsakka
- Neuro Metabolism, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Joseph C. Maroon
- Department of Neurosurgery, University of Pittsburgh, Medical Center, Pittsburgh, PA, United States
| | - Purna Mukherjee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Linh Ta
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | | | - Dominic D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | | | | |
Collapse
|
35
|
Oliva CR, Ali MY, Flor S, Griguer CE. Effect of Expression of Nuclear-Encoded Cytochrome C Oxidase Subunit 4 Isoforms on Metabolic Profiles of Glioma Cells. Metabolites 2022; 12:metabo12080748. [PMID: 36005623 PMCID: PMC9415780 DOI: 10.3390/metabo12080748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Although often effective at treating newly diagnosed glioblastoma (GBM), increasing evidence suggests that chemo- and radiotherapy-induced alterations in tumor metabolism promote GBM recurrence and aggressiveness, as well as treatment resistance. Recent studies have demonstrated that alterations in glioma cell metabolism, induced by a switch in the isoform expression of cytochrome c oxidase subunit 4 (COX4), a key regulatory subunit of mammalian cytochrome c oxidase, could promote these effects. To understand how the two COX4 isoforms (COX4-1 and COX4-2) differentially affect glioma metabolism, glioma samples harvested from COX4-1- or COX4-2-overexpressing U251 cells were profiled using Gas chromatography–mass spectrometry GC-MS and Liquid Chromatography - Tandem Mass Spectrometry LC-MS/MS metabolomics platforms. The concentration of 362 metabolites differed significantly in the two cell types. The two most significantly upregulated pathways associated with COX4-1 overexpression were purine and glutathione metabolism; the two most significantly downregulated metabolic pathways associated with COX4-1 expression were glycolysis and fatty acid metabolism. Our study provides new insights into how Cytochrome c oxidase (CcO) regulatory subunits affect cellular metabolic networks in GBM and identifies potential targets that may be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Claudia R. Oliva
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - Md Yousuf Ali
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Human Toxicology, Department Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - Susanne Flor
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - Corinne E. Griguer
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
36
|
Abd Radzak SM, Mohd Khair SZN, Ahmad F, Patar A, Idris Z, Mohamed Yusoff AA. Insights regarding mitochondrial DNA copy number alterations in human cancer (Review). Int J Mol Med 2022; 50:104. [PMID: 35713211 PMCID: PMC9304817 DOI: 10.3892/ijmm.2022.5160] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are the critical organelles involved in various cellular functions. Mitochondrial biogenesis is activated by multiple cellular mechanisms which require a synchronous regulation between mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). The mitochondrial DNA copy number (mtDNA-CN) is a proxy indicator for mitochondrial activity, and its alteration reflects mitochondrial biogenesis and function. Despite the precise mechanisms that modulate the amount and composition of mtDNA, which have not been fully elucidated, mtDNA-CN is known to influence numerous cellular pathways that are associated with cancer and as well as multiple other diseases. In addition, the utility of current technology in measuring mtDNA-CN contributes to its extensive assessment of diverse traits and tumorigenesis. The present review provides an overview of mtDNA-CN variations across human cancers and an extensive summary of the existing knowledge on the regulation and machinery of mtDNA-CN. The current information on the advanced methods used for mtDNA-CN assessment is also presented.
Collapse
Affiliation(s)
- Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Farizan Ahmad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Azim Patar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
37
|
Ali MY, Oliva CR, Flor S, Goswami PC, Griguer CE. Cytochrome c oxidase mediates labile iron level and radioresistance in glioblastoma. Free Radic Biol Med 2022; 185:25-35. [PMID: 35476930 DOI: 10.1016/j.freeradbiomed.2022.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023]
Abstract
Radiotherapy is an important treatment modality for glioblastoma (GBM), yet the initial effectiveness of radiotherapy is eventually lost due to the development of adaptive radioresistance during fractionated radiation therapy. Defining the molecular mechanism(s) responsible for the adaptive radioresistance in GBM is necessary for the development of effective treatment options. The cellular labile iron pool (LIP) is very important for determining the cellular response to radiation, as it contributes to radiation-induced production of reactive oxygen species (ROS) such as lipid radicals through Fenton reactions. Recently, cytochrome c oxidase (CcO), a mitochondrial heme-containing enzyme also involved in regulating ROS production, was found to be involved in GBM chemoresistance. However, the role of LIP and CcO in GBM radioresistance is not known. Herein, we tested the hypothesis that CcO-mediated alterations in the level of labile iron contribute to adaptive radioresistance. Using an in vitro model of GBM adaptive radioresistance, we found an increase in CcO activity in radioresistant cells that associated with a decrease in the cellular LIP, decrease in lipid peroxidation, and a switch in the CcO subunit 4 (COX4) isoform expressed, from COX4-2 to COX4-1. Furthermore, knockdown of COX4-1 in radioresistant GBM cells decreased CcO activity and restored radiosensitivity, whereas overexpression of COX4-1 in radiosensitive cells increased CcO activity and rendered the cells radioresistant. Overexpression of COX4-1 in radiosensitive cells also significantly reduced the cellular LIP and lipid peroxidation. Pharmacological manipulation of the cellular labile iron level using iron chelators altered CcO activity and the radiation response. Overall, these results demonstrate a mechanistic link between CcO activity and LIP in GBM radioresistance and identify the CcO subunit isoform switch from COX4-2 to COX4-1 as a novel biochemical node for adaptive radioresistance of GBM. Manipulation of CcO and the LIP may restore the sensitivity to radiation in radioresistant GBM cells and thereby provide a strategy to improve therapeutic outcome in patients with GBM.
