1
|
He B, Shen X, Li F, Zhou R, Xue H, Fan X, Wang Z, Guo X, Fan Y, Luo G, Zhang X, Zheng H. Exploring the impact of gut microbiota-mediated regulation of exosomal miRNAs from bone marrow mesenchymal stem cells on the regulation of bone metabolism. Stem Cell Res Ther 2025; 16:143. [PMID: 40102952 PMCID: PMC11921539 DOI: 10.1186/s13287-025-04256-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/27/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Osteoporosis, which is a prevalent metabolic bone disease, is closely associated with imbalances in the gut microbiota. METHODS The ovaries of female 6-month-old Sprague-Dawley rats were surgically removed to induce osteoporosis. Subsequently, 16S rRNA sequencing was employed to characterize the gut microbiota in the osteoporotic rats. Bone marrow mesenchymal stem cells (BMSCs) were isolated from osteoporotic rats and cultured separately, and their osteogenic and adipogenic differentiation was observed. Furthermore, exosomes were extracted from these cells, and miRNA sequencing was performed on the exosomes to identify key miRNAs. Osteoporotic rats were then treated with a member of the gut microbiota, and changes in the osteogenic and adipogenic differentiation of BMSCs were observed. RESULTS In our investigation, we observed altered proportions of Firmicutes and Bacteroidetes in the guts of ovariectomized rats, which contributed to dysbiosis and subsequent changes in intestinal permeability. The BMSCs exhibited disrupted osteogenic/adipogenic differentiation, which was associated with structural damage to bones. Through the isolation of exosomes from BMSCs and subsequent miRNA analysis, we identified miR-151-3p and miR-23b-3p as potential pivotal regulators of bone metabolism. Furthermore, through 16S rRNA sequencing, we identified g_Ruminococcus and its marked capacity to ameliorate the imbalance in BMSC osteogenic/adipogenic differentiation. Intervention with g_Ruminococcus demonstrated promising outcomes, mitigating bone loss and structural damage to the tibia and femur in ovariectomized rats. CONCLUSIONS These findings highlight the significant role of g_Ruminococcus in alleviating osteoporosis induced by estrogen deficiency, suggesting its therapeutic potential for addressing postmenopausal osteoporosis through the targeted modulation of BMSC-derived exosomal miR-151-3p and miR-23b-3p.
Collapse
Affiliation(s)
- Bin He
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Cao Fei Dian, Tangshan, 063210, Hebei, China
- International Science & Technology Cooperation Base of Geriatric Medicine, Tangshan, 063210, Hebei, China
| | - Xianglin Shen
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Feng Li
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Department of Orthopaedics, Beijing Key Laboratory of Spinal Disease Research, Peking University Third Hospital, Beijing, 100191, China
| | - Rudan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Haiyan Xue
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Xianqiu Fan
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Zhihua Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Xinpeng Guo
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Yu Fan
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Guanghu Luo
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Xiujun Zhang
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Cao Fei Dian, Tangshan, 063210, Hebei, China.
- International Science & Technology Cooperation Base of Geriatric Medicine, Tangshan, 063210, Hebei, China.
| | - Hongyu Zheng
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
2
|
Lim HK, Song IS, Choi WC, Choi YJ, Kim EY, Phan THT, Lee UL. Biocompatibility and dimensional stability through the use of 3D-printed scaffolds made by polycaprolactone and bioglass-7: An in vitro and in vivo study. Clin Implant Dent Relat Res 2024; 26:1245-1259. [PMID: 39257249 DOI: 10.1111/cid.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024]
Abstract
PURPOSE This experiment aimed to observe the differences in biological properties by producing BGS-7 + PCL scaffolds with different weight fractions of BGS-7 through 3D printing and to confirm whether using the scaffold for vertical bone augmentation is effective. MATERIALS AND METHODS Cube-shaped bioglass (BGS-7) and polycaprolactone (PCL) scaffolds with different weight fractions (PCL alone, PCL with 15% and 30% BGS-7) are produced using 3D printing. The surface hydroxyapatite (HA) apposition, the pH change, proliferation and attachment assays, and various gene expression levels are assessed. After a 7-mm implant was inserted 3 mm into the rabbit calvaria, vertical bone augmentation is performed around the implant and inside the scaffold in four ways: scaffold only, scaffold+bone graft, bone graft only, and no graft. Sacrifice is performed at 6, 12, and 24 weeks, and the various parameters are compared radiographically and histologically. RESULTS HA apposition, cell proliferation, cell attachment, and expression of osteogenic genes increase as the proportion of BGS-7 increase. In the in vivo test, a higher bone-implant contact ratio, bone volume ratio, bone mineral density, and new bone area are observed when the scaffold and bone grafts were used together. CONCLUSION The 3D-printed scaffold, a mixture of BGS-7 and PCL, exhibit higher biological compatibility as the proportion of BGS-7 increase. Additionally, the use of scaffold is effective for vertical bone augmentation.
Collapse
Affiliation(s)
- Ho-Kyung Lim
- Department of Oral & Maxillofacial Surgery, Korea University Guro Hospital, Seoul, Korea
| | - In-Seok Song
- Department of Oral & Maxillofacial Surgery, Korea University Anam Hospital, Seoul, Korea
| | - Won-Cheul Choi
- Department of Orthodontics, Dental Center, Chung-Ang University Hospital, Seoul, Korea
| | - Young-Jun Choi
- Department of Oral & Maxillofacial Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | - Eun-Young Kim
- Department of Oral & Maxillofacial Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | - Thi Hong Tham Phan
- Department of Oral & Maxillofacial Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | - Ui-Lyong Lee
- Department of Oral & Maxillofacial Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Wu H, Liao X, Wu T, Xie B, Ding S, Chen Y, Song L, Wei B. Mechanism of MiR-145a-3p/Runx2 pathway in dexamethasone impairment of MC3T3-E1 osteogenic capacity in mice. PLoS One 2024; 19:e0309951. [PMID: 39561180 PMCID: PMC11575826 DOI: 10.1371/journal.pone.0309951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/21/2024] [Indexed: 11/21/2024] Open
Abstract
OBJECTIVE In this experiment, we screened key miRNAs involved in the dexamethasone-induced decrease in osteogenic capacity of mouse precursor osteoblasts MC3T3-E1 over and investigated their specific regulatory mechanisms. METHODS In this experiment, cell counting kit assay was utilized to act on MC3T3-E1 cells at 0, 5μM, 10μM, 15μM concentrations of dexamethasone for 24h, 48h and 72h to observe the changes in cell viability in order to select the appropriate dexamethasone concentration. Apoptosis and reactive oxygen species were detected by flow cytometry. The transcription of osteogenesis-related genes (Runx2, ALP, OCN, OPN, OPG, COL1A1) and protein expression levels (Runx2, ALP, OCN, OPN) were detected by Western Blot and qRT-PCR to validate the changes in cellular osteogenesis. The differentially expressed miRNAs related to MC3T3-E1 osteogenic differentiation after dexamethasone action were screened out. The expression levels of selected target miRNAs were verified in the experimental group and the control group by qRT-PCR. The miRNA inhibitor was transfected to knock down miRNA in dexamethasone-induced MC3T3-E1 injury. Alkaline phosphatase staining and flow cytometry were performed to detect apoptosis and reactive oxygen species changes. transcript and protein expression levels of osteogenesis-related genes in mouse MC3T3-E1 were detected by qRT-PCR and Western blot experiments. By miRNA target gene prediction, luciferase reporter gene experiments, qRT-PCR and Western blot experiments were used to verify whether the selected target miRNAs targeted the target gene. RESULTS First, it was determined that 10μM dexamethasone solution was effective in inducing a decrease in osteogenic function in mouse MC3T3-E1 by CCK8 experiments, which showed a significant decrease in alkaline phosphatase activity, a decrease in calcium nodules as shown by alizarin red staining, an increase in apoptosis and reactive oxygen species as detected by flow cytometry, as well as a decrease in the expression of osteogenesis-related genes and proteins. Five target miRNAs were identified: miR-706, miR-296-3p, miR-7011-5p, miR-145a-3p, and miR-149-3p. miR-145a-3p, which had the most pronounced and stable expression trend and was the most highly expressed miRNA, was chosen as the target of this experiment by qRT-PCR analysis. -145a-3p, as the subject of this experiment. Knockdown of miR-145a-3p in MC3T3-E1 cells after dexamethasone action significantly improved the expression of their impaired osteogenic indicators. It was shown that after knocking down the target miRNA, alkaline phosphatase staining was significantly increased compared with the dexamethasone-stimulated group and approached the level of the blank control group. Meanwhile, the expression of osteogenic function-related proteins and genes also increased in the dexamethasone-stimulated group after knocking down miR-145a-3p, and approached the level of the blank control group. A direct targeting relationship between miR-145a-3p and Runx2 was indeed confirmed by luciferase reporter gene assays, qRT-PCR and Western blot experiments. CONCLUSIONS The results indicated that dexamethasone impaired the osteogenic differentiation ability of MC3T3-E1 cells by inducing the up-regulation of miR-145a-3p expression. MiR-145a-3p inhibited the osteogenic differentiation ability of MC3T3-E1 cells by targeting and suppressing the expression level of Runx2 protein. Inhibition of miR-145a-3p levels significantly improved the osteogenic differentiation ability of MC3T3-E1 cells.
Collapse
Affiliation(s)
- Hang Wu
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xinghua Liao
- Central People's Hospital of Zhanjiang, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingrui Wu
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Xie
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Sicheng Ding
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yiren Chen
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lijun Song
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
4
|
Park SH, Kim J, Yang HJ, Lee JY, Kim CH, Hur JK, Park SB. CRISPR activation identifies a novel miR-2861 binding site that facilitates the osteogenesis of human mesenchymal stem cells. J Orthop Surg Res 2024; 19:730. [PMID: 39506798 PMCID: PMC11542479 DOI: 10.1186/s13018-024-05163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
We investigated the regulation of histone deacetylases (HDACs) by miR-2861 in the osteoblastic differentiation of human mesenchymal stem cells (MSCs) and miR-2861 binding site by CRISPR activation (CRISPRa). Transfection of miR-2861 into human MSCs was performed and the effect on osteoblast differentiation was analyzed. Using catalytically inactive Cas12a, the CRISPRa system induced targeted overexpression of endogenous miRNA and repressed the luciferase activities of reporters that contained functional miRNA target sites. The delivery of miR-2861 into MSCs enhanced osteoblast differentiation by decreased expressions of the HDAC1, 4 and 5 genes. The mechanism of HDAC5 repression by miR-2861 in humans has not been fully elucidated. To this end, the HDAC5 mRNA sequence was analyzed and a putative primate-specific miR-2861 binding site was identified in the 3' untranslated region (3'-UTR). CRISPRa was applied to validate the putative binding site and an increase in endogenous miR-2861 was found to repress the expression of a reporter that contained the novel miR-2861 binding site. The delivery of miR-2861 to human MSCs enhanced osteoblast differentiation. In the 3'-UTR, the HDAC5 repression was mediated by the miR-2861 binding site, and miR-2861 promoted osteoblast differentiation via the inhibition of HDAC5 through a primate-specific miRNA binding site. Therefore, miRNAmiR-2861 with the CRISPRa methods might be a good biomaterial for osteogenesis augmentation.
Collapse
Affiliation(s)
- Seong-Ho Park
- Department of Medicine, Major in Medical Genetics, Graduate School, Hanyang University, Seoul, Korea
| | - Jungwoo Kim
- Department of Neurosurgery, Seoul National University Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea
| | - Hee-Jin Yang
- Department of Neurosurgery, Seoul National University Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea
| | - Ju Yeon Lee
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Chi Heon Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
- Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Junho K Hur
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea.
- Department of Genetics, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea.
| | - Sung Bae Park
- Department of Neurosurgery, Seoul National University Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea.
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Shrestha S, Tieu T, Wojnilowicz M, Voelcker NH, Forsythe JS, Frith JE. Delivery of miRNAs Using Porous Silicon Nanoparticles Incorporated into 3D Hydrogels Enhances MSC Osteogenesis by Modulation of Fatty Acid Signaling and Silicon Degradation. Adv Healthc Mater 2024; 13:e2400171. [PMID: 38657207 DOI: 10.1002/adhm.202400171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Strategies incorporating mesenchymal stromal cells (MSC), hydrogels and osteoinductive signals offer promise for bone repair. Osteoinductive signals such as growth factors face challenges in clinical translation due to their high cost, low stability and immunogenicity leading to interest in microRNAs as a simple, inexpensive and powerful alternative. The selection of appropriate miRNA candidates and their efficient delivery must be optimised to make this a reality. This study evaluated pro-osteogenic miRNAs and used porous silicon nanoparticles modified with polyamidoamine dendrimers (PAMAM-pSiNP) to deliver these to MSC encapsulated within gelatin-PEG hydrogels. miR-29b-3p, miR-101-3p and miR-125b-5p are strongly pro-osteogenic and are shown to target FASN and ELOVL4 in the fatty acid biosynthesis pathway to modulate MSC osteogenesis. Hydrogel delivery of miRNA:PAMAM-pSiNP complexes enhanced transfection compared to 2D. The osteogenic potential of hBMSC in hydrogels with miR125b:PAMAM-pSiNP complexes is evaluated. Importantly, a dual-effect on osteogenesis occurred, with miRNAs increasing expression of alkaline phosphatase (ALP) and Runt-related transcription factor 2 (RUNX2) whilst the pSiNPs enhanced mineralisation, likely via degradation into silicic acid. Overall, this work presents insights into the role of miRNAs and fatty acid signalling in osteogenesis, providing future targets to improve bone formation and a promising system to enhance bone tissue engineering.
