1
|
Tyagi A, Karapurkar JK, Colaco JC, Sarodaya N, Antao AM, Kaushal K, Haq S, Chandrasekaran AP, Das S, Singh V, Hong SH, Suresh B, Kim KS, Ramakrishna S. USP19 Negatively Regulates p53 and Promotes Cervical Cancer Progression. Mol Biotechnol 2024; 66:2032-2045. [PMID: 37572221 DOI: 10.1007/s12033-023-00814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/29/2023] [Indexed: 08/14/2023]
Abstract
p53 is a tumor suppressor gene activated in response to cellular stressors that inhibits cell cycle progression and induces pro-apoptotic signaling. The protein level of p53 is well balanced by the action of several E3 ligases and deubiquitinating enzymes (DUBs). Several DUBs have been reported to negatively regulate and promote p53 degradation in tumors. In this study, we identified USP19 as a negative regulator of p53 protein level. We demonstrate a direct interaction between USP19 and p53 by pull down assay. The overexpression of USP19 promoted ubiquitination of p53 and reduced its protein half-life. We also demonstrate that CRISPR/Cas9-mediated knockout of USP19 in cervical cancer cells elevates p53 protein levels, resulting in reduced colony formation, cell migration, and cell invasion. Overall, our results indicate that USP19 negatively regulates p53 protein levels in cervical cancer progression.
Collapse
Affiliation(s)
- Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | | | - Jencia Carminha Colaco
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Neha Sarodaya
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Saba Haq
- Department of Life Science, College of Natural Sciences, Hanyang University, 04763, Seoul, South Korea
| | | | - Soumyadip Das
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Rajpur, Indrashil University, 382715, Mehsana, Gujarat, India
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea.
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea.
- College of Medicine, Hanyang University, 04763, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
- College of Medicine, Hanyang University, 04763, Seoul, South Korea
| |
Collapse
|
2
|
Deng T, Xie L, Xiaofang C, Zhang Z, Xiao Y, Peng Y, Yin L, Fu Y, Li X. ATM-Mediated translocation of RanBPM regulates DNA damage response by stabilizing p21 in non-small cell lung cancer cells. Cell Oncol (Dordr) 2024; 47:245-258. [PMID: 37676377 PMCID: PMC10899406 DOI: 10.1007/s13402-023-00866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
PURPOSE Platinum-based chemotherapy remains a standard-of-care for most patients with advanced non-small cell lung cancer (NSCLC). DNA damage response (DDR) induced by platinum or Etoposide activated a panel of cell cycle-regulatory proteins including p21 through p53 pathway. Previous studies have reported that RanBPM has been involved in various cellular processes such as DDR by interacting with multiple proteins. However, the underlying mechanism remains unclear. METHODS NSCLC tissue microarrays were used for assessing the expression of RanBPM by immunohistochemical staining. The roles of RanBPM in the DDR of NSCLC progression was examined in in vitro cell lines and in vivo animal models. The regulation of RanBPM on protein stability and ubiquitination levels were investigated by immunoblots and in vivo ubiquitylation assay. RESULTS The level of p21 or RanBPM is lower in NSCLC than non-malignant tissues and has a highly positive correlation. Mechanistically, RanBPM protein physically interacts with p21, and RanBPM deubiquitinates p21 by recruiting a deubiquitinase USP11 to maintain protein stability of p21. RanBPM silencing significantly decreased p21 protein level. Conversely, RanBPM overexpression led to the accumulation of endogenous p21 protein regardless of p53 status. Functionally, RanBPM regulates DDR in a p21-dependent manner. Furthermore, DNA damage significantly promoted the nuclear translocation of RanBPM protein through ATM signaling pathways. CONCLUSION RanBPM is a novel regulator of P21 protein stability, and plays a critical role in the regulation of DDR.
Collapse
Affiliation(s)
- Tanggang Deng
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong, China.
- Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Lin Xie
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong, China
- Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chen Xiaofang
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong, China
| | - Zhenbin Zhang
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong, China
- Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yugang Xiao
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong, China
- Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuchong Peng
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong, China
- Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Linglong Yin
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong, China
- Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongming Fu
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong, China
- Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiong Li
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong, China.
- Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China.
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China.
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
3
|
Ren Y, Li M, Shi Y, Liu P, Wu Q, Yang Y, Zhang L, Jin Y. Schistosoma japonicum proteins that interact with the gynecophoral canal protein identified using a yeast two-hybrid system. Exp Parasitol 2022; 239:108305. [PMID: 35714725 DOI: 10.1016/j.exppara.2022.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
The large amount of schistosome eggs produced by mature female worms not only induce major pathological damage to the host but also lead to the transmission of schistosomiasis. Mature female schistosome worms need constant pairing contact with a male partner as male signaling is indispensable to female growth, development, and reproduction. The gynecophoral canal protein (GCP), a cell-surface glycoprotein, plays a potential role in the interaction between males and females and in stimulating female development and maturation. In this study, a yeast two-hybrid cDNA library of Schistosoma japonicum (Sj) parasites 18 days post-infection (dpi) was constructed; the Sjgcp gene was inserted into a pGBKT7-BD bait plasmid and used as a bait protein to screen for its molecular interactions using a yeast mating procedure. Twenty-four prey proteins that interacted with the SjGCP were selected after excluding false positives; the interactions between S.japonicum lethal giant larvae (SjLGL) and SjGCP, S.japonicum type V collagen (SjColV) and SjGCP, were verified by co-immunoprecipitation. The RNA interference against SjGCP, SjColV and SjGCP + SjColV led to severe underdevelopment of tegument in male worms and vitelline globules in female worms as well as reduced reproductive capacity of the females. Collectively, SjGCP and its interacting proteins may play pivotal roles in growth and development. The findings also suggested that SjGCP and its interacting protein partners might represent new candidate targets for drug development against schistosomiasis.