Collapse
Affiliation(s)
- Md Yousuf Ali
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA, 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, 52242, USA
| | - Claudia R Oliva
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA, 52242, USA
| | - Susanne Flor
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA, 52242, USA
| | - Prabhat C Goswami
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA, 52242, USA
| | - Corinne E Griguer
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
38
|
Zhu Y, Chen Z, Kim SN, Gan C, Ryl T, Lesjak MS, Rodemerk J, Zhong RD, Wrede K, Dammann P, Sure U. Characterization of Temozolomide Resistance Using a Novel Acquired Resistance Model in Glioblastoma Cell Lines. Cancers (Basel) 2022; 14:cancers14092211. [PMID: 35565340 PMCID: PMC9101568 DOI: 10.3390/cancers14092211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Temozolomide (TMZ) is the first-line drug for chemotherapy of GBM, the most aggressive and incurable brain tumor. Acquired chemoresistance is a hallmark that causes the poor prognosis of GBM. Therefore, understanding the underlying mechanisms by using a proper model becomes emergent. Previous models usually take weeks/months and are often not fully representative of characteristics of TMZ resistance. We established an acute acquired TMZ resistance model using GBM cell lines with different genomic backgrounds. In response to TMZ, the resistant cells showed less susceptibility and sustained regrowth, high clonogenicity, reduced DNA damage accompanied by attenuated MMR, shortened G2/M arrest, uncontrolled DNA replication, and evasion of apoptosis. Moreover, these TMZ resistant cells presented stem cell properties that are critical for chemoresistance. Thus, our model recapitulates all key features of TMZ resistance and is believed to be a promising model to study the underlying mechanisms and define therapeutics for GBM in the future. Abstract Temozolomide (TMZ) is the first line of standard therapy in glioblastoma (GBM). However, relapse occurs due to TMZ resistance. We attempted to establish an acquired TMZ resistance model that recapitulates the TMZ resistance phenotype and the relevant gene signature. Two GBM cell lines received two cycles of TMZ (150 µM) treatment for 72 h each. Regrown cells (RG2) were defined as TMZ resistant cells. MTT assay revealed significantly less susceptibility and sustained growth of RG2 compared with parental cells after TMZ challenge. TMZ-induced DNA damage significantly decreased in 53BP1-foci reporter transduced-RG2 cells compared with parental cells, associated with downregulation of MSH2 and MSH6. Flow cytometry revealed reduced G2/M arrest, increased EdU incorporation and suppressed apoptosis in RG2 cells after TMZ treatment. Colony formation and neurosphere assay demonstrated enhanced clonogenicity and neurosphere formation capacity in RG2 cells, accompanied by upregulation of stem markers. Collectively, we established an acute TMZ resistance model that recapitulated key features of TMZ resistance involving impaired mismatch repair, redistribution of cell cycle phases, increased DNA replication, reduced apoptosis and enhanced self-renewal. Therefore, this model may serve as a promising research tool for studying mechanisms of TMZ resistance and for defining therapeutic approaches to GBM in the future.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
- Correspondence: ; Tel.: +0049-201-723-1231
| | - Zhen Chen
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Su Na Kim
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Chao Gan
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
| | - Tatsiana Ryl
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
| | - Michaela Silvia Lesjak
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
| | - Jan Rodemerk
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Rong De Zhong
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
| | - Karsten Wrede
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.C.); (S.N.K.); (C.G.); (T.R.); (M.S.L.); (J.R.); (R.D.Z.); (K.W.); (P.D.); (U.S.)