Collapse
Affiliation(s)
- Surakshya Shrestha
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Terence Tieu
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - Marcin Wojnilowicz
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - Nicolas H Voelcker
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, 3800, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, 3800, Australia
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
6
|
Aravindraja C, Jeepipalli S, Duncan WD, Vekariya KM, Rahaman SO, Chan EKL, Kesavalu L. Streptococcus gordonii Supragingival Bacterium Oral Infection-Induced Periodontitis and Robust miRNA Expression Kinetics. Int J Mol Sci 2024; 25:6217. [PMID: 38892405 PMCID: PMC11172800 DOI: 10.3390/ijms25116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Streptococcus gordonii (S. gordonii, Sg) is one of the early colonizing, supragingival commensal bacterium normally associated with oral health in human dental plaque. MicroRNAs (miRNAs) play an important role in the inflammation-mediated pathways and are involved in periodontal disease (PD) pathogenesis. PD is a polymicrobial dysbiotic immune-inflammatory disease initiated by microbes in the gingival sulcus/pockets. The objective of this study is to determine the global miRNA expression kinetics in S. gordonii DL1-infected C57BL/6J mice. All mice were randomly divided into four groups (n = 10 mice/group; 5 males and 5 females). Bacterial infection was performed in mice at 8 weeks and 16 weeks, mice were euthanized, and tissues harvested for analysis. We analyzed differentially expressed (DE) miRNAs in the mandibles of S. gordonii-infected mice. Gingival colonization/infection by S. gordonii and alveolar bone resorption (ABR) was confirmed. All the S. gordonii-infected mice at two specific time points showed bacterial colonization (100%) in the gingival surface, and a significant increase in mandible and maxilla ABR (p < 0.0001). miRNA profiling revealed 191 upregulated miRNAs (miR-375, miR-34b-5p) and 22 downregulated miRNAs (miR-133, miR-1224) in the mandibles of S. gordonii-infected mice at the 8-week mark. Conversely, at 16 weeks post-infection, 10 miRNAs (miR-1902, miR-203) were upregulated and 32 miRNAs (miR-1937c, miR-720) were downregulated. Two miRNAs, miR-210 and miR-423-5p, were commonly upregulated, and miR-2135 and miR-145 were commonly downregulated in both 8- and 16-week-infected mice mandibles. Furthermore, we employed five machine learning (ML) algorithms to assess how the number of miRNA copies correlates with S. gordonii infections in mice. In the ML analyses, miR-22 and miR-30c (8-week), miR-720 and miR-339-5p (16-week), and miR-720, miR-22, and miR-339-5p (combined 8- and 16-week) emerged as the most influential miRNAs.
Collapse
Affiliation(s)
- Chairmandurai Aravindraja
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - Syam Jeepipalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - William D. Duncan
- Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Krishna Mukesh Vekariya
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - Shaik O. Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| | - Edward K. L. Chan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
7
|
Gargalionis AN, Adamopoulos C, Vottis CT, Papavassiliou AG, Basdra EK. Runx2 and Polycystins in Bone Mechanotransduction: Challenges for Therapeutic Opportunities. Int J Mol Sci 2024; 25:5291. [PMID: 38791330 PMCID: PMC11121608 DOI: 10.3390/ijms25105291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/04/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Bone mechanotransduction is a critical process during skeletal development in embryogenesis and organogenesis. At the same time, the type and level of mechanical loading regulates bone remodeling throughout the adult life. The aberrant mechanosensing of bone cells has been implicated in the development and progression of bone loss disorders, but also in the bone-specific aspect of other clinical entities, such as the tumorigenesis of solid organs. Novel treatment options have come into sight that exploit the mechanosensitivity of osteoblasts, osteocytes, and chondrocytes to achieve efficient bone regeneration. In this regard, runt-related transcription factor 2 (Runx2) has emerged as a chief skeletal-specific molecule of differentiation, which is prominent to induction by mechanical stimuli. Polycystins represent a family of mechanosensitive proteins that interact with Runx2 in mechano-induced signaling cascades and foster the regulation of alternative effectors of mechanotransuction. In the present narrative review, we employed a PubMed search to extract the literature concerning Runx2, polycystins, and their association from 2000 to March 2024. The keywords stated below were used for the article search. We discuss recent advances regarding the implication of Runx2 and polycystins in bone remodeling and regeneration and elaborate on the targeting strategies that may potentially be applied for the treatment of patients with bone loss diseases.
Collapse
Affiliation(s)
- Antonios N. Gargalionis
- Laboratory of Clinical Biochemistry, Medical School, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, 12462 Athens, Greece;
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christos T. Vottis
- First Department of Orthopedics, Medical School, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, 12462 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
| | - Efthimia K. Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
| |
Collapse
|
8
|
Al-Rawaf HA, Gabr SA, Iqbal A, Alghadir AH. MicroRNAs as potential biopredictors for premenopausal osteoporosis: a biochemical and molecular study. BMC Womens Health 2023; 23:481. [PMID: 37689658 PMCID: PMC10493018 DOI: 10.1186/s12905-023-02626-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Circulating micro-RNAs have been proposed as a new type of biomarker in several diseases, particularly those related to bone health. They have shown great potential due to their feasibility and simplicity of measurement in all body fluids, especially urine, plasma, and serum. AIM This study aimed to evaluate the expression of a set of mRNAs, namely miR-21, miR-24, mir-100, miR-24a, miR-103-3p, and miR-142-3p. Their proposed roles in the progression of osteoporosis were identified using a real-time polymerase chain reaction (RT-PCR) analysis in premenopausal women. In addition, their correlations with osteocalcin (OC), bone-specific alkaline phosphatase (BAP), and deoxypyridinoline (DPD) bone markers were explored. METHODS A total of 85 healthy premenopausal women aged 25-50 years old were included in this study. Based on a DXA scan (Z-score) analysis and calcaneus broadband ultrasound attenuation scores (c-BUAs), measured via quantitative ultrasound (QUS), the subjects were classified into three groups: normal group (n = 25), osteopenia (n = 30), and osteoporosis (n = 30). Real-time-PCR and immunoassay analyses were performed to determine miRNA expression levels and serum OC, s-BAP, and DPD, respectively, as biomarkers of bone health. RESULTS Among the identified miRNAs, only miR-21, miR-24, and mir-100 were significantly upregulated and increased in the serum of patients with osteopenia and osteoporosis, and miR-24a, miR-103-3p, and miR-142-3p were downregulated and significantly decreased in osteoporosis. Both upregulated and downregulated miRNAs were significantly correlated with BMD, c-BUA, OC, s-BAP, and DPD. CONCLUSION A group of circulating miRNAs was shown to be closely correlated with the parameters BMD, c-BUA, OC, s-BAP, and DPD, which are traditionally used for bone-health measurements. They could be identified as non-invasive biomarkers in premenopausal patients with osteoporosis. More studies with large sample sizes are recommended to estimate the mechanistic role of miRNAs in osteoporosis pathogenesis and to provide evidence for the use of these miRNAs as a non-invasive method of diagnosing clinical osteoporosis, especially in premenopausal patients.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433 Saudi Arabia
| | - Sami A. Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433 Saudi Arabia
| | - Amir Iqbal
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433 Saudi Arabia
| | - Ahmad H. Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433 Saudi Arabia
| |
Collapse
|
9
|
Li W, Wang Z, Jiang Z, Yan Y, Yao X, Pan Z, Chen L, Wang F, Wang M, Qin Z. MiR-3960 inhibits bladder cancer progression via targeting of DEXI. Biochem Biophys Res Commun 2023; 668:8-18. [PMID: 37230046 DOI: 10.1016/j.bbrc.2023.05.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE MicroRNAs (miRNAs) are dominant cargo in exosomes and act as master regulators of cell function, inhibiting mRNA translation and affecting gene silencing. Some aspects of tissue-specific miRNA transport in bladder cancer (BC) and its role in cancer progression are not fully understood. MATERIALS AND METHODS A microarray was used to identify miRNAs in mouse bladder carcinoma cell line MB49 exosomes. Real-time reverse transcription polymerase chain reaction was used to examine the expression of miRNAs in BC and healthy donor serum. Western blotting and immunohistochemical staining were used to examine the expression of dexamethasone-induced protein (DEXI) in patients with BC. CRISPR-Cas 9 was used to knock out Dexi in MB49, and flow cytometry was performed to test cell proliferation ability and apoptosis under chemotherapy. Human BC organoid culture, miR-3960 transfection, and 293T-exosome-loaded miR-3960 delivery were used to analyze the effect of miR-3960 on BC progression. RESULTS The results showed that miR-3960 levels in BC tissue were positively correlated with patient survival time. Dexi was a major target of miR-3960. Dexi knockout inhibited MB49 cell proliferation and promoted cisplatin- and gemcitabine-induced apoptosis. Transfection of miR-3960 mimic inhibited DEXI expression and organoid growth. In parallel, 293T-exosome-loaded miR-3960 delivery and Dexi knockout significantly inhibited subcutaneous growth of MB49 cells in vivo. CONCLUSION Our results demonstrate the potential role of miR-3960-mediated inhibition of DEXI as a therapeutic strategy against BC.
Collapse
Affiliation(s)
- Wenqing Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zihao Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Ziming Jiang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yan Yan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Xiaohan Yao
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhenzhen Pan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Lin Chen
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Fei Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Ming Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
10
|
Wang C, Shen J, Zhang W, Wang X, Xu X, Lu X, Xu D, Yao L. Aberrant expression of miR-33a-3p/IGF2 in postmenopausal osteoporosis patients and its role and mechanism in osteoporosis. J Orthop Surg Res 2023; 18:487. [PMID: 37415192 PMCID: PMC10326950 DOI: 10.1186/s13018-023-03883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/26/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP), the most frequent bone-related disease, is characterized by bone loss and fragile fractures, which is related to low bone density (BMD). This study aimed to illustrate the expression and mechanism of miR-33a-3p in osteoporosis. METHODS TargetScan and luciferase reporter assay were applied for verifying the relevance between miR-33a-3p and IGF2. Levels of miR-33a-3p, IGF2, Runx2, ALP and Osterix were checked using RT-qPCR and western blotting. hBMSCs proliferation, apoptosis and ALP activity were analyzed by MTT, flow cytometry (FCM) analysis and ALP detection kit, respectively. Moreover, the calcification of cells was assessed using Alizarin Red S staining. The average BMD was evaluated by dual-energy X-ray absorptiometry (DEXA) assay. RESULTS IGF2 was a target of miR-33a-3p. The level of miR-33a-3p was substantially higher and IGF2 expression was memorably lower in the serum of osteoporosis patients than that in healthy volunteers. Our results also pointed out that miR-33a-3p was reduced and IGF2 expression was enhanced during osteogenic differentiation. We concluded that miR-33a-3p negatively regulated the level of IGF2 in hBMSCs. Besides, miR-33a-3p mimic inhibited the osteogenic differentiation of hBMSCs via inhibiting the level of Runx2, ALP and Osterix and decreasing ALP activity. IGF2 plasmid dramatically reversed the influence of miR-33a-3p mimic on IGF2 expression, hBMSCs proliferation and apoptosis, and osteogenic differentiation of hBMSCs. CONCLUSION miR-33a-3p affected osteogenic differentiation of hBMSCs by targeting IGF2, indicating a potential use of miR-33a-3p as plasma biomarker and therapeutic target for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Changxin Wang
- Department of Orthopaedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, China
| | - Jianfei Shen
- Nuclear Medicine Department, The Third Affiliated Hospital of Qiqihar Medical University, No. 27 Taishun Street, Tiefeng District, Qiqihar, 161000, China
| | - Wei Zhang
- Endocrine Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, China
| | - Xiaoyu Wang
- Nuclear Medicine Department, The Third Affiliated Hospital of Qiqihar Medical University, No. 27 Taishun Street, Tiefeng District, Qiqihar, 161000, China
| | - Xiaohong Xu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, China
| | - Xianghui Lu
- Department of Gynaecology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, China
| | - Dongbin Xu
- Qiqihar Medical University, Qiqihar, 161000, China
| | - Lan Yao
- Nuclear Medicine Department, The Third Affiliated Hospital of Qiqihar Medical University, No. 27 Taishun Street, Tiefeng District, Qiqihar, 161000, China.
| |
Collapse
|
11
|
Wang C, Wang P, Li F, Li Y, Zhao M, Feng H, Meng H, Li J, Shi P, Peng J, Tian H. Adenovirus-associated anti-miRNA-214 regulates bone metabolism and prevents local osteoporosis in rats. Front Bioeng Biotechnol 2023; 11:1164252. [PMID: 37251576 PMCID: PMC10214158 DOI: 10.3389/fbioe.2023.1164252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Objective: We investigated the expression of miRNA-214 in human osteoporotic bone tissue and tested the utility of adeno-associated virus (AAV) expressing a miRNA-214 inhibitor in terms of preventing local osteoporosis of the femoral condyle in a rat model of osteoporosis. Methods: (1) Femoral heads of patients who underwent hip replacements at our hospital because of femoral neck fractures were collected and divided into osteoporosis and non-osteoporosis groups based on preoperative bone mineral density data. MiRNA-214 expression was detected in bone tissues exhibiting obvious bone microstructural changes in the two groups. (2) A total of 144 SD female rats were divided into four groups: the Control, Model, Negative control (Model + AAV), and Experimental (Model + anti-miRNA-214) groups. AAV-anti-miRNA-214 was injected locally into the rat femoral condyles; we explored whether this prevented or treated local osteoporosis. Results: (1) MiRNA-214 expression in the human femoral head was significantly increased in the osteoporosis group. (2) Compared to the Model and Model + AAV groups, the bone mineral density (BMD) and femoral condyle bone volume/tissue volume (BV/TV) ratio in the Model + anti-miRNA-214 group were significantly higher; in addition, the number (TB.N) and thickness (TB.Th) of the trabecular bones were increased (all p < 0.05). MiRNA-214 expression in the femoral condyles of the Model + anti-miRNA-214 group was significantly higher than that in the other groups. The expression levels of the osteogenesis-related genes Alp, Bglap, and Col1α1 increased, while those of the osteoclast-related genes NFATc1, Acp5, Ctsk, Mmp9, and Clcn7 decreased. Conclusion: AAV-anti-miRNA-214 promoted osteoblast activity and inhibited osteoclast activity in the femoral condyles of osteoporotic rats, improving bone metabolism and slowing osteoporosis progression.