Collapse
Affiliation(s)
- Yuqi Ren
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Mian Li
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanli Shi
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Pingping Liu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Qijin Wu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yunxia Yang
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
4
|
Tessari A, Soliman SHA, Orlacchio A, Capece M, Amann JM, Visone R, Carbone DP, Palmieri D, Coppola V. RANBP9 as potential therapeutic target in non-small cell lung cancer. JOURNAL OF CANCER METASTASIS AND TREATMENT 2020; 6. [PMID: 34778565 PMCID: PMC8589326 DOI: 10.20517/2394-4722.2020.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths in the Western world. Despite progress made with targeted therapies and immune checkpoint inhibitors, the vast majority of patients have to undergo chemotherapy with platinum-based drugs. To increase efficacy and reduce potential side effects, a more comprehensive understanding of the mechanisms of the DNA damage response (DDR) is required. We have shown that overexpressby live cell imaging (Incuyion of the scaffold protein RAN binding protein 9 (RANBP9) is pervasive in NSCLC. More importantly, patients with higher levels of RANBP9 exhibit a worse outcome from treatment with platinum-based drugs. Mechanistically, RANBP9 exists as a target and an enabler of the ataxia telangiectasia mutated (ATM) kinase signaling. Indeed, the depletion of RANBP9 in NSCLC cells abates ATM activation and its downstream targets such as pby live cell imaging (Incuy53 signaling. RANBP9 knockout cells are more sensitive than controls to the inhibition of the ataxia and telangiectasia-related (ATR) kinase but not to ATM inhibition. The absence of RANBP9 renders cells more sensitive to drugs inhibiting the Poly(ADP-ribose)-Polymerase (PARP) resulting in a "BRCAness-like" phenotype. In summary, as a result of increased sensitivity to DNA damaging drugs conferred by its ablation in vitro and in vivo, RANBP9 may be considered as a potential target for the treatment of NSCLC. This article aims to report the results from past and ongoing investigations focused on the role of RANBP9 in the response to DNA damage, particularly in the context of NSCLC. This review concludes with future directions and speculative remarks which will need to be addressed in the coming years.
Collapse
Affiliation(s)
- Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Shimaa H A Soliman
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA.,Department of Medicine, Dentistry and Biotechnology, G. d'Annunzio University of Chieti, Chieti 66100, Italy.,Current address: Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Arturo Orlacchio
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Marina Capece
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Joseph M Amann
- Current address: Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rosa Visone
- Department of Medicine, Dentistry and Biotechnology, G. d'Annunzio University of Chieti, Chieti 66100, Italy
| | - David P Carbone
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
5
|
The CTLH Complex in Cancer Cell Plasticity. JOURNAL OF ONCOLOGY 2019; 2019:4216750. [PMID: 31885576 PMCID: PMC6907057 DOI: 10.1155/2019/4216750] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/24/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Cancer cell plasticity is the ability of cancer cells to intermittently morph into different fittest phenotypic states. Due to the intrinsic capacity to change their composition and interactions, protein macromolecular complexes are the ideal instruments for transient transformation. This review focuses on a poorly studied mammalian macromolecular complex called the CTLH (carboxy-terminal to LisH) complex. Currently, this macrostructure includes 11 known members (ARMC8, GID4, GID8, MAEA, MKLN1, RMND5A, RMND5B, RANBP9, RANBP10, WDR26, and YPEL5) and it has been shown to have E3-ligase enzymatic activity. CTLH proteins have been linked to all fundamental biological processes including proliferation, survival, programmed cell death, cell adhesion, and migration. At molecular level, the complex seems to interact and intertwine with key signaling pathways such as the PI3-kinase, WNT, TGFβ, and NFκB, which are key to cancer cell plasticity. As a whole, the CTLH complex is overexpressed in the most prevalent types of cancer and may hold the key to unlock many of the biological secrets that allow cancer cells to thrive in harsh conditions and resist antineoplastic therapy.
Collapse
|
6
|
Tessari A, Parbhoo K, Pawlikowski M, Fassan M, Rulli E, Foray C, Fabbri A, Embrione V, Ganzinelli M, Capece M, Campbell MJ, Broggini M, La Perle K, Farina G, Cole S, Marabese M, Hernandez M, Amann JM, Pruneri G, Carbone DP, Garassino MC, Croce CM, Palmieri D, Coppola V. RANBP9 affects cancer cells response to genotoxic stress and its overexpression is associated with worse response to platinum in NSCLC patients. Oncogene 2018; 37:6463-6476. [PMID: 30076413 PMCID: PMC6690599 DOI: 10.1038/s41388-018-0424-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/28/2018] [Accepted: 07/05/2018] [Indexed: 01/11/2023]
Abstract
Although limited by severe side effects and development of resistance, platinum-based therapies still represent the most common first-line treatment for non-small cell lung cancer (NSCLC). However, a crucial need in the clinical management of NSCLC is represented by the identification of cases sensitive to DNA damage response (DDR)-targeting drugs, such as cisplatin or PARP inhibitors. Here, we provide a molecular rationale for the stratification of NSCLC patients potentially benefitting from platinum compounds based on the expression levels of RANBP9, a recently identified player of the cellular DDR. RANBP9 was found overexpressed by immunohistochemistry (IHC) in NSCLC compared to normal adjacent tissues (NATs) (n = 147). Moreover, a retrospective analysis of 132 platinum-treated patients from the multi-centric TAILOR trial showed that RANBP9 overexpression levels are associated with clinical response to platinum compounds [Progression Free Survival Hazard Ratio (RANBP9 high vs low) 1.73, 95% CI 1.15-2.59, p = 0.0084; Overall Survival HR (RANBP9 high vs low) 1.99, 95% CI 1.27-3.11, p = 0.003]. Accordingly, RANBP9 KO cells showed higher sensitivity to cisplatin in comparison with WT controls both in vitro and in vivo models. NSCLC RANBP9 KO cells were also more sensitive than control cells to the PARP inhibitor olaparib alone and in combination with cisplatin, due to defective ATM-dependent and hyper-activated PARP-dependent DDR. The current investigation paves the way to prospective studies to assess the clinical value of RANBP9 protein levels as prognostic and predictive biomarker of response to DDR-targeting drugs, leading to the development of new tools for the management of NSCLC patients.