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
39
|
Li Y, Xie M, Jones JB, Zhang Z, Wang Z, Dang T, Wang X, Lipowska M, Mao H. Targeted Delivery of DNA Topoisomerase Inhibitor SN38 to Intracranial Tumors of Glioblastoma Using Sub-5 Ultrafine Iron Oxide Nanoparticles. Adv Healthc Mater 2022; 11:e2102816. [PMID: 35481625 DOI: 10.1002/adhm.202102816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/07/2022] [Indexed: 11/09/2022]
Abstract
Effectively delivering therapeutics for treating brain tumors is hindered by the physical and biological barriers in the brain. Even with the compromised blood-brain barrier and highly angiogenic blood-tumor barrier seen in glioblastoma (GBM), most drugs, including nanomaterial-based formulations, hardly reach intracranial tumors. This work investigates sub-5 nm ultrafine iron oxide nanoparticles (uIONP) with 3.5 nm core diameter as a carrier for delivering DNA topoisomerase inhibitor 7-ethyl-10-hydroxyl camptothecin (SN38) to treat GBM. Given a higher surface-to-volume ratio, uIONP shows one- or three-folds higher SN38 loading efficiency (48.3 ± 6.1%, mg/mg Fe) than those with core sizes of 10 or 20 nm. SN38 encapsulated in the coating polymer exhibits pH sensitive release with <10% over 48 h at pH 7.4, but 86% at pH 5, thus being protected from converting to inactive glucuronide by UDP-glucuronosyltransferase 1A1. Conjugating αv β3 -integrin-targeted cyclo(Arg-Gly-Asp-D-Phe-Cys) (RGD) as ligands, RGD-uIONP/SN38 demonstrates targeted cytotoxicity to αv β3 -integrin-overexpressed U87MG GBM cells with a half-maximal inhibitory concentration (IC50 ) of 30.9 ± 2.2 nm. The efficacy study using an orthotopic mouse model of GBM reveals tumor-specific delivery of 11.5% injected RGD-uIONP/SN38 (10 mg Fe kg-1 ), significantly prolonging the survival in mice by 41%, comparing to those treated with SN38 alone (p < 0.001).
Collapse
Affiliation(s)
- Yuancheng Li
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
- 5M Biomed, LLC Atlanta GA 30303 USA
| | - Manman Xie
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
| | - Joshua B. Jones
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
| | - Zhaobin Zhang
- Department of Neurosurgery Emory University Atlanta GA 30329 USA
| | - Zi Wang
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
| | - Tu Dang
- Division of Research Philadelphia College of Osteopathic Medicine – Georgia Campus Suwanee GA 30024 USA
| | - Xinyu Wang
- Department of Pharmaceutical Sciences Philadelphia College of Osteopathic Medicine – Georgia Campus Suwanee GA 30024 USA
| | - Malgorzata Lipowska
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
| |
Collapse
|
40
|
Fatty acid oxidation enzyme Δ3, Δ2-enoyl-CoA isomerase 1 (ECI1) drives aggressive tumor phenotype and predicts poor clinical outcome in prostate cancer patients. Oncogene 2022; 41:2798-2810. [DOI: 10.1038/s41388-022-02276-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 11/08/2022]
|
41
|
Tsai YT, Lo WL, Chen PY, Ko CY, Chuang JY, Kao TJ, Yang WB, Chang KY, Hung CY, Kikkawa U, Chang WC, Hsu TI. Reprogramming of arachidonate metabolism confers temozolomide resistance to glioblastoma through enhancing mitochondrial activity in fatty acid oxidation. J Biomed Sci 2022; 29:21. [PMID: 35337344 PMCID: PMC8952270 DOI: 10.1186/s12929-022-00804-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/21/2022] [Indexed: 01/10/2023] Open
Abstract
Background Sp1 is involved in the recurrence of glioblastoma (GBM) due to the acquirement of resistance to temozolomide (TMZ). Particularly, the role of Sp1 in metabolic reprogramming for drug resistance remains unknown. Methods RNA-Seq and mass spectrometry were used to analyze gene expression and metabolites amounts in paired GBM specimens (primary vs. recurrent) and in paired GBM cells (sensitive vs. resistant). ω-3/6 fatty acid and arachidonic acid (AA) metabolism in GBM patients were analyzed by targeted metabolome. Mitochondrial functions were determined by Seahorse XF Mito Stress Test, RNA-Seq, metabolome and substrate utilization for producing ATP. Therapeutic options targeting prostaglandin (PG) E2 in TMZ-resistant GBM were validated in vitro and in vivo. Results Among the metabolic pathways, Sp1 increased the prostaglandin-endoperoxide synthase 2 expression and PGE2 production in TMZ-resistant GBM. Mitochondrial genes and metabolites were obviously increased by PGE2, and these characteristics were required for developing resistance in GBM cells. For inducing TMZ resistance, PGE2 activated mitochondrial functions, including fatty acid β-oxidation (FAO) and tricarboxylic acid (TCA) cycle progression, through PGE2 receptors, E-type prostanoid (EP)1 and EP3. Additionally, EP1 antagonist ONO-8713 inhibited the survival of TMZ-resistant GBM synergistically with TMZ. Conclusion Sp1-regulated PGE2 production activates FAO and TCA cycle in mitochondria, through EP1 and EP3 receptors, resulting in TMZ resistance in GBM. These results will provide us a new strategy to attenuate drug resistance or to re-sensitize recurred GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00804-3.