Collapse
Affiliation(s)
- Cheng Wang
- Peking University Third Hospital, Department of Orthopaedics, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Peng Wang
- Institute of Orthopaedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, The Fourth Medical Center of the General Hospital of People's Liberation Army, Beijing, China
| | - Feng Li
- Peking University Third Hospital, Department of Orthopaedics, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Yang Li
- Peking University Third Hospital, Department of Orthopaedics, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Minwei Zhao
- Peking University Third Hospital, Department of Orthopaedics, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Hui Feng
- Peking University Third Hospital, Department of Orthopaedics, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Haoye Meng
- Institute of Orthopaedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, The Fourth Medical Center of the General Hospital of People's Liberation Army, Beijing, China
| | - Junyang Li
- Department of Electronic Engineering, Ocean University of China, Qingdao, China
- Centre for Robotics and Automation, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Peng Shi
- Centre for Robotics and Automation, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Jiang Peng
- Institute of Orthopaedics, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, The Fourth Medical Center of the General Hospital of People's Liberation Army, Beijing, China
| | - Hua Tian
- Peking University Third Hospital, Department of Orthopaedics, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| |
Collapse
|
12
|
Oxidative Stress and Inflammation in Osteoporosis: Molecular Mechanisms Involved and the Relationship with microRNAs. Int J Mol Sci 2023; 24:ijms24043772. [PMID: 36835184 PMCID: PMC9963528 DOI: 10.3390/ijms24043772] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Osteoporosis is characterized by the alteration of bone homeostasis due to an imbalance between osteoclastic bone resorption and osteoblastic bone formation. Estrogen deficiency causes bone loss and postmenopausal osteoporosis, the pathogenesis of which also involves oxidative stress, inflammatory processes, and the dysregulation of the expression of microRNAs (miRNAs) that control gene expression at post-transcriptional levels. Oxidative stress, due to an increase in reactive oxygen species (ROS), proinflammatory mediators and altered levels of miRNAs enhance osteoclastogenesis and reduce osteoblastogenesis through mechanisms involving the activation of MAPK and transcription factors. The present review summarizes the principal molecular mechanisms involved in the role of ROS and proinflammatory cytokines on osteoporosis. Moreover, it highlights the interplay among altered miRNA levels, oxidative stress, and an inflammatory state. In fact, ROS, by activating the transcriptional factors, can affect miRNA expression, and miRNAs can regulate ROS production and inflammatory processes. Therefore, the present review should help in identifying targets for the development of new therapeutic approaches to osteoporotic treatment and improve the quality of life of patients.
Collapse
|
13
|
Lombardi G, Delvin E. Micro-RNA: A Future Approach to Personalized Diagnosis of Bone Diseases. Calcif Tissue Int 2023; 112:271-287. [PMID: 35182198 DOI: 10.1007/s00223-022-00959-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/07/2022] [Indexed: 01/25/2023]
Abstract
Osteoporosis is a highly prevalent bone disease worldwide and the most studied bone-associated pathological condition. Although its diagnosis makes use of advanced and clinically relevant imaging and biochemical tools, the information suffers from several limitations and has little or no prognostic value. In this context, circulating micro-RNAs represent a potentially attractive alternative or a useful addition to the diagnostic arsenal and offer a greater prognostic potential than the conventional approaches. These short non-coding RNA molecules act as inhibitors of gene expression by targeting messenger RNAs with different degrees of complementarity, establishing a complex multilevel network, the basis for the fine modulation of gene expression that finally regulates every single activity of a cell. Micro-RNAs may passively and/or actively be released in the circulation by source cells, and being measurable in biological fluids, their concentrations may be associated to specific pathophysiological conditions. Mounting, despite debatable, evidence supports the use of micro-RNAs as markers of bone cell metabolic activity and bone diseases. Indeed, several micro-RNAs have been associated with bone mineral density, fractures and osteoporosis. However, concerns such as absence of comparability between studies and, the lack of standardization and harmonization of the methods, limit their application. In this review, we describe the pathophysiological bases of the association between micro-RNAs and the deregulation of bone cells activity and the processes that led to the identification of potential micro-RNA-based markers associated with metabolic bone diseases.
Collapse
Affiliation(s)
- Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milano, Italy.
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Królowej Jadwigi 27/39, 61-871, Poznań, Poland.
| | - Edgard Delvin
- Ste-Justine University Hospital Research Centre & Department of Biochemistry, Université de Montreal, Montreal, QC, H3T 1C5, Canada
| |
Collapse
|
14
|
Nam SH, Lee Y, Kim CH, Kim DE, Yang HJ, Park SB. The complex of miRNA2861 and cell-penetrating, dimeric α-helical peptide accelerates the osteogenesis of mesenchymal stem cells. Biomater Res 2022; 26:90. [PMID: 36578054 PMCID: PMC9798695 DOI: 10.1186/s40824-022-00336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The restoration of the functional ability of mesenchymal stem cells (MSCs) using epigenetic modification is very promising for patients with weak osteogenesis ability. This study focused on the acceleration of osteogenesis from MSCs using microRNA (miRNA)2861 and a cell-penetrating peptide (CPP), LK. METHODS We performed MSCs penetration test of complex between the LK peptides and miRNA 2861. Three different experiments were performed to investigate the effects of miRNA 2861 on osteogenic differentiation in MSCs: 1) intensity of alizarin red staining, which reflects the status of mineralization by osteoblasts; 2) gene expression related to osteoblast differentiation; and 3) confirmation of corresponding protein translation for comparison with RNA expression levels. RESULTS We found that cLK effectively delivered miRNA 2861 into the cytoplasm of human MSCs and accelerated osteogenic differentiation from MSCs, as well as mineralization. CONCLUSION The complex of miRNA 2861 with LK may have a positive effect on the osteogenic differentiation from MSCs and mineralization. Therapies using miRNAs combined with LK may be good candidates for the augmentation of osteogenesis in patients.
Collapse
Affiliation(s)
- So Hee Nam
- grid.412059.b0000 0004 0532 5816College of Pharmacy, Dongduk Women’s University, Seoul, Korea
| | - Yan Lee
- grid.31501.360000 0004 0470 5905Department of Chemistry, Seoul National University, Seoul, Korea
| | - Chi-Heon Kim
- grid.31501.360000 0004 0470 5905Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea ,grid.412484.f0000 0001 0302 820XClinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Dong Eun Kim
- grid.31501.360000 0004 0470 5905Department of Chemistry, Seoul National University, Seoul, Korea
| | - Hee-Jin Yang
- grid.412479.dDepartment of Neurosurgery, Seoul National University Boramae Medical Center, 20 Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, 07061 Korea
| | - Sung Bae Park
- grid.31501.360000 0004 0470 5905Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea ,grid.412479.dDepartment of Neurosurgery, Seoul National University Boramae Medical Center, 20 Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, 07061 Korea
| |
Collapse
|
15
|
miR-3960 from Mesenchymal Stem Cell-Derived Extracellular Vesicles Inactivates SDC1/Wnt/β-Catenin Axis to Relieve Chondrocyte Injury in Osteoarthritis by Targeting PHLDA2. Stem Cells Int 2022; 2022:9455152. [PMID: 36061148 PMCID: PMC9438433 DOI: 10.1155/2022/9455152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/24/2021] [Accepted: 01/26/2022] [Indexed: 01/14/2023] Open
Abstract
Osteoarthritis (OA) is a serious disease of the articular cartilage characterized by excessive inflammation. Lately, mesenchymal stem cell- (MSC-) derived extracellular vesicles (EVs) have been proposed as a novel strategy for the treatment of OA. We aimed to investigate the effects of EV-encapsulated miR-3960 derived from MSCs on chondrocyte injury in OA. The cartilage tissues from OA patients were collected to experimentally determine expression patterns of miR-3960, PHLDA2, SDC1, and β-catenin. Next, luciferase assay was implemented to testify the binding affinity among miR-3960 and PHLDA2. EVs were isolated from MSCs and cocultured with IL-1β-induced OA chondrocytes. Afterwards, cellular biological behaviors and levels of extracellular matrix- (ECM-) related protein anabolic markers (collagen II and aggrecan), catabolic markers (MMP13 and ADAMTS5), and inflammatory factors (IL-6 and TNF-α) in chondrocytes were assayed upon miR-3960 and/or PHLDA2 gain- or loss-of-function. Finally, the effects of miR-3960 contained in MSC-derived EVs in OA mouse models were also explored. MSCs-EVs could reduce IL-1β-induced inflammatory response and extracellular matrix (ECM) degradation in chondrocytes. miR-3960 expression was downregulated in cartilage tissues of OA patients but enriched in MSC-derived EVs. miR-3960 could target and inhibit PHLDA2, which was positively correlated with SDC1 and Wnt/β-catenin pathway activation. miR-3960 shuttled by MSC-derived EVs protected against apoptosis and ECM degradation in chondrocytes. In vivo experiment also confirmed that miR-3960 alleviated chondrocyte injury in OA. Collectively, MSC-derived EV-loaded miR-3960 downregulated PHLDA2 to inhibit chondrocyte injury via SDC1/Wnt/β-catenin.
Collapse
|
16
|
Wang ZX, Luo ZW, Li FXZ, Cao J, Rao SS, Liu YW, Wang YY, Zhu GQ, Gong JS, Zou JT, Wang Q, Tan YJ, Zhang Y, Hu Y, Li YY, Yin H, Wang XK, He ZH, Ren L, Liu ZZ, Hu XK, Yuan LQ, Xu R, Chen CY, Xie H. Aged bone matrix-derived extracellular vesicles as a messenger for calcification paradox. Nat Commun 2022; 13:1453. [PMID: 35304471 PMCID: PMC8933454 DOI: 10.1038/s41467-022-29191-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Adipocyte differentiation of bone marrow mesenchymal stem/stromal cells (BMSCs) instead of osteoblast formation contributes to age- and menopause-related marrow adiposity and osteoporosis. Vascular calcification often occurs with osteoporosis, a contradictory association called “calcification paradox”. Here we show that extracellular vesicles derived from aged bone matrix (AB-EVs) during bone resorption favor BMSC adipogenesis rather than osteogenesis and augment calcification of vascular smooth muscle cells. Intravenous or intramedullary injection of AB-EVs promotes bone-fat imbalance and exacerbates Vitamin D3 (VD3)-induced vascular calcification in young or old mice. Alendronate (ALE), a bone resorption inhibitor, down-regulates AB-EVs release and attenuates aging- and ovariectomy-induced bone-fat imbalance. In the VD3-treated aged mice, ALE suppresses the ovariectomy-induced aggravation of vascular calcification. MiR-483-5p and miR-2861 are enriched in AB-EVs and essential for the AB-EVs-induced bone-fat imbalance and exacerbation of vascular calcification. Our study uncovers the role of AB-EVs as a messenger for calcification paradox by transferring miR-483-5p and miR-2861. This study uncovers the role of extracellular vesicles from bone matrix as a messenger in the development of osteoporosis and vascular calcification (calcification paradox) during skeletal aging and menopause by transferring miR-483-5p and miR-2861.
