1
|
Hashemolhosseini S, Gessler L. Crosstalk among canonical Wnt and Hippo pathway members in skeletal muscle and at the neuromuscular junction. Neural Regen Res 2025; 20:2464-2479. [PMID: 39248171 PMCID: PMC11801303 DOI: 10.4103/nrr.nrr-d-24-00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/04/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Skeletal muscles are essential for locomotion, posture, and metabolic regulation. To understand physiological processes, exercise adaptation, and muscle-related disorders, it is critical to understand the molecular pathways that underlie skeletal muscle function. The process of muscle contraction, orchestrated by a complex interplay of molecular events, is at the core of skeletal muscle function. Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction. Within muscle fibers, calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force. Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling. The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis. Myogenic regulators coordinate the differentiation of myoblasts into mature muscle fibers. Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability. Several muscle-related diseases, including congenital myasthenic disorders, sarcopenia, muscular dystrophies, and metabolic myopathies, are underpinned by dysregulated molecular pathways in skeletal muscle. Therapeutic interventions aimed at preserving muscle mass and function, enhancing regeneration, and improving metabolic health hold promise by targeting specific molecular pathways. Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway, a critical regulator of myogenesis, muscle regeneration, and metabolic function, and the Hippo signaling pathway. In recent years, more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers, and at the neuromuscular junction. In fact, research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers. In this review, we will summarize and discuss the data on these two pathways, focusing on their concerted action next to their contribution to skeletal muscle biology. However, an in-depth discussion of the non-canonical Wnt pathway, the fibro/adipogenic precursors, or the mechanosensory aspects of these pathways is not the focus of this review.
Collapse
Affiliation(s)
- Said Hashemolhosseini
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lea Gessler
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Chang YH, Wu KC, Wang KH, Ding DC. Role of Leucine-Rich Repeat-Containing G-Protein-Coupled Receptors 4-6 (LGR4-6) in the Ovary and Other Female Reproductive Organs: A Literature Review. Cell Transplant 2025; 34:9636897241303441. [PMID: 39874091 PMCID: PMC11776010 DOI: 10.1177/09636897241303441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025] Open
Abstract
Leucine-rich repeat-containing G-protein-coupled receptors regulate stem cell activity and tissue homeostasis within female reproductive organs, primarily through their interaction with the Wnt/β-catenin signaling pathway. LGR4-6 are increasingly recognized for their roles in organ development, regeneration, and cancer. This review aims to provide a comprehensive overview of the roles of LGR4-6 in female reproductive organs, highlighting their significance in normal physiology and disease states, specifically in the context of ovarian cancer. LGR4 is essential for the proper development of the female reproductive system; its deficiency leads to significant reproductive abnormalities, including delayed menarche and follicle development issues. LGR5 is a well-established marker of stem cells in the ovary and fallopian tubes. It has been implicated in the pathogenesis of high-grade serous ovarian cancer. LGR6, while less studied, shares functional similarities with LGR5 and can maintain stemness. It contributes to chemoresistance in ovarian cancer. LGR6 is a marker for fallopian tube stem cells and is involved in stem cell maintenance and differentiation. LGR4-6 regulate the pathophysiology of female reproductive tissues. LGR4-6 are promising therapeutic targets for treating reproductive cancers and other related disorders. Molecular mechanisms underlying the functions of LGR4-6 should be studied.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
| | - Kun-Chi Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
| | - Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien
- Institute of Medical Sciences, Tzu Chi University, Hualien
| |
Collapse
|
3
|
Sun L, Yuan C, An X, Kong L, Zhang D, Chen B, Lu Z, Liu J. Delta-like noncanonical notch ligand 2 regulates the proliferation and differentiation of sheep myoblasts through the Wnt/β-catenin signaling pathway. J Cell Physiol 2024; 239:e31385. [PMID: 39030845 DOI: 10.1002/jcp.31385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024]
Abstract
This study delved into the role of delta-like noncanonical notch ligand 2 (DLK2) in the cell cycle, proliferation, apoptosis, and differentiation of myoblasts, as well as its interaction with the classical Wnt/β-catenin signaling pathway in regulating myoblast function. The research revealed that upregulation of DLK2 in myoblasts during the proliferation phase enhanced myoblast proliferation, facilitated cell cycle progression, and reduced apoptosis. Conversely, downregulation of DLK2 expression using siRNA during the differentiation phase promoted myoblast hypertrophy and fusion, suppressed the expression of muscle fiber degradation factors, and expedited the differentiation process. DLK2 regulates myoblasts function by influencing the expression of various factors associated with the Wnt/β-catenin signaling pathway, including CTNNB1, FZD1, FZD6, RSPO1, RSPO4, WNT4, WNT5A, and adenomatous polyposis coli. In essence, DLK2, with the involvement of the Wnt/β-catenin signaling pathway, plays a crucial regulatory role in the cell cycle, proliferation, apoptosis, and differentiation of myoblasts.
Collapse
Affiliation(s)
- Lixia Sun
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lingying Kong
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bowen Chen
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
4
|
Yanjun S, Yunfen G, Haoyi Y, Zhe W, Jiapei Q. The role of miR-128 and MDFI in cardiac hypertrophy and heart failure: Mechanistic. J Cell Mol Med 2024; 28:e18546. [PMID: 39046458 PMCID: PMC11268151 DOI: 10.1111/jcmm.18546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/24/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024] Open
Abstract
Heart failure (HF) prognosis depends on various regulatory factors; microRNA-128 (miR-128) is identified as a regulator of cardiac fibrosis, contributing to HF. MyoD family inhibitor (MDFI), which is reported to be related with Wnt/β-catenin pathway, is supposed to be regulated by miR-128. This study investigates the interaction between miR-128 and MDFI in cardiomyocyte development and elucidates its role in heart injury. Gene expression profiling assessed miR-128's effect on MDFI expression in HF using qPCR and Western blot analysis. Luciferase assays studied the direct interaction between miR-128 and MDFI. MTT, transwell, and immunohistochemistry evaluated the effects of miR-128 and MDFI on myocardial cells in mice HF. Genescan and luciferase assays validated the interaction between miR-128 and MDFI sequences. miR-128 mimics significantly reduced MDFI expression at mRNA and protein levels with decrease rate of 55%. Overexpression of miR-128 promoted apoptosis with the increase rate 65% and attenuated cardiomyocyte proliferation, while MDFI upregulation significantly enhanced proliferation. Elevated miR-128 levels upregulated Wnt1 and β-catenin expression, whereas increased MDFI levels inhibited these expressions. Histological analysis with haematoxylin and eosin staining revealed that miR-128 absorption reduced MDFI expression, hindering cell proliferation and cardiac repair, with echocardiography showing corresponding improvements in cardiac function. Our findings suggest miR-128 interacts with MDFI, playing a crucial role in HF management by modulating the Wnt1/β-catenin pathway. Suppression of miR-128 could promote cardiomyocyte proliferation, highlighting the potential value of the miR-128/MDFI interplay in HF treatment.
Collapse
Affiliation(s)
- Sun Yanjun
- Department of Cardiovascular SurgeryRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gu Yunfen
- Department of Intensive care unit, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yao Haoyi
- Department of Cardiovascular SurgeryRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wang Zhe
- Department of Cardiovascular SurgeryRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qiu Jiapei
- Department of Cardiovascular SurgeryRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Shin DI, Jin YJ, Noh S, Yun HW, Park DY, Min BH. Exosomes Secreted During Myogenic Differentiation of Human Fetal Cartilage-Derived Progenitor Cells Promote Skeletal Muscle Regeneration through miR-145-5p. Tissue Eng Regen Med 2024; 21:487-497. [PMID: 38294592 PMCID: PMC10987463 DOI: 10.1007/s13770-023-00618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Currently, there is no apparent treatment for sarcopenia, which is characterized by diminished myoblast function. We aimed to manufacture exosomes that retain the myogenic differentiation capacity of human fetal cartilage-derived progenitor cells (hFCPCs) and investigate their muscle regenerative efficacy in myoblasts and a sarcopenia rat model. METHODS The muscle regeneration potential of exosomes (F-Exo) secreted during myogenic differentiation of hFCPCs was compared to human bone marrow mesenchymal stem cells-derived (hBMSCs) exosomes (B-Exo) in myoblasts and sarcopenia rat model. The effect of F-Exo was analyzed through known microRNAs (miRNAs) analysis. The mechanism of action of F-Exo was confirmed by measuring the expression of proteins involved in the Wnt signaling pathway. RESULTS F-Exo and B-Exo showed similar exosome characteristics. However, F-Exo induced the expression of muscle markers (MyoD, MyoG, and MyHC) and myotube formation in myoblasts more effectively than B-Exo. Moreover, F-Exo induced greater increases in muscle fiber cross-sectional area and muscle mass compared to B-Exo in a sarcopenia rat. The miR-145-5p, relevant to muscle regeneration, was found in high concentrations in the F-Exo, and RNase pretreatment reduced the efficacy of exosomes. The effects of F-Exo on the expression of myogenic markers in myoblasts were paralleled by the miR-145-5p mimics, while the inhibitor partially negated this effect. F-Exo was involved in the Wnt signaling pathway by enhancing the expression of Wnt5a and β-catenin. CONCLUSION F-Exo improved muscle regeneration by activating the Wnt signaling pathway via abundant miR-145-5p, mimicking the remarkable myogenic differentiation potential of hFCPCs.
Collapse
Affiliation(s)
- Dong Il Shin
- Department of Molecular Science and Technology, Ajou University Graduate School, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Yong Jun Jin
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Department of Orthopedic Surgery, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Sujin Noh
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Hee-Woong Yun
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Department of Orthopedic Surgery, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Do Young Park
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
- Department of Orthopedic Surgery, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Byoung-Hyun Min
- Department of Molecular Science and Technology, Ajou University Graduate School, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea.
- Cell Therapy Center, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea.
- Department of Orthopedic Surgery, Ajou University School of Medicine, 206 Worldcup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea.
| |
Collapse
|
6
|
Hao X, Fu Y, Li S, Nie J, Zhang B, Zhang H. Porcine transient receptor potential channel 1 (TRPC1) regulates muscle growth via the Wnt/β-catenin and Wnt/Ca 2+ pathways. Int J Biol Macromol 2024; 265:130855. [PMID: 38490377 DOI: 10.1016/j.ijbiomac.2024.130855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Transient receptor potential canonical (TRPC) channels allow the intracellular entry of Ca2+ and play important roles in several physio-pathological processes. In this study, we constructed transgenic mice expressing porcine TRPC1 (Tg-pTRPC1) to verify the effects of TRPC1 on skeletal muscle growth and elucidate the underlying mechanism. Porcine TRPC1 increased the muscle mass, fiber cross-sectional area, and exercise endurance of mice and accelerated muscle repair and regeneration. TRPC1 overexpression enhanced β-catenin expression and promoted myogenesis, which was partly reversed by inhibitors of β-catenin. TRPC1 facilitated the accumulation of intracellular Ca2+ and nuclear translocation of the NFATC2/NFATC2IP complex involved in the Wnt/Ca2+ pathway, promoting muscle growth. Paired related homeobox 1 (Prrx1) promoted the expression of TRPC1, NFATC2, and NFATC2IP that participate in the regulation of muscle growth. Taken together, our findings indicate that porcine TRPC1 promoted by Prrx1 could regulate muscle development through activating the canonical Wnt/β-catenin and non-canonical Wnt/Ca2+ pathways.