Collapse
Affiliation(s)
- Yu-Ting Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan, 110
| | - Wei-Lun Lo
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.,Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, 110, Taiwan.,TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Pin-Yuan Chen
- School of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan.,Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung, 204, Taiwan.,Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Chiung-Yuan Ko
- TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan
| | - Jian-Ying Chuang
- TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan
| | - Tzu-Jen Kao
- TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan
| | - Wen-Bing Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan, 110.,TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Kwang-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Chia-Yang Hung
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Ushio Kikkawa
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan, 110
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan, 110. .,TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.
| | - Tsung-I Hsu
- TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan. .,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan. .,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan. .,Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan. .,National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan.
| |
Collapse
|
42
|
Purine Synthesis Inhibitor L-Alanosine Impairs Mitochondrial Function and Stemness of Brain Tumor Initiating Cells. Biomedicines 2022; 10:biomedicines10040751. [PMID: 35453502 PMCID: PMC9025092 DOI: 10.3390/biomedicines10040751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma (GBM) is a lethal brain cancer exhibiting high levels of drug resistance, a feature partially imparted by tumor cell stemness. Recent work shows that homozygous MTAP deletion, a genetic alteration occurring in about half of all GBMs, promotes stemness in GBM cells. Exploiting MTAP loss-conferred deficiency in purine salvage, we demonstrate that purine blockade via treatment with L-Alanosine (ALA), an inhibitor of de novo purine synthesis, attenuates stemness of MTAP-deficient GBM cells. This ALA-induced reduction in stemness is mediated in part by compromised mitochondrial function, highlighted by ALA-induced elimination of mitochondrial spare respiratory capacity. Notably, these effects of ALA are apparent even when the treatment was transient and with a low dose. Finally, in agreement with diminished stemness and compromised mitochondrial function, we show that ALA sensitizes GBM cells to temozolomide (TMZ) in vitro and in an orthotopic GBM model. Collectively, these results identify purine supply as an essential component in maintaining mitochondrial function in GBM cells and highlight a critical role of mitochondrial function in sustaining GBM stemness. We propose that purine synthesis inhibition can be beneficial in combination with the standard of care for MTAP-deficient GBMs, and that it may be feasible to achieve this benefit without inflicting major toxicity.
Collapse
|
43
|
Jiang N, Xie B, Xiao W, Fan M, Xu S, Duan Y, Hamsafar Y, Evans AC, Huang J, Zhou W, Lin X, Ye N, Wanggou S, Chen W, Jing D, Fragoso RC, Dugger BN, Wilson PF, Coleman MA, Xia S, Li X, Sun LQ, Monjazeb AM, Wang A, Murphy WJ, Kung HJ, Lam KS, Chen HW, Li JJ. Fatty acid oxidation fuels glioblastoma radioresistance with CD47-mediated immune evasion. Nat Commun 2022; 13:1511. [PMID: 35314680 PMCID: PMC8938495 DOI: 10.1038/s41467-022-29137-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) remains the top challenge to radiotherapy with only 25% one-year survival after diagnosis. Here, we reveal that co-enhancement of mitochondrial fatty acid oxidation (FAO) enzymes (CPT1A, CPT2 and ACAD9) and immune checkpoint CD47 is dominant in recurrent GBM patients with poor prognosis. A glycolysis-to-FAO metabolic rewiring is associated with CD47 anti-phagocytosis in radioresistant GBM cells and regrown GBM after radiation in syngeneic mice. Inhibition of FAO by CPT1 inhibitor etomoxir or CRISPR-generated CPT1A-/-, CPT2-/-, ACAD9-/- cells demonstrate that FAO-derived acetyl-CoA upregulates CD47 transcription via NF-κB/RelA acetylation. Blocking FAO impairs tumor growth and reduces CD47 anti-phagocytosis. Etomoxir combined with anti-CD47 antibody synergizes radiation control of regrown tumors with boosted macrophage phagocytosis. These results demonstrate that enhanced fat acid metabolism promotes aggressive growth of GBM with CD47-mediated immune evasion. The FAO-CD47 axis may be targeted to improve GBM control by eliminating the radioresistant phagocytosis-proofing tumor cells in GBM radioimmunotherapy.