Collapse
Affiliation(s)
- Zhen-Xing Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong-Wei Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fu-Xing-Zi Li
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Cao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan-Shan Rao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Yi-Wei Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Yi Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guo-Qiang Zhu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiang-Shan Gong
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing-Tao Zou
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiang Wang
- Department of Laboratory Medicine, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi-Juan Tan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Zhang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yin Hu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - You-You Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Yin
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Kai Wang
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze-Hui He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Ren
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng-Zhao Liu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan, China.,Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan, China
| | - Xiong-Ke Hu
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling-Qing Yuan
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ran Xu
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan, China. .,Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan, China.
| |
Collapse
|
17
|
Brown SV, Dewitt S, Clayton A, Waddington RJ. Identifying the Efficacy of Extracellular Vesicles in Osteogenic Differentiation: An EV-Lution in Regenerative Medicine. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.849724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have long been the focus for regenerative medicine and the restoration of damaged or aging cells throughout the body. However, the efficacy of MSCs in cell-based therapy still remains unpredictable and carries with it enumerable risks. It is estimated that only 3-10% of MSCs survive transplantation, and there remains undefined and highly variable heterogeneous biological potency within these administered cell populations. The mode of action points to secreted factors produced by MSCs rather than the reliance on engraftment. Hence harnessing such secreted elements as a replacement for live-cell therapies is attractive. Extracellular vesicles (EVs) are heterogenous lipid bounded structures, secreted by cells. They comprise a complex repertoire of molecules including RNA, proteins and other factors that facilitate cell-to-cell communication. Described as protected signaling centers, EVs can modify the cellular activity of recipient cells and are emerging as a credible alternative to cell-based therapies. EV therapeutics demonstrate beneficial roles for wound healing by preventing apoptosis, moderating immune responses, and stimulating angiogenesis, in addition to promoting cell proliferation and differentiation required for tissue matrix synthesis. Significantly, EVs maintain their signaling function following transplantation, circumventing the issues related to cell-based therapies. However, EV research is still in its infancy in terms of their utility as medicinal agents, with many questions still surrounding mechanistic understanding, optimal sourcing, and isolation of EVs for regenerative medicine. This review will consider the efficacy of using cell-derived EVs compared to traditional cell-based therapies for bone repair and regeneration. We discuss the factors to consider in developing productive lines of inquiry and establishment of standardized protocols so that EVs can be harnessed from optimal secretome production, to deliver reproducible and effective therapies.
Collapse
|
18
|
Kharaghani D, Kurniwan EB, Khan MQ, Yoshiko Y. MiRNA-Nanofiber, the Next Generation of Bioactive Scaffolds for Bone Regeneration: A Review. MICROMACHINES 2021; 12:mi12121472. [PMID: 34945325 PMCID: PMC8707075 DOI: 10.3390/mi12121472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022]
Abstract
Scaffold-based bone tissue engineering has been introduced as an alternative treatment option for bone grafting due to limitations in the allograft. Not only physical conditions but also biological conditions such as gene expression significantly impact bone regeneration. Scaffolds in composition with bioactive molecules such as miRNA mimics provide a platform to enhance migration, proliferation, and differentiation of osteoprogenitor cells for bone regeneration. Among scaffolds, fibrous structures showed significant advantages in promoting osteogenic differentiation and bone regeneration via delivering bioactive molecules over the past decade. Here, we reviewed the bone and bone fracture healing considerations for the impact of miRNAs on bone regeneration. We also examined the methods used to improve miRNA mimics uptake by cells, the fabrication of fibrous scaffolds, and the effective delivery of miRNA mimics using fibrous scaffold and their processes for bone development. Finally, we offer our view on the principal challenges of miRNA mimics delivery by nanofibers for bone tissue engineering.
Collapse
Affiliation(s)
- Davood Kharaghani
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan;
- Correspondence: ; Tel.: +81-82-257-5621
| | - Eben Bashir Kurniwan
- School of Dentistry, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan;
| | - Muhammad Qamar Khan
- Nanotechnology Research Lab, Department of Textile and Clothing, National Textile University, Karachi Campus, Karachi 74900, Pakistan;
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan;
| |
Collapse
|
19
|
Lu CH, Chen YA, Ke CC, Liu RS. Mesenchymal Stem Cell-Derived Extracellular Vesicle: A Promising Alternative Therapy for Osteoporosis. Int J Mol Sci 2021; 22:12750. [PMID: 34884554 PMCID: PMC8657894 DOI: 10.3390/ijms222312750] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is the chronic metabolic bone disease caused by the disturbance of bone remodeling due to the imbalance of osteogenesis and osteoclastogenesis. A large population suffers from osteoporosis, and most of them are postmenopausal women or older people. To date, bisphosphonates are the main therapeutic agents in the treatment of osteoporosis. However, limited therapeutic effects with diverse side effects caused by bisphosphonates hindered the therapeutic applications and decreased the quality of life. Therefore, an alternative therapy for osteoporosis is still needed. Stem cells, especially mesenchymal stem cells, have been shown as a promising medication for numerous human diseases including many refractory diseases. Recently, researchers found that the extracellular vesicles derived from these stem cells possessed the similar therapeutic potential to that of parental cells. To date, a number of studies demonstrated the therapeutic applications of exogenous MSC-EVs for the treatment of osteoporosis. In this article, we reviewed the basic back ground of EVs, the cargo and therapeutic potential of MSC-EVs, and strategies of engineering of MSC-EVs for osteoporosis treatment.
Collapse
Affiliation(s)
- Cheng-Hsiu Lu
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yi-An Chen
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei 112, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chien-Chih Ke
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ren-Shyan Liu
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei 112, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Nuclear Medicine, Cheng Hsin General Hospital, Taipei 112, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- PET Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| |
Collapse
|
20
|
Zheng H, Liu J, Yu J, McAlinden A. Expression profiling of mitochondria-associated microRNAs during osteogenic differentiation of human MSCs. Bone 2021; 151:116058. [PMID: 34144232 PMCID: PMC8944210 DOI: 10.1016/j.bone.2021.116058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022]
Abstract
Small non-coding microRNAs (miRNAs) have the ability to target and bind to many mRNAs within the cytosol resulting in reduced protein expression and modulation of a number of cellular pathways and networks. In addition to the cytosol, miRNAs have been identified in other cellular compartments and organelles, including the mitochondria. While a few mitochondria-associated miRNAs (mitomiRs) are predicted to be derived from the mitochondrial genome, the majority appear to be transcribed from nuclear DNA and somehow transported into the mitochondria. These findings raise interesting questions about why miRNAs are located in the mitochondria and if they play a role in regulating processes within these organelles. Previously published work from our laboratory showed that miR-181a/b can regulate osteogenesis, in part, by enhancing mitochondrial metabolism. In other published studies, miR-181 paralogs and many other miRNAs have been identified in mitochondrial extracts derived from common cell lines and specific primary cells and tissues. Taken together, we were motivated to identify mitomiR expression profiles during in vitro osteogenesis. Specifically, we obtained RNA from purified mitochondrial extracts of human bone marrow-derived mesenchymal stem/stromal cells (MSCs) and from whole cell extracts of MSCs at day 0 or following osteogenic induction for 3, 7 and 14 days. Utilizing Affymetrix GeneChip™ miRNA 4.0 arrays, mitomiR expression signatures were determined at each time point. Based on the Affymetrix detection above background algorithm, the total number of miRNAs detected in MSC mitochondria extracts was 527 (non-induced MSCs), 627 (day 3 induced), 372 (day 7 induced) and 498 (day 14 induced). In addition, we identified significantly differentially-expressed mitomiRs at day 7 and day 14 of osteogenic induction when compared to day 0 (fold change ≥1.5; adjusted p value <0.05). In general, the most pronounced and highly significant changes in mitomiR expression during osteogenesis were observed at the day 7 time point. Interestingly, most miRNAs found to be differentially-expressed in mitochondria extracts did not show significantly altered expression in whole cell extracts at the same time points during osteoblast differentiation. This array study provides novel information on miRNAs associated with the mitochondria in MSCs during differentiation toward the osteoblast phenotype. These findings will guide future research to identify new miRNA candidates that may function in regulating mitochondrial function and/or bone formation, homeostasis or repair.
Collapse
Affiliation(s)
- Hongjun Zheng
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America.
| | - Jin Liu
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America.
| | - Jinsheng Yu
- Genome Technology Access Center, Washington University School of Medicine, St Louis, MO, United States of America.
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, United States of America; Shriners Hospital for Children - St Louis, St Louis, MO, United States of America.
| |
Collapse
|
21
|
Garcia J, Smith SS, Karki S, Drissi H, Hrdlicka HH, Youngstrom DW, Delany AM. miR-433-3p suppresses bone formation and mRNAs critical for osteoblast function in mice. J Bone Miner Res 2021; 36:1808-1822. [PMID: 34004029 DOI: 10.1002/jbmr.4339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are key posttranscriptional regulators of osteoblastic commitment and differentiation. miR-433-3p was previously shown to target Runt-related transcription factor 2 (Runx2) and to be repressed by bone morphogenetic protein (BMP) signaling. Here, we show that miR-433-3p is progressively decreased during osteoblastic differentiation of primary mouse bone marrow stromal cells in vitro, and we confirm its negative regulation of this process. Although repressors of osteoblastic differentiation often promote adipogenesis, inhibition of miR-433-3p did not affect adipocyte differentiation in vitro. Multiple pathways regulate osteogenesis. Using luciferase-3' untranslated region (UTR) reporter assays, five novel miR-433-3p targets involved in parathyroid hormone (PTH), mitogen-activated protein kinase (MAPK), Wnt, and glucocorticoid signaling pathways were validated. We show that Creb1 is a miR-433-3p target, and this transcription factor mediates key signaling downstream of PTH receptor activation. We also show that miR-433-3p targets hydroxysteroid 11-β dehydrogenase 1 (Hsd11b1), the enzyme that locally converts inactive glucocorticoids to their active form. miR-433-3p dampens glucocorticoid signaling, and targeting of Hsd11b1 could contribute to this phenomenon. Moreover, miR-433-3p targets R-spondin 3 (Rspo3), a leucine-rich repeat-containing G-protein coupled receptor (LGR) ligand that enhances Wnt signaling. Notably, Wnt canonical signaling is also blunted by miR-433-3p activity. In vivo, expression of a miR-433-3p inhibitor or tough decoy in the osteoblastic lineage increased trabecular bone volume. Mice expressing the miR-433-3p tough decoy displayed increased bone formation without alterations in osteoblast or osteoclast numbers or surface, indicating that miR-433-3p decreases osteoblast activity. Overall, we showed that miR-433-3p is a negative regulator of bone formation in vivo, targeting key bone-anabolic pathways including those involved in PTH signaling, Wnt, and endogenous glucocorticoids. Local delivery of miR-433-3p inhibitor could present a strategy for the management of bone loss disorders and bone defect repair. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- John Garcia
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Spenser S Smith
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Sangita Karki
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University and Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Henry H Hrdlicka
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| | - Daniel W Youngstrom
- Department of Orthopedic Surgery, UConn Health, Farmington, Connecticut, USA
| | - Anne M Delany
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
22
|
Ponzetti M, Rucci N. Osteoblast Differentiation and Signaling: Established Concepts and Emerging Topics. Int J Mol Sci 2021; 22:ijms22136651. [PMID: 34206294 PMCID: PMC8268587 DOI: 10.3390/ijms22136651] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoblasts, the cells that build up our skeleton, are remarkably versatile and important cells that need tight regulation in all the phases of their differentiation to guarantee proper skeletal development and homeostasis. Although we know many of the key pathways involved in osteoblast differentiation and signaling, it is becoming clearer and clearer that this is just the tip of the iceberg, and we are constantly discovering novel concepts in osteoblast physiology. In this review, we discuss well-established pathways of osteoblastic differentiation, i.e., the classical ones committing mesenchymal stromal cells to osteoblast, and then osteocytes as well as recently emerged players. In particular, we discuss micro (mi)RNAs, long non-coding (lnc)RNAs, circular (circ)RNAs, and extracellular vesicles, focusing on the mechanisms through which osteoblasts are regulated by these factors, and conversely, how they use extracellular vesicles to communicate with the surrounding microenvironment.
Collapse
|
23
|
Damiati LA, El-Messeiry S. An Overview of RNA-Based Scaffolds for Osteogenesis. Front Mol Biosci 2021; 8:682581. [PMID: 34169095 PMCID: PMC8217814 DOI: 10.3389/fmolb.2021.682581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering provides new hope for the combination of cells, scaffolds, and bifactors for bone osteogenesis. This is achieved by mimicking the bone's natural behavior in recruiting the cell's molecular machinery for our use. Many researchers have focused on developing an ideal scaffold with specific features, such as good cellular adhesion, cell proliferation, differentiation, host integration, and load bearing. Various types of coating materials (organic and non-organic) have been used to enhance bone osteogenesis. In the last few years, RNA-mediated gene therapy has captured attention as a new tool for bone regeneration. In this review, we discuss the use of RNA molecules in coating and delivery, including messenger RNA (mRNA), RNA interference (RNAi), and long non-coding RNA (lncRNA) on different types of scaffolds (such as polymers, ceramics, and metals) in osteogenesis research. In addition, the effect of using gene-editing tools-particularly CRISPR systems-to guide RNA scaffolds in bone regeneration is also discussed. Given existing knowledge about various RNAs coating/expression may help to understand the process of bone formation on the scaffolds during osseointegration.
