1
|
Ko YS, Won JY, Jin H, Nguyen NB, Won Y, Nsanzimana V, Yun SP, Park SW, Kim HJ. ABCG8‑mediated sterol efflux increases cancer cell progression via the LRP6/Wnt/β‑catenin signaling pathway in radiotherapy‑resistant MDA‑MB‑231 triple‑negative breast cancer cells. Int J Mol Med 2025; 55:80. [PMID: 40116083 PMCID: PMC11964413 DOI: 10.3892/ijmm.2025.5521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/03/2025] [Indexed: 03/23/2025] Open
Abstract
Expression levels of ATP‑binding cassette (ABC) transporters are known to be increased in various tumor cells, including in breast cancer, and they are responsible for mediating drug resistance, leading to treatment failure. In the present study, gene expression array analysis revealed that among ABC transporter subtypes, ABC subfamily G member 8 (ABCG8) was one of the most increased in radiotherapy‑resistant triple‑negative breast cancer (RT‑R‑TNBC) cells compared with in TNBC cells. ABCG8 is involved in sterol efflux; however, its role in cancer is not well known. Therefore, the present study investigated the effect of ABCG8 on tumor progression in RT‑R‑TNBC cells. Gene expression profiling was conducted using the QuantiSeq 3' mRNA‑Seq Service, followed by western blotting to confirm protein levels. Loss‑of‑function assays using small interfering RNA (si) transfection were performed to assess the roles of ABCG8 and its regulatory signaling pathways. RT‑R‑MDA‑MB‑231 cells exhibited increased cholesterol levels in both cells and the surrounding media via induction of sterol regulatory element binding protein 1 (mature form) and fatty acid synthase. siABCG8 transfection increased intracellular cholesterol levels but decreased cholesterol levels in the media, indicating an accumulation of cholesterol inside cells. Additionally, RT‑R‑MDA‑MB‑231 cells exhibited increased levels of β‑catenin compared with MDA‑MB‑231 cells, which was significantly reduced by ABCG8 knockdown. Furthermore, ABCG8 knockdown led to cell cycle arrest in the G2/M phase in RT‑R‑MDA‑MB‑231 cells by reducing Polo‑like kinase 1 (PLK1) and Cyclin B1 expression. RT‑R‑MDA‑MB‑231 cells also exhibited increased phosphorylated‑low‑density lipoprotein (LDL) receptor‑related protein 6 (LRP6) levels compared with MDA‑MB‑231 cells, and these were decreased by siABCG8 transfection. LRP6 siRNA transfection decreased β‑catenin, PLK1 and Cyclin B1 expression. In addition, feedback mechanisms such as liver X receptor and inducible degrader of LDL were decreased in RT‑R‑MDA‑MB‑231 cells under normal conditions compared with in MDA‑MB‑231 cells. To the best of our knowledge, the present study was the first to suggest that the cholesterol exported by ABCG8, not inside the cells, may affect cancer progression via the LRP6/Wnt/β‑catenin signaling pathway in RT‑R‑TNBC. The regulation of this pathway may offer a potential therapeutic strategy for the treatment of RT‑R‑TNBC.
Collapse
Affiliation(s)
- Young Shin Ko
- Department of Pharmacology, College of Medicine, Institute of Medical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Ju Yeong Won
- Department of Pharmacology, College of Medicine, Institute of Medical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Hana Jin
- Department of Pharmacology, College of Medicine, Institute of Medical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Nam Binh Nguyen
- Department of Pharmacology, College of Medicine, Institute of Medical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Yaeram Won
- Department of Pharmacology, College of Medicine, Institute of Medical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Vedaste Nsanzimana
- Department of Pharmacology, College of Medicine, Institute of Medical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, College of Medicine, Institute of Medical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, College of Medicine, Institute of Medical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, College of Medicine, Institute of Medical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| |
Collapse
|
2
|
Wen X, Si K, Zhu D, Zhang A, Guo C, Li M, Tian W. Structural basis of human ABCC4 recognition of cAMP and ligand recognition flexibility. Cell Biosci 2025; 15:39. [PMID: 40148998 PMCID: PMC11948813 DOI: 10.1186/s13578-025-01377-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND ABCC4 (ATP-binding cassette sub-family C member 4) is a transporter protein that is primarily localized to the plasma membrane, and its efflux activity is associated with the progression of various cancers and the development of drug resistance. Cyclic adenosine monophosphate (cAMP) is an important biomolecule that is considered a transport substrate of ABCC4. However, there is currently no direct structural understanding of how ABCC4 binds cAMP, and the mechanisms by which it recognizes a diverse range of substrate ligands remain poorly understood. Some studies have indicated that, under physiological conditions, cAMP does not significantly stimulate the ATPase activity of ABCC4, making the commonly used ATPase activity assays for ABC proteins unsuitable for studying cAMP. RESULTS Here, we successfully resolved the cryo-electron microscopy (cryo-EM) structure of the human ABCC4-cAMP (hABCC4-cAMP) complex, revealing how hABCC4 binds to cAMP and identifying the key residues involved. This structure was compared with two other hABCC4 complex structures we obtained (Methotrexate and Prostaglandin E2) and with previously published structures. We discovered some new structural insights into how hABCC4 binds ligands. On the basis of the structural information obtained, we confirmed the feasibility of using 8-[Fluo]-cAMP in a transport assay to detect cAMP translocation and found that some challenges remain to be addressed. CONCLUSIONS These results suggest that hABCC4 can bind cAMP and exhibits varying degrees of flexibility when binding with different substrates, including cAMP. These findings expand our understanding of the structural biology of ABCC4.
Collapse
Affiliation(s)
- Xuepeng Wen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kaixue Si
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Dantong Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Anqi Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Changyou Guo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Minghui Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
3
|
Ren HL, Zhang SH, Li PY. The multifaceted role of phosphodiesterase 4 in tumor: from tumorigenesis to immunotherapy. Front Immunol 2025; 16:1528932. [PMID: 40129976 PMCID: PMC11931042 DOI: 10.3389/fimmu.2025.1528932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Phosphodiesterase 4 (PDE4) is an enzyme that specifically hydrolyzes the second messenger cAMP and has a critical role in the regulation of a variety of cellular functions. In recent years, PDE4 has attracted great interest in cancer research, and its role in tumorigenesis and development has been gradually elucidated. Research indicates that abnormal expression or heightened activity of PDE4 is associated with the initiation and progression of multiple cancers, including lung, colorectal, and hematological cancers, by facilitating cell proliferation, migration, invasion, and anti-apoptosis. Moreover, PDE4 also influences the tumor immune microenvironment, significantly immune evasion by suppressing anti-tumor immune responses, reducing T-cell activation, and promoting the polarization of tumor-associated macrophages toward a pro-tumorigenic phenotype. However, the PDE4 family may have both oncogenic and tumor-suppressive effects, which could depend on the specific type and grade of the tumor. PDE4 inhibitors have garnered substantial interest as potential anti-cancer therapeutics, directly inhibiting tumor cell growth and restoring immune surveillance capabilities to enhance the clearance of tumor cells. Several PDE4 inhibitors are currently under investigation with the aim of exploring their potential in cancer therapy, particularly in combination strategies with immune checkpoint inhibitors, to improve therapeutic efficacy and mitigate the side effects of conventional chemotherapy. This review provides an overview of PDE4 in tumorigenesis, drug resistance, immunotherapy, and the anti-tumor actions of its inhibitors, intending to guide the exploration of PDE4 as a new target in tumor therapy.
Collapse
Affiliation(s)
- Huili-li Ren
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-hui Zhang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei-yuan Li
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastroenterology, Wenchang People’s Hospital, Wenchang, Hainan, China
| |
Collapse
|
4
|
Cerviño RH, Gómez N, Sahores A, Gouts A, González B, Shayo C, Davio C, Yaneff A. Flurbiprofen inhibits cAMP transport by MRP4/ABCC4 increasing the potency of gemcitabine treatment in PDAC cell models. Int J Biol Macromol 2024; 280:136386. [PMID: 39378921 DOI: 10.1016/j.ijbiomac.2024.136386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a highly malignant cancer with a grim prognosis due to its early metastasis and resistance to current chemotherapies, such as Gemcitabine (GEM). We have previously demonstrated that cAMP exclusion by MRP4 is critical for PDAC cell proliferation, establishing this transporter as a promising prognostic marker and therapeutic target. In search for novel therapeutic options to improve GEM efficacy, we conducted a drug repositioning screening to identify potential inhibitors of cAMP transport by MRP4. Several non-steroidal anti-inflammatory drugs (NSAIDs) can inhibit the transport of certain MRP4 substrates. In this study, we assessed the efficacy of sixteen NSAIDs in inhibiting cAMP transport mediated by MRP4, identifying seven potent inhibitors based on their IC50 values. The most potent inhibitors were further tested for their effect on cell proliferation and migration. Flurbiprofen emerged as the most potent inhibitor of both MRP4-mediated cAMP transport and cell proliferation. Overexpression of MRP4 in BxPC-3 cells significantly increased GEM resistance, and co-administration of flurbiprofen with GEM markedly enhanced the latter's potency inhibiting PDAC cells proliferation. These findings position flurbiprofen as a potent inhibitor of cAMP transport by MRP4 and a promising adjunctive therapy to enhance GEM effectiveness in PDAC treatment.
Collapse
Affiliation(s)
- Ramiro Héctor Cerviño
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Farmacia y Bioquímica, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Gómez
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Farmacia y Bioquímica, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Ana Sahores
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Farmacia y Bioquímica, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Agustín Gouts
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Farmacia y Bioquímica, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Betina González
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Farmacia y Bioquímica, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Carina Shayo
- Instituto de Biología y Medicina Experimental (Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Farmacia y Bioquímica, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Farmacia y Bioquímica, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
6
|
Gancedo SN, Sahores A, Gómez N, Di Siervi N, May M, Yaneff A, de Sousa Serro MG, Fraunhoffer N, Dusetti N, Iovanna J, Shayo C, Davio CA, González B. The xenobiotic transporter ABCC4/MRP4 promotes epithelial mesenchymal transition in pancreatic cancer. Front Pharmacol 2024; 15:1432851. [PMID: 39114357 PMCID: PMC11303182 DOI: 10.3389/fphar.2024.1432851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
The xenobiotic transporter ABCC4/MRP4 is highly expressed in pancreatic ductal adenocarcinoma (PDAC) and correlates with a more aggressive phenotype and metastatic propensity. Here, we show that ABCC4 promotes epithelial-mesenchymal transition (EMT) in PDAC, a hallmark process involving the acquisition of mesenchymal traits by epithelial cells, enhanced cell motility, and chemoresistance. Modulation of ABCC4 levels in PANC-1 and BxPC-3 cell lines resulted in the dysregulation of genes present in the EMT signature. Bioinformatic analysis on several cohorts including tumor samples, primary patient-derived cultured cells, patient-derived xenografts, and cell lines, revealed a positive correlation between ABCC4 expression and EMT markers. We also characterized the ABCC4 cistrome and identified four candidate clusters in the distal promoter and intron one that showed differential binding of pro-epithelial FOXA1 and pro-mesenchymal GATA2 transcription factors in low ABCC4-expressing HPAF-II and high ABCC4-expressing PANC-1 xenografts. HPAF-II xenografts showed exclusive binding of FOXA1, and PANC-1 xenografts exclusive binding of GATA2, at ABCC4 clusters, consistent with their low and high EMT phenotype respectively. Our results underscore ABCC4/MRP4 as a valuable prognostic marker and a potential therapeutic target to treat PDAC subtypes with prominent EMT features, such as the basal-like/squamous subtype, characterized by worse prognosis and no effective therapies.