Collapse
Affiliation(s)
- Nian Jiang
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.216417.70000 0001 0379 7164Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Bowen Xie
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.12527.330000 0001 0662 3178Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084 PR China
| | - Wenwu Xiao
- grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817 USA
| | - Ming Fan
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Shanxiu Xu
- grid.27860.3b0000 0004 1936 9684Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817 USA
| | - Yixin Duan
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Yamah Hamsafar
- grid.27860.3b0000 0004 1936 9684Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817 USA
| | - Angela C. Evans
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Jie Huang
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Weibing Zhou
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.216417.70000 0001 0379 7164Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Xuelei Lin
- grid.216417.70000 0001 0379 7164Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Ningrong Ye
- grid.216417.70000 0001 0379 7164Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Siyi Wanggou
- grid.216417.70000 0001 0379 7164Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Wen Chen
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.216417.70000 0001 0379 7164Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Di Jing
- grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817 USA ,grid.216417.70000 0001 0379 7164Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Ruben C. Fragoso
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.27860.3b0000 0004 1936 9684NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817 USA
| | - Brittany N. Dugger
- grid.27860.3b0000 0004 1936 9684Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817 USA
| | - Paul F. Wilson
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.27860.3b0000 0004 1936 9684NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817 USA
| | - Matthew A. Coleman
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.27860.3b0000 0004 1936 9684NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817 USA
| | - Shuli Xia
- grid.21107.350000 0001 2171 9311Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Xuejun Li
- grid.216417.70000 0001 0379 7164Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China ,grid.216417.70000 0001 0379 7164Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Lun-Quan Sun
- grid.216417.70000 0001 0379 7164Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China
| | - Arta M. Monjazeb
- grid.27860.3b0000 0004 1936 9684Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA ,grid.27860.3b0000 0004 1936 9684NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817 USA
| | - Aijun Wang
- grid.27860.3b0000 0004 1936 9684Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817 USA
| | - William J. Murphy
- grid.27860.3b0000 0004 1936 9684NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817 USA ,grid.27860.3b0000 0004 1936 9684Departments of Dermatology and Internal Medicine, UC Davis School of Medicine, Sacramento, CA 95817 USA
| | - Hsing-Jien Kung
- grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817 USA ,grid.412896.00000 0000 9337 0481TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 110 Taiwan
| | - Kit S. Lam
- grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817 USA ,grid.27860.3b0000 0004 1936 9684NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817 USA
| | - Hong-Wu Chen
- grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817 USA ,grid.27860.3b0000 0004 1936 9684NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817 USA ,grid.413933.f0000 0004 0419 2847Veterans Affairs Northern California Health Care System, Mather, CA95655 USA
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA, 95817, USA. .,NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
44
|
Wang N, Huang R, Yang K, He Y, Gao Y, Dong D. Interfering with mitochondrial dynamics sensitizes glioblastoma multiforme to temozolomide chemotherapy. J Cell Mol Med 2021; 26:893-912. [PMID: 34964241 PMCID: PMC8817126 DOI: 10.1111/jcmm.17147] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a primary tumour of the central nervous system (CNS) that exhibits the highest degree of malignancy. Radiotherapy and chemotherapy are essential to prolong the survival time of patients. However, clinical work has demonstrated that sensitivity of GBM to chemotherapy decreases with time. The phenomenon of multi-drug resistance (MDR) reminds us that there may exist some fundamental mechanisms in the process of chemo-resistance. We tried to explore the mechanism of GBM chemo-resistance from the perspective of energy metabolism. First, we found that the oxidative phosphorylation (OXPHOS) level of SHG44 and U87 cells increased under TMZ treatment. In further studies, it was found that the expression of PINK1 and mitophagy flux downstream was downregulated in GBM cells, which were secondary to the upregulation of TP53 in tumour cells under TMZ treatment. At the same time, we examined the mitochondrial morphology in tumour cells and found that the size of mitochondria in tumour cells increased under the treatment of TMZ, which originated from the regulation of AMPK on the subcellular localization of Drp1 under the condition of unbalanced energy supply and demand in tumour cells. The accumulation of mitochondrial mass and the optimization of mitochondrial quality accounted for the increased oxidative phosphorylation, and interruption of the mitochondrial fusion process downregulated the efficiency of oxidative phosphorylation and sensitized GBM cells to TMZ, which was also confirmed in the in vivo experiment. What is more, interfering with this process is an innovative strategy to overcome the chemo-resistance of GBM cells.
Collapse
Affiliation(s)
- Nan Wang
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Renxuan Huang
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Kunmeng Yang
- The First Hospital of Jilin University, Changchun, China
| | - Yichun He
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yufei Gao
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Delu Dong
- The Basic Medical College of Jilin University, Changchun, China
| |
Collapse
|
45
|
Griguer CE, Oliva CR, Coffey CS, Cudkowicz ME, Conwit RA, Gudjonsdottir AL, Ecklund DJ, Fedler JK, Neill-Hudson TM, Nabors LB, Benge M, Hackney JR, Chase M, Leonard TP, Patel T, Colman H, de la Fuente M, Chaudhary R, Marder K, Kreisl T, Mohile N, Chheda MG, McNeill K, Kumthekar P, Dogan A, Drappatz J, Puduvalli V, Kowalska A, Graber J, Gerstner E, Clark S, Salacz M, Markert J. Prospective biomarker study in newly diagnosed glioblastoma: Cyto-C clinical trial. Neurooncol Adv 2021; 4:vdab186. [PMID: 35088051 PMCID: PMC8788017 DOI: 10.1093/noajnl/vdab186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Glioblastoma (GBM) has a 5-year survival rate of 3%-5%. GBM treatment includes maximal resection followed by radiotherapy with concomitant and adjuvant temozolomide (TMZ). Cytochrome C oxidase (CcO) is a mitochondrial enzyme involved in the mechanism of resistance to TMZ. In a prior retrospective trial, CcO activity in GBMs inversely correlated with clinical outcome. The current Cyto-C study was designed to prospectively evaluate and validate the prognostic value of tumor CcO activity in patients with newly diagnosed primary GBM, and compared to the known prognostic value of MGMT promoter methylation status. Methods This multi-institutional, blinded, prospective biomarker study enrolled 152 patients with newly diagnosed GBM who were to undergo surgical resection and would be candidates for standard of care. The primary end point was overall survival (OS) time, and the secondary end point was progression-free survival (PFS) time. Tumor CcO activity and MGMT promoter methylation status were assayed in a centralized laboratory. Results OS and PFS did not differ by high or low tumor CcO activity, and the prognostic validity of MGMT promoter methylation was confirmed. Notably, a planned exploratory analysis suggested that the combination of low CcO activity and MGMT promoter methylation in tumors may be predictive of long-term survival. Conclusions Tumor CcO activity alone was not confirmed as a prognostic marker in GBM patients. However, the combination of low CcO activity and methylated MGMT promoter may reveal a subgroup of GBM patients with improved long-term survival that warrants further evaluation. Our work also demonstrates the importance of performing large, multi-institutional, prospective studies to validate biomarkers. We also discuss lessons learned in assembling such studies.