Collapse
Affiliation(s)
- Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Kareesma Parbhoo
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Meghan Pawlikowski
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy
| | - Eliana Rulli
- Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Claudia Foray
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Alessandra Fabbri
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valerio Embrione
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Monica Ganzinelli
- Thoracic Oncology Unit, Department of Medical Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Marina Capece
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, 536 Parks Hall, Columbus, OH, 43210, USA
| | - Massimo Broggini
- Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Krista La Perle
- Department of Veterinary Biosciences and Comparative Pathology and Mouse Phenotyping Shared Resource, College of Veterinary Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA
| | - Gabriella Farina
- Department of Oncology, Ospedale Fatebenefratelli and Oftalmico, Milan, Italy
| | - Sara Cole
- Campus Microscopy and Imaging Facility, The Ohio State University, Columbus, OH, 43210, USA
| | - Mirko Marabese
- Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Marianna Hernandez
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Joseph M Amann
- Department of Internal Medicine, College of Medicine, James Thoracic Center, Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Giancarlo Pruneri
- Division of Pathology, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - David P Carbone
- Department of Internal Medicine, College of Medicine, James Thoracic Center, Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Marina C Garassino
- Thoracic Oncology Unit, Department of Medical Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Salemi LM, Maitland MER, McTavish CJ, Schild-Poulter C. Cell signalling pathway regulation by RanBPM: molecular insights and disease implications. Open Biol 2018; 7:rsob.170081. [PMID: 28659384 PMCID: PMC5493780 DOI: 10.1098/rsob.170081] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022] Open
Abstract
RanBPM (Ran-binding protein M, also called RanBP9) is an evolutionarily conserved, ubiquitous protein which localizes to both nucleus and cytoplasm. RanBPM has been implicated in the regulation of a number of signalling pathways to regulate several cellular processes such as apoptosis, cell adhesion, migration as well as transcription, and plays a critical role during development. In addition, RanBPM has been shown to regulate pathways implicated in cancer and Alzheimer's disease, implying that RanBPM has important functions in both normal and pathological development. While its functions in these processes are still poorly understood, RanBPM has been identified as a component of a large complex, termed the CTLH (C-terminal to LisH) complex. The yeast homologue of this complex functions as an E3 ubiquitin ligase that targets enzymes of the gluconeogenesis pathway. While the CTLH complex E3 ubiquitin ligase activity and substrates still remain to be characterized, the high level of conservation between the complexes in yeast and mammals infers that the CTLH complex could also serve to promote the degradation of specific substrates through ubiquitination, therefore suggesting the possibility that RanBPM's various functions may be mediated through the activity of the CTLH complex.
Collapse
Affiliation(s)
- Louisa M Salemi
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Matthew E R Maitland
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Christina J McTavish
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Caroline Schild-Poulter
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| |
Collapse
|
8
|
Palmieri D, Tessari A, Coppola V. Scorpins in the DNA Damage Response. Int J Mol Sci 2018; 19:ijms19061794. [PMID: 29914204 PMCID: PMC6032341 DOI: 10.3390/ijms19061794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
The DNA Damage Response (DDR) is a complex signaling network that comes into play when cells experience genotoxic stress. Upon DNA damage, cellular signaling pathways are rewired to slow down cell cycle progression and allow recovery. However, when the damage is beyond repair, cells activate complex and still not fully understood mechanisms, leading to a complete proliferative arrest or cell death. Several conventional and novel anti-neoplastic treatments rely on causing DNA damage or on the inhibition of the DDR in cancer cells. However, the identification of molecular determinants directing cancer cells toward recovery or death upon DNA damage is still far from complete, and it is object of intense investigation. SPRY-containing RAN binding Proteins (Scorpins) RANBP9 and RANBP10 are evolutionarily conserved and ubiquitously expressed proteins whose biological functions are still debated. RANBP9 has been previously implicated in cell proliferation, survival, apoptosis and migration. Recent studies also showed that RANBP9 is involved in the Ataxia Telangiectasia Mutated (ATM) signaling upon DNA damage. Accordingly, cells lacking RANBP9 show increased sensitivity to genotoxic treatment. Although there is no published evidence, extensive protein similarities suggest that RANBP10 might have partially overlapping functions with RANBP9. Like RANBP9, RANBP10 bears sites putative target of PIK-kinases and high throughput studies found RANBP10 to be phosphorylated following genotoxic stress. Therefore, this second Scorpin might be another overlooked player of the DDR alone or in combination with RANBP9. This review focuses on the relatively unknown role played by RANBP9 and RANBP10 in responding to genotoxic stress.
Collapse
Affiliation(s)
- Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | - Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Stephens R, Lim K, Portela M, Kvansakul M, Humbert PO, Richardson HE. The Scribble Cell Polarity Module in the Regulation of Cell Signaling in Tissue Development and Tumorigenesis. J Mol Biol 2018; 430:3585-3612. [PMID: 29409995 DOI: 10.1016/j.jmb.2018.01.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 01/22/2023]
Abstract
The Scribble cell polarity module, comprising Scribbled (Scrib), Discs-large (Dlg) and Lethal-2-giant larvae (Lgl), has a tumor suppressive role in mammalian epithelial cancers. The Scribble module proteins play key functions in the establishment and maintenance of different modes of cell polarity, as well as in the control of tissue growth, differentiation and directed cell migration, and therefore are major regulators of tissue development and homeostasis. Whilst molecular details are known regarding the roles of Scribble module proteins in cell polarity regulation, their precise mode of action in the regulation of other key cellular processes remains enigmatic. An accumulating body of evidence indicates that Scribble module proteins play scaffolding roles in the control of various signaling pathways, which are linked to the control of tissue growth, differentiation and cell migration. Multiple Scrib, Dlg and Lgl interacting proteins have been discovered, which are involved in diverse processes, however many function in the regulation of cellular signaling. Herein, we review the components of the Scrib, Dlg and Lgl protein interactomes, and focus on the mechanism by which they regulate cellular signaling pathways in metazoans, and how their disruption leads to cancer.
