1
|
Min K, Jung M, Tae G. Enhanced secretion of growth factors from ADSCs using an enzymatic antioxidant hydrogel in inflammatory environments and its therapeutic effect. J Control Release 2025; 377:301-314. [PMID: 39571654 DOI: 10.1016/j.jconrel.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/20/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
A catalytic ROS-scavenging hydrogel (HGel) was developed to enhance the growth factor secretion and the therapeutic efficacy of human adipose-derived stem cells (hADSCs) in inflammatory environments. The HGel is composed of heparin and hyaluronic acid, further functionalized with hemin to endow superoxide dismutase and catalase activities. The functionalization of hemin enables the HGel to effectively scavenge ROS (superoxide and H2O2), thereby protecting encapsulated hADSCs from oxidative stress and maintaining their metabolic activities. As a result, the HGel enhanced growth factor secretion of hADSCs in inflammatory conditions compared to non-functionalized, bare heparin/hyaluronic acid hydrogel (Gel). The therapeutic efficacy of the hADSC-encapsulated HGel (C/HGel) was evaluated in a diabetic wound model. The C/HGel significantly accelerated wound closure, reduced ROS levels, mitigated inflammation, and promoted angiogenesis compared to the hADSC-encapsulated Gel (C/Gel) as well as the HGel itself. The HGel has the potential to be utilized as an excellent cell carrier for stem cell therapy in various inflammatory diseases. Overall, this study demonstrated a strategy of enhancing growth factor secretion from stem cells using catalytic antioxidant hydrogels for superior regenerative effects in cell therapy.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Myeongseok Jung
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
2
|
Liu W, Wang H, Mu Q, Gong T. Taste receptor T1R3 regulates testosterone synthesis via the cAMP-PKA-SP1 pathway in testicular Leydig cells. Theriogenology 2025; 231:210-221. [PMID: 39476553 DOI: 10.1016/j.theriogenology.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
Taste receptor type 1 subunit 3 (T1R3) is a G protein-coupled receptor encoded by the TAS1R3 gene that can be specifically activated by certain sweeteners or umami agents for sweet/umami recognition. T1R3 is a potential target for regulating male reproduction. However, studies on the impact of non-nutritive sweeteners on reproduction are limited. In the present study, we evaluated the impact of the non-nutritive sweeteners (saccharin sodium, sucralose and acesulfame-K) on testosterone synthesis in testicular Leydig cells of Xiang pigs by comparing the relative abundance of mRNA transcripts and protein expression of T1R3, steroidogenic related factors, and intracellular cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), as well as testosterone levels using Western blotting, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). To clarify the specific mechanism, a dual luciferase assay was used to uncover the relationship between the transcription factors and steroidogenic enzyme. The acute intratesticular injection of a typical non-nutritive sweeteners was conducted to verify this impact in mouse. The results showed that saccharin sodium not only enhanced T1R3 expression in Leydig cells of Xiang pigs, but also caused significant increases in testosterone, cAMP, PKA, phosphorylation of specificity protein 1 (p-SP1), total protein of specificity protein 1 (SP1), steroidogenic acute regulatory protein (StAR), and 3β-hydroxysteroid dehydrogenase type 1 (3β-HSD1) (P < 0.05). Similarly, treatment of Leydig cells with sucralose and acesulfame-K also increased testosterone level, protein expression of T1R3, 17-α-hydroxylase/17, 20-lyase (CYP17A1), and 3β-HSD1 (P < 0.05). Treatment with SQ22536 (an adenylate cyclas inhibitor) or H89 (a PKA inhibitor) significantly reduced saccharin sodium-induced protein levels of p-SP1, StAR, CYP17A1, and 3β-HSD1 (P < 0.05). In addition, a dual luciferase assay further demonstrated that SP1 significantly increased the promoter activity of CYP17A1 (P < 0.05). When mouse testes were injected with saccharin sodium, T1R3, p-SP1, CYP17A1, and 3β-HSD1 were upregulated, leading to a significant testicular increase in testosterone and cAMP levels (P < 0.05). These results suggest a mechanism by which the taste receptor T1R3 regulates testosterone production, and this mechanism may be linked to the cAMP-PKA pathway. Understanding the interrelationship between T1R3 and the cAMP-PKA-SP1 pathway contributes to clarify the regulatory mechanisms of male reproduction.
Collapse
Affiliation(s)
- Wenjiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Han Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Qi Mu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Sun X, Zhou Q, Xiao C, Mao C, Liu Y, Chen G, Song Y. Role of post-translational modifications of Sp1 in cardiovascular diseases. Front Cell Dev Biol 2024; 12:1453901. [PMID: 39252788 PMCID: PMC11381397 DOI: 10.3389/fcell.2024.1453901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Specific protein 1 (Sp1) is pivotal in sustaining baseline transcription as well as modulating cell signaling pathways and transcription factors activity. Through interactions with various proteins, especially transcription factors, Sp1 controls the expression of target genes, influencing numerous biological processes. Numerous studies have confirmed Sp1's significant regulatory role in the pathogenesis of cardiovascular disorders. Post-translational modifications (PTMs) of Sp1, such as phosphorylation, ubiquitination, acetylation, glycosylation, SUMOylation, and S-sulfhydration, can enhance or modify its transcriptional activity and DNA-binding stability. These modifications also regulate Sp1 expression across different cell types. Sp1 is crucial in regulating non-coding gene expression and the activity of proteins in response to pathophysiological stimuli. Understanding Sp1 PTMs advances our knowledge of cell signaling pathways in controlling Sp1 stability during cardiovascular disease onset and progression. It also aids in identifying novel pharmaceutical targets and biomarkers essential for preventing and managing cardiovascular diseases.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Synopsis of the Golden Chamber, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qi Zhou
- Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengpu Xiao
- Department of Typhoid, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Caiyun Mao
- Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Liu
- The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Guozhen Chen
- Department of Pediatrics, Yantai Yuhuangding Hospital, Shandong, China
| | - Yunjia Song
- Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Lianos EA, Wilson K, Goudevenou K, Detsika MG, Sharma M. Constitutive HO-1 and CD55 (DAF) Expression and Regulatory Interaction in Cultured Podocytes. Biomedicines 2023; 11:3297. [PMID: 38137516 PMCID: PMC10740928 DOI: 10.3390/biomedicines11123297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Overexpression of the inducible heme oxygenase (HO-1) isoform in visceral renal glomerular epithelial cells (podocytes) using in vivo transgenesis methods was shown to increase glomerular expression of the complement regulatory protein decay-accelerating factor (DAF, CD55) and reduce complement activation/deposition in a rat model of immune-mediated injury. In this preliminary study, we assessed whether constitutively expressed HO-1 regulates CD55 expression in cultured rat podocytes. We employed methods of flow cytometry, quantitative (q) RT-qPCR and post-transcriptional HO-1 gene silencing (HO-1 interfering RNA, RNAi), to assess changes in constitutive (basal) levels of podocyte HO-1 and CD55 mRNA in cultured rat podocytes. Additionally, the effect of the HO-1 inducer, heme, on HO-1 and CD55 expression was assessed. Results indicate that rat podocytes constitutively express HO-1 and DAF and that the HO-1 inducer, heme, increases both HO-1 and DAF expression. HO-1 gene silencing using RNA interference (RNAi) is feasible but the effect on constitutive CD55 transcription is inconsistent. These observations are relevant to conditions of podocyte exposure to heme that can activate the complementary cascade, as may occur in systemic or intraglomerular hemolysis.
Collapse
Affiliation(s)
- Elias A. Lianos
- Veterans Affairs Health Care System, Salem, VA 24153, USA
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Kelsey Wilson
- Veterans Affairs Health Care System, Salem, VA 24153, USA
| | - Katerina Goudevenou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 10675 Athens, Greece (M.G.D.)
| | - Maria G. Detsika
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 10675 Athens, Greece (M.G.D.)
| | - Mukut Sharma
- Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| |
Collapse
|
5
|
Wang Y, Liu Y, Li X, Yao L, Mbadhi M, Chen S, Lv Y, Bao X, Chen L, Chen S, Zhang J, Wu Y, Lv J, Shi L, Tang J. Vagus nerve stimulation-induced stromal cell-derived factor-l alpha participates in angiogenesis and repair of infarcted hearts. ESC Heart Fail 2023; 10:3311-3329. [PMID: 37641543 PMCID: PMC10682864 DOI: 10.1002/ehf2.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/02/2023] [Accepted: 07/02/2023] [Indexed: 08/31/2023] Open
Abstract
AIMS We aim to explore the role and mechanism of vagus nerve stimulation (VNS) in coronary endothelial cells and angiogenesis in infarcted hearts. METHODS AND RESULTS Seven days after rat myocardial infarction (MI) was prepared by ligation of the left anterior descending coronary artery, the left cervical vagus nerve was treated with electrical stimulation 1 h after intraperitoneal administration of the α7-nicotinic acetylcholine inhibitor mecamylamine or the mAChR inhibitor atropine or 3 days after local injection of Ad-shSDF-1α into the infarcted heart. Cardiac tissue acetylcholine (ACh) and serum ACh, tumour necrosis factor α (TNF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6) levels were detected by ELISA to determine whether VNS was successful. An inflammatory injury model in human coronary artery endothelial cells (HCAECs) was established by lipopolysaccharide and identified by evaluating TNF-α, IL-1β and IL-6 levels and tube formation. Immunohistochemistry staining was performed to evaluate CD31-positive vessel density and stromal cell-derived factor-l alpha (SDF-1α) expression in the MI heart in vivo and the expression and distribution of SDF-1α, C-X-C motif chemokine receptor 4 and CXCR7 in HCAECs in vitro. Western blotting was used to detect the levels of SDF-1α, V-akt murine thymoma viral oncogene homolog (AKT), phosphorylated AKT (pAKT), specificity protein 1 (Sp1) and phosphorylation of Sp1 in HCAECs. Left ventricular performance, including left ventricular systolic pressure, left ventricular end-diastolic pressure and rate of the rise and fall of ventricular pressure, should be evaluated 28 days after VNS treatment. VNS was successfully established for MI therapy with decreases in serum TNF-α, IL-1β and IL-6 levels and increases in cardiac tissue and serum ACh levels, leading to increased SDF-1α expression in coronary endothelial cells of MI hearts, triggering angiogenesis of MI hearts with increased CD31-positive vessel density, which was abolished by the m/nAChR inhibitors mecamylamine and atropine or knockdown of SDF-1α by shRNA. ACh promoted SDF-1α expression and its distribution along with the branch of the formed tube in HCAECs, resulting in an increase in the number of tubes formed in HCAECs. ACh increased the levels of pAKT and phosphorylation of Sp1 in HCAECs, resulting in inducing SDF-1α expression, and the specific effects could be abolished by mecamylamine, atropine, the PI3K/AKT blocker wortmannin or the Sp1 blocker mithramycin. Functionally, VNS improved left ventricular performance, which could be abolished by Ad-shSDF-1α. CONCLUSIONS VNS promoted angiogenesis to repair the infarcted heart by inducing SDF-1α expression and redistribution along new branches during angiogenesis, which was associated with the m/nAChR-AKT-Sp1 signalling pathway.