Collapse
Affiliation(s)
- S. N. Gancedo
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - A. Sahores
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
| | - N. Gómez
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - N. Di Siervi
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - M. May
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - A. Yaneff
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
| | - M. G. de Sousa Serro
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - N. Fraunhoffer
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, CNRS UMR, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Equipe Labellisée La Ligue, Marseille, France
| | - N. Dusetti
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, CNRS UMR, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Equipe Labellisée La Ligue, Marseille, France
| | - J. Iovanna
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, CNRS UMR, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Equipe Labellisée La Ligue, Marseille, France
- Hospital de Alta Complejidad El Cruce, Argentina. Universidad Nacional Arturo Jauretche, Buenos Aires, Argentina
| | - C. Shayo
- Instituto de Biología y Medicina Experimental (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - C. A. Davio
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
| | - B. González
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
| |
Collapse
|
7
|
Mohamad NA, Galarza TE, Martín GA. H2 antihistamines: May be useful for combination therapies in cancer? Biochem Pharmacol 2024; 223:116164. [PMID: 38531422 DOI: 10.1016/j.bcp.2024.116164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Cancer morbimortality is still a great concern despite advances in research and therapies. Histamine and its receptors' ligands can modulate different biological responses according to the cell type and the receptor subtype involved. Besides the wide variety of histamine functions in normal tissues, diverse roles in the acquisition of hallmarks of cancer such as sustained proliferative signaling, resistance to cell death, angiogenesis, metastasis, altered immunity and modified microenvironment have been described. This review summarizes the present knowledge of the various roles of histamine H2 receptor (H2R) ligands in neoplasias. A bioinformatic analysis of human tumors showed dissimilar results in the expression of the H2R gene according to tumor type when comparing malignant versus normal tissues. As well, the relationship between patients' survival parameters and H2R gene expression levels also varied, signaling important divergences in the role of H2R in neoplastic progression in different cancer types. Revised experimental evidence showed multiple effects of H2R antihistamines on several of the cited hallmarks of cancer. Interventional and retrospective clinical studies evaluated different H2R antihistamines in cancer patients with two main adjuvant uses: improving antitumor efficacy (which includes regulation of immune response) and preventing toxic adverse effects produced by chemo or radiotherapy. While there is a long path to go, research on H2R antihistamines may provide new opportunities for developing more refined combination therapeutic strategies for certain cancer types to improve patients' survival and health-related quality of life.
Collapse
Affiliation(s)
- Nora A Mohamad
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - Tamara E Galarza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - Gabriela A Martín
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Chiang JY, Wei ST, Chang HJ, Chen DC, Wang HL, Lei FJ, Wei KY, Huang YC, Wang CC, Hsieh CH. ABCC4 suppresses glioblastoma progression and recurrence by restraining cGMP-PKG signalling. Br J Cancer 2024; 130:1324-1336. [PMID: 38347095 PMCID: PMC11014854 DOI: 10.1038/s41416-024-02581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Cyclic nucleotides are critical mediators of cellular signalling in glioblastoma. However, the clinical relevance and mechanisms of regulating cyclic nucleotides in glioblastoma progression and recurrence have yet to be thoroughly explored. METHODS In silico, mRNA, and protein level analyses identified the primary regulator of cyclic nucleotides in recurrent human glioblastoma. Lentiviral and pharmacological manipulations examined the functional impact of cyclic nucleotide signalling in human glioma cell lines and primary glioblastoma cells. An orthotopic xenograft mice model coupled with aspirin hydrogels verified the in vivo outcome of targeting cyclic nucleotide signalling. RESULTS Elevated intracellular levels of cGMP, instead of cAMP, due to a lower substrate efflux from ATP-binding cassette sub-family C member 4 (ABCC4) is engaged in the recurrence of glioblastoma. ABCC4 gene expression is negatively associated with recurrence and overall survival outcomes in glioblastoma specimens. ABCC4 loss-of-function activates cGMP-PKG signalling, promoting malignancy in glioblastoma cells and xenografts. Hydrogels loaded with aspirin, inhibiting glioblastoma progression partly by upregulating ABCC4 expressions, augment the efficacy of standard-of-care therapies in orthotopic glioblastoma xenografts. CONCLUSION ABCC4, repressing the cGMP-PKG signalling pathway, is a tumour suppressor in glioblastoma progression and recurrence. Aspirin hydrogels impede glioblastoma progression through ABCC4 restoration and constitute a viable translational approach.
Collapse
Affiliation(s)
- Jung-Ying Chiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Sung-Tai Wei
- Division of Neurosurgery, Asia University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Huan-Jui Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Der-Cherng Chen
- Department of Neurosurgery, China Medical University and Hospital, Taichung, Taiwan
| | - Hwai-Lee Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Fu-Ju Lei
- Graduate Institute of Clinical Medical Sciences, China Medical University, Taichung, Taiwan
| | - Kai-Yu Wei
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Mingdao High School, Taichung, Taiwan
| | - Yen-Chih Huang
- Department of Medical Imaging, China Medical University and Hospital, Taichung, Taiwan
| | - Chi-Chung Wang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei, Taiwan
| | - Chia-Hung Hsieh
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
9
|
Pourmal S, Green E, Bajaj R, Chemmama IE, Knudsen GM, Gupta M, Sali A, Cheng Y, Craik CS, Kroetz DL, Stroud RM. Structural basis of prostaglandin efflux by MRP4. Nat Struct Mol Biol 2024; 31:621-632. [PMID: 38216659 PMCID: PMC11145372 DOI: 10.1038/s41594-023-01176-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/07/2023] [Indexed: 01/14/2024]
Abstract
Multidrug resistance protein 4 (MRP4) is a broadly expressed ATP-binding cassette transporter that is unique among the MRP subfamily for transporting prostanoids, a group of signaling molecules derived from unsaturated fatty acids. To better understand the basis of the substrate selectivity of MRP4, we used cryogenic-electron microscopy to determine six structures of nanodisc-reconstituted MRP4 at various stages throughout its transport cycle. Substrate-bound structures of MRP4 in complex with PGE1, PGE2 and the sulfonated-sterol DHEA-S reveal a common binding site that accommodates a diverse set of organic anions and suggest an allosteric mechanism for substrate-induced enhancement of MRP4 ATPase activity. Our structure of a catalytically compromised MRP4 mutant bound to ATP-Mg2+ is outward-occluded, a conformation previously unobserved in the MRP subfamily and consistent with an alternating-access transport mechanism. Our study provides insights into the endogenous function of this versatile efflux transporter and establishes a basis for MRP4-targeted drug design.
Collapse
Affiliation(s)
- Sergei Pourmal
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Program in Chemistry and Chemical Biology, University of California, San Francisco, CA, USA
- Genentech, South San Francisco, CA, USA
| | - Evan Green
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Biophysics Graduate Program, University of California, San Francisco, CA, USA
- Exelixis, Alameda, CA, USA
| | - Ruchika Bajaj
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Ilan E Chemmama
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Brightseed, South San Francisco, CA, USA
| | - Giselle M Knudsen
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
| | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
| |
Collapse
|
10
|
Ohyama N, Furugen A, Sawada R, Aoyagi R, Nishimura A, Umazume T, Narumi K, Kobayashi M. Effects of valproic acid on syncytialization in human placental trophoblast cell lines. Toxicol Appl Pharmacol 2023; 474:116611. [PMID: 37385477 DOI: 10.1016/j.taap.2023.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
The placenta is a critical organ for fetal development and a healthy pregnancy, and has multifaceted functions (e.g., substance exchange and hormone secretion). Syncytialization of trophoblasts is important for maintaining placental functions. Epilepsy is one of the most common neurological conditions worldwide. Therefore, this study aimed to reveal the influence of antiepileptic drugs, including valproic acid (VPA), carbamazepine, lamotrigine, gabapentin, levetiracetam, topiramate, lacosamide, and clobazam, at clinically relevant concentrations on syncytialization using in vitro models of trophoblasts. To induce differentiation into syncytiotrophoblast-like cells, BeWo cells were treated with forskolin. Exposure to VPA was found to dose-dependently influence syncytialization-associated genes (ERVW-1, ERVFRD-1, GJA1, CGB, CSH, SLC1A5, and ABCC4) in differentiated BeWo cells. Herein, the biomarkers between differentiated BeWo cells and the human trophoblast stem model (TSCT) were compared. In particular, MFSD2A levels were low in BeWo cells but abundant in TSCT cells. VPA exposure affected the expression of ERVW-1, ERVFRD-1, GJA1, CSH, MFSD2A, and ABCC4 in differentiated cells (ST-TSCT). Furthermore, VPA exposure attenuated BeWo and TSCT cell fusion. Finally, the relationships between neonatal/placental parameters and the expression of syncytialization markers in human term placentas were analyzed. MFSD2A expression was positively correlated with neonatal body weight, head circumference, chest circumference, and placental weight. Our findings have important implications for better understanding the mechanisms of toxicity of antiepileptic drugs and predicting the risks to placental and fetal development.
Collapse
Affiliation(s)
- Nanami Ohyama
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan.
| | - Riko Sawada
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan
| | - Ryoichi Aoyagi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan
| | | | - Takeshi Umazume
- Department of Obstetrics, Hokkaido University Hospital, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan.
| |
Collapse
|
11
|
Chen Y, Wang L, Hou WT, Zha Z, Xu K, Zhou CZ, Li Q, Chen Y. Structural insights into human ABCC4-mediated transport of platelet agonist and antagonist. NATURE CARDIOVASCULAR RESEARCH 2023; 2:693-701. [PMID: 39195918 DOI: 10.1038/s44161-023-00289-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/19/2023] [Indexed: 08/29/2024]
Abstract
Human platelets contribute to hemostasis and thrombosis, the imbalance of which can cause cardiovascular diseases. The activation and accumulation of platelets can be induced by agonists or inhibited by antagonists. Thus, the human ABC transporter ABCC4, which pumps out platelet agonists and antagonists, might become a promising target for preventing cardiovascular diseases. Here we define five structures of human ABCC4: the apo and three complexed forms in the inward-facing conformation, in addition to an outward-facing occluded conformation upon ATP binding. Combined with biochemical assays, we structurally prove that U46619, a synthetic analog of the unstable agonist TXA2, and the antagonist aspirin are substrates of ABCC4. In addition, we found that the platelet antagonist dipyridamole is a strong competitive inhibitor against ABCC4. These complex structures also enable us to identify a transmembrane pocket in ABCC4 that provides a defined space for the rational design of specific platelet antagonists.
Collapse
Affiliation(s)
- Yu Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Liang Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Wen-Tao Hou
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Zhihui Zha
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Kang Xu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Cong-Zhao Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| | - Qiong Li
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- School of Life Sciences, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| | - Yuxing Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- School of Life Sciences, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
12
|
Yerushalmi GM, Shuraki B, Yung Y, Maman E, Baum M, Hennebold JD, Adashi EY, Hourvitz A. ABCC4 is a PGE2 efflux transporter in the ovarian follicle: A mediator of ovulation and a potential non-hormonal contraceptive target. FASEB J 2023; 37:e22858. [PMID: 36943419 DOI: 10.1096/fj.202101931rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 01/12/2023] [Accepted: 02/22/2023] [Indexed: 03/23/2023]
Abstract
The role of prostaglandins (PGs) in the ovulatory process is known. However, the role of the ATP binding cassette subfamily C member 4 (ABCC4), transmembrane PG carrier protein, in ovulation remains unknown. We report herein that ABCC4 expression is significantly upregulated in preovulatory human granulosa cells (GCs). We found that PGE2 efflux in cultured human GCs is mediated by ABCC4 thus regulating its extracellular concentration. The ABCC4 inhibitor probenecid demonstrated effective blocking of ovulation and affects key ovulatory genes in female mice in vivo. We postulate that the reduction in PGE2 efflux caused by the inhibition of ABCC4 activity in GCs decreases the extracellular concentration of PGE2 and its ovulatory effect. Treatment of female mice with low dose of probenecid as well as with the PTGS inhibitor indomethacin or Meloxicam synergistically blocks ovulation. These results support the hypothesis that ABCC4 has an important role in ovulation and might be a potential target for non-hormonal contraception, especially in combination with PGE2 synthesis inhibitors. These findings may fill the gap in understanding the role of ABCC4 in PGE2 signaling, enhance the understanding of ovulatory disorders, and facilitate the treatment and control of fertility.