Collapse
Affiliation(s)
- Rebecca Stephens
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Krystle Lim
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Marta Portela
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Avenida Doctor Arce, 37, Madrid 28002, Spain
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Patrick O Humbert
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Anatomy & Neurobiology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
10
|
Lim KH, Suresh B, Park JH, Kim YS, Ramakrishna S, Baek KH. Ubiquitin-specific protease 11 functions as a tumor suppressor by modulating Mgl-1 protein to regulate cancer cell growth. Oncotarget 2018; 7:14441-57. [PMID: 26919101 PMCID: PMC4924727 DOI: 10.18632/oncotarget.7581] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 01/31/2016] [Indexed: 12/17/2022] Open
Abstract
The Lethal giant larvae (Lgl) gene encodes a cortical cytoskeleton protein, Lgl, and is involved in maintaining cell polarity and epithelial integrity. Previously, we observed that Mgl-1, a mammalian homologue of the Drosophila tumor suppressor protein Lgl, is subjected to degradation via ubiquitin-proteasome pathway, and scaffolding protein RanBPM prevents the turnover of the Mgl-1 protein. Consequently, overexpression of RanBPM enhances Mgl-1-mediated cell proliferation and migration. Here, we analyzed the ability of ubiquitin-specific protease 11 (USP11) as a novel regulator of Mgl-1 and it requires RanBPM to regulate proteasomal degradation of Mgl-1. USP11 showed deubiquitinating activity and stabilized Mgl-1 protein. However, USP11-mediated Mgl-1 stabilization was inhibited in RanBPM-knockdown cells. Furthermore, in the cancer cell migration, the regulation of Mgl-1 by USP11 required RanBPM expression. In addition, an in vivo study revealed that depletion of USP11 leads to tumor formation. Taken together, the results indicated that USP11 functions as a tumor suppressor through the regulation of Mgl-1 protein degradation via RanBPM.
Collapse
Affiliation(s)
- Key-Hwan Lim
- Department of Biomedical Science, CHA University, Gyeonggi-Do 463-400, Republic of Korea
| | - Bharathi Suresh
- Department of Biomedical Science, CHA University, Gyeonggi-Do 463-400, Republic of Korea
| | - Jung-Hyun Park
- Department of Biomedical Science, CHA University, Gyeonggi-Do 463-400, Republic of Korea
| | - Young-Soo Kim
- Department of Biomedical Science, CHA University, Gyeonggi-Do 463-400, Republic of Korea
| | - Suresh Ramakrishna
- Department of Biomedical Science, CHA University, Gyeonggi-Do 463-400, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Gyeonggi-Do 463-400, Republic of Korea
| |
Collapse
|
11
|
Zhang J, Cong X, Zhaoqiao J, Yang X, Li M, Chen H, Mi R, Jin G, Liu F, Huang BR. Ran binding protein 9 (RanBPM) binds IFN-λR1 in the IFN-λ signaling pathway. SCIENCE CHINA. LIFE SCIENCES 2017; 60:1030-1039. [PMID: 28547582 DOI: 10.1007/s11427-017-9028-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/11/2017] [Indexed: 12/15/2022]
Abstract
Like the type I interferons (IFNs), the recently discovered cytokine IFN-λ displays antiviral, antiproliferative, and proapoptotic activities, mediated by a heterodimeric IFN-λ receptor complex composed of a unique IFN-λR1 chain and the IL-10R2 chain. However, the molecular mechanism of the IFN-λ-regulated pathway remains unclear. In this study, we newly identified RAN-binding protein M (RanBPM) as a binding partner of IFN-λR1. The interaction between RanBPM and IFN-λR1 was identified with a glutathione S-transferase pull-down assay and coimmunoprecipitation experiments. IFN-λ1 stimulates this interaction and affects the cellular distribution of RanBPM. However, the interaction between RanBPM and IFN-λR1 does not correlate with their conserved TRAF6-binding sites. Furthermore, we also found that RanBPM is a scaffolding protein with a modulatory function that regulates the activities of IFN-stimulated response elements. Therefore, RanBPM plays a novel role in the IFN-λ-regulated signaling pathway.
Collapse
Affiliation(s)
- Junwen Zhang
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100050, China
| | - Xiaojie Cong
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Jiajie Zhaoqiao
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xia Yang
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Meng Li
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Hong Chen
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Ruifang Mi
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100050, China
| | - Guishan Jin
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100050, China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100050, China.
- Beijing Laboratory of Biomedical Materials, Beijing, 100050, China.
| | - Bing-Ren Huang
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
12
|
Das S, Suresh B, Kim HH, Ramakrishna S. RanBPM: a potential therapeutic target for modulating diverse physiological disorders. Drug Discov Today 2017; 22:1816-1824. [PMID: 28847759 DOI: 10.1016/j.drudis.2017.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/26/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Abstract
The Ran-binding protein microtubule-organizing center (RanBPM) is a highly conserved nucleocytoplasmic protein involved in a variety of intracellular signaling pathways that control diverse cellular functions. RanBPM interacts with proteins that are linked to various diseases, including Alzheimer's disease (AD), schizophrenia (SCZ), and cancer. In this article, we define the characteristics of the scaffolding protein RanBPM and focus on its interaction partners in diverse physiological disorders, such as neurological diseases, fertility disorders, and cancer.
Collapse
Affiliation(s)
- Soumyadip Das
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Bharathi Suresh
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, 03722, South Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea; College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
13
|
Kwon SK, Kim EH, Baek KH. RNPS1 is modulated by ubiquitin-specific protease 4. FEBS Lett 2017; 591:369-381. [DOI: 10.1002/1873-3468.12531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Seul-Ki Kwon
- Department of Biomedical Science; CHA University; Gyeonggi-Do Korea
| | - Eun-Hea Kim
- Department of Biomedical Science; CHA University; Gyeonggi-Do Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science; CHA University; Gyeonggi-Do Korea
| |
Collapse
|
14
|
Dai H, Lv YF, Yan GN, Meng G, Zhang X, Guo QN. RanBP9/TSSC3 complex cooperates to suppress anoikis resistance and metastasis via inhibiting Src-mediated Akt signaling in osteosarcoma. Cell Death Dis 2016; 7:e2572. [PMID: 28032865 PMCID: PMC5261021 DOI: 10.1038/cddis.2016.436] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 12/22/2022]
Abstract
Suppression of anoikis is a prerequisite for tumor cell metastasis, which is correlated with chemoresistance and poor prognosis. We characterized a novel interaction between RanBP9 SPRY domain and TSSC3 PH domain by which RanBP9/TSSC3 complex exerts transcription and post-translation regulation in osteosarcoma. RanBP9/TSSC3 complex was inversely correlated with a highly anoikis-resistant phenotype in osteosarcoma cells and metastasis in human osteosarcoma. RanBP9 cooperated with TSSC3 to inhibit anchorage-independent growth and to promote anoikis in vitro and suppress lung metastasis in vivo. Moreover, RanBP9 SPRY domain was required for RanBP9/TSSC3 complex-mediated anoikis resistance. Mechanistically, RanBP9 formed a ternary complex with TSSC3 and Src to scaffold this interaction, which suppressed both Src and Src-dependent Akt pathway activations and facilitated mitochondrial-associated anoikis. Collectively, the newly identified RanBP9/TSSC3 complex cooperatively suppress metastasis via downregulation of Src-dependent Akt pathway to expedite mitochondrial-associated anoikis. This study provides a biological basis for exploring the therapeutic significance of dual targeting of RanBP9 and TSSC3 in osteosarcoma.