Collapse
Affiliation(s)
- Yan Wang
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Department of Pathology, Renmin HospitalHubei University of MedicineShiyanPR China
| | - Yun Liu
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
| | - Xing‐yuan Li
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
| | - Lu‐yuan Yao
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Department of Anesthesiology, Institute of Anesthesiology, Taihe HospitalHubei University of MedicineShiyanPR China
| | - MagdaleenaNaemi Mbadhi
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
| | - Shao‐Juan Chen
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Department of Stomatology, Taihe HospitalHubei University of MedicineShiyanPR China
| | - Yan‐xia Lv
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
| | - Xin Bao
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Experimental Medical Center, Guoyao‐Dong Feng HospitalHubei University of MedicineShiyanPR China
| | - Long Chen
- Experimental Medical Center, Guoyao‐Dong Feng HospitalHubei University of MedicineShiyanPR China
| | - Shi‐You Chen
- Department of SurgeryUniversity of MissouriColumbiaMissouriUSA
| | - Jing‐xuan Zhang
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Institute of Basic Medical Sciences, Institute of BiomedicineHubei University of MedicineShiyanPR China
| | - Yan Wu
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Institute of Basic Medical Sciences, Institute of BiomedicineHubei University of MedicineShiyanPR China
| | - Jing Lv
- Department of Anesthesiology, Institute of Anesthesiology, Taihe HospitalHubei University of MedicineShiyanPR China
| | - Liu‐liu Shi
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Institute of Basic Medical Sciences, Institute of BiomedicineHubei University of MedicineShiyanPR China
| | - Jun‐ming Tang
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Institute of Basic Medical Sciences, Institute of BiomedicineHubei University of MedicineShiyanPR China
| |
Collapse
|
6
|
Luh HT, Chen KW, Yang LY, Chen YT, Lin SH, Wang KC, Lai DM, Hsieh ST. Does a negative correlation of heme oxygenase-1 with hematoma thickness in chronic subdural hematomas affect neovascularization and microvascular leakage? A retrospective study with preliminary validation. J Neurosurg 2023; 139:536-543. [PMID: 36609367 DOI: 10.3171/2022.11.jns221790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/29/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Chronic subdural hematoma (CSDH) is a common neurological disease among elderly adults. The progression of CSDH is an angiogenic process, involving inflammatory mediators that affect vascular permeability, microvascular leakage, and hematoma thickness. The authors aimed to identify biomarkers associated with angiogenesis and vascular permeability that might influence midline shift and hematoma thickness. METHODS Medical records and laboratory data of consecutive patients who underwent surgery for CSDH were analyzed. Collected data were basic demographic data, CSDH classification, CSDH thickness, midline shift, heme oxygenase-1 (HO-1) levels in hematomas, and common laboratory markers. Linear regression analysis was used to evaluate the relationship of CSDH thickness with characteristic variables. The chick chorioallantoic membrane (CAM) assay was used to test the angiogenic potency of identified variables in ex ovo culture of chick embryos. RESULTS In total, 93 patients with CSDH (71.0% male) with a mean age of 71.0 years were included. The mean CSDH thickness and midline shift were 19.7 and 9.8 mm, respectively. The mean levels of HO-1, ferritin, total bilirubin, white blood cells, segmented neutrophils, lymphocytes, platelets, international normalized ratio, and partial thromboplastin time were 36 ng/mL, 14.8 μg/mL, 10.5 mg/dL, 10.3 × 103 cells/μL, 69%, 21.7%, 221.1 × 109 cells/μL, 1.0, and 27.8 seconds, respectively. Pearson correlation analysis revealed that CSDH thickness was positively correlated with midline shift distance (r = 0.218, p < 0.05) but negatively correlated with HO-1 concentration (r = -0.364, p < 0.01) and ferritin level (r = -0.222, p < 0.05). Multivariate linear regression analysis revealed that HO-1 was an independent predictor of CSDH thickness (β = -0.084, p = 0.006). The angiogenic potency of HO-1 in hematoma fluid was tested with the chick CAM assay; topical addition of CSDH fluid with low HO-1 levels promoted neovascularization and microvascular leakage. Addition of HO-1 in a rescue experiment inhibited CSDH fluid-mediated angiogenesis and microvascular leakage. CONCLUSIONS HO-1 is an independent risk factor in CSDH hematomas and is negatively correlated with CSDH thickness. HO-1 may play a role in the pathophysiology and development of CSDH, possibly by preventing neovascularization and reducing capillary fragility and hyperpermeability.
Collapse
Affiliation(s)
- Hui-Tzung Luh
- 1Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- 2Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Kuo-Wei Chen
- 1Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- 2Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Ling-Yu Yang
- 3Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Tzu Chen
- 3Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Sheng-Hsuan Lin
- 4Institute of Statistics, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan
| | - Kuo-Chuan Wang
- 3Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Dar-Ming Lai
- 3Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- 5Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; and
- 6Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
7
|
Ma W, Liu X, Yang M, Hong Q, Meng L, Zhang Q, Chen J, Pan C. Fabrication of CO-releasing surface to enhance the blood compatibility and endothelialization of TiO 2 nanotubes on titanium surface. BIOMATERIALS ADVANCES 2023; 149:213393. [PMID: 36966654 DOI: 10.1016/j.bioadv.2023.213393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023]
Abstract
Although the construction of nanotube arrays with the micro-nano structures on the titanium surfaces has demonstrated a great promise in the field of blood-contacting materials and devices, the limited surface hemocompatibility and delayed endothelial healing should be further improved. Carbon monoxide (CO) gas signaling molecule within the physiological concentrations has excellent anticoagulation and the ability to promote endothelial growth, exhibiting the great potential for the blood-contact biomaterials, especially the cardiovascular devices. In this study, the regular titanium dioxide nanotube arrays were firstly prepared in situ on the titanium surface by anodic oxidation, followed by the immobilization of the complex of sodium alginate/carboxymethyl chitosan (SA/CS) on the self-assembled modified nanotube surface, the CO-releasing molecule (CORM-401) was finally grafted onto the surface to create a CO-releasing bioactive surface to enhance the biocompatibility. The results of scanning electron microscopy (SEM), X-ray energy dispersion spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) revealed that the CO-releasing molecules were successfully immobilized on the surface. The modified nanotube arrays not only exhibited excellent hydrophilicity but also could slowly release CO gas molecules, and the amount of CO release increased when cysteine was added. Furthermore, the nanotube array can promote albumin adsorption while inhibit fibrinogen adsorption to some extent, demonstrating its selective albumin adsorption; although this effect was somewhat reduced by the introduction of CORM-401, it can be significantly enhanced by the catalytic release of CO. The results of hemocompatibility and endothelial cell growth behaviors showed that, as compared with the CORM-401 modified sample, although the SA/CS-modified sample had better biocompatibility, in the case of cysteine-catalyzed CO release, the released CO could not only reduce the platelet adhesion and activation as well as hemolysis rate, but also promote endothelial cell adhesion and proliferation as well as vascular endothelial growth factor (VEGF) and nitric oxide (NO) expression. As a result, the research of the present study demonstrated that the releasing CO from TiO2 nanotubes can simultaneously enhance the surface hemocompatibility and endothelialization, which could open a new route to enhance the biocompatibility of the blood-contacting materials and devices, such as the artificial heart valve and cardiovascular stents.
Collapse
Affiliation(s)
- Wenfu Ma
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Xuhui Liu
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China
| | - Minhui Yang
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qingxiang Hong
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Lingjie Meng
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qiuyang Zhang
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Jie Chen
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Changjiang Pan
- Faculty of Mechanical and Material Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China.
| |
Collapse
|
8
|
Detsika MG, Theochari E, Palamaris K, Gakiopoulou H, Lianos EA. Effect of Heme Oxygenase-1 Depletion on Complement Regulatory Proteins Expression in the Rat. Antioxidants (Basel) 2022; 12:61. [PMID: 36670923 PMCID: PMC9854825 DOI: 10.3390/antiox12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Heme oxygenase has been implicated in the regulation of various immune responses including complement activation. Using a transgenic rat model of HO-1 depletion, the present study assessed the effect of HO-1 absence on the expression of complement regulatory proteins: decay accelerating factor (DAF), CR1-related gene/protein Y (Crry) and CD59, which act to attenuate complement activation. Protein expression was assessed by immunohistochemistry in kidney, liver, lung and spleen tissues. DAF protein was reduced in all tissues retrieved from rats lacking HO-1 (Hmox1-/-) apart from spleen tissue sections. Crry protein was also reduced, but only in Hmox1-/- kidney and liver tissue. C3b staining was augmented in the kidney and spleen from Hmox1-/- rats, suggesting that the decrease of DAF and Crry was sufficient to increase C3b deposition. The observations support an important role of HO-1 as a regulator of the complement system.
Collapse
Affiliation(s)
- Maria G. Detsika
- GP Livanos and M Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens, 10675 Athens, Greece
| | - Eirini Theochari
- Department of Pathology, School of Medicine, University of Athens, 11527 Athens, Greece
| | - Kostas Palamaris
- Department of Pathology, School of Medicine, University of Athens, 11527 Athens, Greece
| | - Harikleia Gakiopoulou
- Department of Pathology, School of Medicine, University of Athens, 11527 Athens, Greece
| | - Elias A. Lianos
- Veterans Affairs Medical Center and Virginia Tech, Carilion School of Medicine, Salem, VA 24153, USA
| |
Collapse
|
9
|
Leal EC, Carvalho E. Heme Oxygenase-1 as Therapeutic Target for Diabetic Foot Ulcers. Int J Mol Sci 2022; 23:ijms231912043. [PMID: 36233341 PMCID: PMC9569859 DOI: 10.3390/ijms231912043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
Abstract
A diabetic foot ulcer (DFU) is one of the major complications of diabetes. Wound healing under diabetic conditions is often impaired. This is in part due to the excessive oxidative stress, prolonged inflammation, immune cell dysfunction, delayed re-epithelialization, and decreased angiogenesis present at the wound site. As a result of these multifactorial impaired healing pathways, it has been difficult to develop effective therapeutic strategies for DFU. Heme oxygenase-1 (HO-1) is the rate-limiting enzyme in heme degradation generating carbon monoxide (CO), biliverdin (BV) which is converted into bilirubin (BR), and iron. HO-1 is a potent antioxidant. It can act as an anti-inflammatory, proliferative, angiogenic and cytoprotective enzyme. Due to its biological functions, HO-1 plays a very important role in wound healing, in part mediated through the biologically active end products generated by its enzymatic activity, particularly CO, BV, and BR. Therapeutic strategies involving the activation of HO-1, or the topical application of its biologically active end products are important in diabetic wound healing. Therefore, HO-1 is an attractive therapeutic target for DFU treatment. This review will provide an overview and discussion of the importance of HO-1 as a therapeutic target for diabetic wound healing.
Collapse
Affiliation(s)
- Ermelindo Carreira Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: (E.C.L.); (E.C.); Tel.: +351-239-820-190 (E.C.L. & E.C.)
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: (E.C.L.); (E.C.); Tel.: +351-239-820-190 (E.C.L. & E.C.)
| |
Collapse
|
10
|
Kwong AM, Luke PPW, Bhattacharjee RN. Carbon monoxide mechanism of protection against renal ischemia and reperfusion injury. Biochem Pharmacol 2022; 202:115156. [PMID: 35777450 DOI: 10.1016/j.bcp.2022.115156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/20/2022]
Abstract
Carbon monoxide is quickly moving past its historic label as a molecule once feared, to a therapeutic drug that modulates inflammation. The development of carbon monoxide releasing molecules and utilization of heme oxygenase-1 inducers have shown carbon monoxide to be a promising therapy in reducing renal ischemia and reperfusion injury and other inflammatory diseases. In this review, we will discuss the developments and application of carbon monoxide releasing molecules in renal ischemia and reperfusion injury, and transplantation. We will review the anti-inflammatory mechanisms of carbon monoxide in respect to mitigating apoptosis, suppressing dendritic cell maturation and signalling, inhibiting toll-like receptor activation, promoting anti-inflammatory responses, and the effects on renal vasculature.
Collapse
Affiliation(s)
- Aaron M Kwong
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Patrick P W Luke
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Surgery, London Health Sciences Centre, Canada; Matthew Mailing Centre for Translational Transplantation Studies, Canada.
| | - Rabindra N Bhattacharjee
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Surgery, London Health Sciences Centre, Canada; Matthew Mailing Centre for Translational Transplantation Studies, Canada.
| |
Collapse
|
11
|
Topical application of sustained released-carbon monoxide promotes cutaneous wound healing in diabetic mice. Biochem Pharmacol 2022; 199:115016. [PMID: 35331735 DOI: 10.1016/j.bcp.2022.115016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/13/2023]
Abstract
Clinical incidences of pressure ulcers in the elderly and intractable skin ulcers in diabetic patients are increasing because of the aging population and an increase in the number of diabetic patients worldwide. Although various agents are used to treat pressure and skin ulcers, these ulcers are often refractory and deteriorate the patients' quality of life. Therefore, a novel therapeutic agent with a novel mechanism of action is required. Carbon monoxide (CO) contributes to many physiological and pathophysiological processes, including anti-inflammatory activity; therefore, it can be a therapeutic gaseous molecule. Recent studies have revealed that CO accelerates wound healing in gastrointestinal tract injuries. However, it remains unclear whether CO promotes cutaneous wound healing. Therefore, we aimed to evaluate the therapeutic effects of topical application of a CO-containing solution and elucidate the underlying mechanism. A full-thickness skin wound generated on the back of diabetic mice was treated topically with CO or vehicle. Sustained release of CO was achieved using polyacrylic acid (PAA) as a thickener. The administration of CO-containing PAA aqueous solution resulted in a significant acceleration in wound recovery without elevating serum CO levels in association with increased angiogenesis and supported by elevated expression of vascular endothelial growth factor mRNA in the wound granulomatous tissues. These data suggest that CO might represent a novel therapeutic agent for the treatment of cutaneous wounds.