Collapse
Affiliation(s)
- Corinne E Griguer
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa, USA
| | - Claudia R Oliva
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa, USA
| | | | - Merit E Cudkowicz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robin A Conwit
- NINDS, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Dixie J Ecklund
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | - Janel K Fedler
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | | | - Louis B Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Melanie Benge
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James R Hackney
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Marianne Chase
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy P Leonard
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Toral Patel
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Howard Colman
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | | | - Rekha Chaudhary
- Department Internal Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Karen Marder
- Division of Neuro-Oncology, Columbia University Health Sciences, New York, New York, USA
| | - Teri Kreisl
- Division of Neuro-Oncology, Columbia University Health Sciences, New York, New York, USA
| | - Nimish Mohile
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Milan G Chheda
- Departments of Medicine and Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Priya Kumthekar
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Aclan Dogan
- Department of Neurosurgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Jan Drappatz
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Vinay Puduvalli
- Department of Neuro-Oncology, Ohio State University, Columbus, Ohio, USA
| | - Agnes Kowalska
- Department of Neurology, State University of New York, Stony Brook, New York, New York, USA
| | - Jerome Graber
- Alvord Brain Tumor Center, Swedish Medical Center, Seattle, Washington, USA
| | - Elizabeth Gerstner
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen Clark
- Department of Neurology, Vanderbilt University, Nashville, Tennessee, USA
| | - Michael Salacz
- Department Internal Medicine, University of Kansas Hospital, Kansas City, Kansas, USA
| | - James Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
46
|
Abstract
Glioblastoma remains the deadliest form of brain cancer, largely because these tumors become resistant to standard of care treatment with radiation and chemotherapy. Intracellular production of reactive oxygen species (ROS) is necessary for chemo- and radiotherapy-induced cytotoxicity. Here, we assessed whether antioxidant catalase (CAT) affects glioma cell sensitivity to temozolomide and radiation. Using The Cancer Genome Atlas database, we found that CAT mRNA expression is upregulated in glioma tumor tissue compared with non-tumor tissue, and the level of expression negatively correlates with the overall survival of patients with high-grade glioma. In U251 glioma cells, CAT overexpression substantially decreased the basal level of hydrogen peroxide, enhanced anchorage-independent cell growth, and facilitated resistance to the chemotherapeutic drug temozolomide and ionizing radiation. Importantly, pharmacological inhibition of CAT activity reduced the proliferation of glioma cells isolated from patient biopsy samples. Moreover, U251 cells overexpressing CAT formed neurospheres in neurobasal medium, whereas control cells did not, suggesting that the radio- and chemoresistance conferred by CAT may be due in part to the enrichment of glioma stem cell populations. Finally, CAT overexpression significantly decreased survival in an orthotopic mouse model of glioma. These results demonstrate that CAT regulates chemo- and radioresistance in human glioma.
Collapse
|
47
|
Catalase Overexpression Drives an Aggressive Phenotype in Glioblastoma. Antioxidants (Basel) 2021; 10:antiox10121988. [PMID: 34943091 PMCID: PMC8750785 DOI: 10.3390/antiox10121988] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma remains the deadliest form of brain cancer, largely because these tumors become resistant to standard of care treatment with radiation and chemotherapy. Intracellular production of reactive oxygen species (ROS) is necessary for chemo- and radiotherapy-induced cytotoxicity. Here, we assessed whether antioxidant catalase (CAT) affects glioma cell sensitivity to temozolomide and radiation. Using The Cancer Genome Atlas database, we found that CAT mRNA expression is upregulated in glioma tumor tissue compared with non-tumor tissue, and the level of expression negatively correlates with the overall survival of patients with high-grade glioma. In U251 glioma cells, CAT overexpression substantially decreased the basal level of hydrogen peroxide, enhanced anchorage-independent cell growth, and facilitated resistance to the chemotherapeutic drug temozolomide and ionizing radiation. Importantly, pharmacological inhibition of CAT activity reduced the proliferation of glioma cells isolated from patient biopsy samples. Moreover, U251 cells overexpressing CAT formed neurospheres in neurobasal medium, whereas control cells did not, suggesting that the radio- and chemoresistance conferred by CAT may be due in part to the enrichment of glioma stem cell populations. Finally, CAT overexpression significantly decreased survival in an orthotopic mouse model of glioma. These results demonstrate that CAT regulates chemo- and radioresistance in human glioma.