Collapse
Affiliation(s)
- Huanzi Dai
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Department of Nephrology, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yang-Fan Lv
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Guang-Ning Yan
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Gang Meng
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Department of Pathology, Southwest Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Xi Zhang
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Department of Pathology, Southwest Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Qiao-Nan Guo
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
15
|
Wei JD, Jang JH, Kim JH. RanBPM inhibits BLT2-mediated IL-8 production and invasiveness in aggressive breast cancer cells. Biochem Biophys Res Commun 2016; 483:305-311. [PMID: 28027932 DOI: 10.1016/j.bbrc.2016.12.147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Abstract
RanBPM is a scaffolding protein that regulates several cellular processes by interacting with various proteins. Previously, we reported that RanBPM acts as a negative regulator of BLT2, a low-affinity leukotriene B4 receptor; thus, it interferes with BLT2-mediated cell motility. In the present study, we observed that the expression levels of RanBPM were markedly reduced in the highly aggressive MDA-MB-435 and MDA-MB-231 human breast cancer cell lines compared with those in non-invasive MCF-7 cells. Additionally, we found that the restoration of RanBPM levels suppressed the invasiveness of these aggressive breast cancer cells in a manner dependent on BLT2 activation. In contrast, the knockdown of endogenous RanBPM by shRNA strongly promoted invasiveness in non-invasive MCF-7 cells. We also observed that RanBPM suppressed the invasiveness of aggressive breast cancer cells by inhibiting BLT2-mediated reactive oxygen species (ROS) generation and IL-8 production. Taken together, our results suggest that RanBPM acts as a negative regulator of BLT2, thus attenuating the invasiveness of aggressive breast cancer cells.
Collapse
Affiliation(s)
- Jun-Dong Wei
- School of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul, 02841, South Korea
| | - Jae-Hyun Jang
- School of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul, 02841, South Korea
| | - Jae-Hong Kim
- School of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul, 02841, South Korea.
| |
Collapse
|
16
|
Evaluation of Lethal Giant Larvae as a Schistosomiasis Vaccine Candidate. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4680812. [PMID: 27957496 PMCID: PMC5120214 DOI: 10.1155/2016/4680812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/20/2016] [Accepted: 08/11/2016] [Indexed: 01/07/2023]
Abstract
Schistosomiasis is a neglected tropical disease of humans, and it is considered to be the second most devastating parasitic disease after malaria. Eggs produced by normally developed female worms are important in the transmission of the parasite, and they responsible for the pathogenesis of schistosomiasis. The tumor suppressor gene lethal giant larvae (lgl) has an essential function in establishing apical-basal cell polarity, cell proliferation, differentiation, and tissue organization. In our earlier study, downregulation of the lgl gene induced a significant reduction in the egg hatching rate of Schistosoma japonicum (Sj) eggs. In this study, the Sjlgl gene was used as a vaccine candidate against schistosomiasis, and vaccination achieved and maintained a stable reduction of the egg hatching rate, which is consistent with previous studies, in addition to reducing the worm burden and liver egg burden in some trials.
Collapse
|
17
|
Park JJ, Lim KH, Baek KH. Annexin-1 regulated by HAUSP is essential for UV-induced damage response. Cell Death Dis 2015; 6:e1654. [PMID: 25695607 PMCID: PMC4669820 DOI: 10.1038/cddis.2015.32] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 12/23/2014] [Accepted: 12/23/2014] [Indexed: 02/08/2023]
Abstract
DNA damage can occur through diverse stimulations such as toxins, drugs, and environmental factors. To respond to DNA damage, mammalian cells induce DNA damage response (DDR). DDR signal activates a rapid signal transduction pathway, regulating the cell fate based on the damaged cell condition. Moreover, serious damaged cells have to be eliminated by the macrophage to maintain homeostasis. Because the DDR induces genomic instability followed by tumor formation, targeting the DDR signaling can be applied for the cancer therapy. Herpes virus-associated ubiquitin-specific protease (HAUSP/USP7) is one of the well-known deubiquitinating enzymes (DUBs) owing to its relevance with Mdm2-p53 complex. The involvement of HAUSP in DDR through p53 led us to investigate novel substrates for HAUSP, which is related to DDR or apoptosis. As a result, we identified annexin-1 (ANXA1) as one of the putative substrates for HAUSP. ANXA1 has numerous roles in cellular systems including anti-inflammation, damage response, and apoptosis. Several studies have demonstrated that ANXA1 can be modified in a post-translational manner by processes such as phosphorylation, SUMOylation, and ubiquitination. In addition, DNA damage gives various functions to ANXA1 such as stress response or cleavage-mediated apoptotic cell clearance. In the current study, our proteomic analysis using two-dimensional electrophoresis, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS) and nano LC-MS/MS, and immunoprecipitation revealed that ANXA1 binds to HAUSP through its HAUSP-binding motif (P/AXXS), and the cleavage and damage-responsive functions of ANXA1 upon UV-induced DNA damage may be followed by HAUSP-mediated deubiquitination of ANXA1. Intriguingly, the UV-induced damage responses via HAUSP-ANXA1 interaction in HeLa cells were different from the responses shown in the Jurkat cells, suggesting that their change of roles may depend on the cell types.