Collapse
Affiliation(s)
- Xin Hao
- State Key Laboratory of animal biotech breeding, Beijing Key Laboratory of animal genetic engineering, China Agricultural University, Beijing 100193, China
| | - Yu Fu
- State Key Laboratory of animal biotech breeding, Beijing Key Laboratory of animal genetic engineering, China Agricultural University, Beijing 100193, China
| | - Shixin Li
- State Key Laboratory of animal biotech breeding, Beijing Key Laboratory of animal genetic engineering, China Agricultural University, Beijing 100193, China
| | - Jingru Nie
- State Key Laboratory of animal biotech breeding, Beijing Key Laboratory of animal genetic engineering, China Agricultural University, Beijing 100193, China
| | - Bo Zhang
- State Key Laboratory of animal biotech breeding, Beijing Key Laboratory of animal genetic engineering, China Agricultural University, Beijing 100193, China
| | - Hao Zhang
- State Key Laboratory of animal biotech breeding, Beijing Key Laboratory of animal genetic engineering, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya, Hainan 572025, China.
| |
Collapse
|
7
|
Srivastava A, Rikhari D, Srivastava S. RSPO2 as Wnt signaling enabler: Important roles in cancer development and therapeutic opportunities. Genes Dis 2024; 11:788-806. [PMID: 37692504 PMCID: PMC10491879 DOI: 10.1016/j.gendis.2023.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/16/2023] [Indexed: 09/12/2023] Open
Abstract
R-spondins are secretory proteins localized in the endoplasmic reticulum and Golgi bodies and are processed through the secretory pathway. Among the R-spondin family, RSPO2 has emanated as a novel regulator of Wnt signaling, which has now been acknowledged in numerous in vitro and in vivo studies. Cancer is an abnormal growth of cells that proliferates and spreads uncontrollably due to the accumulation of genetic and epigenetic factors that constitutively activate Wnt signaling in various types of cancer. Colorectal cancer (CRC) begins when cells in the colon and rectum follow an indefinite pattern of division due to aberrant Wnt activation as one of the key hallmarks. Decades-long progress in research on R-spondins has demonstrated their oncogenic function in distinct cancer types, particularly CRC. As a critical regulator of the Wnt pathway, it modulates several phenotypes of cells, such as cell proliferation, invasion, migration, and cancer stem cell properties. Recently, RSPO mutations, gene rearrangements, fusions, copy number alterations, and altered gene expression have also been identified in a variety of cancers, including CRC. In this review, we addressed the recent updates regarding the recurrently altered R-spondins with special emphasis on the RSPO2 gene and its involvement in potentiating Wnt signaling in CRC. In addition to the compelling physiological and biological roles in cellular fate and regulation, we propose that RSPO2 would be valuable as a potential biomarker for prognostic, diagnostic, and therapeutic use in CRC.
Collapse
Affiliation(s)
- Ankit Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| | - Deeksha Rikhari
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| |
Collapse
|
8
|
Srivastava A, Srivastava S. Multiomics data identifies RSPO2 as a prognostic biomarker in human tumors associated with pan-cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:469-499. [PMID: 38448143 DOI: 10.1016/bs.apcsb.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
RSPO2 protein may provide valuable insights into the mechanism underlying various types of tumorigenesis. The role of RSPO2 in pan-cancer has not been reported so far. Therefore, this study aimed to provide a comprehensive analysis of RSPO2 from a pan-cancer perspective employing multiomics data. The expression profile and function of RSPO2 across different tumors were investigated using various web-based tools UALCAN, GEPIA, TIMER, Human Protein Atlas, cBioPortal, TISIDB, STRING, and Metascape to interpret the expression profile, promoter methylation status, genomic alterations, survival analysis, protein-protein interaction, correlation with immune cell subtypes, tumor immune microenvironment and enrichment analysis. Comprehensive pan-cancer analysis indicated that RSPO2 was significantly downregulated in eleven and upregulated in five tumor types compared to normal tissues, validation results further suggest RSPO2 was downregulated in most of the tumors. The protein level expression of RSPO2 was mostly low in malignant tissues. We found that RSPO2 was significantly related to individual pathological stages in BLCA, COAD, LUAD and LUSC. Prognostic analysis indicates that the high RSPO2 expression was significantly correlated with the poor prognosis in BRCA, KICH, KIRP, READ, and UCES. Furthermore, RSPO2 is frequently amplified, exhibits hypermethylated promoter in most cancers, and is associated with immune subtypes, molecular subtypes and immune cell infiltration. Finally, enrichment analysis showed that RSPO2 is involved in the regulation of the canonical Wnt pathway and neuronal development. The overall comprehensive pan-cancer analysis affirms that RSPO2 could be a promising diagnostic and prognostic biomarker and latent therapy target in the future.
Collapse
Affiliation(s)
- Ankit Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
9
|
Li K, Desai R, Scott RT, Steele JR, Machado M, Demharter S, Hoarfrost A, Braun JL, Fajardo VA, Sanders LM, Costes SV. Explainable machine learning identifies multi-omics signatures of muscle response to spaceflight in mice. NPJ Microgravity 2023; 9:90. [PMID: 38092777 PMCID: PMC10719374 DOI: 10.1038/s41526-023-00337-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
The adverse effects of microgravity exposure on mammalian physiology during spaceflight necessitate a deep understanding of the underlying mechanisms to develop effective countermeasures. One such concern is muscle atrophy, which is partly attributed to the dysregulation of calcium levels due to abnormalities in SERCA pump functioning. To identify potential biomarkers for this condition, multi-omics data and physiological data available on the NASA Open Science Data Repository (osdr.nasa.gov) were used, and machine learning methods were employed. Specifically, we used multi-omics (transcriptomic, proteomic, and DNA methylation) data and calcium reuptake data collected from C57BL/6 J mouse soleus and tibialis anterior tissues during several 30+ day-long missions on the international space station. The QLattice symbolic regression algorithm was introduced to generate highly explainable models that predict either experimental conditions or calcium reuptake levels based on multi-omics features. The list of candidate models established by QLattice was used to identify key features contributing to the predictive capability of these models, with Acyp1 and Rps7 proteins found to be the most predictive biomarkers related to the resilience of the tibialis anterior muscle in space. These findings could serve as targets for future interventions aiming to reduce the extent of muscle atrophy during space travel.
Collapse
Affiliation(s)
- Kevin Li
- KBR, Moffett Field, CA, USA
- NASA Space Life Sciences Training Program, Moffett Field, CA, USA
| | - Riya Desai
- College of Letters and Science, University of California at Davis, Davis, CA, USA
| | - Ryan T Scott
- KBR, Moffett Field, CA, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Joel Ricky Steele
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Blue Marble Space, Seattle, WA, USA
| | | | | | | | - Jessica L Braun
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, St. Catharines, Canada
| | - Val A Fajardo
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, St. Catharines, Canada
| | - Lauren M Sanders
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
- Blue Marble Space, Seattle, WA, USA.
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
| |
Collapse
|
10
|
Ochi E, Barrington A, Wehling‐Henricks M, Avila M, Kuro‐o M, Tidball JG. Klotho regulates the myogenic response of muscle to mechanical loading and exercise. Exp Physiol 2023; 108:1531-1547. [PMID: 37864311 PMCID: PMC10841225 DOI: 10.1113/ep091263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/16/2023] [Indexed: 10/22/2023]
Abstract
NEW FINDINGS What is the central question of this study? Does the hormone Klotho affect the myogenic response of muscle cells to mechanical loading or exercise? What is the main finding and its importance? Klotho prevents direct, mechanical activation of genes that regulate muscle differentiation, including genes that encode the myogenic regulatory factor myogenin and proteins in the canonical Wnt signalling pathway. Similarly, elevated levels of klotho expression in vivo prevent the exercise-induced increase in myogenin-expressing cells and reduce exercise-induced activation of the Wnt pathway. These findings demonstrate a new mechanism through which the responses of muscle to the mechanical environment are regulated. ABSTRACT Muscle growth is influenced by changes in the mechanical environment that affect the expression of genes that regulate myogenesis. We tested whether the hormone Klotho could influence the response of muscle to mechanical loading. Applying mechanical loads to myoblasts in vitro increased RNA encoding transcription factors that are expressed in activated myoblasts (Myod) and in myogenic cells that have initiated terminal differentiation (Myog). However, application of Klotho to myoblasts prevented the loading-induced activation of Myog without affecting loading-induced activation of Myod. This indicates that elevated Klotho inhibits mechanically-induced differentiation of myogenic cells. Elevated Klotho also reduced the transcription of genes encoding proteins involved in the canonical Wnt pathway or their target genes (Wnt9a, Wnt10a, Ccnd1). Because the canonical Wnt pathway promotes differentiation of myogenic cells, these findings indicate that Klotho inhibits the differentiation of myogenic cells experiencing mechanical loading. We then tested whether these effects of Klotho occurred in muscles of mice experiencing high-intensity interval training (HIIT) by comparing wild-type mice and klotho transgenic mice. The expression of a klotho transgene combined with HIIT synergized to tremendously elevate numbers of Pax7+ satellite cells and activated MyoD+ cells. However, transgene expression prevented the increase in myogenin+ cells caused by HIIT in wild-type mice. Furthermore, transgene expression diminished the HIIT-induced activation of the canonical Wnt pathway in Pax7+ satellite cells. Collectively, these findings show that Klotho inhibits loading- or exercise-induced activation of muscle differentiation and indicate a new mechanism through which the responses of muscle to the mechanical environment are regulated.
Collapse
Affiliation(s)
- Eisuke Ochi
- Faculty of Bioscience and Applied ChemistryHosei UniversityTokyoJapan
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCAUSA
| | - Alice Barrington
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCAUSA
| | | | - Marcus Avila
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCAUSA
| | - Makoto Kuro‐o
- Division of Anti‐Aging MedicineCenter for Molecular MedicineJichi Medical UniversityTochigiJapan
| | - James G. Tidball
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCAUSA
- Molecular, Cellular & Integrative Physiology ProgramUniversity of CaliforniaLos AngelesCAUSA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCAUSA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLAUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
11
|
He Z, Zhang J, Ma J, Zhao L, Jin X, Li H. R-spondin family biology and emerging linkages to cancer. Ann Med 2023; 55:428-446. [PMID: 36645115 PMCID: PMC9848353 DOI: 10.1080/07853890.2023.2166981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The R-spondin protein family comprises four members (RSPO1-4), which are agonists of the canonical Wnt/β-catenin pathway. Emerging evidence revealed that RSPOs should not only be viewed as agonists of the Wnt/β-catenin pathway but also as regulators for tumor development and progression. Aberrant expression of RSPOs is related to tumorigenesis and tumor development in multiple cancers and their expression of RSPOs has also been correlated with anticancer immune cell signatures. More importantly, the role of RSPOs as potential target therapies and their implication in cancer progressions has been studied in the preclinical and clinical settings. These findings highlight the possible therapeutic value of RSPOs in cancer medicine. However, the expression pattern, effects, and mechanisms of RSPO proteins in cancer remain elusive. Investigating the many roles of RSPOs is likely to expand and improve our understanding of the oncogenic mechanisms mediated by RSPOs. Here, we reviewed the recent advances in the functions and underlying molecular mechanisms of RSPOs in tumor development, cancer microenvironment regulation, and immunity, and discussed the therapeutic potential of targeting RSPOs for cancer treatment. In addition, we also explored the biological feature and clinical relevance of RSPOs in cancer mutagenesis, transcriptional regulation, and immune correlation by bioinformatics analysis.KEY MESSAGESAberrant expressions of RSPOs are detected in various human malignancies and are always correlated with oncogenesis.Although extensive studies of RSPOs have been conducted, their precise molecular mechanism remains poorly understood.Bioinformatic analysis revealed that RSPOs may play a part in the development of the immune composition of the tumor microenvironment.