Collapse
Affiliation(s)
- Laila A. Damiati
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Sarah El-Messeiry
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
24
|
Regulation and Role of Transcription Factors in Osteogenesis. Int J Mol Sci 2021; 22:ijms22115445. [PMID: 34064134 PMCID: PMC8196788 DOI: 10.3390/ijms22115445] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Bone is a dynamic tissue constantly responding to environmental changes such as nutritional and mechanical stress. Bone homeostasis in adult life is maintained through bone remodeling, a controlled and balanced process between bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoblasts secrete matrix, with some being buried within the newly formed bone, and differentiate to osteocytes. During embryogenesis, bones are formed through intramembraneous or endochondral ossification. The former involves a direct differentiation of mesenchymal progenitor to osteoblasts, and the latter is through a cartilage template that is subsequently converted to bone. Advances in lineage tracing, cell sorting, and single-cell transcriptome studies have enabled new discoveries of gene regulation, and new populations of skeletal stem cells in multiple niches, including the cartilage growth plate, chondro-osseous junction, bone, and bone marrow, in embryonic development and postnatal life. Osteoblast differentiation is regulated by a master transcription factor RUNX2 and other factors such as OSX/SP7 and ATF4. Developmental and environmental cues affect the transcriptional activities of osteoblasts from lineage commitment to differentiation at multiple levels, fine-tuned with the involvement of co-factors, microRNAs, epigenetics, systemic factors, circadian rhythm, and the microenvironments. In this review, we will discuss these topics in relation to transcriptional controls in osteogenesis.
Collapse
|
25
|
Kupsco A, Prada D, Valvi D, Hu L, Petersen MS, Coull B, Grandjean P, Weihe P, Baccarelli AA. Human milk extracellular vesicle miRNA expression and associations with maternal characteristics in a population-based cohort from the Faroe Islands. Sci Rep 2021; 11:5840. [PMID: 33712635 PMCID: PMC7970999 DOI: 10.1038/s41598-021-84809-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Human milk plays a critical role in infant development and health, particularly in cognitive, immune, and cardiometabolic functions. Milk contains extracellular vesicles (EVs) that can transport biologically relevant cargo from mother to infant, including microRNAs (miRNAs). We aimed to characterize milk EV-miRNA profiles in a human population cohort, assess potential pathways and ontology, and investigate associations with maternal characteristics. We conducted the first study to describe the EV miRNA profile of human milk in 364 mothers from a population-based mother-infant cohort in the Faroe Islands using small RNA sequencing. We detected 1523 miRNAs with ≥ one read in 70% of samples. Using hierarchical clustering, we determined five EV-miRNA clusters, the top three consisting of 15, 27 and 67 miRNAs. Correlation coefficients indicated that the expression of many miRNAs within the top three clusters was highly correlated. Top-cluster human milk EV-miRNAs were involved in pathways enriched for the endocrine system, cellular community, neurodevelopment, and cancers. miRNA expression was associated with time to milk collection post-delivery, maternal body mass index, and maternal smoking, but not maternal parity. Future studies investigating determinants of human EV-miRNAs and associated health outcomes are needed to elucidate the role of human milk EV-miRNAs in health and disease.
Collapse
Affiliation(s)
- Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA.
| | - Diddier Prada
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA
- Unit for Biomedical Research in Cancer, Instituto Nacional de Cancerologia, Universidad Nacional Autonoma de Mexico, 14080, Mexico City, Mexico
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lisa Hu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA
| | - Maria Skaalum Petersen
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands
- Center of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Brent Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Philippe Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Medicine, University of Southern Denmark, Odense C, Denmark
| | - Pal Weihe
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands
- Center of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA
| |
Collapse
|
26
|
Xu F, Li W, Yang X, Na L, Chen L, Liu G. The Roles of Epigenetics Regulation in Bone Metabolism and Osteoporosis. Front Cell Dev Biol 2021; 8:619301. [PMID: 33569383 PMCID: PMC7868402 DOI: 10.3389/fcell.2020.619301] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is a metabolic disease characterized by decreased bone mineral density and the destruction of bone microstructure, which can lead to increased bone fragility and risk of fracture. In recent years, with the deepening of the research on the pathological mechanism of osteoporosis, the research on epigenetics has made significant progress. Epigenetics refers to changes in gene expression levels that are not caused by changes in gene sequences, mainly including DNA methylation, histone modification, and non-coding RNAs (lncRNA, microRNA, and circRNA). Epigenetics play mainly a post-transcriptional regulatory role and have important functions in the biological signal regulatory network. Studies have shown that epigenetic mechanisms are closely related to osteogenic differentiation, osteogenesis, bone remodeling and other bone metabolism-related processes. Abnormal epigenetic regulation can lead to a series of bone metabolism-related diseases, such as osteoporosis. Considering the important role of epigenetic mechanisms in the regulation of bone metabolism, we mainly review the research progress on epigenetic mechanisms (DNA methylation, histone modification, and non-coding RNAs) in the osteogenic differentiation and the pathogenesis of osteoporosis to provide a new direction for the treatment of bone metabolism-related diseases.
Collapse
Affiliation(s)
- Fei Xu
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Collaborative Innovation Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wenhui Li
- Collaborative Innovation Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
- College of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiao Yang
- Traditional Chinese Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lixin Na
- Collaborative Innovation Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Linjun Chen
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Guobin Liu
- Traditional Chinese Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
27
|
Yu M, Lei B. MicroRNA-5106-based nanodelivery to enhance osteogenic differentiation and bone regeneration of bone mesenchymal stem cells through targeting of Gsk-3α. MATERIALS CHEMISTRY FRONTIERS 2021; 5:8138-8150. [DOI: 10.1039/d1qm00367d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
This work reports the intracellular delivery of miRNA-5106 into stem cells. The intracellular delivery could efficiently enhance the osteogenic differentiation andin vivobone regeneration through the targeting the Gsk-3α signaling pathway.
Collapse
Affiliation(s)
- Meng Yu
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Bo Lei
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710000, China
| |
Collapse
|
28
|
Bu W, Xu X, Wang Z, Jin N, Liu L, Liu J, Zhu S, Zhang K, Jelinek R, Zhou D, Sun H, Yang B. Ascorbic Acid-PEI Carbon Dots with Osteogenic Effects as miR-2861 Carriers to Effectively Enhance Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50287-50302. [PMID: 33121247 DOI: 10.1021/acsami.0c15425] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nucleic acid transfer has shown significant potential in the treatment of bone damage because of its long lasting local effect and lower cost. Nonviral vectors, such as nanomaterials, with higher biocompatibility are increasedly applied in the study of bone defect repair. Carbon dots with various reactive groups on the surface not only provide a unique surface to carry therapeutic genes, but also some carbon dots have been reported to promote osteogenic differentiation. The bone regeneration effect of carbon dots in vivo, however, is rarely investigated. MiR-2861 has revealed osteogenic differentiation effects. In the current study, we created ascorbic acid-PEI carbon dots (CD), which were able to carry miR-2861, by the microwave-assisted pyrolysis method. Results demonstrated that CD had excellent fluorescence stability leading to good fluorescence imaging in vitro and in vivo. CD was efficiently internalized into bone marrow stromal cells (BMSCs) through the clathrin-mediated endocytosis pathway and distributed in the mitochondria, endoplasmic reticulum, lysosome, and nucleus. Results from alkaline phosphatase staining, alizarin red staining, and reverse transcription real-time PCR (RT-QPCR) showed that our CD indeed had osteogenic effects in vitro. Flow cytometry data indicated that CD could efficiently deliver miR-2861 into BMSCs in vitro, and CD carrying miR-2861 (CD@miR) had the strongest osteogenic effects. Analyses of hematology, serum biochemistry, and histology showed that CD and CD@miR did not have cytotoxicity and had higher biocompatibility in vivo. Most interestingly, CD and miR-2861 in the CD@miR could act synergistically to promote osteogenic differentiation in vitro and new bone regeneration in vivo remarkably. Our results clearly indicate that the osteogenic CD delivering osteogenic therapeutic gene, miR-2861, can obtain much stronger bone regeneration ability, suggesting that our CD has great potential in future clinical application.
Collapse
Affiliation(s)
- Wenhuan Bu
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology, China Medical University, Shenyang 110001, China
- Department of Dental Materials, School of Stomatology, China Medical University, Shenyang 110001, China
- Department of Oral Pathology, School of Stomatology, China Medical University, Shenyang 110001, China
- Department of Center Laboratory, School of Stomatology, China Medical University, Shenyang 110001, China
| | - Xiaowei Xu
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Zilin Wang
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Nianqiang Jin
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology, China Medical University, Shenyang 110001, China
| | - Lili Liu
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Jie Liu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Wuhan University, Wuhan 430000, China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Kai Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Raz Jelinek
- Department of Chemistry, Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Ding Zhou
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Hongchen Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology, China Medical University, Shenyang 110001, China
- Department of Oral Pathology, School of Stomatology, China Medical University, Shenyang 110001, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
29
|
Chen N, Wu D, Li H, Liu Y, Yang H. MiR-17-3p inhibits osteoblast differentiation by downregulating Sox6 expression. FEBS Open Bio 2020; 10:2499-2506. [PMID: 32946669 PMCID: PMC7609786 DOI: 10.1002/2211-5463.12979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/15/2020] [Accepted: 09/10/2020] [Indexed: 11/18/2022] Open
Abstract
Osteoporosis and osteoarthritis are orthopedic disorders that affect millions of elderly people worldwide; stimulation of bone formation is a potential therapeutic strategy for the treatment of these conditions. As the only bone‐forming cells, osteoblasts play a key role in bone reconstruction. The microRNA miR‐17‐3p is downregulated during osteogenic differentiation of human bone marrow mesenchymal stem cells, but its precise role in this process is unknown. Here, we investigated the role of miR‐17‐3p in osteoblast differentiation. An in vitro model of osteogenesis was established by treating MC3T3‐E1 murine preosteoblast cells with bone morphogenetic protein 2 (BMP2). The expression of miR‐17‐3p in BMP2‐induced MC3T3‐E1 cells was detected by reverse transcription‐quantitative PCR, and its effects on cells transfected with miR‐17‐3p mimic or inhibitor were evaluated by Alizarin Red staining, alkaline phosphatase (ALP) activity assay, and by detection of osteoblast markers including the ALP, collagen type I α1 chain, and osteopontin genes. Bioinformatics analysis was carried out to identify putative target genes of miR‐17‐3p, and the luciferase reporter assay was used for functional validation. Rescue experiments were performed to determine whether SRY‐box transcription factor 6 (Sox6) plays a role in the regulation of osteoblast differentiation by miR‐17‐3p. We report that miR‐17‐3p was downregulated upon BMP2‐induced osteoblast differentiation in MC3T3‐E1 cells, and this was accompanied by decreased differentiation and mineralization, ALP activity, and expression of osteogenesis‐related genes. Sox6 was confirmed to be a target gene of miR‐17‐3p in osteoblasts, and the inhibitory effect of miR‐17‐3p on osteoblast differentiation was observed to occur via Sox6. These results suggest the existence of a novel mechanism underlying miRNA‐mediated regulation of osteogenesis, which has potential implications for the treatment of orthopedic disorders.
Collapse
Affiliation(s)
- Nan Chen
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Di Wu
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hua Li
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi Liu
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hao Yang
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
30
|
Roy E, Byrareddy SN, Reid SP. Role of MicroRNAs in Bone Pathology during Chikungunya Virus Infection. Viruses 2020; 12:E1207. [PMID: 33114216 PMCID: PMC7690852 DOI: 10.3390/v12111207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/10/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023] Open
Abstract
Chikungunya virus (CHIKV) is an alphavirus, transmitted by mosquitoes, which causes Chikungunya fever with symptoms of fever, rash, headache, and joint pain. In about 30%-40% of cases, the infection leads to polyarthritis and polyarthralgia. Presently, there are no treatment strategies or vaccine for Chikungunya fever. Moreover, the mechanism of CHIKV induced bone pathology is not fully understood. The modulation of host machinery is known to be essential in establishing viral pathogenesis. MicroRNAs (miRNAs) are small non-coding RNAs that regulate major cellular functions by modulating gene expression. Fascinatingly, recent reports have indicated the role of miRNAs in regulating bone homeostasis and altered expression of miRNAs in bone-related pathological diseases. In this review, we summarize the altered expression of miRNAs during CHIKV pathogenesis and the possible role of miRNAs during bone homeostasis in the context of CHIKV infection. A holistic understanding of the different signaling pathways targeted by miRNAs during bone remodeling and during CHIKV-induced bone pathology may lead to identification of useful biomarkers or therapeutics.