Collapse
Affiliation(s)
- J-J Park
- Department of Biomedical Science, CHA University, Gyeonggi-Do 463-400, Republic of Korea
| | - K-H Lim
- Department of Biomedical Science, CHA University, Gyeonggi-Do 463-400, Republic of Korea
| | - K-H Baek
- Department of Biomedical Science, CHA University, Gyeonggi-Do 463-400, Republic of Korea
| |
Collapse
|
18
|
Salemi LM, Almawi AW, Lefebvre KJ, Schild-Poulter C. Aggresome formation is regulated by RanBPM through an interaction with HDAC6. Biol Open 2014; 3:418-30. [PMID: 24795145 PMCID: PMC4058076 DOI: 10.1242/bio.20147021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In conditions of proteasomal impairment, the build-up of damaged or misfolded proteins activates a cellular response leading to the recruitment of damaged proteins into perinuclear aggregates called aggresomes. Aggresome formation involves the retrograde transport of cargo proteins along the microtubule network and is dependent on the histone deacetylase HDAC6. Here we show that ionizing radiation (IR) promotes Ran-Binding Protein M (RanBPM) relocalization into discrete perinuclear foci where it co-localizes with aggresome components ubiquitin, dynein and HDAC6, suggesting that the RanBPM perinuclear clusters correspond to aggresomes. RanBPM was also recruited to aggresomes following treatment with the proteasome inhibitor MG132 and the DNA-damaging agent etoposide. Strikingly, aggresome formation by HDAC6 was markedly impaired in RanBPM shRNA cells, but was restored by re-expression of RanBPM. RanBPM was found to interact with HDAC6 and to inhibit its deacetylase activity. This interaction was abrogated by a RanBPM deletion of its LisH/CTLH domain, which also prevented aggresome formation, suggesting that RanBPM promotes aggresome formation through an association with HDAC6. Our results suggest that RanBPM regulates HDAC6 activity and is a central regulator of aggresome formation.
Collapse
Affiliation(s)
- Louisa M Salemi
- Robarts Research Institute, The University of Western Ontario, London, ON N6A 5B7, Canada Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ahmad W Almawi
- Robarts Research Institute, The University of Western Ontario, London, ON N6A 5B7, Canada Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Karen J Lefebvre
- Robarts Research Institute, The University of Western Ontario, London, ON N6A 5B7, Canada Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute, The University of Western Ontario, London, ON N6A 5B7, Canada Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
19
|
The lethal giant larvae gene in Tribolium castaneum: molecular properties and roles in larval and pupal development as revealed by RNA interference. Int J Mol Sci 2014; 15:6880-96. [PMID: 24758930 PMCID: PMC4013667 DOI: 10.3390/ijms15046880] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 03/21/2014] [Accepted: 04/11/2014] [Indexed: 11/16/2022] Open
Abstract
We identified and characterized the TcLgl gene putatively encoding lethal giant larvae (Lgl) protein from the red flour beetle (Tribolium castaneum). Analyses of developmental stage and tissue-specific expression patterns revealed that TcLgl was constitutively expressed. To examine the role of TcLgl in insect development, RNA interference was performed in early (1-day) larvae, late (20-day) larvae, and early (1-day) pupae. The early larvae injected with double-stranded RNA of TcLgl (dsTcLgl) at 100, 200, and 400 ng/larva failed to pupate, and 100% mortality was achieved within 20 days after the injection or before the pupation. The late larvae injected with dsTcLgl at these doses reduced the pupation rates to only 50.3%, 36.0%, and 18.2%, respectively. The un-pupated larvae gradually died after one week, and visually unaffected pupae failed to emerge into adults and died during the pupal stage. Similarly, when early pupae were injected with dsTcLgl at these doses, the normal eclosion rates were reduced to only 22.5%, 18.0%, and 11.2%, respectively, on day 7 after the injection, and all the adults with abnormal eclosion died in two days after the eclosion. These results indicate that TcLgl plays an essential role in insect development, especially during their metamorphosis.
Collapse
|
20
|
Tsioras K, Papastefanaki F, Politis PK, Matsas R, Gaitanou M. Functional Interactions between BM88/Cend1, Ran-binding protein M and Dyrk1B kinase affect cyclin D1 levels and cell cycle progression/exit in mouse neuroblastoma cells. PLoS One 2013; 8:e82172. [PMID: 24312406 PMCID: PMC3842983 DOI: 10.1371/journal.pone.0082172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/31/2013] [Indexed: 12/22/2022] Open
Abstract
BM88/Cend1 is a neuronal-lineage specific modulator with a pivotal role in coordination of cell cycle exit and differentiation of neuronal precursors. In the current study we identified the signal transduction scaffolding protein Ran-binding protein M (RanBPM) as a BM88/Cend1 binding partner and showed that BM88/Cend1, RanBPM and the dual specificity tyrosine-phosphorylation regulated kinase 1B (Dyrk1B) are expressed in mouse brain as well as in cultured embryonic cortical neurons while RanBPM can form complexes with either of the two other proteins. To elucidate a potential mechanism involving BM88/Cend1, RanBPM and Dyrk1B in cell cycle progression/exit, we transiently co-expressed these proteins in mouse neuroblastoma Neuro 2a cells. We found that the BM88/Cend1-dependent or Dyrk1B-dependent down-regulation of cyclin D1 is reversed following their functional interaction with RanBPM. More specifically, functional interaction of RanBPM with either BM88/Cend1 or Dyrk1B stabilizes cyclin D1 in the nucleus and promotes 5-bromo-2'-deoxyuridine (BrdU) incorporation as a measure of enhanced cell proliferation. However, the RanBPM-dependent Dyrk1B cytosolic retention and degradation is reverted in the presence of Cend1 resulting in cyclin D1 destabilization. Co-expression of RanBPM with either BM88/Cend1 or Dyrk1B also had a negative effect on Neuro 2a cell differentiation. Our results suggest that functional interactions between BM88/Cend1, RanBPM and Dyrk1B affect the balance between cellular proliferation and differentiation in Neuro 2a cells and indicate that a potentially similar mechanism may influence cell cycle progression/exit and differentiation of neuronal precursors.