Collapse
Affiliation(s)
- Gil M Yerushalmi
- Reproduction Laboratory and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Tel Hashomer, Israel
- IVF Unit, Department of Obstetrics and Gynecology, The Yitzhak Shamir Medical Center (formerly Assaf Harofeh Medical Center) (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Zerifin, Israel
| | - Batel Shuraki
- Reproduction Laboratory and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Tel Hashomer, Israel
| | - Yuval Yung
- Reproduction Laboratory and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Tel Hashomer, Israel
| | - Ettie Maman
- Reproduction Laboratory and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Tel Hashomer, Israel
| | - Micha Baum
- Reproduction Laboratory and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Tel Hashomer, Israel
| | - Jon D Hennebold
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Eli Y Adashi
- Department of Medical Science and Obstetrics and Gynecology, the Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Obstetrics and Gynecology, the Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Ariel Hourvitz
- Reproduction Laboratory and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Tel Hashomer, Israel
- IVF Unit, Department of Obstetrics and Gynecology, The Yitzhak Shamir Medical Center (formerly Assaf Harofeh Medical Center) (affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv), Zerifin, Israel
| |
Collapse
|
13
|
Sahores A, González AR, Yaneff A, May M, Gómez N, Monczor F, Fernández N, Davio C, Shayo C. Ceefourin-1, a MRP4/ABCC4 inhibitor, induces apoptosis in AML cells enhanced by histamine. Biochim Biophys Acta Gen Subj 2023; 1867:130322. [PMID: 36773726 DOI: 10.1016/j.bbagen.2023.130322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Ceefourin-1 is a specific MRP4/ABCC4 inhibitor with potential antileukemic activity. In this study, we evaluate the ability of ceefourin-1 alone or in combination with histamine, an approved antileukemic agent, to induce cell differentiation or apoptosis in human acute myeloid leukemic cells. We also examine ceefourin-1 toxicity in mice. METHODS U937, HL-60, and KG1a cells were used as models for human acute myeloid leukemia. Cyclic AMP efflux was estimated by measuring intracellular and extracellular cAMP levels. Cell differentiation was assessed by levels of CD14 and CD11b by FACS, and CD88 by western blot, and by cell morphology. Apoptosis was evaluated by cleavage of caspase-3 and PARP by western blot, and by annexin V binding assay. Subacute toxicity study of ceefourin-1 was carried out in BALB/c mice. RESULTS Ceefourin-1 inhibits cAMP exclusion in AML cells and promotes intracellular signaling via CREB. Ceefourin-1 leads AML cells to apoptosis and histamine potentiates this effect, without evidence of cell differentiation. Intraperitoneal administration of ceefourin-1 shows no important alterations in mice blood parameters, hepatic, and renal functions, nor signs of histologic damage. CONCLUSIONS These results show that ceefourin-1 promotes apoptosis in AML cells that is enhanced by histamine. GENERAL SIGNIFICANCE This work indicates that ceefourin-1 represents a promising molecule that could be used alone or in combination with histamine for in vivo evaluation in acute myeloid leukemia malignancies.
Collapse
Affiliation(s)
- Ana Sahores
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina; Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Angela Rodríguez González
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María May
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Gómez
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Monczor
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Fernández
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas, ININFA - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Shayo
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Mineiro R, Santos C, Gonçalves I, Lemos M, Cavaco JEB, Quintela T. Regulation of ABC transporters by sex steroids may explain differences in drug resistance between sexes. J Physiol Biochem 2023:10.1007/s13105-023-00957-1. [PMID: 36995571 DOI: 10.1007/s13105-023-00957-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
Drug efficacy is dependent on the pharmacokinetics and pharmacodynamics of therapeutic agents. Tight junctions, detoxification enzymes, and drug transporters, due to their localization on epithelial barriers, modulate the absorption, distribution, and the elimination of a drug. The epithelial barriers which control the pharmacokinetic processes are sex steroid hormone targets, and in this way, sex hormones may also control the drug transport across these barriers. Thus, sex steroids contribute to sex differences in drug resistance and have a relevant impact on the sex-related efficacy of many therapeutic drugs. As a consequence, for the further development and optimization of therapeutic strategies, the sex of the individuals must be taken into consideration. Here, we gather and discuss the evidence about the regulation of ATP-binding cassette transporters by sex steroids, and we also describe the signaling pathways by which sex steroids modulate ATP-binding cassette transporters expression, with a focus in the most important ATP-binding cassette transporters involved in multidrug resistance.
Collapse
Affiliation(s)
- Rafael Mineiro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Cecília Santos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Manuel Lemos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - José Eduardo B Cavaco
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal.
- UDI-IPG-Unidade de Investigação Para o Desenvolvimento Do Interior, Instituto Politécnico da Guarda, Guarda, Portugal.
| |
Collapse
|
15
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
16
|
Fu H, Nicolet D, Mrózek K, Stone RM, Eisfeld A, Byrd JC, Archer KJ. Controlled variable selection in Weibull mixture cure models for high-dimensional data. Stat Med 2022; 41:4340-4366. [PMID: 35792553 PMCID: PMC9545322 DOI: 10.1002/sim.9513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 12/03/2022]
Abstract
Medical breakthroughs in recent years have led to cures for many diseases. The mixture cure model (MCM) is a type of survival model that is often used when a cured fraction exists. Many have sought to identify genomic features associated with a time-to-event outcome which requires variable selection strategies for high-dimensional spaces. Unfortunately, currently few variable selection methods exist for MCMs especially when there are more predictors than samples. This study develops high-dimensional penalized Weibull MCMs, which allow for identification of prognostic factors associated with both cure status and/or survival. We demonstrated how such models may be estimated using two different iterative algorithms. The model-X knockoffs method was combined with these algorithms to control the false discovery rate (FDR) in variable selection. Through extensive simulation studies, our penalized MCMs have been shown to outperform alternative methods on multiple metrics and achieve high statistical power with FDR being controlled. In an acute myeloid leukemia (AML) application with gene expression data, our proposed approach identified 14 genes associated with potential cure and 12 genes with time-to-relapse, which may help inform treatment decisions for AML patients.
Collapse
Affiliation(s)
- Han Fu
- Division of BiostatisticsCollege of Public Health, The Ohio State UniversityColumbusOhioUSA
| | - Deedra Nicolet
- Clara D. Bloomfield Center for Leukemia Outcomes ResearchThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
- Alliance Statistics and Data Management CenterThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Krzysztof Mrózek
- Clara D. Bloomfield Center for Leukemia Outcomes ResearchThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Richard M. Stone
- Dana‐Farber/Partners CancerHarvard UniversityBostonMassachusettsUSA
| | - Ann‐Kathrin Eisfeld
- Clara D. Bloomfield Center for Leukemia Outcomes ResearchThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - John C. Byrd
- Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Kellie J. Archer
- Division of BiostatisticsCollege of Public Health, The Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
17
|
Zhang X, Zhao H, Li Y, Zhang Y, Liang Y, Shi J, Zhou R, Hong L, Cai G, Wu Z, Li Z. Amphiregulin Supplementation During Pig Oocyte In Vitro Maturation Enhances Subsequent Development of Cloned Embryos by Promoting Cumulus Cell Proliferation. Cell Reprogram 2022; 24:175-185. [PMID: 35861708 DOI: 10.1089/cell.2022.0015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The oocyte in vitro maturation (IVM) technique is important in animal husbandry, biomedicine, and human-assisted reproduction. However, the developmental potential of in vitro matured oocytes is usually lower than that of in vivo matured (IVVM) oocytes. Amphiregulin (AREG) is an EGF-like growth factor that plays critical roles in the maturation and development of mammalian oocytes. This study investigated the effects of AREG supplementation during pig oocyte IVM on the subsequent development of cloned embryos. The addition of AREG to pig oocyte IVM medium improved the developmental competence of treated oocyte-derived cloned embryos by enhancing the expansion and proliferation of cumulus cells (CCs) during IVM. The positive effect of AREG on enhancing the quality of IVVM pig oocytes might be due to the activation of proliferation-related pathways in CCs by acting on the AREG receptor. The present study provides an AREG treatment-based method to improve the developmental competence of cloned pig embryos.
Collapse
Affiliation(s)
- Xianjun Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Huaxing Zhao
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yanan Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yuxing Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yalin Liang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Junsong Shi
- Guangdong Wens Pig Breeding Technology Co., Ltd., Yunfu, China
| | - Rong Zhou
- Guangdong Wens Pig Breeding Technology Co., Ltd., Yunfu, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Moon Y, Chae S, Yim S, Yang EG, Choe J, Hyun J, Chang R, Hwang D, Park H. Clioquinol as an inhibitor of JmjC-histone demethylase exhibits common and unique histone methylome and transcriptome between clioquinol and hypoxia. iScience 2022; 25:104517. [PMID: 35754713 PMCID: PMC9218365 DOI: 10.1016/j.isci.2022.104517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 04/08/2022] [Accepted: 05/17/2022] [Indexed: 11/27/2022] Open
Abstract
Clioquinol (CQ) is a hypoxic mimicker to activate hypoxia-inducible factor-1α (HIF-1α) by inhibiting HIF-1α specific asparaginyl hypoxylase (FIH-1). The structural similarity of the Jumonji C (JmjC) domain between FIH-1 and JmjC domain-containing histone lysine demethylases (JmjC-KDMs) led us to investigate whether CQ could inhibit the catalytic activities of JmjC-KDMs. Herein, we showed that CQ inhibits KDM4A/C, KDM5A/B, and KDM6B and affects H3K4me3, H3K9me3, and H3K27me3 marks, respectively. An integrative analysis of the histone methylome and transcriptome data revealed that CQ-mediated JmjC-KDM inhibition altered the transcription of target genes through differential combinations of KDMs and transcription factors. Notably, functional enrichment of target genes showed that CQ and hypoxia commonly affected the response to hypoxia, VEGF signaling, and glycolysis, whereas CQ uniquely altered apoptosis/autophagy and cytoskeleton/extracellular matrix organization. Our results suggest that CQ can be used as a JmjC-KDM inhibitor, HIF-α activator, and an alternative therapeutic agent in hypoxia-based diseases. Both hypoxia and clioquinol (CQ) inhibit histone lysine demethylases (KDMs) CQ affects H3K4me3, H3K9me3, and H3K27me3 marks upon inhibition CQ treatment-induced histone methylome changes affect target gene transcription Histone methylome predicts TFs underlying transcription of CQ target genes
Collapse
Affiliation(s)
- Yunwon Moon
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Sehyun Chae
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea
| | - Sujin Yim
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Eun Gyeong Yang
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jungwoo Choe
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea.,Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea
| | - Jiyeon Hyun
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea
| | - Rakwoo Chang
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunsung Park
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea.,Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea
| |
Collapse
|
19
|
Specific MRP4 Inhibitor Ceefourin-1 Enhances Apoptosis Induced by 6-Mercaptopurine in Jurkat Leukemic Cells, but Not in Normal Lymphoblast Cell Line CRL-1991. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58060695. [PMID: 35743958 PMCID: PMC9227748 DOI: 10.3390/medicina58060695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022]
Abstract
Background and objectives: The multidrug resistance protein 4 (MRP4) is a member of the ABC transporter, which has been extensively related to many types of cancer including leukemia. MRP4 overexpression and activity over the efflux of some chemotherapeutic drugs are the main causes of chemoresistance. 6-mercaptopurine (6-MP) is a chemotherapeutic drug widely used in the consolidation and maintenance phases of leukemia treatment. However, 6-MP is a substrate of MRP4, which decreases its chemotherapeutic efficacy. Current research is focused on the development of MRP4 inhibitors to combat chemoresistance by allowing the accumulation of the drug substrates inside the cells. To date, the only specific MRP4 inhibitor that has been developed is ceefourin-1, which has been reported to inhibit MRP4 in many cancer cells and which makes it an excellent candidate to enhance the activity of 6-MP in a combined treatment in vitro of leukemic cells. Materials and methods: in the present work, we determined the enhancing activity of ceefourin-1 on the antiproliferative and apoptotic effect of 6-MP in leukemic Jurkat cells by trypan blue assay and flow cytometry. Besides, we determined the 6-MP and ceefourin-1 binding sites into MRP4 by molecular docking and molecular dynamics. Results: ceefourin-1 enhanced the apoptotic activity of 6-MP in Jurkat cells, while in CRL-1991 cells both antiproliferative and apoptotic effect were significantly lower. Ceefourin-1 additively cooperates with 6-MP to induce apoptosis in leukemic cells, but normal lymphoblast CRl-1991 showed resistance to both drugs. Conclusion: ceefourin-1 and 6-MP cooperates to trigger apoptosis in leukemic Jurkat cells, but the full mechanism needs to be elucidated in further works. In addition, our perspective is to test the cooperation between ceefourin-1 and 6-MP in samples from patients and healthy donnors.