Collapse
Affiliation(s)
- Zhimin He
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Jialin Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Jianzhong Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Lei Zhao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
12
|
McCourt JL, Stearns-Reider KM, Mamsa H, Kannan P, Afsharinia MH, Shu C, Gibbs EM, Shin KM, Kurmangaliyev YZ, Schmitt LR, Hansen KC, Crosbie RH. Multi-omics analysis of sarcospan overexpression in mdx skeletal muscle reveals compensatory remodeling of cytoskeleton-matrix interactions that promote mechanotransduction pathways. Skelet Muscle 2023; 13:1. [PMID: 36609344 PMCID: PMC9817407 DOI: 10.1186/s13395-022-00311-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The dystrophin-glycoprotein complex (DGC) is a critical adhesion complex of the muscle cell membrane, providing a mechanical link between the extracellular matrix (ECM) and the cortical cytoskeleton that stabilizes the sarcolemma during repeated muscle contractions. One integral component of the DGC is the transmembrane protein, sarcospan (SSPN). Overexpression of SSPN in the skeletal muscle of mdx mice (murine model of DMD) restores muscle fiber attachment to the ECM in part through an associated increase in utrophin and integrin adhesion complexes at the cell membrane, protecting the muscle from contraction-induced injury. In this study, we utilized transcriptomic and ECM protein-optimized proteomics data sets from wild-type, mdx, and mdx transgenic (mdxTG) skeletal muscle tissues to identify pathways and proteins driving the compensatory action of SSPN overexpression. METHODS The tibialis anterior and quadriceps muscles were isolated from wild-type, mdx, and mdxTG mice and subjected to bulk RNA-Seq and global proteomics analysis using methods to enhance capture of ECM proteins. Data sets were further analyzed through the ingenuity pathway analysis (QIAGEN) and integrative gene set enrichment to identify candidate networks, signaling pathways, and upstream regulators. RESULTS Through our multi-omics approach, we identified 3 classes of differentially expressed genes and proteins in mdxTG muscle, including those that were (1) unrestored (significantly different from wild type, but not from mdx), (2) restored (significantly different from mdx, but not from wild type), and (3) compensatory (significantly different from both wild type and mdx). We identified signaling pathways that may contribute to the rescue phenotype, most notably cytoskeleton and ECM organization pathways. ECM-optimized proteomics revealed an increased abundance of collagens II, V, and XI, along with β-spectrin in mdxTG samples. Using ingenuity pathway analysis, we identified upstream regulators that are computationally predicted to drive compensatory changes, revealing a possible mechanism of SSPN rescue through a rewiring of cell-ECM bidirectional communication. We found that SSPN overexpression results in upregulation of key signaling molecules associated with regulation of cytoskeleton organization and mechanotransduction, including Yap1, Sox9, Rho, RAC, and Wnt. CONCLUSIONS Our findings indicate that SSPN overexpression rescues dystrophin deficiency partially through mechanotransduction signaling cascades mediated through components of the ECM and the cortical cytoskeleton.
Collapse
Affiliation(s)
- Jackie L McCourt
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Kristen M Stearns-Reider
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hafsa Mamsa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Pranav Kannan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | | | - Cynthia Shu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Elizabeth M Gibbs
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Kara M Shin
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Yerbol Z Kurmangaliyev
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lauren R Schmitt
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver, CO, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver, CO, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA.
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
RSPO3 is a novel contraction-inducible factor identified in an "in vitro exercise model" using primary human myotubes. Sci Rep 2022; 12:14291. [PMID: 35995979 PMCID: PMC9395423 DOI: 10.1038/s41598-022-18190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
The physiological significance of skeletal muscle as a secretory organ is now well known but we can only speculate as to the existence of as-yet-unidentified myokines, especially those upregulated in response to muscle contractile activity. We first attempted to establish an “insert-chamber based in vitro exercise model” allowing the miniature but high cell-density culture state enabling highly developed contractile human myotubes to be readily obtained by applying electric pulse stimulation (EPS). By employing this in vitro exercise model, we identified R-spondin 3 (RSPO3) as a novel contraction-inducible myokine produced by cultured human myotubes. Contraction-dependent muscular RSPO3 mRNA upregulation was confirmed in skeletal muscles of mice subjected to sciatic nerve mediated in situ contraction as well as those of mice after 2 h of running. Pharmacological in vitro experiments demonstrated a relatively high concentration of metformin (millimolar range) to suppress the contraction-inducible mRNA upregulation of human myokines including RSPO3, interleukin (IL)-6, IL-8 and CXCL1. Our data also suggest human RSPO3 to be a paracrine factor that may positively participate in the myogenesis processes of myoblasts and satellite cells. Thus, the “insert chamber-based in vitro exercise model” is a potentially valuable research tool for investigating contraction-inducible biological responses of human myotubes usually exhibiting poorer contractility development even in the setting of EPS treatment.
Collapse
|
14
|
R-spondin3 is a myokine that differentiates myoblasts to type I fibres. Sci Rep 2022; 12:13020. [PMID: 35906363 PMCID: PMC9338073 DOI: 10.1038/s41598-022-16640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/13/2022] [Indexed: 12/03/2022] Open
Abstract
Muscle fibres are broadly categorised into types I and II; the fibre-type ratio determines the contractile and metabolic properties of skeletal muscle tissue. The maintenance of type I fibres is essential for the prevention of obesity and the treatment of muscle atrophy caused by type 2 diabetes or unloading. Some reports suggest that myokines are related to muscle fibre type determination. We thus explored whether a myokine determines whether satellite cells differentiate to type I fibres. By examining the fibre types separately, we identified R-spondin 3 (Rspo3) as a myokine of interest, a secreted protein known as an activator of Wnt signalling pathways. To examine whether Rspo3 induces type I fibres, primary myoblasts prepared from mouse soleus muscles were exposed to a differentiation medium containing the mouse recombinant Rspo3 protein. Expression of myosin heavy chain (MyHC) I, a marker of type I fibre, significantly increased in the differentiated myotubes compared with a control. The Wnt/β-catenin pathway was shown to be the dominant signalling pathway which induces Rspo3-induced MyHC I expression. These results revealed Rspo3 as a myokine that determines whether satellite cells differentiate to type I fibres.
Collapse
|
15
|
miR-377 Inhibits Proliferation and Differentiation of Bovine Skeletal Muscle Satellite Cells by Targeting FHL2. Genes (Basel) 2022; 13:genes13060947. [PMID: 35741709 PMCID: PMC9223022 DOI: 10.3390/genes13060947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
Non-coding RNAs, especially microRNAs (miRNAs), play an important role in skeletal muscle growth and development. miR-377 regulates many basic biological processes and plays a key role in tumor cell proliferation, migration and apoptosis. Nevertheless, the function of miR-377 during skeletal muscle development and how it regulates skeletal muscle satellite cells (SMSCs) remains unclear. In the present study, we proposed to elucidate the regulatory mechanism of miR-377 in the proliferation and differentiation of bovine primary SMSCs. Our results showed that miR-377 can significantly inhibit the proliferation of SMSCs. In addition, we found that miR-377 can reduce myotube formation and restrain skeletal myogenic differentiation. Moreover, the results obtained from the biosynthesis and dual luciferase experiments showed that FHL2 was the target gene of miR-377. We further probed the function of FHL2 in muscle development and found that FHL2 silencing significantly suppressed the proliferation and differentiation of SMSCS, which is contrary to the role of miR-377. Furthermore, FHL2 interacts with Dishevelled-2 (Dvl2) to enable Wnt/β-catenin signaling pathway, consequently regulating skeletal muscle development. miR-377 negatively regulates the Wnt/β-catenin signaling pathway by targeting FHL2-mediated Dvl2. Overall, these findings demonstrated that miR-377 regulates the bovine SMSCs proliferation and differentiation by targeting FHL2 and attenuating the Wnt/β-catenin signaling pathway.
Collapse
|
16
|
Kompaníková P, Bryja V. Regulation of choroid plexus development and its functions. Cell Mol Life Sci 2022; 79:304. [PMID: 35589983 PMCID: PMC9119385 DOI: 10.1007/s00018-022-04314-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/28/2022] [Accepted: 04/17/2022] [Indexed: 11/03/2022]
Abstract
The choroid plexus (ChP) is an extensively vascularized tissue that protrudes into the brain ventricular system of all vertebrates. This highly specialized structure, consisting of the polarized epithelial sheet and underlying stroma, serves a spectrum of functions within the central nervous system (CNS), most notably the production of cerebrospinal fluid (CSF). The epithelial cells of the ChP have the competence to tightly modulate the biomolecule composition of CSF, which acts as a milieu functionally connecting ChP with other brain structures. This review aims to eloquently summarize the current knowledge about the development of ChP. We describe the mechanisms that control its early specification from roof plate followed by the formation of proliferative regions-cortical hem and rhombic lips-feeding later development of ChP. Next, we summarized the current knowledge on the maturation of ChP and mechanisms that control its morphological and cellular diversity. Furthermore, we attempted to review the currently available battery of molecular markers and mouse strains available for the research of ChP, and identified some technological shortcomings that must be overcome to accelerate the ChP research field. Overall, the central principle of this review is to highlight ChP as an intriguing and surprisingly poorly known structure that is vital for the development and function of the whole CNS. We believe that our summary will increase the interest in further studies of ChP that aim to describe the molecular and cellular principles guiding the development and function of this tissue.
Collapse
Affiliation(s)
- Petra Kompaníková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265, Brno, Czech Republic.
| |
Collapse
|
17
|
Ma X, La Y, Bao P, Chu M, Guo X, Wu X, Pei J, Ding X, Liang C, Yan P. Regulatory Role of N6-Methyladenosine in Longissimus Dorsi Development in Yak. Front Vet Sci 2022; 9:757115. [PMID: 35498742 PMCID: PMC9043854 DOI: 10.3389/fvets.2022.757115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
N6-methyladenine (m6A) RNA undergoes epigenetic modification, which is the most extensive intermediate chemical modification in mRNA. Although this modification occurs in all living organisms, it is the most widely studied among mammals. However, to date, no study has investigated the m6A transcriptome-wide map of yak and its potential biological functions in muscle development. In this study, the differences of m6A methylation and gene expression in yak muscle development belonging to three age groups, namely 3 years (group A), 6 months (group M), and 90-day-old fetuses (group E), were determined by using methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and RNA sequencing (RNA-Seq). In these three groups, a total of 6,278 (A), 9,298 (E), and 9,584 (M) m6A peaks were identified, with average densities between 1.02 and 2.01. m6A peaks were mostly enriched in the stop codon, 3′ untranslated region (UTR) region, and inner long exon region with consensus motifs of UGACA. In all the three stages, the m6A peak enrichment level was significantly negatively correlated with mRNA abundance (Pearson's correlation coefficient r = −0.22 to −0.32, p < 10−16). The functional enrichment of genes consistently modified by m6A methylation, particularly those genes that regulate cell differentiation as well as muscle growth and development, was observed at all three stages. Moreover, m6A abundance was negatively associated with gene expression levels, indicating that m6A might play a vital role in modulating gene expression during yak muscle development. This comprehensive map thus provides a solid foundation for determining the potential functional role of m6A RNA modification in yak muscle growth.
Collapse
Affiliation(s)
- Xiaoming Ma
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yongfu La
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyun Wu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie Pei
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuezhi Ding
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunnian Liang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Chunnian Liang
| | - Ping Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Ping Yan
| |
Collapse
|
18
|
Cho HJ, Kim H, Lee YS, Moon SA, Kim JM, Kim H, Kim MJ, Yu J, Kim K, Baek IJ, Lee SH, Ahn KH, Kim S, Kang JS, Koh JM. SLIT3 promotes myogenic differentiation as a novel therapeutic factor against muscle loss. J Cachexia Sarcopenia Muscle 2021; 12:1724-1740. [PMID: 34423586 PMCID: PMC8718016 DOI: 10.1002/jcsm.12769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/25/2021] [Accepted: 07/10/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Sarcopenia and osteoporosis frequently co-occur in the elderly and have common pathophysiological determinants. Slit guidance ligand 3 (SLIT3) has been recently discovered as a novel therapeutic factor against osteoporosis, and a SLIT3 fragment containing the second leucine-rich repeat domain (LRRD2) had a therapeutic efficacy against osteoporosis. However, a role of SLIT3 in the skeletal muscle is unknown. METHODS Skeletal muscle mass, strength, and/or physical activity were evaluated in Slit3-/- , ovariectomized, and aged mice, based on the measurements of muscle weight and grip strength, Kondziella's inverted hanging test, and/or wheel-running test. Skeletal muscles were also histologically evaluated by haematoxylin and eosin staining and/or immunofluorescence. The ovariectomized and aged mice were intravenously injected with recombinant SLIT3 LRRD2 for 4 weeks. C2C12 cells were used to know cellular effects of SLIT3, such as in vitro myogenesis, fusion, cell viability, and proliferation, and also used to evaluate its molecular mechanisms by immunocytochemistry, immunoprecipitation, western blotting, real-time PCR, siRNA transfection, and receptor-ligand binding ELISA. RESULTS Slit3-deficient mice exhibited decreased skeletal muscle mass, muscle strength, and physical activity. The relative masses of gastrocnemius and soleus were lower in the Slit3-/- mice (0.580 ± 0.039% and 0.033 ± 0.003%, respectively) than those in the WT littermates (0.622 ± 0.043% and 0.038 ± 0.003%, respectively) (all, P < 0.05). Gastrocnemius of Slit3-/- mice showed the reduced number of Type I and Type IIa fibres (all, P < 0.05), but not of Type IIb and Type IIx fibres. SLIT3 activated β-catenin signalling by promoting its release from M-cadherin, thereby increasing myogenin expression to stimulate myoblast differentiation. In vitro experiments involving ROBO2 expression, knockdown, and interaction with SLIT3 indicated that ROBO2 functions as a SLIT3 receptor to aid myoblast differentiation. SLIT3 LRRD2 dissociated M-cadherin-bound β-catenin and up-regulated myogenin expression to increase myoblast differentiation, in a manner similar to full-length SLIT3. Systemic treatment with SLIT3 LRRD2 increased skeletal muscle mass in both ovariectomized and aged mice (all, P < 0.05). The relative masses of gastrocnemius and soleus were higher in the treated aged mice (0.548 ± 0.045% and 0.033 ± 0.005%, respectively) than in the untreated aged mice (0.508 ± 0.016% and 0.028 ± 0.003%, respectively) (all, P < 0.05). SLIT3 LRRD2 treatment increased the hanging duration of the aged mice by approximately 1.7-fold (P < 0.05). CONCLUSIONS SLIT3 plays a sarcoprotective role by activating β-catenin signalling. SLIT3 LRRD2 can potentially be used as a therapeutic agent against muscle loss.