Collapse
Affiliation(s)
- Konstantinos Tsioras
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Panagiotis K. Politis
- Center for Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
21
|
Francis O, Han F, Adams JC. Molecular phylogeny of a RING E3 ubiquitin ligase, conserved in eukaryotic cells and dominated by homologous components, the muskelin/RanBPM/CTLH complex. PLoS One 2013; 8:e75217. [PMID: 24143168 PMCID: PMC3797097 DOI: 10.1371/journal.pone.0075217] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 08/13/2013] [Indexed: 01/11/2023] Open
Abstract
Ubiquitination is an essential post-translational modification that regulates signalling and protein turnover in eukaryotic cells. Specificity of ubiquitination is driven by ubiquitin E3 ligases, many of which remain poorly understood. One such is the mammalian muskelin/RanBP9/CTLH complex that includes eight proteins, five of which (RanBP9/RanBPM, TWA1, MAEA, Rmnd5 and muskelin), share striking similarities of domain architecture and have been implicated in regulation of cell organisation. In budding yeast, the homologous GID complex acts to down-regulate gluconeogenesis. In both complexes, Rmnd5/GID2 corresponds to a RING ubiquitin ligase. To better understand this E3 ligase system, we conducted molecular phylogenetic and sequence analyses of the related components. TWA1, Rmnd5, MAEA and WDR26 are conserved throughout all eukaryotic supergroups, albeit WDR26 was not identified in Rhizaria. RanBPM is absent from Excavates and from some sub-lineages. Armc8 and c17orf39 were represented across unikonts but in bikonts were identified only in Viridiplantae and in O. trifallax within alveolates. Muskelin is present only in Opisthokonts. Phylogenetic and sequence analyses of the shared LisH and CTLH domains of RanBPM, TWA1, MAEA and Rmnd5 revealed closer relationships and profiles of conserved residues between, respectively, Rmnd5 and MAEA, and RanBPM and TWA1. Rmnd5 and MAEA are also related by the presence of conserved, variant RING domains. Examination of how N- or C-terminal domain deletions alter the sub-cellular localisation of each protein in mammalian cells identified distinct contributions of the LisH domains to protein localisation or folding/stability. In conclusion, all components except muskelin are inferred to have been present in the last eukaryotic common ancestor. Diversification of this ligase complex in different eukaryotic lineages may result from the apparently fast evolution of RanBPM, differing requirements for WDR26, Armc8 or c17orf39, and the origin of muskelin in opisthokonts as a RanBPM-binding protein.
Collapse
Affiliation(s)
- Ore Francis
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Fujun Han
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Josephine C. Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Zhang J, Ma W, Tian S, Fan Z, Ma X, Yang X, Zhao Q, Tan K, Chen H, Chen D, Huang BR. RanBPM interacts with TβRI, TRAF6 and curbs TGF induced nuclear accumulation of TβRI. Cell Signal 2013; 26:162-72. [PMID: 24103590 DOI: 10.1016/j.cellsig.2013.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/18/2013] [Accepted: 09/30/2013] [Indexed: 12/19/2022]
Abstract
Transforming growth factor β (TGF-β), a cytokine, and its receptors play a vital role during normal embryogenesis, cell proliferation, differentiation, apoptosis and migration. Ran-binding protein in the microtubule-organizing center (RanBPM) serves as a scaffold protein that has been shown to interact with many other proteins, such as MET, Axl/Sky, TRAF6, IFNR, TrKA and TrkB in addition to p75NTR. In the current study, we have identified RanBPM as a novel binding partner of TβRI by yeast two-hybrid assay. The TβRI and RanBPM association was confirmed by co-immunoprecipitation and GST pull-down experiments. Additionally, expression of RanBPM abrogated the interaction between TβRI and TRAF6. Furthermore, RanBPM could depress TGF-β induced TRAF6 ubiquitination, subsequent NF-κB signaling pathway, and block TGF-β induced TβRI nuclear accumulation. Taken together, our results reveal that RanBPM may modulate TGF-β-mediated downstream signaling and biological functions.
Collapse
Affiliation(s)
- Junwen Zhang
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cao Y, Shi Y, Qiao H, Yang Y, Liu J, Shi Y, Lin J, Zhu G, Jin Y. Distribution of lethal giant larvae (Lgl) protein in the tegument and negative impact of siRNA-based gene silencing on worm surface structure and egg hatching in Schistosoma japonicum. Parasitol Res 2013; 113:1-9. [DOI: 10.1007/s00436-013-3620-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 09/19/2013] [Indexed: 01/06/2023]
|
24
|
Wei JD, Kim JY, Kim AK, Jang SK, Kim JH. RanBPM protein acts as a negative regulator of BLT2 receptor to attenuate BLT2-mediated cell motility. J Biol Chem 2013; 288:26753-63. [PMID: 23928309 DOI: 10.1074/jbc.m113.470260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BLT2, a low affinity receptor for leukotriene B4 (LTB4), is a member of the G protein-coupled receptor family and is involved in many signal transduction pathways associated with various cellular phenotypes, including chemotactic motility. However, the regulatory mechanism for BLT2 has not yet been demonstrated. To understand the regulatory mechanism of BLT2, we screened and identified the proteins that bind to BLT2. Using a yeast two-hybrid assay with the BLT2 C-terminal domain as bait, we found that RanBPM, a previously proposed scaffold protein, interacts with BLT2. We demonstrated the specific interaction between BLT2 and RanBPM by GST pulldown assay and co-immunoprecipitation assay. To elucidate the biological function of the RanBPM-BLT2 interaction, we evaluated the effects of RanBPM overexpression or knockdown. We found that BLT2-mediated motility was severely attenuated by RanBPM overexpression and that knockdown of endogenous RanBPM by shRNA strongly promoted BLT2-mediated motility, suggesting a negative regulatory function of RanBPM toward BLT2. Furthermore, we observed that the addition of BLT2 ligands caused the dissociation of BLT2 and RanBPM, thus releasing the negative regulatory effect of RanBPM. Finally, we propose that Akt-induced BLT2 phosphorylation at residue Thr(355), which occurs after the addition of BLT2 ligands, is a potential mechanism by which BLT2 dissociates from RanBPM, resulting in stimulation of BLT2 signaling. Taken together, our results suggest that RanBPM acts as a negative regulator of BLT2 signaling to attenuate BLT2-mediated cell motility.
Collapse
Affiliation(s)
- Jun-Dong Wei
- From the School of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul 136-701
| | | | | | | | | |
Collapse
|
25
|
Lugassy C, Péault B, Wadehra M, Kleinman HK, Barnhill RL. Could pericytic mimicry represent another type of melanoma cell plasticity with embryonic properties? Pigment Cell Melanoma Res 2013; 26:746-54. [PMID: 23789776 DOI: 10.1111/pcmr.12120] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022]
Abstract
We hypothesize that the interaction between angiotropic melanoma cells and the abluminal vascular surface can induce or sustain embryonic and/or stem cell migratory properties in these tumor cells. As a result, such angiotropic melanoma cells may migrate along the abluminal vascular surface, demonstrating pericytic mimicry. Through these cellular interactions, melanoma cells may migrate toward secondary sites.