Collapse
Affiliation(s)
- Enakshi Roy
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA;
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - St Patrick Reid
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA;
| |
Collapse
|
31
|
Wang SS, Wang C, Chen H. MicroRNAs are critical in regulating smooth muscle cell mineralization and apoptosis during vascular calcification. J Cell Mol Med 2020; 24:13564-13572. [PMID: 33089928 PMCID: PMC7754013 DOI: 10.1111/jcmm.16005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 02/01/2023] Open
Abstract
Vascular calcification refers to the pathological deposition of calcium and phosphate minerals into the vasculature. It is prevalent in atherosclerosis, ageing, type 2 diabetes mellitus and chronic kidney disease, thus, increasing morbidity and mortality from these conditions. Vascular calcification shares similar mechanisms with bone mineralization, with smooth muscle cells playing a critical role in both processes. In the last decade, a variety of microRNAs have been identified as key regulators for the differentiation, phenotypic switch, proliferation, apoptosis, cytokine production and matrix deposition in vascular smooth muscle cells during vascular calcification. Therefore, this review mainly discusses the roles of microRNAs in the pathophysiological mechanisms of vascular calcification in smooth muscle cells and describes several interventions against vascular calcification by regulating microRNAs. As the exact mechanisms of calcification remain not fully elucidated, having a better understanding of microRNA involvement in vascular calcification may give impetus to development of novel therapeutics for the control and treatment of vascular calcification.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Department of Cardiology, Zhejiang Provincial Key Lab of Cardiovascular Disease Diagnosis and Treatment, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Wang
- Department of Cardiology, Zhejiang Provincial Key Lab of Cardiovascular Disease Diagnosis and Treatment, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Han Chen
- Department of Cardiology, Zhejiang Provincial Key Lab of Cardiovascular Disease Diagnosis and Treatment, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Ryu J, Ahn Y, Kook H, Kim YK. The roles of non-coding RNAs in vascular calcification and opportunities as therapeutic targets. Pharmacol Ther 2020; 218:107675. [PMID: 32910935 DOI: 10.1016/j.pharmthera.2020.107675] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
Vascular calcification (VC) is characterized by an accumulation of calcium phosphate crystals inside the vessel wall. VC is often associated with diabetes, chronic kidney disease (CKD), atherosclerosis, and cardiovascular disease (CVD). Even though the number of patients with VC remains prevalent, there are still no approved therapies for the treatment of VC. Since the pathogenesis of VC is diverse and involves multiple factors and mechanisms, it is critical to reveal the novel mechanisms involved in VC. Although protein-coding RNAs involved in VC have been extensively studied, the roles of non-coding RNAs (ncRNAs) are not yet fully understood. The field of ncRNAs has recently received attention, and accumulating evidence from studies in VC suggests that ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play an important role in the regulation of VC. NcRNAs can modulate VC by acting as promoters or inhibitors and may be useful in the clinical diagnosis and treatment of VC. In this article, we review and discuss ncRNAs that regulate VC and present the therapeutic implications of these ncRNAs.
Collapse
Affiliation(s)
- Juhee Ryu
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Youngkeun Ahn
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hyun Kook
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.
| | - Young-Kook Kim
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.
| |
Collapse
|
33
|
Pereira LJ, Macari S, Coimbra CC, Pereira TDSF, Barrioni BR, Gomez RS, Silva TA, Paiva SM. Aerobic and resistance training improve alveolar bone quality and interferes with bone-remodeling during orthodontic tooth movement in mice. Bone 2020; 138:115496. [PMID: 32585320 DOI: 10.1016/j.bone.2020.115496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/27/2022]
Abstract
The direct effects of physical activity on long bones are already recognized. However, little information is available regarding distant osseous sites, such as maxillary bone. We evaluated the influence of physical training on alveolar bone quality, with and without mechanically-induced load during orthodontic tooth movement in mice. Forty-two C57BL/6 mice were divided into sedentary, resistance and aerobic training groups. Training period lasted for eight weeks and mechanical loads (orthodontic tooth movement - OTM) were applied during the last 14 days of training. Both types of training enhanced the quality of maxillary bone, increasing bone mineral density (BMD), trabecular bone volume (BV) and bone volume/total volume ratio (BV/TV). OTM significantly reduced in trained groups. Consistently, the number of osteoblasts increased whereas the number of osteoclasts decreased on the OTM side in trained groups in comparison to the sedentary group. IGF-1, RUNX2 and OPG genes expression were also increased. The RANKL/OPG ratio and IL-6 expression were reduced in the maxillary bone. Similar results were verified in the femoral bone. In line with these findings, physical training resulted in a decrease of osteoclast differentiation from femoral bone marrow; as well as the force required to fracture the tibia of trained animals increased. Physical training also caused EDL muscle hypertrophy and increased expression of IGF-1 and IGF-1/Myostatin ratio in the gastrocnemius muscle, whereas FNDC5 gene expression was similar among groups in femur, but decreased in alveolar bone submitted to OTM. In conclusion, physical training increased bone quality, not only on long bones, but also in a distant site such as the maxilla. Differences were more evident in the course of maxillary mechanical loading. Mechanisms involve systemic and local effects on bone cells and target molecules as RANKL, OPG, IL-6 and IGF-1.
Collapse
Affiliation(s)
- Luciano J Pereira
- Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil; Universidade Federal de Lavras - UFLA, Lavras, Brazil.
| | - Soraia Macari
- Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | | | | | | | | | - Tarcília A Silva
- Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | | |
Collapse
|
34
|
Du M, Wu B, Fan S, Liu Y, Ma X, Fu X. SNHG14 induces osteogenic differentiation of human stromal (mesenchymal) stem cells in vitro by downregulating miR-2861. BMC Musculoskelet Disord 2020; 21:525. [PMID: 32770994 PMCID: PMC7415173 DOI: 10.1186/s12891-020-03506-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/13/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The differentiation of human stromal (mesenchymal) stem cells (hMSCs) is a critical procedure for the development of osteoblast. SNHG14 is a newly discovered lncRNA that has been barely studied. Our preliminary experiments showed that SNHG14 may be dysregulated in the differentiation of hMSCs. In this study, we focused on elucidating the relationships among SNGH14, miR-2861, and osteoblastic differentiation of hMSCs. METHOD To investigate the roles of SNHG14 and miR2861 in hMSCs differentiation, qRT-PCR, luciferase activity, cell transfections, the detections of ALP activity, and Alizarin Red staining were performed. RESULT We found that the expression of SNHG14 was enhanced, while the expression of miR-2861 was suppressed in serum and hMSCs from patients with osteoporosis. SNHG14 could target miR-2861, and shSNHG14 suppressed osteoblast differentiation of hMSC. MiR-2861 suppressed osteoblast differentiation of hMSC. In addition, the effects of SNHG14 on osteoblast differentiation of hMSC were attenuated by miR-2861. CONCLUSION In conclusion, our experimental data showed that the induction effects of SNHG14 on osteoblast differentiation of hMSC were attenuated by miR-2861. SNHG14 could induce osteogenic differentiation of hMSC in vitro by targeting miR-2861.
Collapse
Affiliation(s)
- Mingchang Du
- The Orthopedic Hospital of Shenyang, No. 115 Dong bei da ma lu road, Da dong district of Shenyang, Shenyang City, Liaoning Province, 110000, PR China
| | - Bo Wu
- The Orthopedic Hospital of Shenyang, No. 115 Dong bei da ma lu road, Da dong district of Shenyang, Shenyang City, Liaoning Province, 110000, PR China
| | - Shiwen Fan
- The Orthopedic Hospital of Shenyang, No. 115 Dong bei da ma lu road, Da dong district of Shenyang, Shenyang City, Liaoning Province, 110000, PR China
| | - Ye Liu
- The Orthopedic Hospital of Shenyang, No. 115 Dong bei da ma lu road, Da dong district of Shenyang, Shenyang City, Liaoning Province, 110000, PR China.
| | - Xu Ma
- The Orthopedic Hospital of Shenyang, No. 115 Dong bei da ma lu road, Da dong district of Shenyang, Shenyang City, Liaoning Province, 110000, PR China
| | - Xun Fu
- The Orthopedic Hospital of Shenyang, No. 115 Dong bei da ma lu road, Da dong district of Shenyang, Shenyang City, Liaoning Province, 110000, PR China
| |
Collapse
|
35
|
Yavropoulou MP, Anastasilakis AD, Makras P, Papatheodorou A, Rauner M, Hofbauer LC, Tsourdi E. Serum Profile of microRNAs Linked to Bone Metabolism During Sequential Treatment for Postmenopausal Osteoporosis. J Clin Endocrinol Metab 2020; 105:5855767. [PMID: 32521543 DOI: 10.1210/clinem/dgaa368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/06/2020] [Indexed: 12/15/2022]
Abstract
CONTEXT Serum expression of microRNAs (miRs) related to bone metabolism is affected by antiosteoporotic treatment. OBJECTIVE To investigate the effect of sequential treatments on miR expression in postmenopausal women with osteoporosis. DESIGN Observational, open label, nonrandomized clinical trial. SETTING A single-center outpatient clinic. PATIENTS AND INTERVENTIONS Denosumab (Dmab) was administered for 12 months in 37 women who were treatment-naïve (naïve group) (n = 11) or previously treated with teriparatide (TPTD group) (n = 20) or zoledronate (ZOL group) (n = 6). MAIN OUTCOME MEASURES Relative serum expression of miRs linked to bone metabolism at 3 and 6 months of Dmab treatment. RESULTS Baseline relative expression of miR-21a-5p, miR-23a-3p, miR-29a-3p, and miR-338-3p was higher in the TPTD group, while the relative expression of miR-21a-5p was lower in the ZOL group compared to the naïve group. Dmab decreased the relative expression of miR-21a-5p at 3 months (fold change [FC] 0.43, P < 0.001) and 6 months (FC 0.34, P < 0.001), and miR-338-3p and miR-2861 at 6 months (FC 0.31, P = 0.041; FC 0.52, P = 0.016, respectively) in the whole cohort. In subgroup analyses, Dmab decreased the relative expression of miR-21a-5p, miR-29a-3p, miR-338-3p, and miR-2861 at 3 months (FC 0.13, P < 0.001; FC 0.68, P = 0.044; FC 0.46, P = 0.012; and FC 0.16, P < 0.001, respectively) and 6 months (FC 0.1, P < 0.001; FC 0.52, P < 0.001; FC 0.04, P = 0.006; and FC 0.2, P < 0.001, respectively) only within the TPTD group. CONCLUSIONS TPTD treatment potentially affects the expression of the pro-osteoclastogenic miR-21a-5p and miRs related to the expression of osteoblastic genes RUNX2 (miR23a-3p), COL1 (miR-29a-3p), and HDAC5 (miR-2861), while sequential treatment with Dmab acts in the opposite direction.
Collapse
Affiliation(s)
- Maria P Yavropoulou
- Endocrinology Unit, 1st Department of Propaedeutic Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Department of Medical Research, 251 Air Force General Hospital, Athens, Greece
| | | | - Polyzois Makras
- Department of Medical Research, 251 Air Force General Hospital, Athens, Greece
| | | | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden Medical Centre, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden Medical Centre, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden Medical Centre, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden Medical Centre, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Elena Tsourdi
- Department of Medicine III, Technische Universität Dresden Medical Centre, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden Medical Centre, Dresden, Germany
| |
Collapse
|
36
|
Kanakis I, Alameddine M, Scalabrin M, van 't Hof RJ, Liloglou T, Ozanne SE, Goljanek-Whysall K, Vasilaki A. Low protein intake during reproduction compromises the recovery of lactation-induced bone loss in female mouse dams without affecting skeletal muscles. FASEB J 2020; 34:11844-11859. [PMID: 32652768 DOI: 10.1096/fj.202001131r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Lactation-induced bone loss occurs due to high calcium requirements for fetal growth but skeletal recovery is normally achieved promptly postweaning. Dietary protein is vital for fetus and mother but the effects of protein undernutrition on the maternal skeleton and skeletal muscles are largely unknown. We used mouse dams fed with normal (N, 20%) or low (L, 8%) protein diet during gestation and lactation and maintained on the same diets (NN, LL) or switched from low to normal (LN) during a 28 d skeletal restoration period post lactation. Skeletal muscle morphology and neuromuscular junction integrity was not different between any of the groups. However, dams fed the low protein diet showed extensive bone loss by the end of lactation, followed by full skeletal recovery in NN dams, partial recovery in LN and poor bone recovery in LL dams. Primary osteoblasts from low protein diet fed mice showed decreased in vitro bone formation and decreased osteogenic marker gene expression; promoter methylation analysis by pyrosequencing showed no differences in Bmpr1a, Ptch1, Sirt1, Osx, and Igf1r osteoregulators, while miR-26a, -34a, and -125b expression was found altered in low protein fed mice. Therefore, normal protein diet is indispensable for maternal musculoskeletal health during the reproductive period.