Collapse
Affiliation(s)
- Han Jin Cho
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Hyeonmok Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young-Sun Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Sung Ah Moon
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Jin-Man Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Hanjun Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Min Ji Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Jiyoung Yu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea.,Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Sungsub Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, South Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
19
|
Wang Z, Wang Y, Ma X, Dang C. RSPO2 silence inhibits tumorigenesis of nasopharyngeal carcinoma by ZNRF3/Hedgehog-Gli1 signal pathway. Life Sci 2021; 282:119817. [PMID: 34273374 DOI: 10.1016/j.lfs.2021.119817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/27/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022]
Abstract
R-spondins 2 (RSPO2) protein is a member of RSPO family which plays an essential role in stem cell survival, development and tumorigenicity. There has several evidence suggested that RSPO2 involved in breast, gastric, liver and colorectal cancer. However, the specific function and mechanism of RSPO2 in nasopharyngeal carcinoma (NPC) remain unknown. In the present study, we first observed that RSPO2 expression was elevated in NPC cell lines SUNE-6-10B, SUNE-5-8F, and CNE-1 compared with the normal laryngeal epithelia cell line NP69. Knockdown of RSPO2 significantly inhibits SUNE-6-10B and CNE-1 cell survival and proliferation by using CCK-8 assay and Edu assay, respectively. Further studies verified that RSPO2 silence suppressed migration and invasion of SUNE-6-10B and CNE-1 cells. Further studies suggested that RSPO2 silence suppressed epithelial-to-mesenchymal transition (EMT) related protein E-cadherin expression and promoted Vimentin and N-cadherin expression both in SUNE-6-10B and CNE-1 cells. Molecular mechanism explorations showed that RSPO2 deletion increased ZNRF3 expression and inhibited Gli1 expression. Additionally, knockdown ZNRF3 expression or overexpression Gli1 both reversed the effects of RSPO2 silence on NPC growth and metastasis. Finally, RSPO2 depletion was impaired NPC tumor growth in vivo animal experiments. In conclusion, the present study confirmed that RSPO2 silence inhibits the tumorigenesis of NPC via ZNRF3/Hedgehog-Gli1 signal pathway.
Collapse
Affiliation(s)
- ZhongWei Wang
- Department of Oncology and Radiotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - YaLi Wang
- Department of Oncology and Radiotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - XiuLong Ma
- Department of Oncology and Radiotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - ChengXue Dang
- Tumor Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
20
|
Grande V, Hathazi D, O'Connor E, Marteau T, Schara-Schmidt U, Hentschel A, Gourdon G, Nikolenko N, Lochmüller H, Roos A. Dysregulation of GSK3β-Target Proteins in Skin Fibroblasts of Myotonic Dystrophy Type 1 (DM1) Patients. J Neuromuscul Dis 2021; 8:603-619. [PMID: 33682722 DOI: 10.3233/jnd-200558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is the most common monogenetic muscular disorder of adulthood. This multisystemic disease is caused by CTG repeat expansion in the 3'-untranslated region of the DM1 protein kinase gene called DMPK. DMPK encodes a myosin kinase expressed in skeletal muscle cells and other cellular populations such as smooth muscle cells, neurons and fibroblasts. The resultant expanded (CUG)n RNA transcripts sequester RNA binding factors leading to ubiquitous and persistent splicing deregulation. The accumulation of mutant CUG repeats is linked to increased activity of glycogen synthase kinase 3 beta (GSK3β), a highly conserved and ubiquitous serine/threonine kinase with functions in pathways regulating inflammation, metabolism, oncogenesis, neurogenesis and myogenesis. As GSK3β-inhibition ameliorates defects in myogenesis, muscle strength and myotonia in a DM1 mouse model, this kinase represents a key player of DM1 pathobiochemistry and constitutes a promising therapeutic target. To better characterise DM1 patients, and monitor treatment responses, we aimed to define a set of robust disease and severity markers linked to GSK3βby unbiased proteomic profiling utilizing fibroblasts derived from DM1 patients with low (80- 150) and high (2600- 3600) CTG-repeats. Apart from GSK3β increase, we identified dysregulation of nine proteins (CAPN1, CTNNB1, CTPS1, DNMT1, HDAC2, HNRNPH3, MAP2K2, NR3C1, VDAC2) modulated by GSK3β. In silico-based expression studies confirmed expression in neuronal and skeletal muscle cells and revealed a relatively elevated abundance in fibroblasts. The potential impact of each marker in the myopathology of DM1 is discussed based on respective function to inform potential uses as severity markers or for monitoring GSK3β inhibitor treatment responses.
Collapse
Affiliation(s)
- Valentina Grande
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, Germany
| | - Denisa Hathazi
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany.,Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Emily O'Connor
- Childrens Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Theo Marteau
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, Germany
| | - Ulrike Schara-Schmidt
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, Germany
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund, Germany
| | - Genevieve Gourdon
- Centre de Recherche en Myologie, Association Institut de Myologie, Sorbonne Université, Inserm UMR 974, Paris, France
| | - Nikoletta Nikolenko
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Hanns Lochmüller
- Childrens Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.,Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany.,Centro Nacional de AnálisisGenómico, Center for Genomic Regulation (CNAG-CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Andreas Roos
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, Germany.,Childrens Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
21
|
Hwang SU, Eun K, Kim M, Yoon JD, Cai L, Choi H, Oh D, Lee G, Kim H, Kim E, Hyun SH. Establishment of 3D Neuro-Organoids Derived from Pig Embryonic Stem-Like Cells. Int J Mol Sci 2021; 22:ijms22052600. [PMID: 33807555 PMCID: PMC7961951 DOI: 10.3390/ijms22052600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Although the human brain would be an ideal model for studying human neuropathology, it is difficult to perform in vitro culture of human brain cells from genetically engineered healthy or diseased brain tissue. Therefore, a suitable model for studying the molecular mechanisms responsible for neurological diseases that can appropriately mimic the human brain is needed. Somatic cell nuclear transfer (SCNT) was performed using an established porcine Yucatan EGFP cell line and whole seeding was performed using SCNT blastocysts. Two Yucatan EGFP porcine embryonic stem-like cell (pESLC) lines were established. These pESLC lines were then used to establish an in vitro neuro-organoids. Aggregates were cultured in vitro until 61 or 102 days after neural induction, neural patterning, and neural expansion. The neuro-organoids were sampled at each step and the expression of the dopaminergic neuronal marker (TH) and mature neuronal marker (MAP2) was confirmed by reverse transcription-PCR. Expression of the neural stem cell marker (PAX6), neural precursor markers (S100 and SOX2), and early neural markers (MAP2 and Nestin) were confirmed by immunofluorescence staining. In conclusion, we successfully established neuro-organoids derived from pESLCs in vitro. This protocol can be used as a tool to develop in vitro models for drug development, patient-specific chemotherapy, and human central nervous system disease studies.
Collapse
Affiliation(s)
- Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Kiyoung Eun
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Korea; (K.E.); (H.K.)
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Junchul David Yoon
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Gabsang Lee
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Hyunggee Kim
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Korea; (K.E.); (H.K.)
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Eunhye Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
- Correspondence: (E.K.); (S.-H.H.); Tel.: +82-43-249-1746 (E.K.); +82-43-261-3393 (S.-H.H.)
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (M.K.); (J.D.Y.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
- Correspondence: (E.K.); (S.-H.H.); Tel.: +82-43-249-1746 (E.K.); +82-43-261-3393 (S.-H.H.)
| |
Collapse
|
22
|
Hwang SU, Yoon JD, Kim M, Cai L, Choi H, Oh D, Kim E, Hyun SH. R-Spondin 2 and WNT/CTNNB1 Signaling Pathways Are Required for Porcine Follicle Development and In Vitro Maturation. Animals (Basel) 2021; 11:ani11030709. [PMID: 33807916 PMCID: PMC7998564 DOI: 10.3390/ani11030709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/26/2022] Open
Abstract
The secretion of oocyte-derived paracrine factors, such as R-spondin2, is an essential mechanism for follicle growth by promoting the proliferation and differentiation of cumulus cells around oocytes. In the present study, we aimed to identify the effect of R-spondin2 during follicular development. First, R-spondin2-related factors (R-spondin2, CTNNB1, LGR4, and LGR5) were identified through immunofluorescence in porcine ovarian tissue. CTNNB1 was expressed in ooplasm, and CTNNB1 and LGR4 were expressed in granulosa cells. In addition, R-spondin2, LGR4, and LGR5 were expressed in the theca interna. These results imply that these proteins play a major role in porcine follicular development. In addition, the effects of R-spondin2 on the in vitro maturation process of porcine cumulus oocyte complexes and subsequent embryonic development were confirmed. A treatment of 100 ng/mL R-spondin2 in the in vitro maturation (IVM) process increased nuclear maturation and increased the expression of EGFR mRNA in cumulus cells. The EGFR-ERK signal is essential for oocyte maturation, ovulation, and luteinization. R-spondin2 treatment also increased the expression of CTNNB1 and EGFR in primary cultured cumulus cells. In conclusion, RSPO2 and WNT/CTNNB1 signaling pathways are required for porcine follicle development and are predicted to be involved in the EGFR-ERK signaling pathway.
Collapse
Affiliation(s)
- Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Junchul David Yoon
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
| | - Eunhye Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Correspondence: (E.K.); (S.-H.H.); Tel.: +82-43-249-1746 (E.K.); +82-43-261-3393 (S.-H.H.)
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.-U.H.); (J.D.Y.); (M.K.); (L.C.); (H.C.); (D.O.)
- Institute of Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea
- Correspondence: (E.K.); (S.-H.H.); Tel.: +82-43-249-1746 (E.K.); +82-43-261-3393 (S.-H.H.)
| |
Collapse
|
23
|
Kim H, Jeong JH, Fendereski M, Lee HS, Kang DY, Hur SS, Amirian J, Kim Y, Pham NT, Suh N, Hwang NSY, Ryu S, Yoon JK, Hwang Y. Heparin-Mimicking Polymer-Based In Vitro Platform Recapitulates In Vivo Muscle Atrophy Phenotypes. Int J Mol Sci 2021; 22:ijms22052488. [PMID: 33801235 PMCID: PMC7957884 DOI: 10.3390/ijms22052488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
The cell–cell/cell–matrix interactions between myoblasts and their extracellular microenvironment have been shown to play a crucial role in the regulation of in vitro myogenic differentiation and in vivo skeletal muscle regeneration. In this study, by harnessing the heparin-mimicking polymer, poly(sodium-4-styrenesulfonate) (PSS), which has a negatively charged surface, we engineered an in vitro cell culture platform for the purpose of recapitulating in vivo muscle atrophy-like phenotypes. Our initial findings showed that heparin-mimicking moieties inhibited the fusion of mononucleated myoblasts into multinucleated myotubes, as indicated by the decreased gene and protein expression levels of myogenic factors, myotube fusion-related markers, and focal adhesion kinase (FAK). We further elucidated the underlying molecular mechanism via transcriptome analyses, observing that the insulin/PI3K/mTOR and Wnt signaling pathways were significantly downregulated by heparin-mimicking moieties through the inhibition of FAK/Cav3. Taken together, the easy-to-adapt heparin-mimicking polymer-based in vitro cell culture platform could be an attractive platform for potential applications in drug screening, providing clear readouts of changes in insulin/PI3K/mTOR and Wnt signaling pathways.