Collapse
|
20
|
Cyclic Nucleotide (cNMP) Analogues: Past, Present and Future. Int J Mol Sci 2021; 22:ijms222312879. [PMID: 34884683 PMCID: PMC8657615 DOI: 10.3390/ijms222312879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Cyclic nucleotides are important second messengers involved in cellular events, and analogues of this type of molecules are promising drug candidates. Some cyclic nucleotide analogues have become standard tools for the investigation of biochemical and physiological signal transduction pathways, such as the Rp-diastereomers of adenosine and guanosine 3′,5′-cyclic monophosphorothioate, which are competitive inhibitors of cAMP- and cGMP-dependent protein kinases. Next generation analogues exhibit a higher membrane permeability, increased resistance against degradation, and improved target specificity, or are caged or photoactivatable for fast and/or targeted cellular imaging. Novel specific nucleotide analogues activating or inhibiting cyclic nucleotide-dependent ion channels, EPAC/GEF proteins, and bacterial target molecules have been developed, opening new avenues for basic and applied research. This review provides an overview of the current state of the field, what can be expected in the future and some practical considerations for the use of cyclic nucleotide analogues in biological systems.
Collapse
|
21
|
Sarasola MDLP, Táquez Delgado MA, Nicoud MB, Medina VA. Histamine in cancer immunology and immunotherapy. Current status and new perspectives. Pharmacol Res Perspect 2021; 9:e00778. [PMID: 34609067 PMCID: PMC8491460 DOI: 10.1002/prp2.778] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of death globally and its incidence and mortality are rapidly increasing worldwide. The dynamic interaction of immune cells and tumor cells determines the clinical outcome of cancer. Immunotherapy comes to the forefront of cancer treatments, resulting in impressive and durable responses but only in a fraction of patients. Thus, understanding the characteristics and profiles of immune cells in the tumor microenvironment (TME) is a necessary step to move forward in the design of new immunomodulatory strategies that can boost the immune system to fight cancer. Histamine produces a complex and fine-tuned regulation of the phenotype and functions of the different immune cells, participating in multiple regulatory responses of the innate and adaptive immunity. Considering the important actions of histamine-producing immune cells in the TME, in this review we first address the most important immunomodulatory roles of histamine and histamine receptors in the context of cancer development and progression. In addition, this review highlights the current progress and foundational developments in the field of cancer immunotherapy in combination with histamine and pharmacological compounds targeting histamine receptors.
Collapse
Affiliation(s)
- María de la Paz Sarasola
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mónica A Táquez Delgado
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Melisa B Nicoud
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Vanina A Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
22
|
Akanuma SI, Hashimoto K, Yoshida Y, Kubo Y, Hosoya KI. Inflammation-Induced Attenuation of Prostaglandin D 2 Elimination across Rat Blood-Brain Barrier: Involvement of the Downregulation of Organic Anion Transporter 3 and Multidrug Resistance-Associated Protein 4. Biol Pharm Bull 2021; 43:1669-1677. [PMID: 33132311 DOI: 10.1248/bpb.b20-00388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostaglandin (PG) D2 is a lipid mediator, and in the brain, overproduction of PGD2 is reportedly involved in the progression and exacerbation of neuroinflammation. The objective of this study was to elucidate PGD2 efflux transport, under normal and inflammatory conditions, across the blood-brain barrier (BBB), which is formed by brain capillaries. Elimination of [3H]PGD2 across the BBB of normal and lipopolysaccharide (LPS)-induced inflammatory rats was examined by the intracerebral microinjection technique. After intracerebral injection, the percentage of [3H]PGD2 remaining in the ipsilateral cerebrum decreased with time, with a half-life of 13 min. This [3H]PGD2 elimination across the BBB was significantly inhibited by the co-administration of unlabeled PGD2, which suggests carrier-mediated PGD2 efflux transport at the BBB. In isolated rat brain capillaries, mRNA expression of organic anion transporter (Oat) 3, organic anion-transporting polypeptide (Oatp) 1a4, and multidrug resistance-associated protein (Mrp) 4 was observed. In addition, co-administration of substrates/inhibitors for Oat3, Oatp1a4, and/or Mrp4, such as benzylpenicillin and cefmetazole, reduced [3H]PGD2 elimination across the BBB. Data suggest that Oat3 and Mrp4, but not Oatp1a4 are involved in PGD2 elimination across the BBB, as Oatp1a4-expressing Xenopus (X.) oocytes did not show the significant [3H]PGD2 uptake compared with water-injected X. oocytes. In LPS-treated rats, [3H]PGD2 elimination across the BBB and mRNA expression levels of Oat3 and Mrp4 were significantly decreased. Our data suggest that Oat3- and Mrp4-mediated PGD2 elimination across the BBB is attenuated under inflammatory conditions.
Collapse
Affiliation(s)
- Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Kahori Hashimoto
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Yukiko Yoshida
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Yoshiyuki Kubo
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
23
|
Monte N, Pantoja KBCC, Rodrigues JCG, de Carvalho DC, Azevedo TCB, Pereira EEB, de Assumpção PP, Dos Santos SEB, Fernandes MR, Dos Santos NPC. Polymorphisms in the CYP2A6 and ABCC4 genes are associated with a protective effect on chronic myeloid leukemia in the Brazilian Amazon population. Mol Genet Genomic Med 2021; 9:e1694. [PMID: 34050721 PMCID: PMC8372092 DOI: 10.1002/mgg3.1694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/11/2021] [Accepted: 04/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Susceptibility to Chronic Myeloid Leukemia (CML) may be modulated by genetic variables. However, the majority of previous investigations have focused on genetically homogeneous populations, resulting in a lack of evidence on how genetic factors may influence the development of CML in miscegenated populations. We analyzed 30 polymorphisms in genes related to DNA repair, folate metabolism, transmembrane transport, xenobiotic metabolism, and pyrimidine synthesis in relation to their potential role in the susceptibility of the individual to CML. METHODS This case-control study included 126 healthy individuals and 143 patients diagnosed with CML from the admixed population of the Brazilian Amazon. The samples were genotyped by real-time PCR and the genetic ancestry analysis was based on a panel of 61 ancestry informative markers. RESULTS The results indicated a protective effect against the development of CML in carriers of the C allele of the rs28399433 (CYP2A6) gene and the CC genotype of the rs3742106 (ABCC4) gene. CONCLUSION Our findings suggest that the rs3742106 (ABCC4) and rs28399433 (CYP2A6) polymorphisms may modulate susceptibility to CML in a population of the Brazilian Amazon region.
Collapse
Affiliation(s)
- Natasha Monte
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, Brazil
| | - Karla B C C Pantoja
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, Brazil
| | - Juliana C G Rodrigues
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, Brazil
| | - Darlen C de Carvalho
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, Brazil
| | | | - Esdras E B Pereira
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, Brazil
| | - Paulo P de Assumpção
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, Brazil
| | - Sidney E B Dos Santos
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, Brazil
| | - Marianne R Fernandes
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, Brazil.,Departamento de Oncohematologia, Hospital Ophir Loyola, Belém, Brazil
| | - Ney P C Dos Santos
- Núcleo de Pesquisas em Oncologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Unidade de Alta Complexidade em Oncologia, Belém, Brazil
| |
Collapse
|
24
|
Kreutzer D, Döring H, Werner P, Ritter CA, Hilgeroth A. Novel Symmetrical Cage Compounds as Inhibitors of the Symmetrical MRP4-Efflux Pump for Anticancer Therapy. Int J Mol Sci 2021; 22:5098. [PMID: 34065900 PMCID: PMC8150856 DOI: 10.3390/ijms22105098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Within the last decades cancer treatment improved by the availability of more specifically acting drugs that address molecular target structures in cancer cells. However, those target-sensitive drugs suffer from ongoing resistances resulting from mutations and moreover they are affected by the cancer phenomenon of multidrug resistance. A multidrug resistant cancer can hardly be treated with the common drugs, so that there have been long efforts to develop drugs to combat that resistance. Transmembrane efflux pumps are the main cause of the multidrug resistance in cancer. Early inhibitors disappointed in cancer treatment without a proof of expression of a respective efflux pump. Recent studies in efflux pump expressing cancer show convincing effects of those inhibitors. Based on the molecular symmetry of the efflux pump multidrug resistant protein (MRP) 4 we synthesized symmetric inhibitors with varied substitution patterns. They were evaluated in a MRP4-overexpressing cancer cell line model to prove structure-dependent effects on the inhibition of the efflux pump activity in an uptake assay of a fluorescent MRP4 substrate. The most active compound was tested to resentisize the MRP4-overexpressing cell line towards a clinically relevant anticancer drug as proof-of-principle to encourage for further preclinical studies.
Collapse
Affiliation(s)
- David Kreutzer
- Research Group of Drug Development, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (D.K.); (H.D.); (P.W.)
| | - Henry Döring
- Research Group of Drug Development, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (D.K.); (H.D.); (P.W.)
| | - Peter Werner
- Research Group of Drug Development, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (D.K.); (H.D.); (P.W.)
| | - Christoph A. Ritter
- Department of Clinical Pharmacy, Institute of Pharmacy, Ernst Moritz Arndt University Greifswald, 17489 Greifswald, Germany;
| | - Andreas Hilgeroth
- Research Group of Drug Development, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (D.K.); (H.D.); (P.W.)
| |
Collapse
|
25
|
Regulation of MRP4 Expression by circHIPK3 via Sponging miR-124-3p/miR-4524-5p in Hepatocellular Carcinoma. Biomedicines 2021; 9:biomedicines9050497. [PMID: 33946595 PMCID: PMC8147194 DOI: 10.3390/biomedicines9050497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Multidrug resistance-associated protein 4 (MRP4), a member of the adenosine triphosphate (ATP) binding cassette transporter family, pumps various molecules out of the cell and is involved in cell communication and drug distribution. Several studies have reported the role of miRNAs in downregulating the expression of MRP4. However, regulation of MRP4 by circular RNA (circRNA) is yet to be elucidated. In this study, MRP4 was significantly upregulated in hepatocellular carcinoma (HCC) tissues compared to the adjacent noncancerous tissues. Computational prediction, luciferase reporter assay and miRNA transfection were used to investigate the interaction between miRNAs and MRP4. miR-124-3p and miR-4524-5p reduced the expression of MRP4 at the protein but not mRNA level. Circular RNA in vivo precipitation and luciferase reporter assays demonstrated that circHIPK3, as a competitive endogenous RNA, binds with miR-124-3p and miR-4524-5p. Further, knockdown of circHIPK3 resulted in downregulation of MRP4 protein, whereas cotransfection of circHIPK3-siRNA and miR-124-3p or miR-4524-5p inhibitors restored its expression. In conclusion, we report that miR-4524-5p downregulates the expression of MRP4 and circHIPK3 regulates MRP4 expression by sponging miR-124-3p and miR-4524-5p for the first time. Our results may provide novel insights into the prevention of MRP4-related proliferation and multiple drug resistance in HCC.
