1
|
Jeffries NE, Sadreyev D, Trull EC, Chetal K, Yvanovich EE, Mansour MK, Sadreyev RI, Sykes DB. Deferasirox, an iron chelator, impacts myeloid differentiation by modulating NF-kB activity via mitochondrial ROS. Br J Haematol 2024; 205:2000-2007. [PMID: 39327763 PMCID: PMC11568922 DOI: 10.1111/bjh.19782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
The iron chelator deferasirox (DFX) is effective in the treatment of iron overload. In certain patients with myelodysplastic syndrome, DFX can also provide a dramatic therapeutic benefit, improving red blood cell production and decreasing transfusion requirements. Nuclear Factor-kappa B (NF-kB) signalling has been implicated as a potential mechanism behind this phenomenon, with studies focusing on the effect of DFX on haematopoietic progenitors. Here, we examine the phenotypic and transcriptional effects of DFX throughout myeloid cell maturation in both murine and human model systems. The effect of DFX depends on the stage of differentiation, with effects on mitochondrial reactive oxygen species (ROS) production and NF-kB pathway regulation that vary between progenitors and neutrophils. DFX triggers a greater increase in mitochondrial ROS production in neutrophils and this phenomenon is mitigated when cells are cultured in hypoxic conditions. Single-cell transcriptomic profiling revealed that DFX decreases the expression of NF-kB and MYC (c-Myc) targets in progenitors and decreases the expression of PU.1 (SPI1) gene targets in neutrophils. Together, these data suggest a role of DFX in impairing terminal maturation of band neutrophils.
Collapse
Affiliation(s)
- Nathan E. Jeffries
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel Sadreyev
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Elizabeth C. Trull
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kashish Chetal
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Emma E. Yvanovich
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael K. Mansour
- Department of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - David B. Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Pawar P, Gokavi J, Wakhare S, Bagul R, Ghule U, Khan I, Ganu V, Mukherjee A, Shete A, Rao A, Saxena V. MiR-155 Negatively Regulates Anti-Viral Innate Responses among HIV-Infected Progressors. Viruses 2023; 15:2206. [PMID: 38005883 PMCID: PMC10675553 DOI: 10.3390/v15112206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 11/26/2023] Open
Abstract
HIV infection impairs host immunity, leading to progressive disease. An anti-retroviral treatment efficiently controls viremia but cannot completely restore the immune dysfunction in HIV-infected individuals. Both host and viral factors determine the rate of disease progression. Among the host factors, innate immunity plays a critical role; however, the mechanism(s) associated with dysfunctional innate responses are poorly understood among HIV disease progressors, which was investigated here. The gene expression profiles of TLRs and innate cytokines in HIV-infected (LTNPs and progressors) and HIV-uninfected individuals were examined. Since the progressors showed a dysregulated TLR-mediated innate response, we investigated the role of TLR agonists in restoring the innate functions of the progressors. The stimulation of PBMCs with TLR3 agonist-poly:(I:C), TLR7 agonist-GS-9620 and TLR9 agonist-ODN 2216 resulted in an increased expression of IFN-α, IFN-β and IL-6. Interestingly, the expression of IFITM3, BST-2, IFITM-3, IFI-16 was also increased upon stimulation with TLR3 and TLR7 agonists, respectively. To further understand the molecular mechanism involved, the role of miR-155 was explored. Increased miR-155 expression was noted among the progressors. MiR-155 inhibition upregulated the expression of TLR3, NF-κB, IRF-3, TNF-α and the APOBEC-3G, IFITM-3, IFI-16 and BST-2 genes in the PBMCs of the progressors. To conclude, miR-155 negatively regulates TLR-mediated cytokines as wel l as the expression of host restriction factors, which play an important role in mounting anti-HIV responses; hence, targeting miR-155 might be helpful in devising strategic approaches towards alleviating HIV disease progression.