Collapse
|
12
|
Dias-Pedroso D, Ramalho JS, Sardão VA, Jones JG, Romão CC, Oliveira PJ, Vieira HLA. Carbon Monoxide-Neuroglobin Axis Targeting Metabolism Against Inflammation in BV-2 Microglial Cells. Mol Neurobiol 2021; 59:916-931. [PMID: 34797521 DOI: 10.1007/s12035-021-02630-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/29/2021] [Indexed: 01/06/2023]
Abstract
Microglia are the immune competent cell of the central nervous system (CNS), promoting brain homeostasis and regulating inflammatory response against infection and injury. Chronic or exacerbated neuroinflammation is a cause of damage in several brain pathologies. Endogenous carbon monoxide (CO), produced from the degradation of heme, is described as anti-apoptotic and anti-inflammatory in several contexts, including in the CNS. Neuroglobin (Ngb) is a haemoglobin-homologous protein, which upregulation triggers antioxidant defence and prevents neuronal apoptosis. Thus, we hypothesised a crosstalk between CO and Ngb, in particular, that the anti-neuroinflammatory role of CO in microglia depends on Ngb. A novel CO-releasing molecule (ALF826) based on molybdenum was used for delivering CO in microglial culture.BV-2 mouse microglial cell line was challenged with lipopolysaccharide (LPS) for triggering inflammation, and after 6 h ALF826 was added. CO exposure limited inflammation by decreasing inducible nitric oxide synthase (iNOS) expression and the production of nitric oxide (NO) and tumour necrosis factor-α (TNF-α), and by increasing interleukine-10 (IL-10) release. CO-induced Ngb upregulation correlated in time with CO's anti-inflammatory effect. Moreover, knocking down Ngb reversed the anti-inflammatory effect of CO, suggesting that dependents on Ngb expression. CO-induced Ngb upregulation was independent on ROS signalling, but partially dependent on the transcriptional factor SP1. Finally, microglial cell metabolism is also involved in the inflammatory response. In fact, LPS treatment decreased oxygen consumption in microglia, indicating a switch to glycolysis, which is associated with a proinflammatory. While CO treatment increased oxygen consumption, reverting LPS effect and indicating a metabolic shift into a more oxidative metabolism. Moreover, in the absence of Ngb, this phenotype was no longer observed, indicating Ngb is needed for CO's modulation of microglial metabolism. Finally, the metabolic shift induced by CO did not depend on alteration of mitochondrial population. In conclusion, neuroglobin emerges for the first time as a key player for CO signalling against exacerbated inflammation in microglia.
Collapse
Affiliation(s)
| | - José S Ramalho
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Vilma A Sardão
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - John G Jones
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Carlos C Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Helena L A Vieira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal. .,UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, Faculdade de Ciências e Tecnologia, NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-526, Caparica, Portugal. .,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal.
| |
Collapse
|
13
|
Moon S, Chang MS, Koh SH, Choi YK. Repair Mechanisms of the Neurovascular Unit after Ischemic Stroke with a Focus on VEGF. Int J Mol Sci 2021; 22:ijms22168543. [PMID: 34445248 PMCID: PMC8395233 DOI: 10.3390/ijms22168543] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
The functional neural circuits are partially repaired after an ischemic stroke in the central nervous system (CNS). In the CNS, neurovascular units, including neurons, endothelial cells, astrocytes, pericytes, microglia, and oligodendrocytes maintain homeostasis; however, these cellular networks are damaged after an ischemic stroke. The present review discusses the repair potential of stem cells (i.e., mesenchymal stem cells, endothelial precursor cells, and neural stem cells) and gaseous molecules (i.e., nitric oxide and carbon monoxide) with respect to neuroprotection in the acute phase and regeneration in the late phase after an ischemic stroke. Commonly shared molecular mechanisms in the neurovascular unit are associated with the vascular endothelial growth factor (VEGF) and its related factors. Stem cells and gaseous molecules may exert therapeutic effects by diminishing VEGF-mediated vascular leakage and facilitating VEGF-mediated regenerative capacity. This review presents an in-depth discussion of the regeneration ability by which endogenous neural stem cells and endothelial cells produce neurons and vessels capable of replacing injured neurons and vessels in the CNS.
Collapse
Affiliation(s)
- Sunhong Moon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea;
| | - Mi-Sook Chang
- Department of Oral Anatomy, Seoul National University School of Dentistry, Seoul 03080, Korea;
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea;
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea;
- Correspondence: ; Tel.: +82-2-450-0558; Fax: +82-2-444-3490
| |
Collapse
|
14
|
Detsika MG, Lianos EA. Regulation of Complement Activation by Heme Oxygenase-1 (HO-1) in Kidney Injury. Antioxidants (Basel) 2021; 10:antiox10010060. [PMID: 33418934 PMCID: PMC7825075 DOI: 10.3390/antiox10010060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/20/2022] Open
Abstract
Heme oxygenase is a cytoprotective enzyme with strong antioxidant and anti-apoptotic properties. Its cytoprotective role is mainly attributed to its enzymatic activity, which involves the degradation of heme to biliverdin with simultaneous release of carbon monoxide (CO). Recent studies uncovered a new cytoprotective role for heme oxygenase-1 (HO-1) by identifying a regulatory role on the complement control protein decay-accelerating factor. This is a key complement regulatory protein preventing dysregulation or overactivation of complement cascades that can cause kidney injury. Cell-specific targeting of HO-1 induction may, therefore, be a novel approach to attenuate complement-dependent forms of kidney disease.
Collapse
Affiliation(s)
- Maria G. Detsika
- First Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M. Simou Laboratories, National & Kapodistrian University of Athens, Medical School, Evangelismos Hospital, 10675 Athens, Greece
- Correspondence: ; Tel.: +30-210-723552; Fax: +30-210-7239127
| | - Elias A. Lianos
- Thorax Foundation, Research Center of Intensive Care and Emergency Thoracic Medicine, 10675 Athens, Greece;
- Veterans Affairs Medical Center and Virginia Tech, Carilion School of Medicine, 1970 Roanoke Blvd, Salem, VA 24153, USA
| |
Collapse
|
15
|
VEGF-A in Cardiomyocytes and Heart Diseases. Int J Mol Sci 2020; 21:ijms21155294. [PMID: 32722551 PMCID: PMC7432634 DOI: 10.3390/ijms21155294] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
The vascular endothelial growth factor (VEGF), a homodimeric vasoactive glycoprotein, is the key mediator of angiogenesis. Angiogenesis, the formation of new blood vessels, is responsible for a wide variety of physio/pathological processes, including cardiovascular diseases (CVD). Cardiomyocytes (CM), the main cell type present in the heart, are the source and target of VEGF-A and express its receptors, VEGFR1 and VEGFR2, on their cell surface. The relationship between VEGF-A and the heart is double-sided. On the one hand, VEGF-A activates CM, inducing morphogenesis, contractility and wound healing. On the other hand, VEGF-A is produced by CM during inflammation, mechanical stress and cytokine stimulation. Moreover, high concentrations of VEGF-A have been found in patients affected by different CVD, and are often correlated with an unfavorable prognosis and disease severity. In this review, we summarized the current knowledge about the expression and effects of VEGF-A on CM and the role of VEGF-A in CVD, which are the most important cause of disability and premature death worldwide. Based on clinical studies on angiogenesis therapy conducted to date, it is possible to think that the control of angiogenesis and VEGF-A can lead to better quality and span of life of patients with heart disease.
Collapse
|
16
|
TRIM59 expression is regulated by Sp1 and Nrf1 in LPS-activated macrophages through JNK signaling pathway. Cell Signal 2019; 67:109522. [PMID: 31883458 DOI: 10.1016/j.cellsig.2019.109522] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
Abstract
Activated macrophages play an important role in many inflammatory diseases including septic shock and atherosclerosis. TRIM59 has been showed to participate in many pathological processes, such as inflammation, cytotoxicity and tumorigenesis. However, the molecular mechanisms controlling its expression in activated macrophages are not fully understood. Here we report that TRIM59 expression is regulated by Sp1 and Nrf1 in LPS-activated macrophages. TRIM59 is highly expressed in macrophages, and markedly decreased by LPS stimuli in vivo and in vitro. TRIM59 promoter activity is also significantly suppressed by LPS and further analysis demonstrated that Sp1 and Nrf1 directly bound to the proximal promoter of TRIM59 gene. LPS treatment significantly decreased Sp1 expression, nuclear translocation and reduced its binding to the promoter, whereas increased Nrf1 expression, nuclear translocation and enhanced its binding to the promoter. Moreover, LPS-decreased TRIM59 expression was reversed by JNK inhibitor. Finally, TRIM59 level is significantly decreased during atherosclerosis progression. Taken together, our results demonstrated that TRIM59 expression was precisely regulated by Sp1 and Nrf1 in LPS-activated macrophages, which may be dependent on the activation of JNK signaling pathway and TRIM59 may be a potential therapeutic target for inflammatory diseases such as atherosclerosis.
Collapse
|
17
|
Leake A, Salem K, Madigan MC, Lee GR, Shukla A, Hong G, Zuckerbraun BS, Tzeng E. Systemic vasoprotection by inhaled carbon monoxide is mediated through prolonged alterations in monocyte/macrophage function. Nitric Oxide 2019; 94:36-47. [PMID: 31593762 DOI: 10.1016/j.niox.2019.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022]
Abstract
Carbon monoxide (CO) is anti-inflammatory and protective in models of disease. Its actions in vitro are short-lived but are sustained in vivo. We hypothesize that systemic CO can mediate prolonged phenotype changes in vivo, with a focus on macrophages (Mφs). Mφs isolated from CO treated rats responded to lipopolysaccharide (LPS) with increased IL6, IL10 and iNOS expression but decreased TNF. Conditioned media (CM) collected from peritoneal Mφs isolated from CO treated rats stimulated endothelial cell (EC) proliferation versus CM from Mφs from air treated rats. This effect was mediated by Mφ released VEGF and HMGB1. Inhaled CO reduced LPS induced Mφ M1 inflammatory phenotype for up to 5 days. Mitochondrial oxygen consumption in LPS treated Mφs from CO treated mice was preserved compared to LPS treated Mφs from control mice. Finally, transient reduction of inflammatory cells at the time of inhaled CO treatment eliminated the vasoprotective effect of CO in a rodent carotid injury model. Thus, inhaled CO induces a prolonged mixed phenotype change in Mφs, and potentially other inflammatory cells, that contribute to vasoprotection. These findings demonstrate the ability of inhaled CO to modify Mφs in a sustained manner to mediate its therapeutic actions, supporting the translational potential of inhaled CO.