Collapse
|
26
|
Becerra E, Aguilera-Durán G, Berumen L, Romo-Mancillas A, García-Alcocer G. Study of Endogen Substrates, Drug Substrates and Inhibitors Binding Conformations on MRP4 and Its Variants by Molecular Docking and Molecular Dynamics. Molecules 2021; 26:1051. [PMID: 33671368 PMCID: PMC7922701 DOI: 10.3390/molecules26041051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Multidrug resistance protein-4 (MRP4) belongs to the ABC transporter superfamily and promotes the transport of xenobiotics including drugs. A non-synonymous single nucleotide polymorphisms (nsSNPs) in the ABCC4 gene can promote changes in the structure and function of MRP4. In this work, the interaction of certain endogen substrates, drug substrates, and inhibitors with wild type-MRP4 (WT-MRP4) and its variants G187W and Y556C were studied to determine differences in the intermolecular interactions and affinity related to SNPs using protein threading modeling, molecular docking, all-atom, coarse grained, and umbrella sampling molecular dynamics simulations (AA-MDS and CG-MDS, respectively). The results showed that the three MRP4 structures had significantly different conformations at given sites, leading to differences in the docking scores (DS) and binding sites of three different groups of molecules. Folic acid (FA) had the highest variation in DS on G187W concerning WT-MRP4. WT-MRP4, G187W, Y556C, and FA had different conformations through 25 ns AA-MD. Umbrella sampling simulations indicated that the Y556C-FA complex was the most stable one with or without ATP. In Y556C, the cyclic adenosine monophosphate (cAMP) and ceefourin-1 binding sites are located out of the entrance of the inner cavity, which suggests that both cAMP and ceefourin-1 may not be transported. The binding site for cAMP and ceefourin-1 is quite similar and the affinity (binding energy) of ceefourin-1 to WT-MRP4, G187W, and Y556C is greater than the affinity of cAMP, which may suggest that ceefourin-1 works as a competitive inhibitor. In conclusion, the nsSNPs G187W and Y556C lead to changes in protein conformation, which modifies the ligand binding site, DS, and binding energy.
Collapse
Affiliation(s)
- Edgardo Becerra
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (E.B.); (G.A.-D.)
- Centro Universitario, Unidad de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico;
| | - Giovanny Aguilera-Durán
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico; (E.B.); (G.A.-D.)
- Centro Universitario, Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
| | - Laura Berumen
- Centro Universitario, Unidad de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico;
| | - Antonio Romo-Mancillas
- Centro Universitario, Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
| | - Guadalupe García-Alcocer
- Centro Universitario, Unidad de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico;
| |
Collapse
|
27
|
Döring H, Kreutzer D, Ritter C, Hilgeroth A. Discovery of Novel Symmetrical 1,4-Dihydropyridines as Inhibitors of Multidrug-Resistant Protein (MRP4) Efflux Pump for Anticancer Therapy. Molecules 2020; 26:molecules26010018. [PMID: 33375210 PMCID: PMC7793087 DOI: 10.3390/molecules26010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022] Open
Abstract
Despite the development of targeted therapies in cancer, the problem of multidrug resistance (MDR) is still unsolved. Most patients with metastatic cancer die from MDR. Transmembrane efflux pumps as the main cause of MDR have been addressed by developed inhibitors, but early inhibitors of the most prominent and longest known efflux pump P-glycoprotein (P-gp) were disappointing. Those inhibitors have been used without knowledge about the expression of P-gp by the treated tumor. Therefore the use of inhibitors of transmembrane efflux pumps in clinical settings is reconsidered as a promising strategy in the case of the respective efflux pump expression. We discovered novel symmetric inhibitors of the symmetric efflux pump MRP4 encoded by the ABCC4 gene. MRP4 is involved in many kinds of cancer with resistance to anticancer drugs. All compounds showed better activities than the best known MRP4 inhibitor MK571 in an MRP4-overexpressing cell line assay, and the activities could be related to the various substitution patterns of aromatic residues within the symmetric molecular framework. One of the best compounds was demonstrated to overcome the MRP4-mediated resistance in the cell line model to restore the anticancer drug sensitivity as a proof of concept.
Collapse
Affiliation(s)
- Henry Döring
- Research Group of Drug Development, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (H.D.); (D.K.)
| | - David Kreutzer
- Research Group of Drug Development, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (H.D.); (D.K.)
| | - Christoph Ritter
- Department of Clinical Pharmacy, Institute of Pharmacy, Ernst Moritz Arndt University Greifswald, 17489 Greifswald, Germany;
| | - Andreas Hilgeroth
- Research Group of Drug Development, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; (H.D.); (D.K.)
- Correspondence: ; Tel.: +49-345-55-25168
| |
Collapse
|
28
|
Roles of ABCC1 and ABCC4 in Proliferation and Migration of Breast Cancer Cell Lines. Int J Mol Sci 2020; 21:ijms21207664. [PMID: 33081264 PMCID: PMC7589126 DOI: 10.3390/ijms21207664] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
ABCC1 and ABCC4 utilize energy from ATP hydrolysis to transport many different molecules, including drugs, out of the cell and, as such, have been implicated in causing drug resistance. However recently, because of their ability to transport signaling molecules and inflammatory mediators, it has been proposed that ABCC1 and ABCC4 may play a role in the hallmarks of cancer development and progression, independent of their drug efflux capabilities. Breast cancer is the most common cancer affecting women. In this study, the aim was to investigate whether ABCC1 or ABCC4 play a role in the proliferation or migration of breast cancer cell lines MCF-7 (luminal-type, receptor-positive) and MDA-MB-231 (basal-type, triple-negative). The effects of small molecule inhibitors or siRNA-mediated knockdown of ABCC1 or ABCCC4 were measured. Colony formation assays were used to assess the clonogenic capacity, MTT assays to measure the proliferation, and scratch assays and Transwell assays to monitor the cellular migration. The results showed a role for ABCC1 in cellular proliferation, whilst ABCC4 appeared to be more important for cellular migration. ELISA studies implicated cAMP and/or sphingosine-1-phosphate efflux in the mechanism by which these transporters mediate their effects. However, this needs to be investigated further, as it is key to understand the mechanisms before they can be considered as targets for treatment.
Collapse
|
29
|
Multidrug transporter MRP4/ABCC4 as a key determinant of pancreatic cancer aggressiveness. Sci Rep 2020; 10:14217. [PMID: 32848164 PMCID: PMC7450045 DOI: 10.1038/s41598-020-71181-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Recent findings show that MRP4 is critical for pancreatic ductal adenocarcinoma (PDAC) cell proliferation. Nevertheless, the significance of MRP4 protein levels and function in PDAC progression is still unclear. The aim of this study was to determine the role of MRP4 in PDAC tumor aggressiveness. Bioinformatic studies revealed that PDAC samples show higher MRP4 transcript levels compared to normal adjacent pancreatic tissue and circulating tumor cells express higher levels of MRP4 than primary tumors. Also, high levels of MRP4 are typical of high-grade PDAC cell lines and associate with an epithelial-mesenchymal phenotype. Moreover, PDAC patients with high levels of MRP4 depict dysregulation of pathways associated with migration, chemotaxis and cell adhesion. Silencing MRP4 in PANC1 cells reduced tumorigenicity and tumor growth and impaired cell migration. Transcriptomic analysis revealed that MRP4 silencing alters PANC1 gene expression, mainly dysregulating pathways related to cell-to-cell interactions and focal adhesion. Contrarily, MRP4 overexpression significantly increased BxPC-3 growth rate, produced a switch in the expression of EMT markers, and enhanced experimental metastatic incidence. Altogether, our results indicate that MRP4 is associated with a more aggressive phenotype in PDAC, boosting pancreatic tumorigenesis and metastatic capacity, which could finally determine a fast tumor progression in PDAC patients.
Collapse
|
30
|
Chinn AM, Insel PA. Cyclic AMP in dendritic cells: A novel potential target for disease-modifying agents in asthma and other allergic disorders. Br J Pharmacol 2020; 177:3363-3377. [PMID: 32372523 DOI: 10.1111/bph.15095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Allergic diseases are immune disorders that are a global health problem, affecting a large portion of the world's population. Allergic asthma is a heterogeneous disease that alters the biology of the airway. A substantial portion of patients with asthma do not respond to conventional therapies; thus, new and effective therapeutics are needed. Dendritic cells (DCs), antigen presenting cells that regulate helper T cell differentiation, are key drivers of allergic inflammation but are not the target of current therapies. Here we review the role of dendritic cells in allergic conditions and propose a disease-modifying strategy for treating allergic asthma: cAMP-mediated inhibition of dendritic cells to blunt allergic inflammation. This approach contrasts with current treatments that focus on treating clinical manifestations of airway inflammation. Disease-modifying agents that target cAMP and its signalling pathway in dendritic cells may provide a novel means to treat asthma and other allergic diseases.
Collapse
Affiliation(s)
- Amy M Chinn
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
31
|
Colavita JPM, Todaro JS, de Sousa M, May M, Gómez N, Yaneff A, Di Siervi N, Aguirre MV, Guijas C, Ferrini L, Davio C, Rodríguez JP. Multidrug resistance protein 4 (MRP4/ABCC4) is overexpressed in clear cell renal cell carcinoma (ccRCC) and is essential to regulate cell proliferation. Int J Biol Macromol 2020; 161:836-847. [PMID: 32553977 DOI: 10.1016/j.ijbiomac.2020.06.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
Kidney cancer accounts for 2.5% of all cancers, with an annual global incidence of almost 300,000 cases leading to 111,000 deaths. Approximately 85% of kidney tumors are renal cell carcinoma (RCC) and their major histologic subtype is clear cell renal cell carcinoma (ccRCC). Although new therapeutic treatments are being designed and applied based on the combination of tyrosine kinase inhibitors and immunotherapy, no major impact on the mortality has been reported so far. MRP4 is a pump efflux that transporters multiple endogenous and exogenous substances. Recently it has been associated with tumoral persistence and cell proliferation in several types of cancer including pancreas, lung, ovary, colon, ostesarcoma, etc. Herein, we demonstrate for the first time, that MRP4 is overexpressed in ccRCC tumors, compared to control renal tissues. In addition, using cell culture models, we observed that MRP4 pharmacological inhibition produces an imbalance in cAMP metabolism, induces cell arrest, changes in lipid composition, increase in cytoplasmic lipid droplets and finally apoptosis. These data provide solid evidence for the future evaluation of MRP4 as a possible new therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Juan Pablo Melana Colavita
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del NEA, (IQUIBA NEA-UNNE-CONICET), Facultad de Medicina, Universidad Nacional del Nordeste, 3400 Corrientes, Argentina
| | - Juan Santiago Todaro
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del NEA, (IQUIBA NEA-UNNE-CONICET), Facultad de Medicina, Universidad Nacional del Nordeste, 3400 Corrientes, Argentina
| | - Maximiliano de Sousa
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1000 Buenos Aires, Argentina
| | - María May
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1000 Buenos Aires, Argentina
| | - Natalia Gómez
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1000 Buenos Aires, Argentina
| | - Agustin Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1000 Buenos Aires, Argentina
| | - Nicolas Di Siervi
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1000 Buenos Aires, Argentina
| | - María Victoria Aguirre
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del NEA, (IQUIBA NEA-UNNE-CONICET), Facultad de Medicina, Universidad Nacional del Nordeste, 3400 Corrientes, Argentina
| | - Carlos Guijas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain
| | - Leandro Ferrini
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1000 Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1000 Buenos Aires, Argentina
| | - Juan Pablo Rodríguez
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del NEA, (IQUIBA NEA-UNNE-CONICET), Facultad de Medicina, Universidad Nacional del Nordeste, 3400 Corrientes, Argentina.
| |
Collapse
|
32
|
Rodríguez González A, Sahores A, Díaz-Nebreda A, Yaneff A, Di Siervi N, Gómez N, Monczor F, Fernández N, Davio C, Shayo C. MRP4/ABCC4 expression is regulated by histamine in acute myeloid leukemia cells, determining cAMP efflux. FEBS J 2020; 288:229-243. [PMID: 32333821 DOI: 10.1111/febs.15344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/02/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Intracellular cAMP (i-cAMP) levels play an important role in acute myeloid leukemia (AML) cell proliferation and differentiation. Its levels are the result of cAMP production, degradation, and exclusion. We have previously described histamine H2 receptors and MRP4/ABCC4 as two potential targets for AML therapy. Acting through histamine H2 receptors, histamine increases cAMP production/synthesis, while MRP4/ABCC4 is responsible for the exclusion of this cyclic nucleotide. In this study, we show that histamine treatment induces MRP4/ABCC4 expression, augmenting cAMP efflux, and that histamine, in combination with MRP inhibitors, is able to reduce AML cell proliferation. Histamine, through histamine H2 receptor, increases i-cAMP levels and induces MRP4 transcript and protein levels in U937, KG1a, and HL-60 cells. Moreover, histamine induces MRP4 promoter activity in HEK293T cells transfected with histamine H2 receptor (HEK293T-H2 R). Our results support that the cAMP/Epac-PKA pathway, and not MEK/ERK nor PI3K/AKT signaling cascades, is involved in histamine-mediated upregulation of MRP4 levels. Finally, the addition of histamine potentiates the inhibition of U937, KG1a, and HL-60 cell proliferation induced by MRP4 inhibitors. Our data highlight that the use of a poly-pharmacological approach aimed at different molecular targets would be beneficial in AML treatment.