Collapse
Affiliation(s)
- Ioannis Kanakis
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Moussira Alameddine
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Mattia Scalabrin
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Rob J van 't Hof
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| | - Triantafillos Liloglou
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, UK
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Katarzyna Goljanek-Whysall
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK.,Department of Physiology, School of Medicine, NUI Galway, Galway, Ireland
| | - Aphrodite Vasilaki
- Institute of Life Course and Medical Sciences, The MRC - Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, UK
| |
Collapse
|
37
|
Huang CC, Kang M, Lu Y, Shirazi S, Diaz JI, Cooper LF, Gajendrareddy P, Ravindran S. Functionally engineered extracellular vesicles improve bone regeneration. Acta Biomater 2020; 109:182-194. [PMID: 32305445 DOI: 10.1016/j.actbio.2020.04.017] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 02/08/2023]
Abstract
Lineage specific differentiation of host mesenchymal stem cells (MSCs) is a necessary step for bone repair/regeneration. Clinically, growth factors such as bone morphogenetic protein 2 (BMP2) are used to enhance/hasten this process to heal critical sized defects. However, the clinical application of such growth factors is fraught with dosage challenges as well as immunological and ectopic complications. The identification of extracellular vesicles (EVs) as active components of the MSC secretome suggest alternative approaches to enhancing bone regeneration. Based on our earlier studies on the properties of EVs from lineage specified MSCs, this study sought to engineer EVs to enhance osteogenic differentiation. To generate MSC EVs with enhanced osteoinductive abilities, genetically modified human bone marrow derived MSCs (HMSCs) were generated by constitutively expressing BMP2. We hypothesized that these cells would generate functionally engineered EVs (FEEs) with enhanced osteoinductive properties. Our results show that these FEEs maintained the general physical and biochemical characteristics of naïve HMSC EVs in the form of size distribution, EV marker expression and endocytic properties but show increased bone regenerative potential compared to MSC EVs in a rat calvarial defect model in vivo. Mechanistic studies revealed that although BMP2 was constitutively expressed in the parental cells, the corresponding EVs (FEEs) do not contain BMP2 protein as an EV constituent. Further investigations revealed that the FEEs potentiate the BMP2 signaling cascade possibly due to an altered miRNA composition. Collectively, these studies indicate that EVs' functionality may be engineered by genetic modification of the parental MSCs to induce osteoinduction and bone regeneration. SIGNIFICANCE STATEMENT: With mounting evidence for the potential of MSC EVs in treatment of diseases and regeneration of tissues, it is imperative to evaluate if they can be modified for application specificity. The results presented here indicate the possibility for generating Functionally Engineered EVs (FEEs) from MSC sources. As a proof of concept approach, we have shown that EVs derived from genetically modified MSCs (BMP2 overexpression) can be effective as biomimetic substitutes for growth factors for enhanced tissue-specific regeneration (bone regeneration) in vivo. Mechanistic studies highlight the role of EV miRNAs in inducing pathway-specific changes. We believe that this study will be useful to researchers evaluating EVs for regenerative medicine applications.
Collapse
|
38
|
Diomede F, Marconi GD, Fonticoli L, Pizzicanella J, Merciaro I, Bramanti P, Mazzon E, Trubiani O. Functional Relationship between Osteogenesis and Angiogenesis in Tissue Regeneration. Int J Mol Sci 2020; 21:E3242. [PMID: 32375269 PMCID: PMC7247346 DOI: 10.3390/ijms21093242] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022] Open
Abstract
Bone tissue renewal can be outlined as a complicated mechanism centered on the interaction between osteogenic and angiogenic events capable of leading to bone formation and tissue renovation. The achievement or debacle of bone regeneration is focused on the primary role of vascularization occurrence; in particular, the turning point is the opportunity to vascularize the bulk scaffolds, in order to deliver enough nutrients, growth factors, minerals and oxygen for tissue restoration. The optimal scaffolds should ensure the development of vascular networks to warrant a positive suitable microenvironment for tissue engineering and renewal. Vascular Endothelial Growth Factor (VEGF), a main player in angiogenesis, is capable of provoking the migration and proliferation of endothelial cells and indirectly stimulating osteogenesis, through the regulation of the osteogenic growth factors released and through paracrine signaling. For this reason, we concentrated our attention on two principal groups involved in the renewal of bone tissue defects: the cells and the scaffold that should guarantee an effective vascularization process. The application of Mesenchymal Stem Cells (MSCs), an excellent cell source for tissue restoration, evidences a crucial role in tissue engineering and bone development strategies. This review aims to provide an overview of the intimate connection between blood vessels and bone formation that appear during bone regeneration when MSCs, their secretome-Extracellular Vesicles (EVs) and microRNAs (miRNAs) -and bone substitutes are used in combination.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (G.D.M.); (L.F.); (I.M.); (O.T.)
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (G.D.M.); (L.F.); (I.M.); (O.T.)
| | - Luigia Fonticoli
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (G.D.M.); (L.F.); (I.M.); (O.T.)
| | - Jacopo Pizzicanella
- ASL02 Lanciano-Vasto-Chieti, “Ss. Annunziata” Hospital, 66100 Chieti, Italy;
| | - Ilaria Merciaro
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (G.D.M.); (L.F.); (I.M.); (O.T.)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy;
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (G.D.M.); (L.F.); (I.M.); (O.T.)
| |
Collapse
|
39
|
In Silico Analysis Identifies Differently Expressed lncRNAs as Novel Biomarkers for the Prognosis of Thyroid Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:3651051. [PMID: 32377223 PMCID: PMC7195652 DOI: 10.1155/2020/3651051] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Background Thyroid cancer (TC) is one of the most common type of endocrine tumors. Long noncoding RNAs had been demonstrated to play key roles in TC. Material and Methods. The lncRNA expression data were downloaded from Co-lncRNA database. The raw data was normalized using the limma package in R software version 3.3.0. The differentially expressed mRNA and lncRNAs were identified by the linear models for the microarray analysis (Limma) method. The DEGs were obtained with thresholds of ∣logFC∣ > 1.5 and P < 0.001. The hierarchical cluster analysis of differentially expressed mRNAs and lncRNAs was performed using CLUSTER 3.0, and the hierarchical clustering heat map was visualized by Tree View. Results In the present study, we identified 6 upregulated and 85 downregulated lncRNAs in TC samples. Moreover, we for the first time identified 16 downregulated lncRNAs was correlated to longer disease-free survival time in patients with TC, including ATP1A1-AS1, CATIP-AS1, FAM13A-AS1, LINC00641, LINC00924, MIR22HG, NDUFA6-AS1, RP11-175K6.1, RP11-727A23.5, RP11-774O3.3, RP13-895J2.2, SDCBP2-AS1, SLC26A4-AS1, SNHG15, SRP14-AS1, and ZNF674-AS1. Conclusions Bioinformatics analysis revealed these lncRNAs were involved in regulating the RNA metabolic process, cell migration, organelle assembly, tRNA modification, and hormone levels. This study will provide useful information to explore the potential candidate biomarkers for diagnosis, prognosis, and drug targets for TC.
Collapse
|
40
|
Jan MI, Ali T, Ishtiaq A, Mushtaq I, Murtaza I. Prospective Advances in Non-coding RNAs Investigation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:385-426. [PMID: 32285426 DOI: 10.1007/978-981-15-1671-9_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Non-coding RNAs (ncRNAs) play significant roles in numerous physiological cellular processes and molecular alterations during pathological conditions including heart diseases, cancer, immunological disorders and neurological diseases. This chapter is focusing on the basis of ncRNA relation with their functions and prospective advances in non-coding RNAs particularly miRNAs investigation in the cardiovascular disease management.The field of ncRNAs therapeutics is a very fascinating and challenging too. Scientists have opportunity to develop more advanced therapeutics as well as diagnostic approaches for cardiovascular conditions. Advanced studies are critically needed to deepen the understanding of the molecular biology, mechanism and modulation of ncRNAs and chemical formulations for managing CVDs.
Collapse
Affiliation(s)
- Muhammad Ishtiaq Jan
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tahir Ali
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Ishtiaq
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iram Mushtaq
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iram Murtaza
- Department of Biochemistry, Signal Transduction Laboratory, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
41
|
Nickolas TL, Chen N, McMahon DJ, Dempster D, Zhou H, Dominguez J, Aponte MA, Sung J, Evenepoel P, D'Haese PC, Mac-Way F, Moyses R, Moe S. A microRNA Approach to Discriminate Cortical Low Bone Turnover in Renal Osteodystrophy. JBMR Plus 2020; 4:e10353. [PMID: 32490328 PMCID: PMC7254487 DOI: 10.1002/jbm4.10353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/31/2020] [Accepted: 02/18/2020] [Indexed: 01/03/2023] Open
Abstract
A main obstacle to diagnose and manage renal osteodystrophy (ROD) is the identification of intracortical bone turnover type (low, normal, high). The gold standard, tetracycline‐labeled transiliac crest bone biopsy, is impractical to obtain in most patients. The Kidney Disease Improving Global Outcomes Guidelines recommend PTH and bone‐specific alkaline phosphatase (BSAP) for the diagnosis of turnover type. However, PTH and BSAP have insufficient diagnostic accuracy to differentiate low from non‐low turnover and were validated for trabecular turnover. We hypothesized that four circulating microRNAs (miRNAs) that regulate osteoblast (miRNA‐30b, 30c, 125b) and osteoclast development (miRNA‐155) would provide superior discrimination of low from non‐low turnover than biomarkers in clinical use. In 23 patients with CKD 3‐5D, we obtained tetracycline‐labeled transiliac crest bone biopsy and measured circulating levels of intact PTH, BSAP, and miRNA‐30b, 30c, 125b, and 155. Spearman correlations assessed relationships between miRNAs and histomorphometry and PTH and BSAP. Diagnostic test characteristics for discriminating low from non‐low intracortical turnover were determined by receiver operator curve analysis; areas under the curve (AUC) were compared by χ2 test. In CKD rat models of low and high turnover ROD, we performed histomorphometry and determined the expression of bone tissue miRNAs. Circulating miRNAs moderately correlated with bone formation rate and adjusted apposition rate at the endo‐ and intracortical envelopes (ρ = 0.43 to 0.51; p < 0.05). Discrimination of low versus non‐low turnover was 0.866, 0.813, 0.813, and 0.723 for miRNA‐30b, 30c, 125b, and 155, respectively, and 0.509 and 0.589 for PTH and BSAP, respectively. For all four miRNAs combined, the AUC was 0.929, which was superior to that of PTH and BSAP alone and together (p < 0.05). In CKD rats, bone tissue levels of the four miRNAs reflected the findings in human serum. These data suggest that a panel of circulating miRNAs provide accurate noninvasive identification of bone turnover in ROD. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Thomas L Nickolas
- Department of Medicine Columbia University Medical Center New York NY USA
| | - Neal Chen
- Division of Nephrology Indiana University School of Medicine Indianapolis IN USA
| | - Donald J McMahon
- Department of Medicine Columbia University Medical Center New York NY USA
| | - David Dempster
- Department of Pathology and Cell Biology Columbia University New York NY USA.,Regional Bone Center Helen Hayes Hospital New York NY USA
| | - Hua Zhou
- Regional Bone Center Helen Hayes Hospital New York NY USA
| | - James Dominguez
- Division of Nephrology Indiana University School of Medicine Indianapolis IN USA
| | - Maria A Aponte
- Department of Medicine Columbia University Medical Center New York NY USA
| | - Joshua Sung
- Department of Medicine Columbia University Medical Center New York NY USA
| | - Pieter Evenepoel
- Department of Microbiology and Immunology, Laboratory of Nephrology Katholieke Universiteit Leuven, University of Leuven Leuven Belgium
| | - Patrick C D'Haese
- Department of Biomedical Sciences, Laboratory of Pathophysiology Antwerp University Wilrijk Belgium
| | - Fabrice Mac-Way
- CHU de Québec Research Center, L'Hôtel-Dieu de Québec Hospital, Endocrinology and Nephrology Axis, Faculty and Department of Medicine Université Laval Quebec City Canada
| | - Rosa Moyses
- Laboratório de Investigação Médica 16 Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo Sao Paulo Brazil
| | - Sharon Moe
- Division of Nephrology Indiana University School of Medicine Indianapolis IN USA.,Department of Medicine Roudebush Veterans Administration Medical Center Indianapolis IN USA
| |
Collapse
|
42
|
Chen G, Zhang X, Chen H, Lin H, Wu H, Lin H, Huang G. miR‐22 represses osteoblast viability with ESR1 presenting a direct target and indirectly inactivating p38 MAPK/JNK signaling. J Gene Med 2020; 22:e3174. [PMID: 32056303 DOI: 10.1002/jgm.3174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Guang‐Hua Chen
- Department of OrthopedicsAffiliated Hospital of Guangdong Medical University Zhanjiang Guangdong China
| | - Xin‐Le Zhang
- Department of Pharmacology, School of PharmacyGuangdong Medical University Zhanjiang Guangdong China
| | - Hang Chen
- Department of OrthopedicsAffiliated Hospital of Guangdong Medical University Zhanjiang Guangdong China
| | - Hao Lin
- Department of OrthopedicsAffiliated Hospital of Guangdong Medical University Zhanjiang Guangdong China
| | - Hao‐Jun Wu
- Department of OrthopedicsAffiliated Hospital of Guangdong Medical University Zhanjiang Guangdong China
| | - Han Lin
- Department of OrthopedicsAffiliated Hospital of Guangdong Medical University Zhanjiang Guangdong China
| | - Gui‐Zhi Huang
- Department of OrthopedicsAffiliated Hospital of Guangdong Medical University Zhanjiang Guangdong China
| |
Collapse
|
43
|
Bone marrow niche crosses paths with BMPs: a road to protection and persistence in CML. Biochem Soc Trans 2020; 47:1307-1325. [PMID: 31551354 DOI: 10.1042/bst20190221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022]
Abstract
Chronic myeloid leukaemia (CML) is a paradigm of precision medicine, being one of the first cancers to be treated with targeted therapy. This has revolutionised CML therapy and patient outcome, with high survival rates. However, this now means an ever-increasing number of patients are living with the disease on life-long tyrosine kinase inhibitor (TKI) therapy, with most patients anticipated to have near normal life expectancy. Unfortunately, in a significant number of patients, TKIs are not curative. This low-level disease persistence suggests that despite a molecularly targeted therapeutic approach, there are BCR-ABL1-independent mechanisms exploited to sustain the survival of a small cell population of leukaemic stem cells (LSCs). In CML, LSCs display many features akin to haemopoietic stem cells, namely quiescence, self-renewal and the ability to produce mature progeny, this all occurs through intrinsic and extrinsic signals within the specialised microenvironment of the bone marrow (BM) niche. One important avenue of investigation in CML is how the disease highjacks the BM, thereby remodelling this microenvironment to create a niche, which enables LSC persistence and resistance to TKI treatment. In this review, we explore how changes in growth factor levels, in particular, the bone morphogenetic proteins (BMPs) and pro-inflammatory cytokines, impact on cell behaviour, extracellular matrix deposition and bone remodelling in CML. We also discuss the challenges in targeting LSCs and the potential of dual targeting using combination therapies against BMP receptors and BCR-ABL1.