Collapse
Affiliation(s)
- Hyunbum Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea;
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
| | - Mona Fendereski
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
| | - Hyo-Shin Lee
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
| | - Da Yeon Kang
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan-si 31538, Korea; (D.Y.K.); (N.S.)
| | - Sung Sik Hur
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
| | - Jhaleh Amirian
- Institute of Tissue Regeneration, Soonchunhyang University, Asan-si 31538, Korea;
| | - Yunhye Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
| | - Nghia Thi Pham
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
| | - Nayoung Suh
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan-si 31538, Korea; (D.Y.K.); (N.S.)
| | - Nathaniel Suk-Yeon Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea;
| | - Seongho Ryu
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
| | - Jeong Kyo Yoon
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
- Correspondence: (J.K.Y.); (Y.H.); Tel.: +82-41-413-5016 (J.K.Y.); +82-41-413-5017 (Y.H.)
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
- Correspondence: (J.K.Y.); (Y.H.); Tel.: +82-41-413-5016 (J.K.Y.); +82-41-413-5017 (Y.H.)
| |
Collapse
|
24
|
Deregulated Immune Pathway Associated with Palbociclib Resistance in Preclinical Breast Cancer Models: Integrative Genomics and Transcriptomics. Genes (Basel) 2021; 12:genes12020159. [PMID: 33504001 PMCID: PMC7912104 DOI: 10.3390/genes12020159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, cyclin-dependent kinase (CDK) 4/6 inhibitors have been widely used to treat advanced hormone receptor-positive breast cancer. Despite promising clinical outcomes, almost all patients eventually acquire resistance to CDK4/6 inhibitors. Here, we screened genes associated with palbociclib resistance through genomics and transcriptomics in preclinical breast cancer models. Palbociclib-resistant cells were generated by exposing hormone receptor-positive breast cancer cell lines to palbociclib. Whole-exome sequencing (WES) and a mRNA microarray were performed to compare the genomic and transcriptomic landscape between both palbociclib-sensitive and resistant cells. Microarray analysis revealed 651 differentially expressed genes (DEGs), while WES revealed 107 clinically significant mutated genes. Furthermore, pathway analysis of both DEGs and mutated genes revealed immune pathway deregulation in palbociclib-resistant cells. Notably, DEG annotation revealed activation of type I interferon pathway, activation of immune checkpoint inhibitory pathway, and suppression of immune checkpoint stimulatory pathway in palbociclib-resistant cells. Moreover, mutations in NCOR1, MUC4, and MUC16 genes found in palbociclib-resistant cells were annotated to be related to the immune pathway. In conclusion, our genomics and transcriptomics analysis using preclinical model, revealed that deregulated immune pathway is an additional mechanism of CDK4/6 inhibitor resistance besides the activation of cyclin E-CDK2 pathway and loss of RB, etc. Further studies are warranted to evaluate whether immune pathways may be a therapeutic target to overcome CDK4/6 inhibitor resistance.
Collapse
|
25
|
Awad K, Ahuja N, Fiedler M, Peper S, Wang Z, Aswath P, Brotto M, Varanasi V. Ionic Silicon Protects Oxidative Damage and Promotes Skeletal Muscle Cell Regeneration. Int J Mol Sci 2021; 22:E497. [PMID: 33419056 PMCID: PMC7825403 DOI: 10.3390/ijms22020497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
Volumetric muscle loss injuries overwhelm the endogenous regenerative capacity of skeletal muscle, and the associated oxidative damage can delay regeneration and prolong recovery. This study aimed to investigate the effect of silicon-ions on C2C12 skeletal muscle cells under normal and excessive oxidative stress conditions to gain insights into its role on myogenesis during the early stages of muscle regeneration. In vitro studies indicated that 0.1 mM Si-ions into cell culture media significantly increased cell viability, proliferation, migration, and myotube formation compared to control. Additionally, MyoG, MyoD, Neurturin, and GABA expression were significantly increased with addition of 0.1, 0.5, and 1.0 mM of Si-ion for 1 and 5 days of C2C12 myoblast differentiation. Furthermore, 0.1-2.0 mM Si-ions attenuated the toxic effects of H2O2 within 24 h resulting in increased cell viability and differentiation. Addition of 1.0 mM of Si-ions significantly aid cell recovery and protected from the toxic effect of 0.4 mM H2O2 on cell migration. These results suggest that ionic silicon may have a potential effect in unfavorable situations where reactive oxygen species is predominant affecting cell viability, proliferation, migration, and differentiation. Furthermore, this study provides a guide for designing Si-containing biomaterials with desirable Si-ion release for skeletal muscle regeneration.
Collapse
Affiliation(s)
- Kamal Awad
- Department of Materials Science and Engineering, College of Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (K.A.); (P.A.)
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| | - Neelam Ahuja
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| | - Matthew Fiedler
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| | - Sara Peper
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
- Department of Bioengineering, College of Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Zhiying Wang
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| | - Pranesh Aswath
- Department of Materials Science and Engineering, College of Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (K.A.); (P.A.)
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| | - Venu Varanasi
- Department of Materials Science and Engineering, College of Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (K.A.); (P.A.)
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (N.A.); (M.F.); (S.P.); (Z.W.)
| |
Collapse
|
26
|
Leung C, Murad KBA, Tan ALT, Yada S, Sagiraju S, Bode PK, Barker N. Lgr5 Marks Adult Progenitor Cells Contributing to Skeletal Muscle Regeneration and Sarcoma Formation. Cell Rep 2020; 33:108535. [PMID: 33357435 DOI: 10.1016/j.celrep.2020.108535] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/15/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Regeneration of adult skeletal muscle is driven largely by resident satellite cells, a stem cell population increasingly considered to display a high degree of molecular heterogeneity. In this study, we find that Lgr5, a receptor for Rspo and a potent mediator of Wnt/β-catenin signaling, marks a subset of activated satellite cells that contribute to muscle regeneration. Lgr5 is found to be rapidly upregulated in purified myogenic progenitors following acute cardiotoxin-induced injury. In vivo lineage tracing using our Lgr5-2ACreERT2R26tdTomatoLSL reporter mouse model shows that Lgr5+ cells can reconstitute damaged muscle fibers following muscle injury, as well as replenish the quiescent satellite cell pool. Moreover, conditional mutation in Lgr52ACreERT2;KrasG12D;Trp53flox/flox mice drives undifferentiated pleomorphic sarcoma formation in adult mice, thereby substantiating Lgr5+ cells as a cell of origin of sarcomas. Our findings provide the groundwork for developing Rspo/Wnt-signaling-based therapeutics to potentially enhance regenerative outcomes of skeletal muscles in degenerative muscle diseases.
Collapse
Affiliation(s)
- Carly Leung
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore
| | - Katzrin Bte Ahmad Murad
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore
| | - Adelyn Liang Thing Tan
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore
| | - Swathi Yada
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore
| | - Sowmya Sagiraju
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore
| | - Peter Karl Bode
- Department of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Nick Barker
- A(∗)STAR Institute of Medical Biology, Singapore 138648, Singapore; A(∗)STAR Institute of Molecular and Cellular Biology, Singapore 138648, Singapore; Cancer Research Institute, Kanazawa University, Kakuma-machi Kanazawa 920-1192, Japan; School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|
27
|
Welc SS, Wehling-Henricks M, Kuro-o M, Thomas KA, Tidball JG. Modulation of Klotho expression in injured muscle perturbs Wnt signalling and influences the rate of muscle growth. Exp Physiol 2020; 105:132-147. [PMID: 31724771 PMCID: PMC6938556 DOI: 10.1113/ep088142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does modulating the expression of Klotho affect myogenesis following acute injury of healthy, non-senescent muscle? What is the main finding and its importance? Klotho can accelerate muscle growth following acute injury of healthy, adult mice, which supports the possibility that increased delivery of Klotho could have therapeutic value for improving repair of damaged muscle. ABSTRACT Skeletal muscle injuries activate a complex programme of myogenesis that can restore normal muscle structure. We tested whether modulating the expression of klotho influenced the response of mouse muscles to acute injury. Our findings show that klotho expression in muscle declines at 3 days post-injury. That reduction in klotho expression coincided with elevated expression of targets of Wnt signalling (Ccnd1; Myc) and increased MyoD+ muscle cell numbers, reflecting the onset of myogenic cell differentiation. klotho expression subsequently increased at 7 days post-injury with elevated expression occurring primarily in inflammatory lesions, which was accompanied by reduced expression of Wnt target genes (Ccnd1: 91%; Myc: 96%). Introduction of a klotho transgene maintained high levels of klotho expression over the course of muscle repair and attenuated the increases in Ccnd1 and Myc expression that occurred at 3 days post-injury. Correspondingly, transgene expression reduced Wnt signalling in Pax7+ cells, reflected by reductions in Pax7+ cells expressing active β-catenin, and reduced the numbers of MyoD+ cells at 3 days post-injury. At 21 days post-injury, muscles in klotho transgenic mice showed increased Pax7+ and decreased myogenin+ cell densities and large increases in myofibre size. Likewise, treating myogenic cells in vitro with Klotho reduced Myod expression but did not affect Pax7 expression. Muscle inflammation was only slightly modulated by increased klotho expression, initially reducing the expression of M2-biased macrophage markers Cd163 and Cd206 at 3 days post-injury and later increasing the expression of pan-macrophage marker F480 and Cd68 at 21 days post-injury. Collectively, our study shows that Klotho modulates myogenesis and that increased expression accelerates muscle growth after injury.
Collapse
Affiliation(s)
- Steven S. Welc
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
- Indiana University School of Medicine, 635 Barnhill Drive, MS-332, Indianapolis, IN 46202
| | | | - Makoto Kuro-o
- Division of Anti-Aging Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Kyle A. Thomas
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
| | - James G. Tidball
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA
| |
Collapse
|
28
|
Sah JP, Hao NTT, Han X, Tran TTT, McCarthy S, Oh Y, Yoon JK. Ectonucleotide pyrophosphatase 2 (ENPP2) plays a crucial role in myogenic differentiation through the regulation by WNT/β-Catenin signaling. Int J Biochem Cell Biol 2019; 118:105661. [PMID: 31805399 DOI: 10.1016/j.biocel.2019.105661] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 12/23/2022]
Abstract
Ectonucleotide pyrophosphate phosphodiesterase type II (ENPP2), also known as Autotaxin (ATX), is an enzyme present in blood circulation that converts lysophosphatidyl choline (LPC) to lysophosphatidic acid (LPA). While LPA has been demonstrated to play diverse roles in skeletal myogenesis, mainly through in vitro studies, the role of ENPP2 in skeletal myogenesis has not been determined. We previously found that Enpp2 is induced by a positive WNT/β-Catenin signaling regulator, R-spondin2 (RSPO2), in C2C12 myoblast cells. As RSPO2 promotes myogenic differentiation via the WNT/β-Catenin signaling pathway, we hypothesized that ENPP2 may act as a key mediator for the crosstalk between WNT and LPA signaling during myogenic differentiation. Herein, we found that ENPP2 function is essential for myogenic differentiation in C2C12 cells. Pharmacological ENPP2 inhibitors or RNAi-mediated Enpp2 gene knockdown severely impaired the myogenic differentiation, including the cell fusion process, whereas administration of the recombinant ENPP2 protein enhanced myogenic differentiation. Consistent with the in vitro results, mice lacking the Enpp2 gene showed a disrupted muscle regeneration after acute muscle injury. The size of newly regenerated myofibers in Enpp2 mutant muscle was significantly reduced compared with wild-type regenerated muscle. Modified expression patterns of myogenic markers in Enpp2 mutant muscle further emphasized the impaired muscle regeneration process. Finally, we convincingly demonstrate that the Enpp2 gene is a direct transcriptional target for WNT/β-Catenin signaling. Functional TCF/LEF1 binding sites within the upstream region of Enpp2 gene were identified by chromatin immunoprecipitation using anti-β-Catenin antibodies and reporter assay. Our study reveals that ENPP2 is regulated by WNT/β-Catenin signaling and plays a key positive role in myogenic differentiation.