Collapse
Affiliation(s)
- Andrew Leake
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Karim Salem
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Michael C Madigan
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Ghee Rye Lee
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Ankur Shukla
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Guiying Hong
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Brian S Zuckerbraun
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA.
| | - Edith Tzeng
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Patra P, Izawa T, Pena-Castillo L. REPA: Applying Pathway Analysis to Genome-Wide Transcription Factor Binding Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1270-1283. [PMID: 27019499 DOI: 10.1109/tcbb.2015.2453948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Pathway analysis has been extensively applied to aid in the interpretation of the results of genome-wide transcription profiling studies, and has been shown to successfully find associations between the biological phenomena under study and biological pathways. There are two widely used approaches of pathway analysis: over-representation analysis, and gene set analysis. Recently genome-wide transcription factor binding data has become widely available allowing for the application of pathway analysis to this type of data. In this work, we developed regulatory enrichment pathway analysis (REPA) to apply gene set analysis to genome-wide transcription factor binding data to infer associations between transcription factors and biological pathways. We used the transcription factor binding data generated by the ENCODE project, and gene sets from the Molecular Signatures and KEGG databases. Our results showed that 54 percent of the predictions examined have literature support and that REPA's recall is roughly 54 percent. This level of precision is promising as several of REPA's predictions are expected to be novel and can be used to guide new research avenues. In addition, the results of our case studies showed that REPA enhances the interpretation of genome-wide transcription profiling studies by suggesting putative regulators behind the observed transcriptional responses.
Collapse
|
19
|
Carbon monoxide protects the kidney through the central circadian clock and CD39. Proc Natl Acad Sci U S A 2018; 115:E2302-E2310. [PMID: 29463714 DOI: 10.1073/pnas.1716747115] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ischemia reperfusion injury (IRI) is the predominant tissue insult associated with organ transplantation. Treatment with carbon monoxide (CO) modulates the innate immune response associated with IRI and accelerates tissue recovery. The mechanism has been primarily descriptive and ascribed to the ability of CO to influence inflammation, cell death, and repair. In a model of bilateral kidney IRI in mice, we elucidate an intricate relationship between CO and purinergic signaling involving increased CD39 ectonucleotidase expression, decreased expression of Adora1, with concomitant increased expression of Adora2a/2b. This response is linked to a >20-fold increase in expression of the circadian rhythm protein Period 2 (Per2) and a fivefold increase in serum erythropoietin (EPO), both of which contribute to abrogation of kidney IRI. CO is ineffective against IRI in Cd39-/- and Per2-/- mice or in the presence of a neutralizing antibody to EPO. Collectively, these data elucidate a cellular signaling mechanism whereby CO modulates purinergic responses and circadian rhythm to protect against injury. Moreover, these effects involve CD39- and adenosinergic-dependent stabilization of Per2. As CO also increases serum EPO levels in human volunteers, these findings continue to support therapeutic use of CO to treat IRI in association with organ transplantation, stroke, and myocardial infarction.
Collapse
|
20
|
Exogenous carbon monoxide inhibits neutrophil infiltration in LPS-induced sepsis by interfering with FPR1 via p38 MAPK but not GRK2. Oncotarget 2018; 7:34250-65. [PMID: 27144520 PMCID: PMC5085153 DOI: 10.18632/oncotarget.9084] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/11/2016] [Indexed: 12/29/2022] Open
Abstract
Excessive neutrophil infiltration in vital organs is life-threatening to patients who suffer from sepsis. We identified a critical role of exogenous carbon monoxide (CO) in the inhibition of neutrophil infiltration during lipopolysaccharide (LPS)-induced sepsis. CO delivered from carbon monoxide-releasing molecule 2 (CORM-2) dramatically increased the survival rate of C57BL/6 mice subjected to LPS in vivo. CORM-2 significantly suppressed neutrophil infiltration in liver and lung as well as markers of inflammatory responses. Affymetrix GeneChip array analysis revealed that the increased expression of chemoattractant receptor formyl peptide receptor 1 (FPR1) may contribute to the excessive neutrophil infiltration. The under agarose migration assay demonstrated that LPS stimulation promoted migration to the ligand of FPR1, N-Formyl-Met-Leu-Phe (fMLP) but that CORM-2 treatment inhibited this promotion. Further studies demonstrated that CORM-2 internalized FPR1 by inhibiting p38 mitogen-activated protein kinase (MAPK) but not G protein-coupled receptor kinase 2 (GRK2), which may explain the inhibitory effect of CORM-2 on LPS-stimulated neutrophils. In summary, our study demonstrates that exogenous CO inhibits sepsis-induced neutrophil infiltration by interfering with FPR1 via p38 MAPK but not GRK2.
Collapse
|
21
|
Dreyer-Andersen N, Almeida AS, Jensen P, Kamand M, Okarmus J, Rosenberg T, Friis SD, Martínez Serrano A, Blaabjerg M, Kristensen BW, Skrydstrup T, Gramsbergen JB, Vieira HLA, Meyer M. Intermittent, low dose carbon monoxide exposure enhances survival and dopaminergic differentiation of human neural stem cells. PLoS One 2018; 13:e0191207. [PMID: 29338033 PMCID: PMC5770048 DOI: 10.1371/journal.pone.0191207] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/30/2017] [Indexed: 12/18/2022] Open
Abstract
Exploratory studies using human fetal tissue have suggested that intrastriatal transplantation of dopaminergic neurons may become a future treatment for patients with Parkinson's disease. However, the use of human fetal tissue is compromised by ethical, regulatory and practical concerns. Human stem cells constitute an alternative source of cells for transplantation in Parkinson's disease, but efficient protocols for controlled dopaminergic differentiation need to be developed. Short-term, low-level carbon monoxide (CO) exposure has been shown to affect signaling in several tissues, resulting in both protection and generation of reactive oxygen species. The present study investigated the effect of CO produced by a novel CO-releasing molecule on dopaminergic differentiation of human neural stem cells. Short-term exposure to 25 ppm CO at days 0 and 4 significantly increased the relative content of β-tubulin III-immunoreactive immature neurons and tyrosine hydroxylase expressing catecholaminergic neurons, as assessed 6 days after differentiation. Also the number of microtubule associated protein 2-positive mature neurons had increased significantly. Moreover, the content of apoptotic cells (Caspase3) was reduced, whereas the expression of a cell proliferation marker (Ki67) was left unchanged. Increased expression of hypoxia inducible factor-1α and production of reactive oxygen species (ROS) in cultures exposed to CO may suggest a mechanism involving mitochondrial alterations and generation of ROS. In conclusion, the present procedure using controlled, short-term CO exposure allows efficient dopaminergic differentiation of human neural stem cells at low cost and may as such be useful for derivation of cells for experimental studies and future development of donor cells for transplantation in Parkinson's disease.
Collapse
Affiliation(s)
- Nanna Dreyer-Andersen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ana Sofia Almeida
- Instituto de Biologia Experimental e Tecnológica (IBET), Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica (ITQB), Oeiras, Portugal
- CEDOC, NOVA Medical School/Faculdade de Ciência Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Pia Jensen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Morad Kamand
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Justyna Okarmus
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Tine Rosenberg
- Department of Pathology, Odense University Hospital, Denmark & Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Stig Düring Friis
- Center for Insoluble Protein Structures (inSPIN), Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Alberto Martínez Serrano
- Department of Molecular Biology and Center of Molecular Biology Severo Ochoa, University Autonoma Madrid-C.S.I.C Campus Cantoblanco, Madrid, Spain
| | - Morten Blaabjerg
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, Denmark & Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Troels Skrydstrup
- Center for Insoluble Protein Structures (inSPIN), Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Jan Bert Gramsbergen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Helena L. A. Vieira
- Instituto de Biologia Experimental e Tecnológica (IBET), Oeiras, Portugal
- CEDOC, NOVA Medical School/Faculdade de Ciência Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
22
|
Culbreth M, Zhang Z, Aschner M. Methylmercury augments Nrf2 activity by downregulation of the Src family kinase Fyn. Neurotoxicology 2017; 62:200-206. [PMID: 28736149 DOI: 10.1016/j.neuro.2017.07.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 12/26/2022]
Abstract
Methylmercury (MeHg) is a potent developmental neurotoxicant that induces an oxidative stress response in the brain. It has been demonstrated that MeHg exposure increases nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Nrf2 is a transcription factor that translocates to the nucleus in response to oxidative stress, and upregulates phase II detoxifying enzymes. Although, Nrf2 activity is augmented subsequent to MeHg exposure, it has yet to be established whether Nrf2 moves into the nucleus as a result. Furthermore, the potential effect MeHg might have on the non-receptor tyrosine kinase, Fyn, has not been addressed. Fyn phosphorylates Nrf2 in the nucleus, resulting in its inactivation, and consequent downregulation of the oxidative stress response. Here, we observe Nrf2 translocates to the nucleus subsequent to MeHg-induced oxidative stress. This response is concomitant with reduced Fyn expression and nuclear localization. Moreover, we detected an increase in phosphorylated Akt and glycogen synthase kinase 3 beta (GSK-3β) at activating and inhibitory sites, respectively. Akt phosphorylates and inhibits GSK-3β, which subsequently prevents Fyn phosphorylation to signal nuclear import. Our results demonstrate MeHg downregulates Fyn to maintain Nrf2 activity, and further illuminate a potential mechanism by which MeHg elicits neurotoxicity.
Collapse
Affiliation(s)
- Megan Culbreth
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
23
|
Honokiol inhibits c-Met-HO-1 tumor-promoting pathway and its cross-talk with calcineurin inhibitor-mediated renal cancer growth. Sci Rep 2017; 7:5900. [PMID: 28724911 PMCID: PMC5517643 DOI: 10.1038/s41598-017-05455-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023] Open
Abstract
Honokiol (HNK) is a small molecule with potent anti-inflammatory and anti-tumorigenic properties; yet the molecular targets of HNK are not well studied. Hyperactivation of the receptor tyrosine kinase c-Met and overexpression of the cytoprotective enzyme heme oxygenase-1 (HO-1) play a critical role in the growth and progression of renal cell carcinoma (RCC). Interestingly, the calcineurin inhibitor (CNI) cyclosporine A (CsA), an immunosuppressant used to prevent allograft rejection, can also increase the risk of RCC in transplant patients. We studied the potential role of c-Met signaling axis on CNI-induced renal tumor growth and tested the anti-tumor efficacy of HNK. Importantly, CNI treatment promoted c-Met induction and enhanced c-Met-induced Ras activation. We found that HNK treatment effectively down-regulated both c-Met phosphorylation and Ras activation in renal cancer cells. It inhibited the expression of both c-Met- and CNI-induced HO-1, and promoted cancer cell apoptosis. In vivo, HNK markedly inhibited CNI-induced renal tumor growth; and it decreased the expression of phospho-c-Met and HO-1 and reduced blood vessel density in tumor tissues. Our results suggest a novel mechanism(s) by which HNK exerts its anti-tumor activity through the inhibition of c-Met-Ras-HO-1 axis; and it can have significant therapeutic potential to prevent post-transplantation cancer in immunosuppressed patients.