Collapse
Affiliation(s)
- Puja Pawar
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Jyotsna Gokavi
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Shilpa Wakhare
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Rajani Bagul
- Division of Clinical Sciences, ICMR-National AIDS Research Institute, Pune 411026, India; (R.B.); (U.G.); (A.R.)
| | - Ujjwala Ghule
- Division of Clinical Sciences, ICMR-National AIDS Research Institute, Pune 411026, India; (R.B.); (U.G.); (A.R.)
| | - Ishrat Khan
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, India; (I.K.); (A.M.)
| | - Varada Ganu
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, India; (I.K.); (A.M.)
| | - Ashwini Shete
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| | - Amrita Rao
- Division of Clinical Sciences, ICMR-National AIDS Research Institute, Pune 411026, India; (R.B.); (U.G.); (A.R.)
| | - Vandana Saxena
- Division of Immunology and Serology, ICMR-National AIDS Research Institute, Pune 411026, India; (P.P.); (J.G.); (S.W.); (V.G.); (A.S.)
| |
Collapse
|
3
|
Park AJ, Fandl HK, Garcia VP, Coombs GB, DeSouza NM, Greiner JJ, Barak OF, Mijacika T, Dujic Z, Ainslie PN, DeSouza CA. Differential Expression of Vascular-Related MicroRNA in Circulating Endothelial Microvesicles in Adults With Spinal Cord Injury: A Pilot Study. Top Spinal Cord Inj Rehabil 2023; 29:34-42. [PMID: 37235195 PMCID: PMC10208256 DOI: 10.46292/sci22-00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Spinal cord injury (SCI) is associated with an increased risk and prevalence of cardiopulmonary and cerebrovascular disease-related morbidity and mortality. The factors that initiate, promote, and accelerate vascular diseases and events in SCI are poorly understood. Clinical interest in circulating endothelial cell-derived microvesicles (EMVs) and their microRNA (miRNA) cargo has intensified due to their involvement in endothelial dysfunction, atherosclerosis, and cerebrovascular events. Objectives The aim of this study was to determine whether a subset of vascular-related miRNAs is differentially expressed in EMVs isolated from adults with SCI. Methods We assessed eight adults with tetraplegia (7 male/1 female; age: 46±4 years; time since injury: 26±5 years) and eight uninjured (6 male/2 female; age: 39±3 years). Circulating EMVs were isolated, enumerated, and collected from plasma by flow cytometry. The expression of vascular-related miRNAs in EMVs was assessed by RT-PCR. Results Circulating EMV levels were significantly higher (~130%) in adults with SCI compared with uninjured adults. The expression profile of miRNAs in EMVs from adults with SCI were significantly different than uninjured adults and were pathologic in nature. Expression of miR-126, miR-132, and miR-Let-7a were lower (~100-150%; p < .05), whereas miR-30a, miR-145, miR-155, and miR-216 were higher (~125-450%; p < .05) in EMVs from adults with SCI. Conclusion This study is the first examination of EMV miRNA cargo in adults with SCI. The cargo signature of vascular-related miRNAs studied reflects a pathogenic EMV phenotype prone to induce inflammation, atherosclerosis, and vascular dysfunction. EMVs and their miRNA cargo represent a novel biomarker of vascular risk and a potential target for intervention to alleviate vascular-related disease after SCI.
Collapse
Affiliation(s)
- Andrew J Park
- Rocky Mountain Regional Spinal Injury System, Craig Hospital, Englewood, Colorado
- University of Colorado, Department of Physical Medicine and Rehabilitation, Aurora, Colorado
| | - Hannah K Fandl
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Vinicius P Garcia
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Geoff B Coombs
- University of Western Ontario, School of Kinesiology, London, Ontario, Canada
| | - Noah M DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Jared J Greiner
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Otto F Barak
- Department of Sports Medicine, University of Novi Sad, Serbia
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Tanja Mijacika
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Zeljko Dujic
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| |
Collapse
|
4
|
Mahdavi Anari SR, Kheirkhah B, Amini K, Roozafzai F. Expression of MicroRNA-155 in Patients with Non-Hodgkin Lymphoma, Coronavirus Disease 2019, or Both: A Cross-Sectional Study. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:26-34. [PMID: 36688191 PMCID: PMC9843467 DOI: 10.30476/ijms.2022.91669.2282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/23/2021] [Accepted: 12/10/2021] [Indexed: 01/24/2023]
Abstract
Background Non-Hodgkin lymphoma (NHL) is the eleventh leading cause of cancer-related death in the world. Diffuse large B-cell lymphoma (DLBCL) is the most common type of NHL. Up to winter 2021-2022, the death toll caused by the coronavirus disease 2019 (COVID-19) has exceeded 5.6 million worldwide. Possible molecular mechanisms involved in the systemic inflammation, and cytokine storm in COVID-19 patients are still not fully understood. MicroRNA-155 (miR-155) plays a role in the post-transcriptional gene regulation of hematopoiesis, oncogenesis, and inflammation. The present study aimed to evaluate the expression of miR-155 in patients with DLBCL and/or COVID-19. Methods A cross-sectional study was conducted from July to December 2020 in Tehran (Iran) to evaluate the expression of miR-155 in adult patients diagnosed with DLBCL and/or COVID-19. The real-time polymerase chain reaction technique was used to evaluate the expression of miR-155 in the sera of 92 adults who were either healthy or suffering from DLBCL and/or COVID-19. Relative quantification of gene expression was calculated in terms of cycle threshold (Ct) value. Data were analyzed using SPSS software, and P<0.05 was considered statistically significant. Results The expression of miR-155 was not associated with the sex or age of the participants. In comparison with healthy individuals (-ΔCt -1.92±0.25), the expression of miR-155 increased in patients with COVID-19 (1.95±0.14), DLBCL (2.25±0.16), or both (4.33±0.65). Conclusion The expression of miR-155 increased in patients with DLBCL and/or COVID-19.