Collapse
Affiliation(s)
- Jay Prakash Sah
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea; Department of Integrated Biomedical Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea
| | - Nguyen Thi Thu Hao
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea; Department of Integrated Biomedical Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea
| | - Xianghua Han
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Trinh Thi Tuyet Tran
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea; Department of Integrated Biomedical Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea
| | - Sarah McCarthy
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Younjeong Oh
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea
| | - Jeong Kyo Yoon
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea; Department of Integrated Biomedical Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan-si, 31151, South Korea.
| |
Collapse
|
29
|
Rivera-Mulia JC, Kim S, Gabr H, Chakraborty A, Ay F, Kahveci T, Gilbert DM. Replication timing networks reveal a link between transcription regulatory circuits and replication timing control. Genome Res 2019; 29:1415-1428. [PMID: 31434679 PMCID: PMC6724675 DOI: 10.1101/gr.247049.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
DNA replication occurs in a defined temporal order known as the replication timing (RT) program and is regulated during development, coordinated with 3D genome organization and transcriptional activity. However, transcription and RT are not sufficiently coordinated to predict each other, suggesting an indirect relationship. Here, we exploit genome-wide RT profiles from 15 human cell types and intermediate differentiation stages derived from human embryonic stem cells to construct different types of RT regulatory networks. First, we constructed networks based on the coordinated RT changes during cell fate commitment to create highly complex RT networks composed of thousands of interactions that form specific functional subnetwork communities. We also constructed directional regulatory networks based on the order of RT changes within cell lineages, and identified master regulators of differentiation pathways. Finally, we explored relationships between RT networks and transcriptional regulatory networks (TRNs) by combining them into more complex circuitries of composite and bipartite networks. Results identified novel trans interactions linking transcription factors that are core to the regulatory circuitry of each cell type to RT changes occurring in those cell types. These core transcription factors were found to bind cooperatively to sites in the affected replication domains, providing provocative evidence that they constitute biologically significant directional interactions. Our findings suggest a regulatory link between the establishment of cell-type-specific TRNs and RT control during lineage specification.
Collapse
Affiliation(s)
- Juan Carlos Rivera-Mulia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Sebo Kim
- Department of Computer and Information Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Haitham Gabr
- Department of Computer and Information Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Abhijit Chakraborty
- La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
- School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Tamer Kahveci
- Department of Computer and Information Sciences and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Florida, 32306-4295, USA
- Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
30
|
Sah JP, Hao NTT, Kim Y, Eigler T, Tzahor E, Kim SH, Hwang Y, Yoon JK. MBP-FGF2-Immobilized Matrix Maintains Self-Renewal and Myogenic Differentiation Potential of Skeletal Muscle Stem Cells. Int J Stem Cells 2019; 12:360-366. [PMID: 30836735 PMCID: PMC6657940 DOI: 10.15283/ijsc18125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022] Open
Abstract
The robust capacity of skeletal muscle stem cells (SkMSCs, or satellite cells) to regenerate into new muscles in vivo has offered promising therapeutic options for the treatment of degenerative muscle diseases. However, the practical use of SkMSCs to treat muscle diseases is limited, owing to their inability to expand in vitro under defined cultivation conditions without loss of engraftment efficiency. To develop an optimal cultivation condition for SkMSCs, we investigated the behavior of SkMSCs on synthetic maltose-binding protein (MBP)-fibroblast growth factor 2 (FGF2)-immobilized matrix in vitro. We found that the chemically well-defined, xeno-free MBP-FGF2-immobilized matrix effectively supports SkMSC growth without reducing their differentiation potential in vitro. Our data highlights the possible application of the MBP-FGF2 matrix for SkMSC expansion in vitro.
Collapse
Affiliation(s)
- Jay Prakash Sah
- Soonchunhyang Institute of Medi-bio Science, Soon Chun Hyang University, Cheonan, Korea.,Department of Integrated Biomedical Science, Graduate School, Soon Chun Hyang University, Asan, Korea
| | - Nguyen Thi Thu Hao
- Soonchunhyang Institute of Medi-bio Science, Soon Chun Hyang University, Cheonan, Korea.,Department of Integrated Biomedical Science, Graduate School, Soon Chun Hyang University, Asan, Korea
| | - Yunhye Kim
- Soonchunhyang Institute of Medi-bio Science, Soon Chun Hyang University, Cheonan, Korea.,Department of Integrated Biomedical Science, Graduate School, Soon Chun Hyang University, Asan, Korea
| | - Tamar Eigler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sang-Heon Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science, Soon Chun Hyang University, Cheonan, Korea.,Department of Integrated Biomedical Science, Graduate School, Soon Chun Hyang University, Asan, Korea
| | - Jeong Kyo Yoon
- Soonchunhyang Institute of Medi-bio Science, Soon Chun Hyang University, Cheonan, Korea.,Department of Integrated Biomedical Science, Graduate School, Soon Chun Hyang University, Asan, Korea
| |
Collapse
|
31
|
Liu D, Li S, Cui Y, Tong H, Li S, Yan Y. Podocan affects C2C12 myogenic differentiation by enhancing Wnt/β-catenin signaling. J Cell Physiol 2019; 234:11130-11139. [PMID: 30652305 DOI: 10.1002/jcp.27763] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
Abstract
Podocan, a small leucine-rich repeat protein, is a negative regulator of cell proliferation. In this study, we demonstrated that podocan is involved in the differentiation of C2C12 murine myoblasts. Podocan expression increased with the progression of C2C12 differentiation. As expect, siRNA-mediated podocan knockdown inhibited C2C12 differentiation, as indicated by inhibition of MYOG, MYH2, and desmin expression, as well as reductions in the differentiation and fusion indices. Overexpression of podocan using dCas9 technology promoted C2C12 cell differentiation. In addition, supplementation of culture medium with podocan influenced C2C12 differentiation. Podocan knockdown reduced Wnt/β-catenin signaling, characterized by a reduction in the nuclear translocation of β-catenin, whereas podocan overexpression had the opposite effect. Furthermore, treatment with XAV939, an inhibitor of Wnt/β-catenin, reduced the podocan-mediated promotion of C2C12 differentiation. Induction of muscle injury in mice by bupivacaine administration suggested that podocan may play a role in muscle regeneration. In summary, our results suggest that podocan is required for normal C2C12 differentiation and that its role in myogenesis is mediated by the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Dan Liu
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuang Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yafeng Cui
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Huili Tong
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shufeng Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yunqin Yan
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
32
|
Mesci A, Lucien F, Huang X, Wang EH, Shin D, Meringer M, Hoey C, Ray J, Boutros PC, Leong HS, Liu SK. RSPO3 is a prognostic biomarker and mediator of invasiveness in prostate cancer. J Transl Med 2019; 17:125. [PMID: 30987640 PMCID: PMC6466739 DOI: 10.1186/s12967-019-1878-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/09/2019] [Indexed: 12/16/2022] Open
Abstract
Background While prostate cancer can often manifest as an indolent disease, the development of locally-advanced or metastatic disease can cause significant morbidity or mortality. Elucidation of molecular mechanisms contributing to disease progression is crucial for more accurate prognostication and effective treatments. R-Spondin 3 (RSPO3) is a protein previously implicated in the progression of colorectal and lung cancers. However, a role for RSPO3 in prostate cancer prognosis and behaviour has not been explored. Methods We compare the relative levels of RSPO3 expression between normal prostate tissue and prostate cancer in two independent patient cohorts (Taylor and GSE70768—Cambridge). We also examine the association of biochemical relapse with RSPO3 levels in these cohorts. For elucidation of the biological effect of RSPO3, we use siRNA technology to reduce the levels of RSPO3 in established prostate cancer cell lines, and perform in vitro proliferation, invasion, western blotting for EMT markers and clonogenic survival assays for radiation resistance. Furthermore, we show consequences of RSPO3 knockdown in an established chick chorioallantoic membrane (CAM) assay model of metastasis. Results RSPO3 levels are lower in prostate cancer than normal prostate, with a tendency for further loss in metastatic disease. Patients with lower RSPO3 expression have lower rates of biochemical relapse-free survival. SiRNA-mediated loss of RSPO3 results in no change to clonogenic survival and a lower proliferative rate, but increased invasiveness in vitro with induction of epithelial–mesenchymal transition (EMT) markers. Consistent with these results, lower RSPO3 expression translates to greater metastatic capacity in the CAM assay. Together, our preclinical findings identify a role of RSPO3 downregulation in prostate cancer invasiveness, and provide a potential explanation for how RSPO3 functions as a positive prognostic marker in prostate cancer. Electronic supplementary material The online version of this article (10.1186/s12967-019-1878-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aruz Mesci
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | | | - Xiaoyong Huang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Eric H Wang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - David Shin
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Michelle Meringer
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Christianne Hoey
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jessica Ray
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Hon S Leong
- Mayo Clinic Cancer Centre, Rochester, MN, USA
| | - Stanley K Liu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada. .,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
33
|
C‑mannosylation of R‑spondin2 activates Wnt/β‑catenin signaling and migration activity in human tumor cells. Int J Oncol 2019; 54:2127-2138. [PMID: 30942431 DOI: 10.3892/ijo.2019.4767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/22/2019] [Indexed: 11/05/2022] Open
Abstract
R‑spondin2 (Rspo2), one of the four members of the R‑spondin family of proteins, has agonistic activity in the Wnt/β‑catenin signaling pathway, and it is associated with normal development, as well as disease, such as cancer. The present study focused on the C‑mannosylation of Rspo2, which is a novel and unique type of glycosylation that occurs via a C‑C linkage between the tryptophan residue and an α‑mannose. Although Rspo2 has two putative C‑mannosylation sites at residues Trp150 and Trp153, it had not been reported to date whether these sites are C‑mannosylated. Firstly, results from mass spectrometry demonstrated that Rspo2 was C‑mannosylated at the Trp150 and Trp153 residues. Notably, while this C‑mannosylation of Rspo2 resulted in increased extracellular secretion in human fibrosarcoma HT1080 cells, in other human tumor cell lines it inhibited secretion. However, C‑mannosylation had consistent effects on the activation of Wnt/β‑catenin signaling in PANC1 and MDA‑MB‑231 cells, as well as HT1080 cells. Furthermore, overexpression of wild‑type Rspo2 significantly increased the migratory ability of A549 and HT1080 cells, whereas overexpression of a C‑mannosylation‑defective mutant enhanced migration to a lesser degree. These results suggested that C‑mannosylation of Rspo2 may promote cancer progression and that the inhibition of C‑mannosylation may serve as a potential novel therapeutic approach for cancer therapy.
Collapse
|
34
|
Population and Single-Cell Analysis of Human Cardiogenesis Reveals Unique LGR5 Ventricular Progenitors in Embryonic Outflow Tract. Dev Cell 2019; 48:475-490.e7. [PMID: 30713072 DOI: 10.1016/j.devcel.2019.01.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 02/08/2023]
Abstract
The morphogenetic process of mammalian cardiac development is complex and highly regulated spatiotemporally by multipotent cardiac stem/progenitor cells (CPCs). Mouse studies have been informative for understanding mammalian cardiogenesis; however, similar insights have been poorly established in humans. Here, we report comprehensive gene expression profiles of human cardiac derivatives from multipotent CPCs to intermediates and mature cardiac cells by population and single-cell RNA-seq using human embryonic stem cell-derived and embryonic/fetal heart-derived cardiac cells micro-dissected from specific heart compartments. Importantly, we discover a uniquely human subset of cono-ventricular region-specific CPCs, marked by LGR5. At 4 to 5 weeks of fetal age, the LGR5+ population appears to emerge specifically in the proximal outflow tract of human embryonic hearts and thereafter promotes cardiac development and alignment through expansion of the ISL1+TNNT2+ intermediates. The current study contributes to a deeper understanding of human cardiogenesis, which may uncover the putative origins of certain human congenital cardiac malformations.