Collapse
|
24
|
Choi YK, Kim JH, Lee DK, Lee KS, Won MH, Jeoung D, Lee H, Ha KS, Kwon YG, Kim YM. Carbon Monoxide Potentiation of L-Type Ca 2+ Channel Activity Increases HIF-1α-Independent VEGF Expression via an AMPKα/SIRT1-Mediated PGC-1α/ERRα Axis. Antioxid Redox Signal 2017; 27:21-36. [PMID: 27554679 DOI: 10.1089/ars.2016.6684] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS The heme oxygenase-1 (HO-1)/carbon monoxide (CO) pathway induced in astrocytes after ischemic brain injury promotes vascular endothelial growth factor (VEGF) expression to maintain and repair neurovascular function. Although HO-1-derived CO has been shown to induce hypoxia-inducible factor-1α (HIF-1α)-dependent VEGF expression, the underlying mechanism independent of HIF-1α remains to be elucidated. RESULTS HO-1 and VEGF were coexpressed in astrocytes of ischemic mouse brain tissues. Experiments with specific siRNAs and pharmacological activators/inhibitors of various target genes demonstrated that astrocytes pre-exposed to the CO-releasing compound, CORM-2, or transfected with HO-1 increased HIF-1α-independent VEGF expression via sequential activation of the following signal cascades; Ca2+/calmodulin-dependent protein kinase kinase β-mediated AMP-activated protein kinase (AMPK)α activation, AMPKα-induced increases in nicotinamide phosphoribosyltransferase (NAMPT) expression and cellular NAD+ level, sirtuin 1 (SIRT1)-dependent peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) stabilization and activation, and PGC-1α/estrogen-related receptor (ERR)α-mediated VEGF expression. All of these sequential events were blocked by an L-type voltage-gated Ca2+ channel inhibitor and Ca2+ chelators, but not by other Ca2+ channel inhibitors. INNOVATION HO-1-derived CO elicits Ca2+ influx by activating L-type Ca2+ channels, which is a key player in HIF-1α-independent VEGF expression by activating the AMPKα-NAMPT-SIRT1-PGC-1α/ERRα pathway. CONCLUSION Our results provide new mechanistic insight into the possible role for L-type Ca2+ channels in HO-1/CO-induced angiogenesis. Antioxid. Redox Signal. 27, 21-36.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- 1 Department of Molecular and Cellular Biochemistry, Kangwon National University , Chuncheon, Republic of Korea
- 2 Department of Bioscience and Biotechnology, Konkuk University , Seoul, Republic of Korea
| | - Ji-Hee Kim
- 1 Department of Molecular and Cellular Biochemistry, Kangwon National University , Chuncheon, Republic of Korea
| | - Dong-Keun Lee
- 1 Department of Molecular and Cellular Biochemistry, Kangwon National University , Chuncheon, Republic of Korea
| | - Kwang-Soon Lee
- 1 Department of Molecular and Cellular Biochemistry, Kangwon National University , Chuncheon, Republic of Korea
| | - Moo-Ho Won
- 3 Department of Neurobiology, School of Medicine, Kangwon National University , Chuncheon, Republic of Korea
| | - Dooil Jeoung
- 4 Department of Biochemistry, Kangwon National University , Chuncheon, Republic of Korea
| | - Hansoo Lee
- 5 Department of Life Sciences, College of Natural Sciences, Kangwon National University , Chuncheon, Republic of Korea
| | - Kwon-Soo Ha
- 1 Department of Molecular and Cellular Biochemistry, Kangwon National University , Chuncheon, Republic of Korea
| | - Young-Guen Kwon
- 6 Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University , Seoul, Republic of Korea
| | - Young-Myeong Kim
- 1 Department of Molecular and Cellular Biochemistry, Kangwon National University , Chuncheon, Republic of Korea
| |
Collapse
|
25
|
Rose BA, Yokota T, Chintalgattu V, Ren S, Iruela-Arispe L, Khakoo AY, Minamisawa S, Wang Y. Cardiac myocyte p38α kinase regulates angiogenesis via myocyte-endothelial cell cross-talk during stress-induced remodeling in the heart. J Biol Chem 2017. [PMID: 28637870 DOI: 10.1074/jbc.m117.784553] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Stress-induced p38 mitogen-activated protein kinase (MAPK) activity is implicated in pathological remodeling in the heart. For example, constitutive p38 MAPK activation in cardiomyocytes induces pathological features, including myocyte hypertrophy, apoptosis, contractile dysfunction, and fetal gene expression. However, the physiological function of cardiomyocyte p38 MAPK activity in beneficial compensatory vascular remodeling is unclear. This report investigated the functional role and the underlying mechanisms of cardiomyocyte p38 MAPK activity in cardiac remodeling induced by chronic stress. Using both in vitro and in vivo model systems, we found that p38 MAPK activity is required for hypoxia-induced pro-angiogenic activity from cardiomyocytes and that p38 MAPK activation in cardiomyocyte is sufficient to promote paracrine signaling-mediated, pro-angiogenic activity. We further demonstrate that VEGF is a paracrine factor responsible for the p38 MAPK-mediated pro-angiogenic activity from cardiomyocytes and that p38 MAPK pathway activation is sufficient for inducing VEGF secretion from cardiomyocytes in an Sp1-dependent manner. More significantly, cardiomyocyte-specific inactivation of p38α in mouse heart impaired compensatory angiogenesis after pressure overload and promoted early onset of heart failure. In summary, p38αMAPK has a critical role in the cross-talk between cardiomyocytes and vasculature by regulating stress-induced VEGF expression and secretion in cardiomyocytes. We conclude that as part of a stress-induced signaling pathway, p38 MAPK activity significantly contributes to both pathological and compensatory remodeling in the heart.
Collapse
Affiliation(s)
- Beth A Rose
- Departments of Anesthesiology, Physiology, and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Tomohiro Yokota
- Departments of Anesthesiology, Physiology, and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, California 90095; Department of Life Science and Medical Bioscience, Waseda University, 3-4-1 Okubo, Shinjuku-ku, 169-8555, Japan
| | | | - Shuxun Ren
- Departments of Anesthesiology, Physiology, and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Luisa Iruela-Arispe
- Department of Molecular, Cellular, and Developmental Biology, Molecular Biology Institute, School of Life Sciences, University of California, Los Angeles, California 90095
| | - Aarif Y Khakoo
- Amgen, Inc., Metabolic Disorders, South San Francisco, California 94080
| | - Susumu Minamisawa
- Department of Life Science and Medical Bioscience, Waseda University, 3-4-1 Okubo, Shinjuku-ku, 169-8555, Japan; Department of Cell Physiology, Jikei University, 25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yibin Wang
- Departments of Anesthesiology, Physiology, and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, California 90095.
| |
Collapse
|
26
|
Otterbein LE, Foresti R, Motterlini R. Heme Oxygenase-1 and Carbon Monoxide in the Heart: The Balancing Act Between Danger Signaling and Pro-Survival. Circ Res 2017; 118:1940-1959. [PMID: 27283533 DOI: 10.1161/circresaha.116.306588] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/02/2016] [Indexed: 12/22/2022]
Abstract
Understanding the processes governing the ability of the heart to repair and regenerate after injury is crucial for developing translational medical solutions. New avenues of exploration include cardiac cell therapy and cellular reprogramming targeting cell death and regeneration. An attractive possibility is the exploitation of cytoprotective genes that exist solely for self-preservation processes and serve to promote and support cell survival. Although the antioxidant and heat-shock proteins are included in this category, one enzyme that has received a great deal of attention as a master protective sentinel is heme oxygenase-1 (HO-1), the rate-limiting step in the catabolism of heme into the bioactive signaling molecules carbon monoxide, biliverdin, and iron. The remarkable cardioprotective effects ascribed to heme oxygenase-1 are best evidenced by its ability to regulate inflammatory processes, cellular signaling, and mitochondrial function ultimately mitigating myocardial tissue injury and the progression of vascular-proliferative disease. We discuss here new insights into the role of heme oxygenase-1 and heme on cardiovascular health, and importantly, how they might be leveraged to promote heart repair after injury.
Collapse
Affiliation(s)
- Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Roberta Foresti
- Inserm, U955, Equipe 12, Créteil, 94000, France.,University Paris Est, Faculty of Medicine, Créteil, 94000, France
| | - Roberto Motterlini
- Inserm, U955, Equipe 12, Créteil, 94000, France.,University Paris Est, Faculty of Medicine, Créteil, 94000, France
| |
Collapse
|
27
|
MiR-124 inhibits the migration and invasion of human hepatocellular carcinoma cells by suppressing integrin αV expression. Sci Rep 2017; 7:40733. [PMID: 28094803 PMCID: PMC5240551 DOI: 10.1038/srep40733] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/09/2016] [Indexed: 12/13/2022] Open
Abstract
Tumor metastasis is the major cause of cancer-related death especially in human hepatocellular carcinoma (HCC). Although microRNAs have been implicated in tumor development, the roles of miR-124 in HCC metastasis are still not well understood. We conducted functional analysis in this study to investigate miR-124. We observed that miR-124 significantly retarded the wound healing and migration of HCC SMMC-7721 and BEL-7404 cells. Further analysis indicated miR-124 directly targeting the transcriptional factor Sp1 which is an important transcription factor for the integrin αV subunit gene transcription. Co-transfection of miR-124 with the luciferase reporter containing Sp1 3′ untranslated region (UTR) significantly suppressed the luciferase activities. While mutation of the binding site of miR-124 in Sp1 mRNA 3′UTR completely abrogated the suppression of miR-124. Overexpression of miR-124 resulted in robust downregulation of Sp1 and integrin αV expression at either mRNA or protein level. Ectopic expression of miR-124 in HCC dramatically repressed the wound healing and migration in vitro and tumor metastasis in mouse experiments. Our findings demonstrated that miR-124 played as an important role in regulation of integrin αV expression in HCC, and reintroduction of miR-124 might be an alternative therapeutic strategy for controlling integrin αV expression in HCC.
Collapse
|
28
|
EETs and HO-1 cross-talk. Prostaglandins Other Lipid Mediat 2016; 125:65-79. [DOI: 10.1016/j.prostaglandins.2016.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/03/2016] [Accepted: 06/20/2016] [Indexed: 01/26/2023]
|
29
|
Huang YH, Yang HY, Huang SW, Ou G, Hsu YF, Hsu MJ. Interleukin-6 Induces Vascular Endothelial Growth Factor-C Expression via Src-FAK-STAT3 Signaling in Lymphatic Endothelial Cells. PLoS One 2016; 11:e0158839. [PMID: 27383632 PMCID: PMC4934912 DOI: 10.1371/journal.pone.0158839] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/22/2016] [Indexed: 01/05/2023] Open
Abstract
Elevated serum interleukin-6 (IL-6) levels correlates with tumor grade and poor prognosis in cancer patients. IL-6 has been shown to promote tumor lymphangiogenesis through vascular endothelial growth factor-C (VEGF-C) induction in tumor cells. We recently showed that IL-6 also induced VEGF-C expression in lymphatic endothelial cells (LECs). However, the signaling mechanisms involved in IL-6-induces VEGF-C induction in LECs remain incompletely understood. In this study, we explored the causal role of focal adhesion kinase (FAK) in inducing VEGF-C expression in IL-6-stimulated murine LECs (SV-LECs). FAK signaling blockade by NSC 667249 (a FAK inhibitor) attenuated IL-6-induced VEGF-C expression and VEGF-C promoter-luciferase activities. IL-6’s enhancing effects of increasing FAK, ERK1/2, p38MAPK, C/EBPβ, p65 and STAT3 phosphorylation as well as C/EBPβ-, κB- and STAT3-luciferase activities were reduced in the presence of NSC 667249. STAT3 knockdown by STAT3 siRNA abrogated IL-6’s actions in elevating VEGF-C mRNA and protein levels. Moreover, Src-FAK signaling blockade reduced IL-6’s enhancing effects of increasing STAT3 binding to the VEGF-C promoter region, cell migration and endothelial tube formation of SV-LECs. Together these results suggest that IL-6 increases VEGF-C induction and lymphangiogenesis may involve, at least in part, Src-FAK-STAT3 cascade in LECs.
Collapse
Affiliation(s)
- Yu-Han Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yu Yang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shiu-Wen Huang
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - George Ou
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ya-Fen Hsu
- Division of General Surgery, Department of Surgery, Landseed Hospital, Taoyuan, Taiwan
- * E-mail: (YFH); (MJH)
| | - Ming-Jen Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail: (YFH); (MJH)
| |
Collapse
|
30
|
Lin-Holderer J, Li L, Gruneberg D, Marti HH, Kunze R. Fumaric acid esters promote neuronal survival upon ischemic stress through activation of the Nrf2 but not HIF-1 signaling pathway. Neuropharmacology 2016; 105:228-240. [PMID: 26801077 DOI: 10.1016/j.neuropharm.2016.01.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 12/30/2022]
Abstract
Oxidative stress is a hallmark of ischemic stroke pathogenesis causing neuronal malfunction and cell death. Up-regulation of anti-oxidative genes through activation of the NF-E2-related transcription factor 2 (Nrf2) is one of the key mechanisms in cellular defense against oxidative stress. Fumaric acid esters (FAEs) represent a class of anti-oxidative and anti-inflammatory molecules that are already in clinical use for multiple sclerosis therapy. Purpose of this study was to investigate whether FAEs promote neuronal survival upon ischemia, and analyze putative underlying molecular mechanisms in neurons. Murine organotypic hippocampal slice cultures, and two neuronal cell lines were treated with dimethyl fumarate (DMF) and monomethyl fumarate (MMF). Ischemic conditions were generated by exposing cells and slice cultures to oxygen-glucose deprivation (OGD), and cell death was determined through propidium iodide staining. Treatment with both DMF and MMF immediately after OGD during reoxygenation strongly reduced cell death in hippocampal cultures ex vivo. Both DMF and MMF promoted neuronal survival in HT-22 and SH-SY5Y cell lines exposed to ischemic stress. DMF but not MMF activated the anti-oxidative Nrf2 pathway in neurons. Accordingly, Nrf2 knockdown in murine neurons abrogated the protective effect of DMF but not MMF. Moreover, FAEs did not activate the hypoxia-inducible factor (HIF) pathway suggesting that this pathway may not significantly contribute to FAE mediated neuroprotection. Our results may provide the basis for a new therapeutic approach to treat ischemic pathologies such as stroke with a drug that already has a broad safety record in humans.