Collapse
Affiliation(s)
| | - Babak Kheirkhah
- Department of Biology, Sirjan Branch, Islamic Azad University, Sirjan, Iran,
Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Kumarss Amini
- Department of Microbiology, Saveh Branch, Islamic Azad University, Saveh, Iran
| | - Farzin Roozafzai
- Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Carlos FMJ, Gabriel DLTCC, Genoveva PPA, Antonio VSJ, Nelinho PMI. Expression levels and network analysis of inflammamiRs in peripheral blood mononuclear cells exposed to DDE "in vitro". ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104032. [PMID: 36473620 DOI: 10.1016/j.etap.2022.104032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Recent studies have demonstrated that dichlorodiphenyldichloroethylene (DDE) induced a pro-inflammatory condition in peripheral blood mononuclear cells (PBMC). However, the molecular mechanisms implicated in this condition are poorly understood. Therefore, this study aimed to evaluate miR-155, miR-126, and miR-21 expression levels in PBMC exposed "in vitro" to DDE. PBMC were dosed with increasing concentrations of DDE (10-80 µg mL-1) at different treatment times (0-24 h). The results showed an up-regulation in the expression levels of assessed miRNAs (miR-155, miR-146, and miR-21) after PBMCs were exposed to DDE. Besides, bioinformatic analysis was performed to understand the biological roles of assessed miRNAs. The bioinformatic analysis shows that assessed miRNAs are associated with regulating signaling pathways involved in cancer, apoptosis, cell cycle, inflammation, metabolism, etc. These findings offer new insights into the molecular mechanisms related to the inflammatory processes and their regulation induced by DDE in PBMC exposed "in vitro".
Collapse
Affiliation(s)
- Fernández-Macías Juan Carlos
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí (UASLP), Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí (UASLP), Mexico
| | - De la Trinidad-Chacón Carlos Gabriel
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí (UASLP), Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí (UASLP), Mexico
| | - Pozos-Perez Ayari Genoveva
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí (UASLP), Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí (UASLP), Mexico
| | - Varela-Silva José Antonio
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, Mexico
| | - Pérez-Maldonado Iván Nelinho
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí (UASLP), Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí (UASLP), Mexico.