Collapse
|
35
|
Raslan AA, Yoon JK. R-spondins: Multi-mode WNT signaling regulators in adult stem cells. Int J Biochem Cell Biol 2019; 106:26-34. [DOI: 10.1016/j.biocel.2018.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/04/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023]
|
36
|
Li J, Ito M, Ohkawara B, Masuda A, Ohno K. Differential effects of spinal motor neuron-derived and skeletal muscle-derived Rspo2 on acetylcholine receptor clustering at the neuromuscular junction. Sci Rep 2018; 8:13577. [PMID: 30206360 PMCID: PMC6133930 DOI: 10.1038/s41598-018-31949-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022] Open
Abstract
We recently reported that R-spondin 2 (Rspo2), a secreted activator of Wnt/β-catenin signaling, promotes acetylcholine receptor (AChR) clustering and neuromuscular junction (NMJ) formation via its receptor, Lgr5. Rspo2 is expressed highly in spinal motor neurons (SMNs) and marginally in the skeletal muscle, but the origin of Rspo2 at the NMJ remains elusive. We rescued Rspo2-deficient (Rspo2-/-) mice by specifically expressing Rspo2 in the skeletal muscle and SMNs. SMN-specific Rspo2 mitigated or over-corrected abnormal features of the NMJs and AChR clusters observed in Rspo2-/- mice including (i) abnormal broadening of enlarged AChR clusters, (ii) three of six abnormal ultrastructural features, and (iii) abnormal expression of nine genes in SMNs and the diaphragm. In contrast, muscle-specific Rspo2 normalized all six abnormal ultrastructural features, but it had no effect on AChR clustering and NMJ formation at the light microscopy level or on abnormal gene expression in SMNs and the diaphragm. These results suggest that SMN-derived Rspo2 plays a major role in AChR clustering and NMJ formation in the postsynaptic region, and muscle-derived Rspo2 also plays a substantial role in juxtaposition of the active zones and synaptic folds.
Collapse
Affiliation(s)
- Jin Li
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
37
|
Inhibition of Methyltransferase Setd7 Allows the In Vitro Expansion of Myogenic Stem Cells with Improved Therapeutic Potential. Cell Stem Cell 2018; 22:177-190.e7. [PMID: 29395054 DOI: 10.1016/j.stem.2017.12.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 10/04/2017] [Accepted: 12/14/2017] [Indexed: 12/30/2022]
Abstract
The development of cell therapy for repairing damaged or diseased skeletal muscle has been hindered by the inability to significantly expand immature, transplantable myogenic stem cells (MuSCs) in culture. To overcome this limitation, a deeper understanding of the mechanisms regulating the transition between activated, proliferating MuSCs and differentiation-primed, poorly engrafting progenitors is needed. Here, we show that methyltransferase Setd7 facilitates such transition by regulating the nuclear accumulation of β-catenin in proliferating MuSCs. Genetic or pharmacological inhibition of Setd7 promotes in vitro expansion of MuSCs and increases the yield of primary myogenic cell cultures. Upon transplantation, both mouse and human MuSCs expanded with a Setd7 small-molecule inhibitor are better able to repopulate the satellite cell niche, and treated mouse MuSCs show enhanced therapeutic potential in preclinical models of muscular dystrophy. Thus, Setd7 inhibition may help bypass a key obstacle in the translation of cell therapy for muscle disease.
Collapse
|
38
|
Vanderplanck C, Tassin A, Ansseau E, Charron S, Wauters A, Lancelot C, Vancutsem K, Laoudj-Chenivesse D, Belayew A, Coppée F. Overexpression of the double homeodomain protein DUX4c interferes with myofibrillogenesis and induces clustering of myonuclei. Skelet Muscle 2018; 8:2. [PMID: 29329560 PMCID: PMC5767009 DOI: 10.1186/s13395-017-0148-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is associated with DNA hypomethylation at the 4q35 D4Z4 repeat array. Both the causal gene DUX4 and its homolog DUX4c are induced. DUX4c is immunodetected in every myonucleus of proliferative cells, while DUX4 is present in only 1/1000 of myonuclei where it initiates a gene deregulation cascade. FSHD primary myoblasts differentiate into either atrophic or disorganized myotubes. DUX4 expression induces atrophic myotubes and associated FSHD markers. Although DUX4 silencing normalizes the FSHD atrophic myotube phenotype, this is not the case for the disorganized phenotype. DUX4c overexpression increases the proliferation rate of human TE671 rhabdomyosarcoma cells and inhibits their differentiation, suggesting a normal role during muscle differentiation. METHODS By gain- and loss-of-function experiments in primary human muscle cells, we studied the DUX4c impact on proliferation, differentiation, myotube morphology, and FSHD markers. RESULTS In primary myoblasts, DUX4c overexpression increased the staining intensity of KI67 (a proliferation marker) in adjacent cells and delayed differentiation. In differentiating cells, DUX4c overexpression led to the expression of some FSHD markers including β-catenin and to the formation of disorganized myotubes presenting large clusters of nuclei and cytoskeletal defects. These were more severe when DUX4c was expressed before the cytoskeleton reorganized and myofibrils assembled. In addition, endogenous DUX4c was detected at a higher level in FSHD myotubes presenting abnormal clusters of nuclei and cytoskeletal disorganization. We found that the disorganized FSHD myotube phenotype could be rescued by silencing of DUX4c, not DUX4. CONCLUSION Excess DUX4c could disturb cytoskeletal organization and nuclear distribution in FSHD myotubes. We suggest that DUX4c up-regulation could contribute to DUX4 toxicity in the muscle fibers by favoring the clustering of myonuclei and therefore facilitating DUX4 diffusion among them. Defining DUX4c functions in the healthy skeletal muscle should help to design new targeted FSHD therapy by DUX4 or DUX4c inhibition without suppressing DUX4c normal function.
Collapse
Affiliation(s)
- Céline Vanderplanck
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Alexandra Tassin
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Eugénie Ansseau
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Sébastien Charron
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Armelle Wauters
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Céline Lancelot
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Kelly Vancutsem
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | | | - Alexandra Belayew
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Frédérique Coppée
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| |
Collapse
|
39
|
Girardi F, Le Grand F. Wnt Signaling in Skeletal Muscle Development and Regeneration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:157-179. [DOI: 10.1016/bs.pmbts.2017.11.026] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Welch RD, Billon C, Valfort AC, Burris TP, Flaveny CA. Pharmacological inhibition of REV-ERB stimulates differentiation, inhibits turnover and reduces fibrosis in dystrophic muscle. Sci Rep 2017; 7:17142. [PMID: 29215066 PMCID: PMC5719458 DOI: 10.1038/s41598-017-17496-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a debilitating X-linked disorder that is fatal. DMD patients lack the expression of the structural protein dystrophin caused by mutations within the DMD gene. The absence of functional dystrophin protein results in excessive damage from normal muscle use due to the compromised structural integrity of the dystrophin associated glycoprotein complex. As a result, DMD patients exhibit ongoing cycles of muscle destruction and regeneration that promote inflammation, fibrosis, mitochondrial dysfunction, satellite cell (SC) exhaustion and loss of skeletal and cardiac muscle function. The nuclear receptor REV-ERB suppresses myoblast differentiation and recently we have demonstrated that the REV-ERB antagonist, SR8278, stimulates muscle regeneration after acute injury. Therefore, we decided to explore whether the REV-ERB antagonist SR8278 could slow the progression of muscular dystrophy. In mdx mice SR8278 increased lean mass and muscle function, and decreased muscle fibrosis and muscle protein degradation. Interestingly, we also found that SR8278 increased the SC pool through stimulation of Notch and Wnt signaling. These results suggest that REV-ERB is a potent target for the treatment of DMD.
Collapse
Affiliation(s)
- Ryan D Welch
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Cyrielle Billon
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Aurore-Cecile Valfort
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Thomas P Burris
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Colin A Flaveny
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.
| |
Collapse
|
41
|
Lacour F, Vezin E, Bentzinger CF, Sincennes MC, Giordani L, Ferry A, Mitchell R, Patel K, Rudnicki MA, Chaboissier MC, Chassot AA, Le Grand F. R-spondin1 Controls Muscle Cell Fusion through Dual Regulation of Antagonistic Wnt Signaling Pathways. Cell Rep 2017; 18:2320-2330. [PMID: 28273449 PMCID: PMC5357729 DOI: 10.1016/j.celrep.2017.02.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/15/2016] [Accepted: 02/10/2017] [Indexed: 12/21/2022] Open
Abstract
Wnt-mediated signals are involved in many important steps in mammalian regeneration. In multiple cell types, the R-spondin (Rspo) family of secreted proteins potently activates the canonical Wnt/β-catenin pathway. Here, we identify Rspo1 as a mediator of skeletal muscle tissue repair. First, we show that deletion of Rspo1 results in global alteration of muscle regeneration kinetics following acute injury. We find that muscle progenitor cells lacking Rspo1 show delayed differentiation due to reduced activation of Wnt/β-catenin target genes. Furthermore, muscle cells lacking Rspo1 have a fusion phenotype leading to larger myotubes containing supernumerary nuclei both in vitro and in vivo. The increase in muscle fusion was dependent on downregulation of Wnt/β-catenin and upregulation of non-canonical Wnt7a/Fzd7/Rac1 signaling. We conclude that reciprocal control of antagonistic Wnt signaling pathways by Rspo1 in muscle stem cell progeny is a key step ensuring normal tissue architecture restoration following acute damage.
Collapse
Affiliation(s)
- Floriane Lacour
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 75013 Paris, France
| | - Elsa Vezin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 75013 Paris, France
| | - C Florian Bentzinger
- Département de pharmacologie et physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, J1H5N4 QC, Canada
| | - Marie-Claude Sincennes
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, K1H8L6 ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 ON, Canada
| | - Lorenzo Giordani
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 75013 Paris, France
| | - Arnaud Ferry
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 75013 Paris, France
| | - Robert Mitchell
- School of Biological Sciences, University of Reading, RG6 6UB Reading, UK
| | - Ketan Patel
- School of Biological Sciences, University of Reading, RG6 6UB Reading, UK; Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Michael A Rudnicki
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, K1H8L6 ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, K1H 8M5 ON, Canada
| | | | | | - Fabien Le Grand
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 75013 Paris, France.
| |
Collapse
|
42
|
Silva-Vignato B, Coutinho LL, Cesar ASM, Poleti MD, Regitano LCA, Balieiro JCC. Comparative muscle transcriptome associated with carcass traits of Nellore cattle. BMC Genomics 2017; 18:506. [PMID: 28673252 PMCID: PMC5496360 DOI: 10.1186/s12864-017-3897-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/22/2017] [Indexed: 01/16/2023] Open
Abstract
Background Commercial cuts yield is an important trait for beef production, which affects the final value of the products, but its direct determination is a challenging procedure to be implemented in practice. The measurement of ribeye area (REA) and backfat thickness (BFT) can be used as indirect measures of meat yield. REA and BFT are important traits studied in beef cattle due to their strong implication in technological (carcass yield) and nutritional characteristics of meat products, like the degree of muscularity and total body fat. Thus, the aim of this work was to study the Longissimus dorsi muscle transcriptome of Nellore cattle, associated with REA and BFT, to find differentially expressed (DE) genes, metabolic pathways, and biological processes that may regulate these traits. Results By comparing the gene expression level between groups with extreme genomic estimated breeding values (GEBV), 101 DE genes for REA and 18 for BFT (false discovery rate, FDR 10%) were identified. Functional enrichment analysis for REA identified two KEGG pathways, MAPK (Mitogen-Activated Protein Kinase) signaling pathway and endocytosis pathway, and three biological processes, response to endoplasmic reticulum stress, cellular protein modification process, and macromolecule modification. The MAPK pathway is responsible for fundamental cellular processes, such as growth, differentiation, and hypertrophy. For BFT, 18 biological processes were found to be altered and grouped into 8 clusters of semantically similar terms. The DE genes identified in the biological processes for BFT were ACHE, SRD5A1, RSAD2 and RSPO3. RSAD2 has been previously shown to be associated with lipid droplet content and lipid biosynthesis. Conclusion In this study, we identified genes, metabolic pathways, and biological processes, involved in differentiation, proliferation, protein turnover, hypertrophy, as well as adipogenesis and lipid biosynthesis related to REA and BFT. These results enlighten some of the molecular processes involved in muscle and fat deposition, which are economically important carcass traits for beef production. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3897-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bárbara Silva-Vignato
- College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, 13635-900, Brazil.
| | - Luiz L Coutinho
- College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Aline S M Cesar
- College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Mirele D Poleti
- College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | | | - Júlio C C Balieiro
- College of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| |
Collapse
|
43
|
Reis EPD, Paixão DM, Brustolini OJB, Silva FFE, Silva W, Araújo FMGD, Salim ACDM, Oliveira G, Guimarães SEF. Expression of myogenes in longissimus dorsi muscle during prenatal development in commercial and local Piau pigs. Genet Mol Biol 2016; 39:589-599. [PMID: 27801482 PMCID: PMC5127148 DOI: 10.1590/1678-4685-gmb-2015-0295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/20/2016] [Indexed: 11/22/2022] Open
Abstract
This study used qRT-PCR to examine variation in the expression of 13 myogenes during muscle development in four prenatal periods (21, 40, 70 and 90 days post-insemination) in commercial (the three-way Duroc, Landrace and Large-White cross) and local Piau pig breeds that differ in muscle mass. There was no variation in the expression of the CHD8, EID2B, HIF1AN, IKBKB, RSPO3, SOX7 and SUFU genes at the various prenatal ages or between breeds. The MAP2K1 and RBM24 genes showed similar expression between commercial and Piau pigs but greater expression (p < 0.05) in at least one prenatal period. Pair-wise comparisons of prenatal periods in each breed showed that only the CSRP3, LEF1, MRAS and MYOG genes had higher expression (p < 0.05) in at least one prenatal period in commercial and Piau pigs. Overall, these results identified the LEF1 gene as a primary candidate to account for differences in muscle mass between the pig breeds since activation of this gene may lead to greater myoblast fusion in the commercial breed compared to Piau pigs. Such fusion could explain the different muscularity between breeds in the postnatal periods.