Collapse
Affiliation(s)
- Jiemeng Lin-Holderer
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Lexiao Li
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Daniel Gruneberg
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Reiner Kunze
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany.
| |
Collapse
|
31
|
Fayad-Kobeissi S, Ratovonantenaina J, Dabiré H, Wilson JL, Rodriguez AM, Berdeaux A, Dubois-Randé JL, Mann BE, Motterlini R, Foresti R. Vascular and angiogenic activities of CORM-401, an oxidant-sensitive CO-releasing molecule. Biochem Pharmacol 2015; 102:64-77. [PMID: 26721585 DOI: 10.1016/j.bcp.2015.12.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/17/2015] [Indexed: 01/04/2023]
Abstract
Carbon monoxide (CO) is generated by heme oxygenase-1 (HO-1) and displays important signaling, anti-apoptotic and anti-inflammatory activities, indicating that pharmacological agents mimicking its action may have therapeutic benefit. This study examined the biochemical and pharmacological properties of CORM-401, a recently described CO-releasing molecule containing manganese as a metal center. We used in vitro approaches, ex-vivo rat aortic rings and the EA.hy926 endothelial cell line in culture to address how CORM-401 releases CO and whether the compound modulates vascular tone and pro-angiogenic activities, respectively. We found that CORM-401 released up to three CO/mole of compound depending on the concentration of the acceptor myoglobin. Oxidants such as H2O2, tert-butyl hydroperoxide or hypochlorous acid increased the CO liberated by CORM-401. CORM-401 also relaxed pre-contracted aortic rings and vasorelaxation was enhanced in combination with H2O2. Consistent with the release of multiple CO molecules, CORM-401-induced vasodilation was three times higher than that elicited by CORM-A1, which exhibits a similar half-life to CORM-401 but liberates only one CO/mole of compound. Furthermore, endothelial cells exposed to CORM-401 accumulated CO intracellularly, accelerated migration in vitro and increased VEGF and IL-8 levels. Studies using pharmacological inhibitors revealed HO-1 and p38 MAP kinase as two independent and parallel mechanisms involved in stimulating migration. We conclude that the ability of CORM-401 to release multiple CO, its sensitivity to oxidants which increase CO release, and its vascular and pro-angiogenic properties highlight new advances in the design of CO-releasing molecules that can be tailored for the treatment of inflammatory and oxidative stress-mediated pathologies.
Collapse
Affiliation(s)
- Sarah Fayad-Kobeissi
- Université Paris-Est, Faculté de Medicine, Créteil 94000, France; INSERM, U955, Equipe 12, Créteil 94000, France.
| | - Johary Ratovonantenaina
- Université Paris-Est, Faculté de Medicine, Créteil 94000, France; INSERM, U955, Equipe 12, Créteil 94000, France.
| | | | - Jayne Louise Wilson
- Université Paris-Est, Faculté de Medicine, Créteil 94000, France; INSERM, U955, Equipe 12, Créteil 94000, France.
| | - Anne Marie Rodriguez
- Université Paris-Est, Faculté de Medicine, Créteil 94000, France; INSERM, U955, Equipe 12, Créteil 94000, France.
| | | | - Jean-Luc Dubois-Randé
- AP-HP, Hôpital Henri Mondor-A. Chenevier, Service Hospitalier, Créteil 94000, France.
| | - Brian E Mann
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom.
| | - Roberto Motterlini
- Université Paris-Est, Faculté de Medicine, Créteil 94000, France; INSERM, U955, Equipe 12, Créteil 94000, France.
| | - Roberta Foresti
- Université Paris-Est, Faculté de Medicine, Créteil 94000, France; INSERM, U955, Equipe 12, Créteil 94000, France.
| |
Collapse
|
32
|
Chien PTY, Lin CC, Hsiao LD, Yang CM. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes. Toxicol Appl Pharmacol 2015; 289:349-59. [DOI: 10.1016/j.taap.2015.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/28/2015] [Accepted: 09/11/2015] [Indexed: 12/18/2022]
|
33
|
Hsiao HY, Chen YC, Huang CH, Chen CC, Hsu YH, Chen HM, Chiu FL, Kuo HC, Chang C, Chern Y. Aberrant astrocytes impair vascular reactivity in Huntington disease. Ann Neurol 2015; 78:178-92. [DOI: 10.1002/ana.24428] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/02/2015] [Accepted: 04/07/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Han-Yun Hsiao
- Institute of Biomedical Sciences, Academia Sinica; Taipei Taiwan
- Institute of Neuroscience, National Yang-Ming University; Taipei Taiwan
| | - Yu-Chen Chen
- Institute of Biomedical Sciences, Academia Sinica; Taipei Taiwan
- Institute of Neuroscience, National Yang-Ming University; Taipei Taiwan
| | - Chien-Hsiang Huang
- Institute of Biomedical Sciences, Academia Sinica; Taipei Taiwan
- Institute of Biomedical Engineering, National Taiwan University; Taipei Taiwan
| | - Chiao-Chi Chen
- Institute of Biomedical Sciences, Academia Sinica; Taipei Taiwan
| | - Yi-Hua Hsu
- Institute of Biomedical Sciences, Academia Sinica; Taipei Taiwan
| | - Hui-Mei Chen
- Institute of Biomedical Sciences, Academia Sinica; Taipei Taiwan
| | - Feng-Lan Chiu
- Institute of Cellular and Organismic Biology, Academia Sinica; Taipei Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica; Taipei Taiwan
| | - Chen Chang
- Institute of Biomedical Sciences, Academia Sinica; Taipei Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica; Taipei Taiwan
- Institute of Neuroscience, National Yang-Ming University; Taipei Taiwan
| |
Collapse
|
34
|
Chi PL, Lin CC, Chen YW, Hsiao LD, Yang CM. CO Induces Nrf2-Dependent Heme Oxygenase-1 Transcription by Cooperating with Sp1 and c-Jun in Rat Brain Astrocytes. Mol Neurobiol 2014; 52:277-92. [PMID: 25148934 DOI: 10.1007/s12035-014-8869-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/15/2014] [Indexed: 12/30/2022]
Abstract
Upregulation of heme oxygenase 1 (HO-1) by carbon monoxide (CO) delivered by CO-releasing molecules (CORMs) may be utilized as a therapeutic intervention for neurodegenerative diseases. This study was to delineate the two putative anti-oxidant response elements (AREs) in modulating HO-1 gene by participating with its promoter elements in rat brain astrocytes (RBA-1). CORM-2-induced HO-1 expression was mediated through superoxide, p38 mitogen-activated protein kinase(MAPK), extracellular signal-regulated protein kinases 1 and 2 (Erk1/2), protein tyrosine kinase 2 (Pyk2), platelet-derived growth factor receptor (PDGFR), and phosphatidylinositol 3'-kinase (PI3K/Akt), revealed by the pharmacological inhibitors or knockdown of these signaling molecules. CORM-2-enhanced HO-1 promoter activity was inhibited by co-transfection with small interfering RNA (siRNA) of c-Jun, specificity protein 1 (Sp1), or nuclear factor-erythroid 2-related factor 2 (Nrf2). Immunoprecipitation assay showed that CORM-2 increased the association of nuclear Nrf2 with Sp1 and c-Jun. Furthermore, chromatin immunoprecipitation (ChIP) assay confirmed that Nrf2, Sp1, and c-Jun are associated with the proximal ARE binding site on HO-1 promoter, suggesting that Nrf2/Sp1/c-Jun cooperations are key transcription factors modulating HO-1 expression. Mechanistically, CORM-2-induced ARE promoter activity was reduced by the inhibitors of reactive oxygen species (ROS), p38 MAPK, Pyk2, MAPK/ERK kinases 1 and 2 (MEK1/2), PDGFR, and PI3K/Akt or the siRNAs of c-Jun, SP1, and Nrf2. These findings suggested that CORM-2 increases formation of c-Jun, Sp1, and Nrf2 complex and binding with ARE1 binding site, which is mediated through both ROS/p38 MAPK and Pyk2-dependent PDGFR/PI3K/Akt/Erk1/2 pathways, resulting in HO-1 expression in RBA-1 cells.
Collapse
Affiliation(s)
- Pei-Ling Chi
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, 33302, Tao-Yuan, Taiwan
| | | | | | | | | |
Collapse
|
35
|
Tertil M, Skrzypek K, Florczyk U, Weglarczyk K, Was H, Collet G, Guichard A, Gil T, Kuzdzal J, Jozkowicz A, Kieda C, Pichon C, Dulak J. Regulation and novel action of thymidine phosphorylase in non-small cell lung cancer: crosstalk with Nrf2 and HO-1. PLoS One 2014; 9:e97070. [PMID: 24819505 PMCID: PMC4018251 DOI: 10.1371/journal.pone.0097070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/14/2014] [Indexed: 02/01/2023] Open
Abstract
Proangiogenic enzyme thymidine phosphorylase (TP) is a promising target for anticancer therapy, yet its action in non-small cell lung carcinoma (NSCLC) is not fully understood. To elucidate its role in NSCLC tumor growth, NCI-H292 lung mucoepidermoid carcinoma cells and endothelial cells were engineered to overexpress TP by viral vector transduction. NSCLC cells with altered expression of transcription factor Nrf2 or its target gene heme oxygenase-1 (HO-1) were used to study the regulation of TP and the findings from pre-clinical models were related to gene expression data from clinical NSCLC specimens. Overexpression of Nrf2 or HO-1 resulted in upregulation of TP in NCI-H292 cells, an effect mimicked by treatment with an antioxidant N-acetylcysteine and partially reversed by HO-1 knockdown. Overexpression of TP attenuated cell proliferation and migration in vitro, but simultaneously enhanced angiogenic potential of cancer cells supplemented with thymidine. The latter was also observed for SK-MES-1 squamous cell carcinoma and NCI-H460 large cell carcinoma cells. TP-overexpressing NCI-H292 tumors in vivo exhibited better oxygenation and higher expression of IL-8, IL-1β and IL-6. TP overexpression in endothelial cells augmented their angiogenic properties which was associated with enhanced generation of HO-1 and VEGF. Correlation of TP with the expression of HO-1 and inflammatory cytokines was confirmed in clinical samples of NSCLC. Altogether, the increased expression of IL-1β and IL-6 together with proangiogenic effects of TP-expressing NSCLC on endothelium can contribute to tumor growth, implying TP as a target for antiangiogenesis in NSCLC.