| |
Collapse
|
6
|
Gibson SE, Liu YC, Yatsenko SA, Barasch NJ, Swerdlow SH. Histopathologic, immunophenotypic, and mutational landscape of follicular lymphomas with plasmacytic differentiation. Mod Pathol 2022; 35:60-68. [PMID: 34601504 DOI: 10.1038/s41379-021-00938-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022]
Abstract
Follicular lymphomas with plasmacytic differentiation (FL-PCD) include two major subtypes: one with predominantly interfollicular PCD that usually harbors a BCL2 rearrangement (BCL2-R), and a second that has predominantly intrafollicular PCD and the frequent absence of a BCL2-R. It is proposed that these latter cases share some features with marginal zone lymphomas (MZL). To further explore this hypothesis in an expanded cohort of FL-PCD, a clinicopathologic investigation of 25 such cases was undertaken including an analysis of their mutational landscape. The 10 interfollicular FL-PCDs exhibited typical intrafollicular centrocytes/centroblasts (90%), CD10 expression (90%), full PCD including expression of CD138 by the plasma cells (PC) (100%), and PCs with class-switched immunoglobulin heavy chains (70%). These cases were BCL2-R positive (100%), BCL6-R positive in 30%, lacked extra BCL2 copies, and only 22% had extra copies of BCL6. Similar to classic FLs, 80% of interfollicular FL-PCDs harbored mutations in epigenetic regulators KMT2D (70%), CREBBP (40%), and/or EZH2 (30%). In contrast, only 45% of 11 intrafollicular FL-PCDs demonstrated typical intrafollicular centrocytes/centroblasts, 55% were CD10(-), 80% contained IgM+ PCs, and only 27% harbored BCL2-Rs. BCL6-Rs were identified in 27% of intrafollicular FL-PCD, while 60% showed extra copies of BCL2 and 50% extra copies of BCL6, consistent with complete or partial trisomies of chromosomes 18 and 3, respectively. Only 54% of intrafollicular FL-PCDs showed mutations in epigenetic regulators. Both subtypes showed mutational differences compared to classic FL, but only the interfollicular subtype showed differences from what is reported for nodal MZL. Four additional cases showed mixed intra- and interfollicular PCD. These results suggest that FL-PCD has some distinctive features and supports the existence of two major subtypes. The interfollicular PCD subtype shares many features with classic FL. The intrafollicular FL-PCDs are more heterogeneous, have differences from classic FL, and have a greater morphologic, immunophenotypic, and genetic overlap with MZL.
Collapse
Affiliation(s)
- Sarah E Gibson
- Mayo Clinic Arizona, Phoenix, AZ, USA. .,University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA.
| | - Yen-Chun Liu
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA.,St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Svetlana A Yatsenko
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA
| | - Nicholas J Barasch
- University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA.,Columbia University Medical Center, New York, NY, USA
| | - Steven H Swerdlow
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA
| |
Collapse
|
7
|
Guo J, Liao M, Wang J. TLR4 signaling in the development of colitis-associated cancer and its possible interplay with microRNA-155. Cell Commun Signal 2021; 19:90. [PMID: 34479599 PMCID: PMC8414775 DOI: 10.1186/s12964-021-00771-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
Ulcerative colitis (UC) has closely been associated with an increased risk of colorectal cancer. However, the exact mechanisms underlying colitis-associated cancer (CAC) development remain unclear. As a classic pattern-recognition receptor, Toll like receptor (TLR)4 is a canonical receptor for lipopolysaccharide of Gram-negative bacteria (including two CAC-associated pathogens Fusobacterium nucleatum and Salmonella), and functions as a key bridge molecule linking oncogenic infection to colonic inflammatory and malignant processes. Accumulating studies verified the overexpression of TLR4 in colitis and CAC, and the over-expressed TLR4 might promote colitis-associated tumorigenesis via facilitating cell proliferation, protecting malignant cells against apoptosis, accelerating invasion and metastasis, as well as contributing to the creation of tumor-favouring cellular microenvironment. In recent years, considerable attention has been focused on the regulation of TLR4 signaling in the context of colitis-associated tumorigenesis. MicroRNA (miR)-155 and TLR4 exhibited a similar dynamic expression change during CAC development and shared similar CAC-promoting properties. The available data demonstrated an interplay between TLR4 and miR-155 in the context of different disorders or cell lines. miR-155 could augment TLR4 signaling through targeting negative regulators SOCS1 and SHIP1; and TLR4 activation would induce miR-155 expression via transcriptional and post-transcriptional mechanisms. This possible TLR4-miR-155 positive feedback loop might result in the synergistic accelerating effect of TLR4 and miR-155 on CAC development.![]() Video abstract
Collapse
Affiliation(s)
- Jie Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Mengfan Liao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China. .,New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Kersy O, Salmon-Divon M, Shpilberg O, Hershkovitz-Rokah O. Non-Coding RNAs in Normal B-Cell Development and in Mantle Cell Lymphoma: From Molecular Mechanism to Biomarker and Therapeutic Agent Potential. Int J Mol Sci 2021; 22:ijms22179490. [PMID: 34502399 PMCID: PMC8430640 DOI: 10.3390/ijms22179490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/27/2022] Open
Abstract
B-lymphocytes are essential for an efficient immune response against a variety of pathogens. A large fraction of hematologic malignancies are of B-cell origin, suggesting that the development and activation of B cells must be tightly regulated. In recent years, differentially expressed non-coding RNAs have been identified in mantle cell lymphoma (MCL) tumor samples as opposed to their naive, normal B-cell compartment. These aberrantly expressed molecules, specifically microRNAs (miRNAs), circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), have a role in cellular growth and survival pathways in various biological models. Here, we provide an overview of current knowledge on the role of non-coding RNAs and their relevant targets in B-cell development, activation and malignant transformation, summarizing the current understanding of the role of aberrant expression of non-coding RNAs in MCL pathobiology with perspectives for clinical use.