Collapse
Affiliation(s)
| | - Ana Sahores
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Antonela Díaz-Nebreda
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Nicolás Di Siervi
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Natalia Gómez
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Federico Monczor
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Natalia Fernández
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Carina Shayo
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
33
|
Jung M, Gao J, Cheung L, Bongers A, Somers K, Clifton M, Ramsay EE, Russell AJ, Valli E, Gifford AJ, George J, Kennedy CJ, Wakefield MJ, Topp M, Ho GY, Scott CL, Bowtell DD, deFazio A, Norris MD, Haber M, Henderson MJ. ABCC4/MRP4 contributes to the aggressiveness of Myc-associated epithelial ovarian cancer. Int J Cancer 2020; 147:2225-2238. [PMID: 32277480 DOI: 10.1002/ijc.33005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/15/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022]
Abstract
Epithelial ovarian cancer (EOC) is a complex disease comprising discrete histological and molecular subtypes, for which survival rates remain unacceptably low. Tailored approaches for this deadly heterogeneous disease are urgently needed. Efflux pumps belonging to the ATP-binding cassette (ABC) family of transporters are known for roles in both drug resistance and cancer biology and are also highly targetable. Here we have investigated the association of ABCC4/MRP4 expression to clinical outcome and its biological function in endometrioid and serous tumors, common histological subtypes of EOC. We found high expression of ABCC4/MRP4, previously shown to be directly regulated by c-Myc/N-Myc, was associated with poor prognosis in endometrioid EOC (P = .001) as well as in a subset of serous EOC with a "high-MYCN" profile (C5/proliferative; P = .019). Transient siRNA-mediated suppression of MRP4 in EOC cells led to reduced growth, migration and invasion, with the effects being most pronounced in endometrioid and C5-like serous cells compared to non-C5 serous EOC cells. Sustained knockdown of MRP4 also sensitized endometrioid cells to MRP4 substrate drugs. Furthermore, suppression of MRP4 decreased the growth of patient-derived EOC cells in vivo. Together, our findings provide the first evidence that MRP4 plays an important role in the biology of Myc-associated ovarian tumors and highlight this transporter as a potential therapeutic target for EOC.
Collapse
Affiliation(s)
- Moonsun Jung
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Australia, Kensington, New South Wales, Australia.,School of Women's and Children's Health, UNSW Australia, Kensington, New South Wales, Australia
| | - Jixuan Gao
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Australia, Kensington, New South Wales, Australia
| | - Leanna Cheung
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Australia, Kensington, New South Wales, Australia
| | - Angelika Bongers
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Australia, Kensington, New South Wales, Australia
| | - Klaartje Somers
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Australia, Kensington, New South Wales, Australia.,School of Women's and Children's Health, UNSW Australia, Kensington, New South Wales, Australia
| | - Molly Clifton
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Australia, Kensington, New South Wales, Australia
| | - Emma E Ramsay
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Australia, Kensington, New South Wales, Australia
| | - Amanda J Russell
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Australia, Kensington, New South Wales, Australia
| | - Emanuele Valli
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Australia, Kensington, New South Wales, Australia
| | - Andrew J Gifford
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Australia, Kensington, New South Wales, Australia.,Department of Anatomical Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Joshy George
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Catherine J Kennedy
- Department of Gynecological Oncology, Westmead Hospital and Centre for Cancer Research, The Westmead Millennium Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Matthew J Wakefield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Monique Topp
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Gwo-Yaw Ho
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | -
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Clare L Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - David D Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Anna deFazio
- Department of Gynecological Oncology, Westmead Hospital and Centre for Cancer Research, The Westmead Millennium Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Murray D Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Australia, Kensington, New South Wales, Australia.,School of Women's and Children's Health, UNSW Australia, Kensington, New South Wales, Australia.,University of New South Wales Centre for Childhood Cancer Research, UNSW Australia, Kensington, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Australia, Kensington, New South Wales, Australia.,School of Women's and Children's Health, UNSW Australia, Kensington, New South Wales, Australia
| | - Michelle J Henderson
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Australia, Kensington, New South Wales, Australia.,School of Women's and Children's Health, UNSW Australia, Kensington, New South Wales, Australia
| |
Collapse
|
34
|
Nigam SK, Bush KT, Bhatnagar V, Poloyac SM, Momper JD. The Systems Biology of Drug Metabolizing Enzymes and Transporters: Relevance to Quantitative Systems Pharmacology. Clin Pharmacol Ther 2020; 108:40-53. [PMID: 32119114 PMCID: PMC7292762 DOI: 10.1002/cpt.1818] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/12/2020] [Indexed: 12/19/2022]
Abstract
Quantitative systems pharmacology (QSP) has emerged as a transformative science in drug discovery and development. It is now time to fully rethink the biological functions of drug metabolizing enzymes (DMEs) and transporters within the framework of QSP models. The large set of DME and transporter genes are generally considered from the perspective of the absorption, distribution, metabolism, and excretion (ADME) of drugs. However, there is a growing amount of data on the endogenous physiology of DMEs and transporters. Recent studies—including systems biology analyses of “omics” data as well as metabolomics studies—indicate that these enzymes and transporters, which are often among the most highly expressed genes in tissues like liver, kidney, and intestine, have coordinated roles in fundamental biological processes. Multispecific DMEs and transporters work together with oligospecific and monospecific ADME proteins in a large multiorgan remote sensing and signaling network. We use the Remote Sensing and Signaling Theory (RSST) to examine the roles of DMEs and transporters in intratissue, interorgan, and interorganismal communication via metabolites and signaling molecules. This RSST‐based view is applicable to bile acids, uric acid, eicosanoids, fatty acids, uremic toxins, and gut microbiome products, among other small organic molecules of physiological interest. Rooting this broader perspective of DMEs and transporters within QSP may facilitate an improved understanding of fundamental biology, physiologically based pharmacokinetics, and the prediction of drug toxicities based upon the interplay of these ADME proteins with key pathways in metabolism and signaling. The RSST‐based view should also enable more tailored pharmacotherapy in the setting of kidney disease, liver disease, metabolic syndrome, and diabetes. We further discuss the pharmaceutical and regulatory implications of this revised view through the lens of systems physiology.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics and Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Kevin T Bush
- Departments of Pediatrics and Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Vibha Bhatnagar
- Department of Family Medicine and Public Health, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jeremiah D Momper
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
35
|
Perez DR, Sklar LA, Chigaev A, Matlawska-Wasowska K. Drug repurposing for targeting cyclic nucleotide transporters in acute leukemias - A missed opportunity. Semin Cancer Biol 2020; 68:199-208. [PMID: 32044470 DOI: 10.1016/j.semcancer.2020.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 02/03/2020] [Indexed: 02/08/2023]
Abstract
While current treatment regimens for acute leukemia can dramatically improve patient survival, there remains room for improvement. Due to its roles in cell differentiation, cell survival, and apoptotic signaling, modulation of the cyclic AMP (cAMP) pathway has provided a meaningful target in hematological malignancies. Several studies have demonstrated that gene expression profiles associated with increased pro-survival cAMP activity or downregulation of various pro-apoptotic factors associated with the cAMP pathway are apparent in acute leukemia patients. Previous work to increase leukemia cell intracellular cAMP focused on the use of cAMP analogs, stimulating cAMP production via transmembrane-associated adenylyl cyclases, or decreasing cAMP degradation by inhibiting phosphodiesterase activity. However, targeting cyclic nucleotide efflux by ATP-binding cassette (ABC) transporters represents an unexplored approach for modulation of intracellular cyclic nucleotide levels. Preliminary studies have shown that inhibition of cAMP efflux can stimulate leukemia cell differentiation, cell growth arrest, and apoptosis, indicating that targeting cAMP efflux may show promise for future therapeutic development. Furthermore, inhibition of cyclic nucleotide transporter activity may also contribute multiple anticancer benefits by reducing extracellular pro-survival signaling in malignant cells. Hence, several opportunities for drug repurposing may exist for targeting cyclic nucleotide transporters.
Collapse
Affiliation(s)
- Dominique R Perez
- Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - Larry A Sklar
- Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Alexandre Chigaev
- Department of Pathology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; Center for Molecular Discovery, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.
| | - Ksenia Matlawska-Wasowska
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA; Department of Pediatrics, Division of Hematology-Oncology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
36
|
Massari NA, Nicoud MB, Medina VA. Histamine receptors and cancer pharmacology: an update. Br J Pharmacol 2020; 177:516-538. [PMID: 30414378 PMCID: PMC7012953 DOI: 10.1111/bph.14535] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/26/2018] [Accepted: 10/23/2018] [Indexed: 12/25/2022] Open
Abstract
In the present review, we will discuss the recent advances in the understanding of the role of histamine and histamine receptors in cancer biology. The controversial role of the histaminergic system in different neoplasias including gastric, colorectal, oesophageal, oral, pancreatic, liver, lung, skin, blood and breast cancers will be reviewed. The expression of histamine receptor subtypes, with special emphasis on the histamine H4 receptor, in different cell lines and human tumours, the signal transduction pathways and the associated biological responses as well as the in vivo treatment of experimental tumours with pharmacological ligands will be described. The presented evidence demonstrates that histamine regulates cancer-associated biological processes during cancer development in multiple cell types, including neoplastic cells and cells in the tumour micro-environment. The outcome will depend on tumour cell type, the level of expression of histamine receptors, signal transduction associated with these receptors, tumour micro-environment and histamine metabolism, reinforcing the complexity of cancer disease. Findings show the pivotal role of H4 receptors in the development and progression of many types of cancers, and considering its immunomodulatory properties, the H4 receptor appears to be the most promising molecular therapeutic target for cancer treatment within the histamine receptor family. Furthermore, the H4 receptor is differentially expressed in tumours compared with normal tissues, and in most cancer types in which data are available, H4 receptor expression is associated with clinicopathological characteristics, suggesting that H4 receptors might represent a novel cancer biomarker. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Noelia A Massari
- Department of Immunology, School of Natural and Health SciencesNational University of Patagonia San Juan BoscoComodoro RivadaviaArgentina
| | - Melisa B Nicoud
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
| | - Vanina A Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
- Laboratory of Radioisotopes, School of Pharmacy and BiochemistryUniversity of Buenos AiresBuenos AiresArgentina
| |
Collapse
|
37
|
Wijaya J, Vo BT, Liu J, Xu B, Wu G, Wang Y, Peng J, Zhang J, Janke LJ, Orr BA, Yu J, Roussel MF, Schuetz JD. An ABC Transporter Drives Medulloblastoma Pathogenesis by Regulating Sonic Hedgehog Signaling. Cancer Res 2020; 80:1524-1537. [PMID: 31948942 DOI: 10.1158/0008-5472.can-19-2054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/05/2019] [Accepted: 01/07/2020] [Indexed: 01/22/2023]
Abstract
Mutations in Sonic hedgehog (SHH) signaling promote aberrant proliferation and tumor growth. SHH-medulloblastoma (MB) is among the most frequent brain tumors in children less than 3 years of age. Although key components of the SHH pathway are well-known, we hypothesized that new disease-modifying targets of SHH-MB might be identified from large-scale bioinformatics and systems biology analyses. Using a data-driven systems biology approach, we built a MB-specific interactome. The ATP-binding cassette transporter ABCC4 was identified as a modulator of SHH-MB. Accordingly, increased ABCC4 expression correlated with poor overall survival in patients with SHH-MB. Knockdown of ABCC4 expression markedly blunted the constitutive activation of the SHH pathway secondary to Ptch1 or Sufu insufficiency. In human tumor cell lines, ABCC4 knockdown and inhibition reduced full-length GLI3 levels. In a clinically relevant murine SHH-MB model, targeted ablation of Abcc4 in primary tumors significantly reduced tumor burden and extended the lifespan of tumor-bearing mice. These studies reveal ABCC4 as a potent SHH pathway regulator and a new candidate to target with the potential to improve SHH-MB therapy. SIGNIFICANCE: These findings identify ABCC4 transporter as a new target in SHH-MB, prompting the development of inhibitors or the repurporsing of existing drugs to target ABCC4.