Collapse
Affiliation(s)
- Magdalena Tertil
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Centre de Biophysique Moleculaire, CNRS UPR4301, Orléans, France
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Klaudia Skrzypek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Centre de Biophysique Moleculaire, CNRS UPR4301, Orléans, France
| | - Urszula Florczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Halina Was
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Guillaume Collet
- Centre de Biophysique Moleculaire, CNRS UPR4301, Orléans, France
| | - Alan Guichard
- Centre de Biophysique Moleculaire, CNRS UPR4301, Orléans, France
| | - Tomasz Gil
- Department of Thoracic Surgery, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | - Jaroslaw Kuzdzal
- Department of Thoracic Surgery, Jagiellonian University Medical College, John Paul II Hospital, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Claudine Kieda
- Centre de Biophysique Moleculaire, CNRS UPR4301, Orléans, France
| | - Chantal Pichon
- Centre de Biophysique Moleculaire, CNRS UPR4301, Orléans, France
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail:
| |
Collapse
|
36
|
Ueno-Shuto K, Kato K, Tasaki Y, Sato M, Sato K, Uchida Y, Sakai H, Ono T, Suico MA, Mitsutake K, Tokutomi N, Kai H, Shuto T. Lipopolysaccharide decreases single immunoglobulin interleukin-1 receptor-related molecule (SIGIRR) expression by suppressing specificity protein 1 (Sp1) via the Toll-like receptor 4 (TLR4)-p38 pathway in monocytes and neutrophils. J Biol Chem 2014; 289:18097-109. [PMID: 24821721 DOI: 10.1074/jbc.m113.532093] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single immunoglobulin interleukin-1 receptor-related molecule (SIGIRR) is one of the immunoglobulin-like membrane proteins that is crucial for negative regulation of toll-like receptor 4 (TLR4) and interleukin-1 receptor. Despite the importance of understanding its expression and function, knowledge is limited on the regulatory mechanism in the epithelial tissues, such as the liver, lung, and gut, where its predominant expression is originally described. Here, we found expression of SIGIRR in non-epithelial innate immune cells, including primary peripheral blood monocytes, polymorphonuclear neutrophils, monocytic RAW264 cells, and neutrophilic-differentiated HL-60 cells. Consistent with previous findings in epithelial tissues, SIGIRR gene and protein expression were also down-regulated by LPS treatment in a time-dependent manner in primary blood monocytes and polymorphonuclear neutrophils. A reduction was also observed in RAW264 and differentiated HL-60 cells. Notably, exogenous introduction of the dominant negative form of TLR4 and siRNA of p38 resulted in inhibition of LPS-induced SIGIRR down-regulation, whereas treatment with p38 activator anisomycin showed a dose-dependent decrease in SIGIRR expression, suggesting TLR4-p38 signal as a critical pathway for LPS-induced SIGIRR down-regulation. Finally, reporter gene and chromatin immunoprecipitation assays demonstrated that Sp1 is a key factor that directly binds to the proximal promoter of SIGIRR gene and consequently regulates basal SIGIRR expression, which is negatively regulated by the LPS-dependent TLR4-p38 pathway. In summary, the data precisely demonstrate how LPS down-regulates SIGIRR expression and provide a role of LPS signal that counteracts Sp1-dependent basal promoter activation of SIGIRR gene via TLR4-p38 pathway in non-epithelial innate immune cells.
Collapse
Affiliation(s)
- Keiko Ueno-Shuto
- From the Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan, the Laboratory of Pharmacology, Division of Life Science, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Kosuke Kato
- the Department of Physiology and Lung Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, and
| | - Yukihiro Tasaki
- From the Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Miki Sato
- From the Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Keizo Sato
- the School of Pharmacy, Kyushu University of Health and Welfare, Nobeoka, Miyazaki 882-8508, Japan
| | - Yuji Uchida
- the Laboratory of Pharmacology, Division of Life Science, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Hiromichi Sakai
- From the Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Tomomi Ono
- From the Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Mary Ann Suico
- From the Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Kazunori Mitsutake
- From the Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Naofumi Tokutomi
- the Laboratory of Pharmacology, Division of Life Science, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Hirofumi Kai
- From the Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Tsuyoshi Shuto
- From the Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan,
| |
Collapse
|
37
|
Gohar EY, El-gowilly SM, El-Gowelli HM, El-Demellawy MA, El-Mas MM. PI3K/Akt-independent NOS/HO activation accounts for the facilitatory effect of nicotine on acetylcholine renal vasodilations: modulation by ovarian hormones. PLoS One 2014; 9:e95079. [PMID: 24733557 PMCID: PMC3986343 DOI: 10.1371/journal.pone.0095079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 03/24/2014] [Indexed: 12/21/2022] Open
Abstract
We investigated the effect of chronic nicotine on cholinergically-mediated renal vasodilations in female rats and its modulation by the nitric oxide synthase (NOS)/heme oxygenase (HO) pathways. Dose-vasodilatory response curves of acetylcholine (0.01–2.43 nmol) were established in isolated phenylephrine-preconstricted perfused kidneys obtained from rats treated with or without nicotine (0.5–4.0 mg/kg/day, 2 weeks). Acetylcholine vasodilations were potentiated by low nicotine doses (0.5 and 1 mg/kg/day) in contrast to no effect for higher doses (2 and 4 mg/kg/day). The facilitatory effect of nicotine was acetylcholine specific because it was not observed with other vasodilators such as 5′-N-ethylcarboxamidoadenosine (NECA, adenosine receptor agonist) or papaverine. Increases in NOS and HO-1 activities appear to mediate the nicotine-evoked enhancement of acetylcholine vasodilation because the latter was compromised after pharmacologic inhibition of NOS (L-NAME) or HO-1 (zinc protoporphyrin, ZnPP). The renal protein expression of phosphorylated Akt was not affected by nicotine. We also show that the presence of the two ovarian hormones is necessary for the nicotine augmentation of acetylcholine vasodilations to manifest because nicotine facilitation was lost in kidneys of ovariectomized (OVX) and restored after combined, but not individual, supplementation with medroxyprogesterone acetate (MPA) and estrogen (E2). Together, the data suggests that chronic nicotine potentiates acetylcholine renal vasodilation in female rats via, at least partly, Akt-independent HO-1 upregulation. The facilitatory effect of nicotine is dose dependent and requires the presence of the two ovarian hormones.
Collapse
Affiliation(s)
- Eman Y. Gohar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sahar M. El-gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hanan M. El-Gowelli
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maha A. El-Demellawy
- Medical Biotechnology Department, City for Scientific Research & Technology Applications, Borg El-Arab, Alexandria, Egypt
| | - Mahmoud M. El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- * E-mail:
| |
Collapse
|
38
|
Calay D, Mason JC. The multifunctional role and therapeutic potential of HO-1 in the vascular endothelium. Antioxid Redox Signal 2014; 20:1789-809. [PMID: 24131232 DOI: 10.1089/ars.2013.5659] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Heme oxygenases (HO-1 and HO-2) catalyze the degradation of the pro-oxidant heme into carbon monoxide (CO), iron, and biliverdin, which is subsequently converted to bilirubin. In the vasculature, particular interest has focused on antioxidant and anti-inflammatory properties of the inducible HO-1 isoform in the vascular endothelium. This review will present evidence that illustrates the potential therapeutic significance of HO-1 and its products, with special emphasis placed on their beneficial effects on the endothelium in vascular diseases. RECENT ADVANCES The understanding of the molecular basis for the regulation and functions of HO-1 has led to the identification of a variety of drugs that increase HO-1 activity in the vascular endothelium. Moreover, therapeutic delivery of HO-1 products CO, biliverdin, and bilirubin has been shown to have favorable effects, notably on endothelial cells and in animal models of vascular disease. CRITICAL ISSUES To date, mechanistic data identifying the downstream target genes utilized by HO-1 and its products to exert their actions remain relatively sparse. Likewise, studies in man to investigate the efficacy of therapeutics known to induce HO-1 or the consequences of the tissue-specific delivery of CO or biliverdin/bilirubin are rarely performed. FUTURE DIRECTIONS Based on the promising in vivo data from animal models, clinical trials to explore the safety and efficacy of the therapeutic induction of HO-1 and the delivery of its products should now be pursued further, targeting, for example, patients with severe atherosclerotic disease, ischemic limbs, restenosis injury, or at high risk of organ rejection.
Collapse
Affiliation(s)
- Damien Calay
- Vascular Sciences Unit, National Heart and Lung Institute , Imperial Centre for Translational & Experimental Medicine, Imperial College London Hammersmith Hospital, London, United Kingdom
| | | |
Collapse
|
39
|
Abstract
SIGNIFICANCE Many reports have underscored the importance of the heme degradation pathway that is regulated by heme oxygenase (HO). This reaction releases bile pigments and carbon monoxide (CO), which are important antioxidant and signaling molecules. Thus, the reaction of HO-1 would have significant cytoprotective effects. Nevertheless, the importance of this protein goes beyond its enzymatic action. New evidence outlines significant effects of inactive forms of the HO-1 protein. RECENT ADVANCES In fact, the role of the HO protein in cellular signaling, including transcription factor activation, binding to proteins, phosphorylation, and modulation of protein function, among others, has started being elucidated. The mechanism by which the inducible form of HO-1, in particular, can migrate to various cellular compartments to mediate important signaling or how and why it binds to key transcription factors and other proteins that are important in DNA repair is also described in several physiologic systems. CRITICAL ISSUES The signaling functions of HO-1 may have particular relevance in clinical circumstances, including cancer, as redistribution of HO-1 into the nuclear compartment is observed with cancer progression and metastasis. In addition, along with oxidative stress, the pleiotropic functions of HO-1 modulate antioxidant defense. In organ transplantation, HO and its byproducts suppress rejection at multiple levels and in sepsis-induced pulmonary dysfunction, inhaled CO or modulation of HO activity can change the course of the disease in animals. FUTURE DIRECTIONS It is hoped that a more detailed understanding of the various signaling functions of HO will guide therapeutic approaches for complex diseases.
Collapse
Affiliation(s)
- Phyllis A Dennery
- Department of Pediatrics, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Browning E, Wang H, Hong N, Yu K, Buerk DG, DeBolt K, Gonder D, Sorokina EM, Patel P, De Leon DD, Feinstein SI, Fisher AB, Chatterjee S. Mechanotransduction drives post ischemic revascularization through K(ATP) channel closure and production of reactive oxygen species. Antioxid Redox Signal 2014; 20:872-86. [PMID: 23758611 PMCID: PMC3924794 DOI: 10.1089/ars.2012.4971] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIMS We reported earlier that ischemia results in the generation of reactive oxygen species (ROS) via the closure of a K(ATP) channel which causes membrane depolarization and NADPH oxidase 2 (NOX2) activation. This study was undertaken to understand the role of ischemia-mediated ROS in signaling. RESULTS Angiogenic potential of pulmonary microvascular endothelial cells (PMVEC) was studied in vitro and in the hind limb in vivo. Flow adapted PMVEC injected into a Matrigel matrix showed significantly higher tube formation than cells grown under static conditions or cells from mice with knockout of K(ATP) channels or the NOX2. Blocking of hypoxia inducible factor-1 alpha (HIF-1α) accumulation completely abrogated the tube formation in wild-type (WT) PMVEC. With ischemia in vivo (femoral artery ligation), revascularization was high in WT mice and was significantly decreased in mice with knockout of K(ATP) channel and in mice orally fed with a K(ATP) channel agonist. In transgenic mice with endothelial-specific NOX2 expression, the revascularization observed was intermediate between that of WT and knockout of K(ATP) channel or NOX2. Increased HIF-1α activation and vascular endothelial growth factor (VEGF) expression was observed in ischemic tissue of WT mice but not in K(ATP) channel and NOX2 null mice. Revascularization could be partially rescued in K(ATP) channel null mice by delivering VEGF into the hind limb. INNOVATION This is the first report of a mechanosensitive ion channel (K(ATP) channel) initiating endothelial signaling that drives revascularization. CONCLUSION The K(ATP) channel responds to the stop of flow and activates signals for revascularization to restore the impeded blood flow.
Collapse
Affiliation(s)
- Elizabeth Browning
- 1 Institute for Environmental Medicine, University of Pennsylvania , Perelman School of Medicine, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Shah Z, Raghavan A. Repair and regeneration properties of Ginkgo biloba after ischemic brain injury. Neural Regen Res 2014; 9:1104-1107. [PMID: 25132842 PMCID: PMC4133771 DOI: 10.4103/1673-5374.135308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
42
|
Angevine K, Wuescher L, Mensah-Osman E. Loss of menin mediated by endothelial cells treated with CoPP is associated with increased maturation of adipocytes. Adipocyte 2013; 2:207-16. [PMID: 24052896 PMCID: PMC3774696 DOI: 10.4161/adip.24722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress is caused by an increase in reactive oxygen species (ROS) relative to the antioxidant defense system. An increase in ROS is known to decrease vascular function, increase inflammatory cytokines, and promote adipocyte hypertrophy. A known regulator of the oxidative stress response is the heat shock protein, heme-oxygenase 1 (HO-1), which is induced by cobalt protoporphyrin IX (CoPP). Menin was recently found to promote the sustained expression of heat shock proteins and is implicated in the regulation of oxidative stress. In this study, we investigated how changes in menin expression affected adipogenesis via the interaction between endothelial cells and adipocytes in response to CoPP treatment during oxidative stress. Using angiotensin II (Ang II) to induce oxidative stress in endothelial cells and adipocytes, we observed the induction of various cytokines including EGF, VEGF, angiogenin, IL-6, and MCP-1. Preadipocytes cultured in endothelial cell conditioned media treated with Ang II showed no changes in differentiation markers. Preadipocytes treated with the endothelial cell-conditioned media pretreated with CoPP resulted in an increase in the number of adipocytes, which expressed higher levels of adipocyte differentiation markers in direct correlation with the complete downregulation of the stress response regulator, menin. This change was not detected in adipocytes directly treated with CoPP alone. Therefore, we concluded that loss of menin is associated with the maturation of adipocytes induced by conditioned media from endothelial cells treated with CoPP.