Collapse
|
48
|
Zampieri LX, Sboarina M, Cacace A, Grasso D, Thabault L, Hamelin L, Vazeille T, Dumon E, Rossignol R, Frédérick R, Sonveaux E, Lefranc F, Sonveaux P. Olaparib Is a Mitochondrial Complex I Inhibitor That Kills Temozolomide-Resistant Human Glioblastoma Cells. Int J Mol Sci 2021; 22:ijms222111938. [PMID: 34769368 PMCID: PMC8584761 DOI: 10.3390/ijms222111938] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma represents the highest grade of brain tumors. Despite maximal resection surgery associated with radiotherapy and concomitant followed by adjuvant chemotherapy with temozolomide (TMZ), patients have a very poor prognosis due to the rapid recurrence and the acquisition of resistance to TMZ. Here, initially considering that TMZ is a prodrug whose activation is pH-dependent, we explored the contribution of glioblastoma cell metabolism to TMZ resistance. Using isogenic TMZ-sensitive and TMZ-resistant human glioblastoma cells, we report that the expression of O6-methylguanine DNA methyltransferase (MGMT), which is known to repair TMZ-induced DNA methylation, does not primarily account for TMZ resistance. Rather, fitter mitochondria in TMZ-resistant glioblastoma cells are a direct cause of chemoresistance that can be targeted by inhibiting oxidative phosphorylation and/or autophagy/mitophagy. Unexpectedly, we found that PARP inhibitor olaparib, but not talazoparib, is also a mitochondrial Complex I inhibitor. Hence, we propose that the anticancer activities of olaparib in glioblastoma and other cancer types combine DNA repair inhibition and impairment of cancer cell respiration.
Collapse
Affiliation(s)
- Luca X. Zampieri
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (L.X.Z.); (M.S.); (A.C.); (D.G.); (L.T.); (L.H.); (T.V.)
| | - Martina Sboarina
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (L.X.Z.); (M.S.); (A.C.); (D.G.); (L.T.); (L.H.); (T.V.)
| | - Andrea Cacace
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (L.X.Z.); (M.S.); (A.C.); (D.G.); (L.T.); (L.H.); (T.V.)
| | - Debora Grasso
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (L.X.Z.); (M.S.); (A.C.); (D.G.); (L.T.); (L.H.); (T.V.)
| | - Léopold Thabault
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (L.X.Z.); (M.S.); (A.C.); (D.G.); (L.T.); (L.H.); (T.V.)
- Louvain Drug Research Institute (LDRI), UCLouvain, 1200 Brussels, Belgium; (R.F.); (E.S.)
| | - Loïc Hamelin
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (L.X.Z.); (M.S.); (A.C.); (D.G.); (L.T.); (L.H.); (T.V.)
| | - Thibaut Vazeille
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (L.X.Z.); (M.S.); (A.C.); (D.G.); (L.T.); (L.H.); (T.V.)
| | - Elodie Dumon
- INSERM U1211, Laboratory of Rare Diseases, Metabolism and Genetics (MRGM), Ecole des Sages Femmes, Bordeaux University, 33076 Bordeaux, France; (E.D.); (R.R.)
| | - Rodrigue Rossignol
- INSERM U1211, Laboratory of Rare Diseases, Metabolism and Genetics (MRGM), Ecole des Sages Femmes, Bordeaux University, 33076 Bordeaux, France; (E.D.); (R.R.)
| | - Raphaël Frédérick
- Louvain Drug Research Institute (LDRI), UCLouvain, 1200 Brussels, Belgium; (R.F.); (E.S.)
| | - Etienne Sonveaux
- Louvain Drug Research Institute (LDRI), UCLouvain, 1200 Brussels, Belgium; (R.F.); (E.S.)
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (L.X.Z.); (M.S.); (A.C.); (D.G.); (L.T.); (L.H.); (T.V.)