Collapse
Affiliation(s)
- Juwina Wijaya
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - BaoHan T Vo
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jingjing Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Gang Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yao Wang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Junmin Peng
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, Tennessee.,Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, California
| | - Laura J Janke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
38
|
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Pharmacol Rev 2020; 72:152-190. [PMID: 31831519 DOI: 10.1124/pr.119.017897] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ria de Haas
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
39
|
The Prognostic Significance of PDE7B in Cytogenetically Normal Acute Myeloid Leukemia. Sci Rep 2019; 9:16991. [PMID: 31740742 PMCID: PMC6861270 DOI: 10.1038/s41598-019-53563-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is a malignant hematological disease in which nearly half have normal cytogenetics. We have tried to find some significant molecular markers for this part of the cytogenetic normal AML, which hopes to provide a benefit for the diagnosis, molecular typing and prognosis prediction of AML patients. In the present study, we calculated and compared the gene expression profiles of cytogenetically normal acute myeloid leukemia (CN-AML) patients in database of The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and dataset Vizome (a total of 632 CN-AML samples), and we have demonstrated a correlation between PDE7B gene and CN-AML. Then we proceeded to a survival analysis and prognostic risk analysis between the expression levels of PDE7B gene and CN-AML patients. The result showed that the event-free survival (EFS) and overall survival (OS) were significantly shorter in CN-AML patients with high PDE7B levels in each dataset. And we detected a significantly higher expression level of PDE7B in the leukemia stem cell (LSC) positive group. The Cox proportional hazards regression model showed that PDE7B is an independent risk predictor for CN-AML. All results indicate that PDE7B is an unfavorable prognostic factor for CN-AML.
Collapse
|
40
|
Hardy D, Bill RM, Rothnie AJ, Jawhari A. Stabilization of Human Multidrug Resistance Protein 4 (MRP4/ABCC4) Using Novel Solubilization Agents. SLAS DISCOVERY 2019; 24:1009-1017. [PMID: 31381456 PMCID: PMC6873219 DOI: 10.1177/2472555219867074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Membrane proteins (MPs) are important drug discovery targets for a wide range of diseases. However, elucidating the structure and function of native MP is notoriously challenging as their original structure has to be maintained once removed from the lipid bilayer. Conventionally, detergents have been used to solubilize MP with varying degrees of success concerning MP stability. To try to address this, new, more stabilizing agents have been developed, such as calixarene-based detergents and styrene-maleic acid (SMA) copolymer. Calixarene-based detergents exhibit enhanced solubilizing and stabilizing properties compared with conventional detergents, whereas SMA is able to extract MPs with their surrounding lipids, forming a nanodisc structure. Here we report a comparative study using classical detergents, calixarene-based detergents, and SMA to assess the solubilization and stabilization of the human ABC transporter MRP4 (multidrug resistance protein 4/ABCC4). We show that both SMA and calixarene-based detergents have a higher solubility efficiency (at least 80%) than conventional detergents, and show striking overstabilization features of MRP4 (up to 70 °C) with at least 30 °C stability improvement in comparison with the best conventional detergents. These solubilizing agents were successfully used to purify aggregate-free, homogenous and stable MRP4, with sevenfold higher yield for C4C7 calixarene detergent in comparison with SMA. This work paves the way to MRP4 structural and functional investigations and illustrates once more the high value of using calixarene-based detergent or SMA as versatile and efficient tools to study MP, and eventually enable drug discovery of challenging and highly druggable targets.
Collapse
Affiliation(s)
- David Hardy
- CALIXAR, Lyon, France.,Life & Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - Roslyn M Bill
- Life & Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - Alice J Rothnie
- Life & Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | | |
Collapse
|
41
|
Alonso CAI, Lottero-Leconte R, Luque GM, Vernaz ZJ, Di Siervi N, Gervasi MG, Buffone MG, Davio C, Perez-Martinez S. MRP4-mediated cAMP efflux is essential for mouse spermatozoa capacitation. J Cell Sci 2019; 132:jcs.230565. [PMID: 31253671 DOI: 10.1242/jcs.230565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
Mammalian spermatozoa must undergo biochemical and structural changes to acquire the capacity for fertilization, in a process known as capacitation. Activation of PKA enzymes is essential for capacitation, and thus cAMP levels are tightly regulated during this process. Previously, we demonstrated that during capacitation, bovine spermatozoa extrude cAMP through multidrug resistance-associated protein 4 (MRP4, also known as ABCC4), which regulates intracellular levels of the nucleotide and provides cAMP to the extracellular space. Here, we report the presence of functional MRP4 in murine spermatozoa, since its pharmacological inhibition with MK571 decreased levels of extracellular cAMP. This also produced a sudden increase in PKA activity, with decreased tyrosine phosphorylation at the end of capacitation. Blockade of MRP4 inhibited induction of acrosome reaction, hyperactivation and in vitro fertilization. Moreover, MRP4 inhibition generated an increase in Ca2+ levels mediated by PKA, and depletion of Ca2+ salts from the medium prevented the loss of motility and phosphotyrosine inhibition produced by MK571. These results were supported using spermatozoa from CatSper Ca2+ channel knockout mice. Taken together, these results suggest that cAMP efflux via MRP4 plays an essential role in mouse sperm capacitation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- C A I Alonso
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO) (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - R Lottero-Leconte
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO) (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - G M Luque
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - Z J Vernaz
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO) (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - N Di Siervi
- Instituto de Investigaciones Farmacológicas (ININFA) (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - M G Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - M G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - C Davio
- Instituto de Investigaciones Farmacológicas (ININFA) (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - S Perez-Martinez
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO) (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
42
|
Andermatten RB, Ciriaci N, Schuck VS, Di Siervi N, Razori MV, Miszczuk GS, Medeot AC, Davio CA, Crocenzi FA, Roma MG, Barosso IR, Sánchez Pozzi EJ. Sphingosine 1-phosphate receptor 2/adenylyl cyclase/protein kinase A pathway is involved in taurolithocholate-induced internalization of Abcc2 in rats. Arch Toxicol 2019; 93:2279-2294. [PMID: 31300867 DOI: 10.1007/s00204-019-02514-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/04/2019] [Indexed: 01/05/2023]
Abstract
Taurolithocholate (TLC) is a cholestatic bile salt that induces disinsertion of the canalicular transporter Abcc2 (Mrp2, multidrug resistance-associated protein 2). This internalization is mediated by different intracellular signaling proteins such as PI3K, PKCε and MARCK but the initial receptor of TLC remains unknown. A few G protein-coupled receptors interact with bile salts in hepatocytes. Among them, sphingosine-1 phosphate receptor 2 (S1PR2) represents a potential initial receptor for TLC. The aim of this study was to evaluate the role of this receptor and its downstream effectors in the impairment of Abcc2 function induced by TLC. In vitro, S1PR2 inhibition by JTE-013 or its knockdown by small interfering RNA partially prevented the decrease in Abcc2 activity induced by TLC. Moreover, adenylyl cyclase (AC)/PKA and PI3K/Akt inhibition partially prevented TLC effect on canalicular transporter function. TLC produced PKA and Akt activation, which were blocked by JTE-013 and AC inhibitors, connecting S1PR2/AC/PKA and PI3K/Akt in a same pathway. In isolated perfused rat liver, injection of TLC triggered endocytosis of Abcc2 that was accompanied by a sustained decrease in the bile flow and the biliary excretion of the Abcc2 substrate dinitrophenyl-glutathione until the end of the perfusion period. S1PR2 or AC inhibition did not prevent the initial decay, but they accelerated the recovery of these parameters and the reinsertion of Abcc2 into the canalicular membrane. In conclusion, S1PR2 and the subsequent activation of AC, PKA, PI3K and Akt is partially responsible for the cholestatic effects of TLC through sustained internalization of Abcc2.
Collapse
Affiliation(s)
- Romina Belén Andermatten
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Nadia Ciriaci
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Virginia Soledad Schuck
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Nicolás Di Siervi
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - María Valeria Razori
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Gisel Sabrina Miszczuk
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Anabela Carolina Medeot
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Carlos Alberto Davio
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Fernando Ariel Crocenzi
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Marcelo Gabriel Roma
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Ismael Ricardo Barosso
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina
| | - Enrique Juan Sánchez Pozzi
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Fisiología Experimental (IFISE) (CONICET-U.N.R.), Suipacha 570, S2002LRL, Rosario, Argentina.
| |
Collapse
|
43
|
Carozzo A, Yaneff A, Gómez N, Di Siervi N, Sahores A, Diez F, Attorresi AI, Rodríguez-González Á, Monczor F, Fernández N, Abba M, Shayo C, Davio C. Identification of MRP4/ABCC4 as a Target for Reducing the Proliferation of Pancreatic Ductal Adenocarcinoma Cells by Modulating the cAMP Efflux. Mol Pharmacol 2019; 96:13-25. [PMID: 31043460 DOI: 10.1124/mol.118.115444] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/17/2019] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer is one of the most lethal types of tumors with no effective therapy available; is currently the third leading cause of cancer in developed countries; and is predicted to become the second deadliest cancer in the United States by 2030. Due to the marginal benefits of current standard chemotherapy, the identification of new therapeutic targets is greatly required. Considering that cAMP pathway is commonly activated in pancreatic ductal adenocarcinoma (PDAC) and its premalignant lesions, we aim to investigate the multidrug resistance-associated protein 4 (MRP4)-dependent cAMP extrusion process as a cause of increased cell proliferation in human PDAC cell lines. Our results from in silico analysis indicate that MRP4 expression may influence PDAC patient outcome; thus, high MRP4 levels could be indicators of poor survival. In addition, we performed in vitro experiments and identified an association between higher MRP4 expression levels and more undifferentiated and malignant models of PDAC and cAMP extrusion capacity. We studied the antiproliferative effect and the overall cAMP response of three MRP4 inhibitors, probenecid, MK571, and ceefourin-1 in PDAC in vitro models. Moreover, MRP4-specific silencing in PANC-1 cells reduced cell proliferation (P < 0.05), whereas MRP4 overexpression in BxPC-3 cells significantly incremented their growth rate in culture (P < 0.05). MRP4 pharmacological inhibition or silencing abrogated cell proliferation through the activation of the cAMP/Epac/Rap1 signaling pathway. Also, extracellular cAMP reverted the antiproliferative effect of MRP4 blockade. Our data highlight the MRP4-dependent cAMP extrusion process as a key participant in cell proliferation, indicating that MRP4 could be an exploitable therapeutic target for PDAC. SIGNIFICANCE STATEMENT: ABCC4/MRP4 is the main transporter responsible for cAMP efflux. In this work, we show that MRP4 expression may influence PDAC patient outcome and identify an association between higher MRP4 expression levels and more undifferentiated and malignant in vitro models of PDAC. Findings prove the involvement of MRP4 in PDAC cell proliferation through a novel extracellular cAMP mitogenic pathway and further support MRP4 inhibition as a promising therapeutic strategy for PDAC treatment.
Collapse
Affiliation(s)
- Alejandro Carozzo
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Natalia Gómez
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Nicolás Di Siervi
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Ana Sahores
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Federico Diez
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Alejandra I Attorresi
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Ángela Rodríguez-González
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Federico Monczor
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Natalia Fernández
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Martín Abba
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Carina Shayo
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| |
Collapse
|
44
|
Yaneff A, Sahores A, Gómez N, Carozzo A, Shayo C, Davio C. MRP4/ABCC4 As a New Therapeutic Target: Meta-Analysis to Determine cAMP Binding Sites as a Tool for Drug Design. Curr Med Chem 2019; 26:1270-1307. [PMID: 29284392 DOI: 10.2174/0929867325666171229133259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/01/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023]
Abstract
MRP4 transports multiple endogenous and exogenous substances and is critical not only for detoxification but also in the homeostasis of several signaling molecules. Its dysregulation has been reported in numerous pathological disorders, thus MRP4 appears as an attractive therapeutic target. However, the efficacy of MRP4 inhibitors is still controversial. The design of specific pharmacological agents with the ability to selectively modulate the activity of this transporter or modify its affinity to certain substrates represents a challenge in current medicine and chemical biology. The first step in the long process of drug rational design is to identify the therapeutic target and characterize the mechanism by which it affects the given pathology. In order to develop a pharmacological agent with high specific activity, the second step is to systematically study the structure of the target and identify all the possible binding sites. Using available homology models and mutagenesis assays, in this review we recapitulate the up-to-date knowledge about MRP structure and aligned amino acid sequences to identify the candidate MRP4 residues where cyclic nucleotides bind. We have also listed the most relevant MRP inhibitors studied to date, considering drug safety and specificity for MRP4 in particular. This meta-analysis platform may serve as a basis for the future development of inhibitors of MRP4 cAMP specific transport.