Collapse
|
44
|
RANKL/RANK/OPG Pathway: A Mechanism Involved in Exercise-Induced Bone Remodeling. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6910312. [PMID: 32149122 PMCID: PMC7053481 DOI: 10.1155/2020/6910312] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
Bones as an alive organ consist of about 70% mineral and 30% organic component. About 200 million people are suffering from osteopenia and osteoporosis around the world. There are multiple ways of protecting bone from endogenous and exogenous risk factors. Planned physical activity is another useful way for protecting bone health. It has been investigated that arranged exercise would effectively regulate bone metabolism. Until now, a number of systems have discovered how exercise could help bone health. Previous studies reported different mechanisms of the effect of exercise on bone health by modulation of bone remodeling. However, the regulation of RANKL/RANK/OPG pathway in exercise and physical performance as one of the most important remodeling systems is not considered comprehensive in previous evidence. Therefore, the aim of this review is to clarify exercise influence on bone modeling and remodeling, with a concentration on its role in regulating RANKL/RANK/OPG pathway.
Collapse
|
45
|
Leng Q, Chen L, Lv Y. RNA-based scaffolds for bone regeneration: application and mechanisms of mRNA, miRNA and siRNA. Am J Cancer Res 2020; 10:3190-3205. [PMID: 32194862 PMCID: PMC7053199 DOI: 10.7150/thno.42640] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Globally, more than 1.5 million patients undergo bone graft surgeries annually, and the development of biomaterial scaffolds that mimic natural bone for bone grafting remains a tremendous challenge. In recent decades, due to the improved understanding of the mechanisms of bone remodeling and the rapid development of gene therapy, RNA (including messenger RNA (mRNA), microRNA (miRNA), and short interfering RNA (siRNA)) has attracted increased attention as a new tool for bone tissue engineering due to its unique nature and great potential to cure bone defects. Different types of RNA play roles via a variety of mechanisms in bone-related cells in vivo as well as after synthesis in vitro. In addition, RNAs are delivered to injured sites by loading into scaffolds or systemic administration after combination with vectors for bone tissue engineering. However, the challenge of effectively and stably delivering RNA into local tissue remains to be solved. This review describes the mechanisms of the three types of RNAs and the application of the relevant types of RNA delivery vectors and scaffolds in bone regeneration. The improvements in their development are also discussed.
Collapse
|
46
|
Gomathi K, Akshaya N, Srinaath N, Moorthi A, Selvamurugan N. Regulation of Runx2 by post-translational modifications in osteoblast differentiation. Life Sci 2020; 245:117389. [PMID: 32007573 DOI: 10.1016/j.lfs.2020.117389] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/27/2023]
Abstract
Osteogenesis is the process of new bone formation where transcription factors play an important role in controlling cell proliferation and differentiation. Runt-related transcription factor 2 (Runx2), a key transcription factor, regulates the differentiation of mesenchymal stem cells into osteoblasts, which further mature into osteocytes. Runx2 acts as a modulator such that it can either stimulate or inhibit the osteoblast differentiation. A defect/alteration in the expression/activity of this gene may lead to skeletal dysplasia. Runx2 thus serves as the best therapeutic model gene for studying bone and bone-related diseases. In this review, we briefly outline the regulation of Runx2 and its activity at the post-translational levels by the virtue of phosphorylation, acetylation, and ubiquitination in controlling the bone homeostasis.
Collapse
Affiliation(s)
- K Gomathi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Akshaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Srinaath
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - A Moorthi
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
47
|
MicroRNA-495 downregulates AQP1 and facilitates proliferation and differentiation of osteoblasts in mice with tibial fracture through activation of p38 MAPK signaling pathway. Sci Rep 2019; 9:16171. [PMID: 31700003 PMCID: PMC6838328 DOI: 10.1038/s41598-019-50013-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Osteoblasts are implicated in the building of the vertebrate skeleton. The current study aimed to investigate the role of microRNA-495 (miR-495) in the osteoblasts of mice with tibial fractures and the underlying mechanism involving in aquaporin-1 (AQP1) and the p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway. Initially, a microarray-based analysis was performed to screen the differentially expressed genes and miRNAs associated with tibial fracture. Following the establishment of a tibial fracture mouse model, the positive rate of the AQP1 protein in the fracture tissue was detected by immunohistochemistry (IHC). Next, to verify the binding site between miR-495 on AQP1, bioinformatics data were employed in addition to the application of a dual-luciferase reporter gene assay. The osteoblast cell line MC3T3-E1 was treated with miR-495 mimic, miR-495 inhibitor and Anisomycin to explore the potent effects of miR-495 on proliferation and differentiation of osteoblasts in mice with tibial fracture. The expression of miR-495, AQP1, p38 MAPK, PCNA, Cyclin D1, OCN, and OPN was subsequently evaluated by RT-qPCR and Western blot analysis. Cell viability, the number of calcium nodules and alkaline phosphatase (ALP) activity were detected by MTT assay, alizarin red staining, and ALP activity assay, respectively. Our results revealed that miR-495 was down-regulated while AQP1 was up-regulated in the mice with tibial fractures. AQP1 was verified as a target gene of miR-495. When the cells were treated with overexpressed miR-495 or activated p38 MAPK signaling pathway, elevated expression of PCNA, Cyclin, D1, OCN, and OPN along with an increased amount of calcium nodules, higher cell viability, and enhanced ALP activity was detected, while the expression of AQP1 was reduced. Collectively, the key findings of the present study support the notion that overexpressed miR-495 may activate the p38 MAPK signaling pathway to inhibit AQP1 and to promote the proliferation and differentiation of osteoblasts in mice with tibial fracture.
Collapse
|
48
|
Bottani M, Banfi G, Lombardi G. Perspectives on miRNAs as Epigenetic Markers in Osteoporosis and Bone Fracture Risk: A Step Forward in Personalized Diagnosis. Front Genet 2019; 10:1044. [PMID: 31737038 PMCID: PMC6831724 DOI: 10.3389/fgene.2019.01044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Aging is associated with an increased incidence of age-related bone diseases. Current diagnostics (e.g., conventional radiology, biochemical markers), because limited in specificity and sensitivity, can distinguish between healthy or osteoporotic subjects but they are unable to discriminate among different underlying causes that lead to the same bone pathological condition (e.g., bone fracture risk). Among recent, more sensitive biomarkers, miRNAs — the non-coding RNAs involved in the epigenetic regulation of gene expression, have emerged as fundamental post-transcriptional modulators of bone development and homeostasis. Each identified miRNA carries out a specific role in osteoblast and osteoclast differentiation and functional pathways (osteomiRs). miRNAs bound to proteins or encapsulated in exosomes and/or microvesicles are released into the bloodstream and biological fluids where they can be detected and measured by highly sensitive and specific methods (e.g., quantitative PCR, next-generation sequencing). As such, miRNAs provide a prompt and easily accessible tool to determine the subject-specific epigenetic environment of a specific condition. Their use as biomarkers opens new frontiers in personalized medicine. While miRNAs circulating levels are lower than those found in the tissue/cell source, their quantification in biological fluids may be strategic in the diagnosis of diseases that affect tissues, such as bone, in which biopsy may be especially challenging. For a biomarker to be valuable in clinical practice and support medical decisions, it must be (easily) measurable, validated by independent studies, and strongly and significantly associated with a disease outcome. Currently, miRNAs analysis does not completely satisfy these criteria, however. Starting from in vitro and in vivo observations describing their biological role in bone cell development and metabolism, this review describes the potential use of bone-associated circulating miRNAs as biomarkers for determining predisposition, onset, and development of osteoporosis and bone fracture risk. Moreover, the review focuses on their clinical relevance and discusses the pre-analytical, analytical, and post-analytical issues in their measurement, which still limits their routine application. Taken together, research and clinical findings may be helpful for creating miRNA-based diagnostic tools in the diagnosis and treatment of bone diseases.
Collapse
Affiliation(s)
- Michela Bottani
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Moelcular Biology, Milano, Italy
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Moelcular Biology, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Moelcular Biology, Milano, Italy.,Department of Physiology & Pharmacology, Gdańsk University of Physical Education & Sport, Gdańsk, Poland
| |
Collapse
|
49
|
Wildman BJ, Godfrey TC, Rehan M, Chen Y, Afreen LH, Hassan Q. MICROmanagement of Runx2 Function in Skeletal Cells. ACTA ACUST UNITED AC 2019; 5:55-64. [PMID: 31289715 DOI: 10.1007/s40610-019-0115-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of Review- Precise and temporal expression of Runx2 and its regulatory transcriptional network is a key determinant for the intricate cellular and developmental processes in adult bone tissue formation. This review analyzes how microRNA functions to regulate this network, and how dysregulation results in bone disorders. Recent Findings- Similar to other biologic processes, microRNA (miRNA/miR) regulation is undeniably indispensable to bone synthesis and maintenance. There exists a miRNA-RUNX2 network where RUNX2 regulates the transcription of miRs, or is post transcriptionally regulated by a class of miRs, forming a variety of miR-RUNX2 regulatory pathways which regulate osteogenesis. Summary- The current review provides insights to understand transcriptional-post transcriptional regulatory network governed by Runx2 and osteogenic miRs, and is based largely from in vitro and in vivo studies. When taken together, this article discusses a new regulatory layer of bone tissue specific gene expression by RUNX2 influenced via miRNA.
Collapse
Affiliation(s)
- Benjamin J Wildman
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama, Birmingham AL, 35294
| | - Tanner C Godfrey
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama, Birmingham AL, 35294
| | - Mohammad Rehan
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama, Birmingham AL, 35294
| | - Yuechuan Chen
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama, Birmingham AL, 35294
| | - Lubana H Afreen
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama, Birmingham AL, 35294
| | - Quamarul Hassan
- RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama, Birmingham AL, 35294
| |
Collapse
|
50
|
3D Printing PLA/Gingival Stem Cells/ EVs Upregulate miR-2861 and -210 during Osteoangiogenesis Commitment. Int J Mol Sci 2019; 20:ijms20133256. [PMID: 31269731 PMCID: PMC6651609 DOI: 10.3390/ijms20133256] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/14/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023] Open
Abstract
Bone tissue regeneration strategies require approaches that provide an osteogenic and angiogenic microenvironment able to drive the bone growth. Recently, the development of 3D printing biomaterials, including poly(lactide) (3D-PLA), enriched with mesenchymal stem cells (MSCs) and/or their derivatives, such as extracellular vesicles (EVs) has been achieving promising results. In this study, in vitro results showed an increased expression of osteogenic and angiogenic markers, as RUNX2, VEGFA, OPN and COL1A1 in the living construct 3D-PLA/human Gingival MSCs (hGMSCs)/EVs. Considering that EVs carry and transfer proteins, mRNA and microRNA into target cells, we evaluated miR-2861 and miR-210 expression related to osteoangiogenesis commitment. Histological examination of rats implanted with 3D-PLA/hGMSCs/EVs evidenced the activation of bone regeneration and of the vascularization process, confirmed also by MicroCT. In synthesis, an upregulation of miR-2861 and -210 other than RUNX2, VEGFA, OPN and COL1A1 was evident in cells cultured in the presence of the biomaterial and EVs. Then, these results evidenced that EVs may enhance bone regeneration in calvaria defects, in association with an enhanced vascularization offering a novel regulatory system in the osteoangiogenesis evolution. The application of new strategies to improve biomaterial engraftment is of great interest in the regenerative medicine and can represent a way to promote bone regeneration.
Collapse
|