- Correspondence:
| |
Collapse
|
49
|
Curcumin Loaded Dendrimers Specifically Reduce Viability of Glioblastoma Cell Lines. Molecules 2021; 26:molecules26196050. [PMID: 34641594 PMCID: PMC8512379 DOI: 10.3390/molecules26196050] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GB) is a deadly and aggressive cancer of the CNS. Even with extensive resection and chemoradiotherapy, patient survival is still only 15 months. To maintain growth and proliferation, cancer cells require a high oxidative state. Curcumin, a well-known anti-inflammatory antioxidant, is a potential candidate for treatment of GB. To facilitate efficient delivery of therapeutic doses of curcumin into cells, we encapsulated the drug in surface-modified polyamidoamine (PAMAM) dendrimers. We studied the in vitro effectiveness of a traditional PAMAM dendrimer (100% amine surface, G4 NH2), surface-modified dendrimer (10% amine and 90% hydroxyl-G4 90/10-Cys), and curcumin (Cur)-encapsulated dendrimer (G4 90/10-Cys-Cur) on three species of glioblastoma cell lines: mouse-GL261, rat-F98, and human-U87. Using an MTT assay for cell viability, we found that G4 90/10-Cys-Cur reduced viability of all three glioblastoma cell lines compared to non-cancerous control cells. Under similar conditions, unencapsulated curcumin was not effective, while the non-modified dendrimer (G4 NH2) caused significant death of both cancerous and normal cells. By harnessing and optimizing the components of PAMAM dendrimers, we are providing a promising new route for delivering cancer therapeutics. Our results with curcumin suggest that antioxidants are good candidates for treating glioblastoma.
Collapse
|
50
|
La T, Chen S, Guo T, Zhao XH, Teng L, Li D, Carnell M, Zhang YY, Feng YC, Cole N, Brown AC, Zhang D, Dong Q, Wang JY, Cao H, Liu T, Thorne RF, Shao FM, Zhang XD, Jin L. Visualization of endogenous p27 and Ki67 reveals the importance of a c-Myc-driven metabolic switch in promoting survival of quiescent cancer cells. Theranostics 2021; 11:9605-9622. [PMID: 34646389 PMCID: PMC8490506 DOI: 10.7150/thno.63763] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Rationale: Recurrent and metastatic cancers often undergo a period of dormancy, which is closely associated with cellular quiescence, a state whereby cells exit the cell cycle and are reversibly arrested in G0 phase. Curative cancer treatment thus requires therapies that either sustain the dormant state of quiescent cancer cells, or preferentially, eliminate them. However, the mechanisms responsible for the survival of quiescent cancer cells remain obscure. Methods: Dual genome-editing was carried out using a CRISPR/Cas9-based system to label endogenous p27 and Ki67 with the green and red fluorescent proteins EGFP and mCherry, respectively, in melanoma cells. Analysis of transcriptomes of isolated EGFP-p27highmCherry-Ki67low quiescent cells was conducted at bulk and single cell levels using RNA-sequencing. The extracellular acidification rate and oxygen consumption rate were measured to define metabolic phenotypes. SiRNA and inducible shRNA knockdown, chromatin immunoprecipitation and luciferase reporter assays were employed to elucidate mechanisms of the metabolic switch in quiescent cells. Results: Dual labelling of endogenous p27 and Ki67 with differentiable fluorescent probes allowed for visualization, isolation, and analysis of viable p27highKi67low quiescent cells. Paradoxically, the proto-oncoprotein c-Myc, which commonly drives malignant cell cycle progression, was expressed at relatively high levels in p27highKi67low quiescent cells and supported their survival through promoting mitochondrial oxidative phosphorylation (OXPHOS). In this context, c-Myc selectively transactivated genes encoding OXPHOS enzymes, including subunits of isocitric dehydrogenase 3 (IDH3), whereas its binding to cell cycle progression gene promoters was decreased in quiescent cells. Silencing of c-Myc or the catalytic subunit of IDH3, IDH3α, preferentially killed quiescent cells, recapitulating the effect of treatment with OXPHOS inhibitors. Conclusion: These results establish a rigorous experimental system for investigating cellular quiescence, uncover the high selectivity of c-Myc in activating OXPHOS genes in quiescent cells, and propose OXPHOS targeting as a potential therapeutic avenue to counter cancer cells in quiescence.
Collapse
Affiliation(s)
- Ting La
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Song Chen
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
| | - Tao Guo
- Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Liu Teng
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
| | - Dandan Li
- Department of Pulmonary and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan 450003, China
| | - Michael Carnell
- Biomedical Imaging Facility, University of New South Wales, NSW, 2052, Australia
| | - Yuan Yuan Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Yu Chen Feng
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Nicole Cole
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Alexandra C. Brown
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Didi Zhang
- Department of Orthopaedics, John Hunter Hospital, Hunter New England Health, NSW, 2305, Australia
| | - Qihan Dong
- Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
| | - Jenny Y. Wang
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, NSW 2750, Australia
| | - Huixia Cao
- Department of Nephrology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan Provincial Clinical Research Canter for Kidney Disease, Henan 450003, China
| | - Tao Liu
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, NSW 2750, Australia
| | - Rick F. Thorne
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
| | - Feng-Min Shao
- Department of Nephrology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan Provincial Clinical Research Canter for Kidney Disease, Henan 450003, China
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
| | - Lei Jin
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan Provincial and Zhengzhou City Key laboratory of Long Non-coding RNA and Cancer Metabolism, Henan, 450053, China
| |
Collapse
|