Collapse
Affiliation(s)
- Agustín Yaneff
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Sahores
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Gómez
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Carozzo
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Shayo
- Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
45
|
Berthier J, Arnion H, Saint-Marcoux F, Picard N. Multidrug resistance-associated protein 4 in pharmacology: Overview of its contribution to pharmacokinetics, pharmacodynamics and pharmacogenetics. Life Sci 2019; 231:116540. [PMID: 31176778 DOI: 10.1016/j.lfs.2019.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023]
Abstract
MRP4 is an ABC membrane transporter involved in clinical outcomes as it is located in many tissues that manages the transport and the elimination of many drugs. This review explores the implication of MRP4 in clinical pharmacology and the importance of its genetic variability. Although there is no specific recommendation regarding the study of MRP4 in drug development, it should be considered when drugs are eliminated by the kidney or liver or when drug-drug interactions are expected.
Collapse
Affiliation(s)
- Joseph Berthier
- INSERM, UMR 1248, F-87000 Limoges, France; CHU Limoges, Service de pharmacologie, toxicologie et pharmacovigilance, F-87000 Limoges, France
| | | | - Franck Saint-Marcoux
- INSERM, UMR 1248, F-87000 Limoges, France; CHU Limoges, Service de pharmacologie, toxicologie et pharmacovigilance, F-87000 Limoges, France
| | - Nicolas Picard
- INSERM, UMR 1248, F-87000 Limoges, France; CHU Limoges, Service de pharmacologie, toxicologie et pharmacovigilance, F-87000 Limoges, France.
| |
Collapse
|
46
|
Ruel NM, Nguyen KH, Vilas G, Hammond JR. Characterization of 6-Mercaptopurine Transport by the SLC43A3-Encoded Nucleobase Transporter. Mol Pharmacol 2019; 95:584-596. [PMID: 30910793 DOI: 10.1124/mol.118.114389] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/14/2019] [Indexed: 02/14/2025] Open
Abstract
6-Mercaptopurine (6-MP) is a nucleobase analog used in the treatment of acute lymphoblastic leukemia and inflammatory bowel disorders. However, the mechanisms underlying its transport into target cells have remained elusive. The protein encoded by SLC43A3_1 [equilibrative nucleobase transporter 1 (ENBT1)] has recently been shown to transport endogenous nucleobases. A splice variant (SLC43A3_2), encoding a protein with 13 additional amino acids in the first extracellular loop, is also expressed but its function is unknown. We hypothesized that 6-MP is a substrate for both variants of ENBT1. Human embryonic kidney 293 (HEK293) cells (lacking endogenous ENBT1 activity) were transfected with each of the coding region variants of SLC43A3. ENBT1 function was assessed via the rate of flux of [3H]adenine and [14C]6-MP across the plasma membrane. Both SLC43A3 variants encoded proteins with similar functional properties. [14C]6-MP and [3H]adenine had K m values (±S.D.) of 163 ± 126 and 37 ± 26 µM, respectively, for this system. Decynium-22, 6-thioguanine, and 6-methylmercaptopurine inhibited 6-MP uptake with K i values of 1.0 ± 0.4, 67 ± 30, and 73 ± 20 µM, respectively. ENBT1 also mediated adenine-sensitive efflux of 6-MP from the SLC43A3-HEK293 cells. MRP4 also contributed to the efflux of 6-MP in this model, but was less efficient than ENBT1 in this regard. Furthermore, transfection of HEK293 cells with SLC43A3 increased the sensitivity of the cells to the cytotoxic effects of 6-MP by more than 7-fold. Thus, both variants of ENBT1 are key players in the transfer of 6-MP into and out of cells, and changes in SLC43A3 expression impact 6-MP cytotoxicity.
Collapse
Affiliation(s)
- Nicholas M Ruel
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Khanh H Nguyen
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Gonzalo Vilas
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - James R Hammond
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
47
|
Horenstein AL, Bracci C, Morandi F, Malavasi F. CD38 in Adenosinergic Pathways and Metabolic Re-programming in Human Multiple Myeloma Cells: In-tandem Insights From Basic Science to Therapy. Front Immunol 2019; 10:760. [PMID: 31068926 PMCID: PMC6491463 DOI: 10.3389/fimmu.2019.00760] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/21/2019] [Indexed: 01/10/2023] Open
Abstract
Tumor microenvironments are rich in extracellular nucleotides that can be metabolized by ectoenzymes to produce adenosine, a nucleoside involved in controlling immune responses. Multiple myeloma, a plasma cell malignancy developed within a bone marrow niche, exploits adenosinergic pathways to customize the immune homeostasis of the tumor. CD38, a multifunctional protein that acts as both receptor and ectoenzyme, is overexpressed at all stages of myeloma. At neutral and acidic pH, CD38 catalyzes the extracellular conversion of NAD+ to regulators of calcium signaling. The initial disassembly of NAD+ is also followed by adenosinergic activity, if CD38 is operating in the presence of CD203a and CD73 nucleotidases. cAMP extruded from tumor cells provides another substrate for metabolizing nucleotidases to signaling adenosine. These pathways flank or bypass the canonical adenosinergic pathway subjected to the conversion of ATP by CD39. All of the adenosinergic networks can be hijacked by the tumor, thus controlling the homeostatic reprogramming of the myeloma in the bone marrow. In this context, adenosine assumes the role of a local hormone: cell metabolism is adjusted via low- or high-affinity purinergic receptors expressed by immune and bone cells as well as by tumor cells. The result is immunosuppression, which contributes to the failure of immune surveillance in cancer. A similar metabolic strategy silences immune effectors during the progression of indolent gammopathies to symptomatic overt multiple myeloma disease. Plasma from myeloma aspirates contains elevated levels of adenosine resulting from interactions between myeloma and other cells lining the niche and adenosine concentrations are known to increase as the disease progresses. This is statistically reflected in the International Staging System for multiple myeloma. Along with the ability to deplete CD38+ malignant plasma cell populations which has led to their widespread therapeutic use, anti-CD38 antibodies are involved in the polarization and release of microvesicles characterized by the expression of multiple adenosine-producing molecules. These adenosinergic pathways provide new immune checkpoints for improving immunotherapy protocols by helping to restore the depressed immune response.
Collapse
Affiliation(s)
- Alberto L Horenstein
- Laboratory of Immunogenetics, Department of Medical Sciences, Turin, Italy.,CeRMS, University of Torino, Turin, Italy
| | - Cristiano Bracci
- Laboratory of Immunogenetics, Department of Medical Sciences, Turin, Italy.,CeRMS, University of Torino, Turin, Italy
| | - Fabio Morandi
- Stem Cell Laboratory and Cell Therapy Center, Istituto Giannina Gaslini, Genova, Italy
| | - Fabio Malavasi
- Laboratory of Immunogenetics, Department of Medical Sciences, Turin, Italy.,CeRMS, University of Torino, Turin, Italy
| |
Collapse
|
48
|
Perez DR, Sklar LA, Chigaev A. Clioquinol: To harm or heal. Pharmacol Ther 2019; 199:155-163. [PMID: 30898518 DOI: 10.1016/j.pharmthera.2019.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/14/2019] [Indexed: 12/13/2022]
Abstract
Clioquinol, one of the first mass-produced drugs, was considered safe and efficacious for many years. It was used as an antifungal and an antiprotozoal drug until it was linked to an outbreak of subacute myelo-optic neuropathy (SMON), a debilitating disease almost exclusively confined to Japan. Today, new information regarding clioquinol targets and its mechanism of action, as well as genetic variation (SNPs) in efflux transporters in the Japanese population, provide a unique interpretation of the existing phenomena. Further understanding of clioquinol's role in the inhibition of cAMP efflux and promoting apoptosis might offer promise for the treatment of cancer and/or neurodegenerative diseases. Here, we highlight recent developments in the field and discuss possible connections, hypotheses and perspectives in clioquinol-related research.
Collapse
Affiliation(s)
- Dominique R Perez
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM 87131, USA; Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Larry A Sklar
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA; Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Alexandre Chigaev
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA; Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
49
|
Abstract
The transport of specific molecules across lipid membranes is an essential function of all living organisms. The processes are usually mediated by specific transporters. One of the largest transporter families is the ATP-binding cassette (ABC) family. More than 40 ABC transporters have been identified in human, which are divided into 7 subfamilies (ABCA to ABCG) based on their gene structure, amino acid sequence, domain organization, and phylogenetic analysis. Of them, at least 11 ABC transporters including P-glycoprotein (P-GP/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2) are involved in multidrug resistance (MDR) development. These ABC transporters are expressed in various tissues such as the liver, intestine, kidney, and brain, playing important roles in absorption, distribution, and excretion of drugs. Some ABC transporters are also involved in diverse cellular processes such as maintenance of osmotic homeostasis, antigen processing, cell division, immunity, cholesterol, and lipid trafficking. Several human diseases such as cystic fibrosis, sitosterolemia, Tangier disease, intrahepatic cholestasis, and retinal degeneration are associated with mutations in corresponding transporters. This chapter will describe function and expression of several ABC transporters (such as P-GP, BCRP, and MRPs), their substrates and inhibitors, as well as their clinical significance.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
50
|
Horenstein AL, Morandi F, Bracci C, Pistoia V, Malavasi F. Functional insights into nucleotide-metabolizing ectoenzymes expressed by bone marrow-resident cells in patients with multiple myeloma. Immunol Lett 2018; 205:40-50. [PMID: 30447309 DOI: 10.1016/j.imlet.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
Abstract
Human myeloma cells grow in a hypoxic acidic niche in the bone marrow. Cross talk among cellular components of this closed niche generates extracellular adenosine, which promotes tumor cell survival. This is achieved through the binding of adenosine to purinergic receptors into complexes that function as an autocrine/paracrine signal factor with immune regulatory activities that i) down-regulate the functions of most immune effector cells and ii) enhance the activity of cells that suppress anti-tumor immune responses, thus facilitating the escape of malignant myeloma cells from immune surveillance. Here we review recent findings confirming that the dominant phenotype for survival of tumor cells is that where the malignant cells have been metabolically reprogrammed for the generation of lactic acidosis in the bone marrow niche. Adenosine triphosphate and nicotinamide-adenine dinucleotide extruded from tumor cells, along with cyclic adenosine monophosphate, are the main intracellular energetic/messenger molecules that serve as leading substrates in the extracellular space for membrane-bound ectonucleotidases metabolizing purine nucleotides to signaling adenosine. Within this mechanistic framework, the adenosinergic substrate conversion can vary significantly according to the metabolic environment. Indeed, the neoplastic expansion of plasma cells exploits both enzymatic networks and hypoxic acidic conditions for migrating and homing to a protected niche and for evading the immune response. The expression of multiple specific adenosine receptors in the niche completes the profile of a complex regulatory framework whose signals modify multiple myeloma and host immune responses.
Collapse
Affiliation(s)
- A L Horenstein
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Italy; CeRMS, University of Torino, Torino, Italy.
| | - F Morandi
- Stem Cell Laboratory and Cell Therapy Center, Istituto Giannina Gaslini, Genova, Italy
| | - C Bracci
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Italy; CeRMS, University of Torino, Torino, Italy
| | - V Pistoia
- Immunology Area, Pediatric Hospital Bambino Gesù, Rome, Italy
| | - F Malavasi
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, Italy; CeRMS, University of Torino, Torino, Italy
| |
Collapse
|