Collapse
Affiliation(s)
| | | | | | | | - Walmir Silva
- Departamento de Zootecnia, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | | | | | | | | |
Collapse
|
44
|
Huraskin D, Eiber N, Reichel M, Zidek LM, Kravic B, Bernkopf D, von Maltzahn J, Behrens J, Hashemolhosseini S. Wnt/β-catenin signaling via Axin2 is required for myogenesis and, together with YAP/Taz and Tead1, active in IIa/IIx muscle fibers. Development 2016; 143:3128-42. [DOI: 10.1242/dev.139907] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/13/2016] [Indexed: 12/18/2022]
Abstract
Canonical Wnt/β-catenin signaling plays an important role in myogenic differentiation, but its physiological role in muscle fibers remains elusive. Here, we studied activation of Wnt/β-catenin signaling in adult muscle fibers and muscle stem cells in an Axin2 reporter mouse. Axin2 is a negative regulator and a target of Wnt/β-catenin signaling. In adult muscle fibers, Wnt/β-catenin signaling is only detectable in a subset of fast fibers that have a significantly smaller diameter than other fast fibers. In the same fibers, immunofluorescence staining for YAP/Taz and Tead1 was detected. Wnt/β-catenin signaling was absent in quiescent and activated satellite cells. Upon injury, Wnt/β-catenin signaling was detected in muscle fibers with centrally located nuclei. During differentiation of myoblasts expression of Axin2, but not of Axin1, increased together with Tead1 target gene expression. Furthermore, absence of Axin1 and Axin2 interfered with myoblast proliferation and myotube formation, respectively. Treatment with the canonical Wnt3a ligand also inhibited myotube formation. Wnt3a activated TOPflash and Tead1 reporter activity, whereas neither reporter was activated in the presence of Dkk1, an inhibitor of canonical Wnt signaling. We propose that Axin2-dependent Wnt/β-catenin signaling is involved in myotube formation and, together with YAP/Taz/Tead1, associated with reduced muscle fiber diameter of a subset of fast fibers.
Collapse
Affiliation(s)
- Danyil Huraskin
- Institute of Biochemistry, Fahrstrasse 17, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen D-91054, Germany
| | - Nane Eiber
- Institute of Biochemistry, Fahrstrasse 17, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen D-91054, Germany
| | - Martin Reichel
- Nikolaus-Fiebiger-Center of Molecular Medicine, Glückstrasse 6, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen D-91054, Germany
| | - Laura M. Zidek
- Leibniz Institute for Age Research/Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, Jena D-07745, Germany
| | - Bojana Kravic
- Institute of Biochemistry, Fahrstrasse 17, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen D-91054, Germany
| | - Dominic Bernkopf
- Nikolaus-Fiebiger-Center of Molecular Medicine, Glückstrasse 6, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen D-91054, Germany
| | - Julia von Maltzahn
- Leibniz Institute for Age Research/Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, Jena D-07745, Germany
| | - Jürgen Behrens
- Nikolaus-Fiebiger-Center of Molecular Medicine, Glückstrasse 6, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen D-91054, Germany
| | - Said Hashemolhosseini
- Institute of Biochemistry, Fahrstrasse 17, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen D-91054, Germany
| |
Collapse
|
45
|
Yan H, Wang S, Li Z, Sun Z, Zan J, Zhao W, Pan Y, Wang Z, Wu M, Zhu J. Rspo2 suppresses CD36-mediated apoptosis in oxidized low density lipoprotein-induced macrophages. Mol Med Rep 2016; 14:2945-52. [PMID: 27571704 PMCID: PMC5042761 DOI: 10.3892/mmr.2016.5642] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 06/22/2016] [Indexed: 01/12/2023] Open
Abstract
Oxidized low density lipoprotein (oxLDL)-induced apoptosis of macrophages contributes to the formation of atherosclerotic plaques. R-spondin 2 (Rspo2), a member of the cysteine-rich secreted proteins, has been shown to be involved in the oncogenesis of several types of cancer. It has also been found to be abundantly expressed among the four R-spondin members in macrophages. The present study was performed to determine whether Rspo2 is involved in the ox-LDL-induced apoptosis of macrophages. It was identified that Rspo2 inhibited oxLDL-induced apoptosis in the presence of endoplasmic reticulum (ER) stress activator using flow cytometry. In addition, Rspo2 was observed to suppress oxLDL-induced ER stress and reactive oxygen species production as demonstrated by western blotting. Furthermore, analysis of the role of Rspo2 in macrophage lipid uptake identified that Rspo2 negatively regulated the Dil-oxLDL uptake by inhibiting the expression of cluster of differentiation (CD)36, through the transcription factor, peroxisome proliferator-activated receptor (PPAR)-γ. The manipulation of Rspo2 had a direct effect on PPAR-γ nuclear translocation. In addition, chromatin immunoprecipitation analysis revealed that Rspo2 manipulation led to regulation of the direct binding between PPAR-γ and CD36. In conclusion, Rspo2 was found to have a negative regulatory effect during oxLDL-induced macrophage apoptosis by regulating lipid uptake.
Collapse
Affiliation(s)
- Hui Yan
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Shuai Wang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhenwei Li
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Zewei Sun
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jie Zan
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Wenting Zhao
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yanyun Pan
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhen Wang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Mingjie Wu
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jianhua Zhu
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
46
|
Identification and Functional Characterization of RSPO2 as a Susceptibility Gene for Ossification of the Posterior Longitudinal Ligament of the Spine. Am J Hum Genet 2016; 99:202-7. [PMID: 27374772 DOI: 10.1016/j.ajhg.2016.05.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/12/2016] [Indexed: 01/10/2023] Open
Abstract
Ossification of the posterior longitudinal ligament of the spine (OPLL) is a common spinal disorder that results from ectopic ossification of the posterior longitudinal ligament and causes intractable myelopathy and radiculopathy. In a previous genome-wide association study (GWAS), we found six loci associated with OPLL; however, susceptibility genes in these loci have not been identified yet. Here, we examined one of the GWAS loci and identified RSPO2 (encoding R-spondin 2) as a susceptibility gene for OPLL. R-spondin 2 is a secreted agonist of canonical Wnt-β-catenin signaling. RSPO2 was decreased in the early stage of chondrocyte differentiation. R-spondin 2 inhibited expression of genes encoding early chondrocyte differentiation markers by activating Wnt-β-catenin signaling. rs374810, the most significantly associated SNP in the GWAS locus in chromosomal region 8q23.1 was located in the chondrocyte promoter region of RSPO2. A transcription factor, CCAAT-enhancer-binding protein β (C/EBPβ), specifically bound to the RSPO2 core promoter region containing rs374810 and increased RSPO2 expression. The risk allele of rs374810 affected the binding of the promoter with C/EBPβ and decreased the RSPO2 transcription in vitro and in vivo. Our genetic and functional data indicate that RSPO2 is a susceptibility gene for OPLL.
Collapse
|
47
|
Mah AT, Yan KS, Kuo CJ. Wnt pathway regulation of intestinal stem cells. J Physiol 2016; 594:4837-47. [PMID: 27581568 DOI: 10.1113/jp271754] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/08/2016] [Indexed: 12/11/2022] Open
Abstract
Wnt signalling is involved in multiple aspects of embryonic development and adult tissue homeostasis, notably via controlling cellular proliferation and differentiation. Wnt signalling is subject to stringent positive and negative regulation to promote proper development and homeostasis yet avoid aberrant growth. Such multi-layer regulation includes post-translational modification and processing of Wnt proteins themselves, R-spondin (Rspo) amplification of Wnt signalling, diverse receptor families, and intracellular and extracellular antagonists and destruction and transcription complexes. In the gastrointestinal tract, Wnt signalling is crucial for development and renewal of the intestinal epithelium. Intestinal stem cells (ISCs) undergo symmetric division and neutral drift dynamics to renew the intestinal epithelium. Sources of Wnts and Wnt amplifers such as R-spondins are beginning to be elucidated as well as their functional contribution to intestinal homeostasis. In this review we focus on regulation of ISCs and intestinal homeostasis by the Wnt/Rspo pathway, the potential cellular sources of Wnt signalling regulators and highlight potential future areas of study.
Collapse
Affiliation(s)
- Amanda T Mah
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kelley S Yan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
48
|
Functional Overload Enhances Satellite Cell Properties in Skeletal Muscle. Stem Cells Int 2015; 2016:7619418. [PMID: 26779264 PMCID: PMC4686724 DOI: 10.1155/2016/7619418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/29/2015] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle represents a plentiful and accessible source of adult stem cells. Skeletal-muscle-derived stem cells, termed satellite cells, play essential roles in postnatal growth, maintenance, repair, and regeneration of skeletal muscle. Although it is well known that the number of satellite cells increases following physical exercise, functional alterations in satellite cells such as proliferative capacity and differentiation efficiency following exercise and their molecular mechanisms remain unclear. Here, we found that functional overload, which is widely used to model resistance exercise, causes skeletal muscle hypertrophy and converts satellite cells from quiescent state to activated state. Our analysis showed that functional overload induces the expression of MyoD in satellite cells and enhances the proliferative capacity and differentiation potential of these cells. The changes in satellite cell properties coincided with the inactivation of Notch signaling and the activation of Wnt signaling and likely involve modulation by transcription factors of the Sox family. These results indicate the effects of resistance exercise on the regulation of satellite cells and provide insight into the molecular mechanism of satellite cell activation following physical exercise.
Collapse
|
49
|
Sasi Kumar K, Ramadhas A, Nayak S, Kaniyappan S, Dayma K, Radha V. C3G (RapGEF1), a regulator of actin dynamics promotes survival and myogenic differentiation of mouse mesenchymal cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2629-39. [DOI: 10.1016/j.bbamcr.2015.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/17/2015] [Accepted: 06/27/2015] [Indexed: 12/11/2022]
|
50
|
BAMBI Promotes C2C12 Myogenic Differentiation by Enhancing Wnt/β-Catenin Signaling. Int J Mol Sci 2015; 16:17734-45. [PMID: 26247931 PMCID: PMC4581218 DOI: 10.3390/ijms160817734] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 07/07/2015] [Accepted: 07/30/2015] [Indexed: 12/03/2022] Open
Abstract
Bone morphogenic protein and activin membrane-bound inhibitor (BAMBI) is regarded as an essential regulator of cell proliferation and differentiation that represses transforming growth factor-β and enhances Wnt/β-catenin signaling in various cell types. However, its role in skeletal muscle remains largely unknown. In the current study, we found that the expression level of BAMBI peaked in the early differentiation phase of the C2C12 rodent myoblast cell line. Knockdown of BAMBI via siRNA inhibited C2C12 differentiation, indicated by repressed MyoD, MyoG, and MyHC expression as well as reductions in the differentiation and fusion indices. BAMBI knockdown reduced the activity of Wnt/β-catenin signaling, as characterized by the decreased nuclear translocation of β-catenin and the lowered transcription of Axin2, which is a well-documented target gene of the Wnt/β-catenin signaling pathway. Furthermore, treatment with LiCl, an activator of Wnt/β-catenin signaling, rescued the reduction in C2C12 differentiation caused by BAMBI siRNA. Taken together, our data suggest that BAMBI is required for normal C2C12 differentiation, and that its role in myogenesis is mediated by the Wnt/β-catenin pathway.
Collapse
|