Collapse
|
43
|
Huang YH, Yang HY, Hsu YF, Chiu PT, Ou G, Hsu MJ. Src contributes to IL6-induced vascular endothelial growth factor-C expression in lymphatic endothelial cells. Angiogenesis 2013; 17:407-18. [DOI: 10.1007/s10456-013-9386-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 09/12/2013] [Indexed: 12/20/2022]
|
44
|
Jang HJ, Tsoyi K, Kim YM, Park EJ, Park SW, Kim HJ, Lee JH, Chang KC. (S)-1-α-naphthylmethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (CKD712), promotes wound closure by producing VEGF through HO-1 induction in human dermal fibroblasts and mouse skin. Br J Pharmacol 2013; 168:1485-96. [PMID: 23088309 DOI: 10.1111/bph.12031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/01/2012] [Accepted: 10/15/2012] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Given the importance of VEGF and haem oxygenase (HO)-1 in wound healing, the present study tested the hypothesis that CKD712, a synthetic tetrahydroisoquinoline alkaloid, activated VEGF production through the induction of HO-1 in human dermal fibroblasts (HDFs) and in mouse skin to stimulate wound healing. EXPERIMENTAL APPROACH Using HDFs, the effects of CKD712 on the production of VEGF and migration were evaluated. The mechanisms responsible were investigated using various signal inhibitors and small interfering RNA techniques. The ability of CKD712 to promote wound healing was also investigated in full-thickness skin-wounded mice. KEY RESULTS CKD712 treatment of HDFs increased VEGF production and accelerated migration, which was antagonized by anti-VEGF antibodies. Both an AMPK inhibitor (compound C) and a HO-1 activity inhibitor (SnPPIX) but not inhibitors of MAPKs, PI3K and PKC reduced the production of VEGF by CKD712. Interestingly, SnPPIX inhibited HO-1 expression but not p-AMPK, whereas compound C inhibited both p-AMPK and HO-1 induction by CKD712. Moreover, CKD712 decreased HO-1 expression without affecting the expression of p-AMPK by siHO-1 transfection, but it failed to induce HO-1 in siAMPKα1-transfected cells, suggesting that AMPK is involved in HO-1 induction by CKD712 in HDFs. Also, CKD712 shortened the time of wound closure in an SnPPIX-sensitive manner in a full-thickness skin-wounded mouse model. CONCLUSION AND IMPLICATIONS CKD712 accelerated cutaneous wound healing, at least in part, by the production of VEGF through HO-1 induction in HDFs and mouse skin.
Collapse
Affiliation(s)
- Hwa Jin Jang
- Department of Pharmacology, School of Medicine Gyeongsang National University, Institute of Health Sciences, Jinju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Tajitsu Y, Ikeda R, Nishizawa Y, Mataki H, Che XF, Sumizawa T, Nitta M, Yamaguchi T, Yamamoto M, Tabata S, Akiyama SI, Yamada K, Furukawa T, Takeda Y. Molecular basis for the expression of major vault protein induced by hyperosmotic stress in SW620 human colon cancer cells. Int J Mol Med 2013; 32:703-8. [PMID: 23820674 DOI: 10.3892/ijmm.2013.1428] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/09/2013] [Indexed: 11/05/2022] Open
Abstract
Major vault protein (MVP) is identical to lung resistance-related protein (LRP), which is the major component of vaults. Vaults are considered to play a protective role against xenobiotics and other types of stress. In a previous study, we reported that the expression levels of MVP in SW620 human colon cancer cells were increased in hypertonic culture medium with sucrose. However, the molecular mechanism behind the induction of MVP expression by osmotic stress has not yet been elucidated. Therefore, in the present study, we investigated the mechanism behind the induction of MVP expression by osmotic stress. Under hyperosmotic stress conditions, the ubiquitination of specificity protein 1 (Sp1) decreased, Sp1 protein levels increased, its binding to the MVP promoter was enhanced, and small interfering RNA (siRNA) for Sp1 suppressed the induction of MVP expression. The inhibition of c-jun N-terminal kinase (JNK) by SP600125, a specific JNK inhibitor, decreased the expression of MVP and Sp1 under hyperosmotic conditions. Our data indicate that the stabilization and upregulation of Sp1 protein expression by JNK participate in the inhibition of the ubiquitination and degradation of Sp1, and thus in the induction of MVP expression under hyperosmotic conditions.
Collapse
Affiliation(s)
- Yusuke Tajitsu
- Department of Clinical Pharmacy and Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pang L, Zhang Y, Yu Y, Zhang S. Resistin promotes the expression of vascular endothelial growth factor in ovary carcinoma cells. Int J Mol Sci 2013; 14:9751-66. [PMID: 23652833 PMCID: PMC3676810 DOI: 10.3390/ijms14059751] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/18/2013] [Accepted: 04/24/2013] [Indexed: 12/16/2022] Open
Abstract
Resistin is a novel hormone that is secreted by human adipocytes and mononuclear cells and is associated with obesity, insulin resistance and inflammation. Recently, resistin has been postulated to play a role in angiogenesis. Here, we investigated the hypothesis that resistin regulates ovary carcinoma production of vascular endothelial growth factor (VEGF) and the angiogenic processes. We found that in human ovarian epithelial carcinoma cells (HO-8910), resistin (10–150 ng/mL) enhanced both VEGF protein and mRNA expression in a time- and concentration-dependent manner, as well as promoter activity. Furthermore, resistin enhanced DNA-binding activity of Sp1 with VEGF promoter in a PI3K/Akt-dependent manner. PI3K/Akt activated by resistin led to increasing interaction with Sp1, triggering a progressive phosphorylation of Sp1 on Thr453 and Thr739, resulting in the upregulation of VEGF expression. In an in vitro angiogenesis system for endothelial cells (EA.hy926) co-cultured with HO-8910 cells, we observed that the addition of resistin stimulated endothelial cell tube formation, which could be abolished by VEGF neutralizing antibody. Our findings suggest that the PI3K/Akt-Sp1 pathway is involved in resistin-induced VEGF expression in HO-8910 cells and indicates that antiangiogenesis therapy may be beneficial treatment against ovarian epithelial carcinoma, especially in obese patients.
Collapse
Affiliation(s)
- Li Pang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, Liaoning, China; E-Mails: (L.P.); (Y.Y.)
| | - Yi Zhang
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China; E-Mail:
| | - Yu Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, Liaoning, China; E-Mails: (L.P.); (Y.Y.)
| | - Shulan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, Liaoning, China; E-Mails: (L.P.); (Y.Y.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-24-966-151-41211
| |
Collapse
|
47
|
Heme oxygenase-1 induces 15-lipoxygenase expression during hypoxia-induced pulmonary hypertension. Int J Biochem Cell Biol 2013; 45:964-72. [DOI: 10.1016/j.biocel.2013.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/25/2012] [Accepted: 01/25/2013] [Indexed: 11/22/2022]
|
48
|
Lin HH, Chen YH, Chiang MT, Huang PL, Chau LY. Activator protein-2α mediates carbon monoxide-induced stromal cell-derived factor-1α expression and vascularization in ischemic heart. Arterioscler Thromb Vasc Biol 2013; 33:785-94. [PMID: 23393395 DOI: 10.1161/atvbaha.112.301143] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Increased cardiac stromal cell-derived factor-1α (SDF-1α) expression promotes neovascularization and myocardial repair after ischemic injury through recruiting stem cells and reducing cardiomyocyte death. Previous studies have shown that heme oxygenase-1 and its reaction byproduct, carbon monoxide (CO), induce SDF-1α expression in ischemic heart. However, the mechanism underlying heme oxygenase-1/CO-induced cardiac SDF-1α expression remains elusive. This study aims to investigate the signaling pathway and the transcriptional factor that mediate CO-induced SDF-1α gene expression and cardioprotection. APPROACH AND RESULTS CO gas and a CO-releasing compound, tricarbonyldichlororuthenium (II) dimer, dose-dependently induced SDF-1α expression in primary neonatal cardiomyocytes and H9C2 cardiomyoblasts. Promoter luciferase-reporter assay, electrophoretic mobility shift assay, and chromatin immunoprecipitation demonstrated that the activator protein 2α (AP-2α) mediated tricarbonyldichlororuthenium (II) dimer-induced SDF-1α gene transcription. Tricarbonyldichlororuthenium (II) dimer induced AP-2α expression via protein kinase B (AKT)-dependent signaling. AKT inhibition or AP-2α knockdown reduced tricarbonyldichlororuthenium (II) dimer-induced SDF-1α expression. Coronary ligation induced transient increases of cardiac AP-2α and SDF-1α expression, which were declined at 1 week postinfarction in mice. Periodic exposure of coronary-ligated mice to CO (250 ppm for 1 hour/day, 6 days) resumed the induction of AP-2α and SDF-1α gene expression in infarcted hearts. Immunohistochemistry and echocardiography performed at 4 weeks after coronary ligation revealed that CO treatment enhanced neovascularization in the myocardium of peri-infarct region and improved cardiac function. CO-mediated SDF-1α expression and cardioprotection was ablated by intramyocardial injection of lentivirus bearing specific short hairpin RNA targeting AP-2α. CONCLUSIONS Our data demonstrate that AKT-dependent upregulation of AP-2α is essential for CO-induced SDF-1α expression and myocardial repair after ischemic injury.
Collapse
Affiliation(s)
- Heng-Huei Lin
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
| | | | | | | | | |
Collapse
|
49
|
Wu W, Dong YW, Shi PC, Yu M, Fu D, Zhang CY, Cai QQ, Zhao QL, Peng M, Wu LH, Wu XZ. Regulation of integrin αV subunit expression by sulfatide in hepatocellular carcinoma cells. J Lipid Res 2013; 54:936-52. [PMID: 23345412 DOI: 10.1194/jlr.m031450] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Integrin is important in migration and metastasis of tumor cells. Changes of integrin expression and distribution will cause an alteration of cellular adhesion and migration behaviors. In this study, we investigated sulfatide regulation of the integrin αV subunit expression in hepatoma cells and observed that either exogenous or endogenous sulfatide elicited a robust upregulation of integrin αV subunit mRNA and protein expression in hepatoma cells. This regulatory effect occurred with a corresponding phosphorylation (T739) of the transcription factor Sp1. Based on the electrophoretic mobility shift assay, sulfatide enhanced the integrin αV promoter activity and strengthened the Sp1 complex super-shift. The results of chromatin immunoprecipitation analysis also indicated that sulfatide enhanced Sp1 binding to the integrin αV promoter in vivo. Silence of Sp1 diminished the stimulation of integrin αV expression by sulfatide. In the early stage of sulfatide stimulation, phosphorylation of Erk as well as c-Src was noted, and inhibition of Erk activation with either U0126 or PD98059 significantly suppressed Sp1 phosphorylation and integrin αV expression. We demonstrated that sulfatide regulated integrin αV expression and cell adhesion, which was associated with Erk activation.
Collapse
Affiliation(s)
- Wei Wu
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Key Lab of Glycoconjugate Research, Ministry of Public Health, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Transcriptional regulation by post-transcriptional modification—Role of phosphorylation in Sp1 transcriptional activity. Gene 2012; 508:1-8. [DOI: 10.1016/j.gene.2012.07.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/22/2012] [Accepted: 07/16/2012] [Indexed: 01/05/2023]
|