Collapse
Affiliation(s)
- Claire Lugassy
- Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, University of California Los Angeles (UCLA) Medical Center, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
26
|
Lugassy C, Wadehra M, Li X, Corselli M, Akhavan D, Binder SW, Péault B, Cochran AJ, Mischel PS, Kleinman HK, Barnhill RL. Pilot study on "pericytic mimicry" and potential embryonic/stem cell properties of angiotropic melanoma cells interacting with the abluminal vascular surface. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2013; 6:19-29. [PMID: 23275074 PMCID: PMC3601217 DOI: 10.1007/s12307-012-0128-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 12/17/2012] [Indexed: 12/19/2022]
Abstract
The interaction of tumor cells with the tumor vasculature is mainly studied for its role in tumor angiogenesis and intravascular metastasis of circulating tumor cells. In addition, a specific interaction of tumor cells with the abluminal surfaces of vessels, or angiotropism, may promote the migration of angiotropic tumor cells along the abluminal vascular surfaces in a pericytic location. This process has been termed extravascular migratory metastasis. The abluminal vascular surface may also provide a vascular niche inducing or sustaining stemness to angiotropic tumor cells. This pilot study investigated if angiotropic melanoma cells might represent a subset population with pericytic and embryonic or stem cell properties. Through microarray analysis, we showed that the interaction between melanoma cells and the abluminal surface of endothelial cells triggers significant differential expression of several genes. The most significantly differentially expressed genes have demonstrated properties linked to cancer cell migration (CCL2, ICAM1 and IL6), cancer progression (CCL2, ICAM1, SELE, TRAF1, IL6, SERPINB2 and CXCL6), epithelial to mesenchymal transition (CCL2 and IL6), embryonic/stem cell properties (CCL2, PDGFB, EVX1 and CFDP1) and pericytic recruitment (PDGFB). In addition, bioinformatics-based analysis of the differentially expressed genes has shown that the most significantly enriched functional groups included development, cell movement, cancer, and embryonic development. Finally, the investigation of pericyte/mesenchymal stem cells markers via immunostaining of human melanoma samples revealed expression of PDGFRB, NG2 and CD146 by angiotropic melanoma cells. Taken together, these preliminary data are supportive of the "pericytic mimicry" by angiotropic melanoma cells, and suggest that the interaction between melanoma cells and the abluminal vascular surface induce differential expression of genes linked to cancer migration and embryonic/stem cell properties.
Collapse
Affiliation(s)
- Claire Lugassy
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA) Medical Center, Los Angeles, CA, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Exploring the diversity of SPRY/B30.2-mediated interactions. Trends Biochem Sci 2012; 38:38-46. [PMID: 23164942 DOI: 10.1016/j.tibs.2012.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/02/2012] [Accepted: 10/05/2012] [Indexed: 11/21/2022]
Abstract
The SPla/Ryanodine receptor (SPRY)/B30.2 domain is one of the most common folds in higher eukaryotes. The human genome encodes 103 SPRY/B30.2 domains, several of which are involved in the immune response. Approximately 45% of human SPRY/B30.2-containing proteins are E3 ligases. The role and function of the majority of SPRY/B30.2 domains are still poorly understood, however, in several cases mutations in this domain have been linked to congenital disorders. The recent characterization of SPRY/B30.2-mediated protein interactions has provided evidence for a role of this domain as an adaptor module to assemble macromolecular complexes, analogous to Src homology (SH)2, SH3, and WW domains. However, functional and structural evidence suggests that SPRY/B30.2 is a more versatile fold, allowing a wide range of binding modes.
Collapse
|
28
|
Abstract
Ran-binding protein M (RanBPM) is a nucleocytoplasmic protein of yet unknown function. We have previously shown that RanBPM inhibits expression of the anti-apoptotic factor Bcl-2 and promotes apoptosis induced by DNA damage. Here we show that the effects of RanBPM on Bcl-2 expression occur through a regulation of the ERK signaling pathway. Transient and stable down-regulation of RanBPM stimulated ERK phosphorylation, leading to Bcl-2 up-regulation, while re-expression of RanBPM reversed these effects. RanBPM was found to inhibit MEK and ERK activation induced by ectopic expression of active RasV12. Activation of ERK by active c-Raf was also prevented by RanBPM. Expression of RanBPM correlated with a marked decrease in the protein levels of ectopically expressed active c-Raf and also affected the expression of endogenous c-Raf. RanBPM formed a complex with both active c-Raf, consisting of the C-terminal kinase domain, and endogenous c-Raf in mammalian cells. In addition, RanBPM was found to decrease the binding of Hsp90 to c-Raf. Finally, we show that loss of RanBPM expression confers increased cell proliferation and cell migration properties to HEK293 cells. Altogether, these findings establish RanBPM as a novel inhibitor of the ERK pathway through an interaction with the c-Raf complex and a regulation of c-Raf stability, and provide evidence that RanBPM loss of expression results in constitutive activation of the ERK pathway and promotes cellular events leading to cellular transformation and tumorigenesis.
Collapse
Affiliation(s)
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
29
|
Suresh B, Ramakrishna S, Baek KH. Diverse roles of the scaffolding protein RanBPM. Drug Discov Today 2011; 17:379-87. [PMID: 22094242 DOI: 10.1016/j.drudis.2011.10.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/08/2011] [Accepted: 10/31/2011] [Indexed: 11/27/2022]
Abstract
Ran-binding protein microtubule-organizing center (RanBPM) appears to function as a scaffolding protein in several signal transduction pathways. RanBPM is a crucial component of multiprotein complexes that regulate the cellular function by modulating and/or assembling with a wide range of proteins in different intracellular regions and thereby mediate diverse cellular functions. This suggests a role for RanBPM as a scaffolding protein. In this article, we have summarized the diverse functions of RanBPM and its interacting partners that have been investigated to date. Also, we have categorized the role of RanBPM into four divisions: RanBPM as a modulator/protein stabilizer, regulator of transcription activity, cell cycle and neurological functions.
Collapse
Affiliation(s)
- Bharathi Suresh
- Department of Biomedical Science, CHA University, CHA General Hospital, Seoul 135-081, Republic of Korea
| | | | | |
Collapse
|