Collapse
Affiliation(s)
- Olga Kersy
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (O.K.); (M.S.-D.)
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
| | - Mali Salmon-Divon
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (O.K.); (M.S.-D.)
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Ofer Shpilberg
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Institute of Hematology, Assuta Medical Centers, Tel-Aviv 6971028, Israel
| | - Oshrat Hershkovitz-Rokah
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (O.K.); (M.S.-D.)
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
- Correspondence: ; Tel.: +972-3-764-4094
| |
Collapse
|
9
|
Differential expression of miRNAs as biomarkers for predicting the outcomes of diffuse large B-cell lymphoma patients. Biosci Rep 2021; 41:228975. [PMID: 34109978 PMCID: PMC8239963 DOI: 10.1042/bsr20201551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/17/2021] [Accepted: 06/08/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Diffuse large B-cell lymphoma (DLBCL) used to be defined as germinal center B-like and non-germinal center B-like subtypes, associated with different prognoses, but the conventional classification does not meet the needs of clinical practice because of DLBCL heterogeneity, a problem that might be improved by selection of miRNAs as biomarkers. Methods: Twelve patients with DLBCLs were used to screen out the aberrant miRNA profile using miRNA microarray technology in two patient subtypes (six germinal center B-like and six non-germinal center B-like patients). The potential biomarkers were further analyzed using the quantitative reverse transcription-polymerase chain reaction method in 95 DLBCL patients to investigate relationships among expression levels of potent miRNA, clinicopathological features and survival rates of patients. Results: miR-208a-5p, miR-296-5p and miR-1304-5p were screened as potential biomarkers. miR-208a-5p and miR-296-5p were shown to be associated with better survival of patients after Kaplan–Meier analysis, whereas miR-1304-5p overexpression indicated a poor survival prognosis independent of the DLBCL subtype. In addition, changes of miR-296-5p and miR-1304-5p expression, the International Prognostic Index (IPI) status and the age of patients were all independent indicators for DLBCL prognosis. We also found that high miR-208a-5p expression led to better outcomes in DLBCL patients with similar IPI scores; however high miR-1304-5p expression tended to indicate the opposite. Conclusions: MiR-208a-5p, miR-296-5p and miR-1304-5p levels might be potential biomarkers for the prediction of the prognosis of DLBCL patients.
Collapse
|
10
|
MicroRNA-155: Regulation of Immune Cells in Sepsis. Mediators Inflamm 2021; 2021:8874854. [PMID: 33505221 PMCID: PMC7810547 DOI: 10.1155/2021/8874854] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are small noncoding RNAs which regulate gene expression at the posttranscriptional level. miR-155 is encoded by the miR-155 host gene (miR155HG), also known as the noncoding B cell integration cluster (BIC). MicroRNAs are widely expressed in various hematopoietic cells and are involved in regulating the immune system. In this review, we summarized how miR-155 modulates specific immune cells and the regulatory role of miR-155 in sepsis. miR-155 is expressed by different populations of innate and adaptive immune cells and is involved in the regulation of development, proliferation, and function in these cells. Sepsis is associated with uncontrollable inflammatory responses, accompanied by unacceptably high mortality. Due to the inadequacy of diagnostic markers as well as treatment strategies, treating sepsis can be a huge challenge. So far, a large number of experiments have shown that the expression of miR-155 is increased at an early stage of sepsis and that this increase is positively correlated with disease progression and severity. In addition, by blocking the proinflammatory effects of miR-155, it can effectively improve sepsis-related organ injury, providing novel insights to identify potential biomarkers and therapeutic targets for sepsis. However, since most of the current research is limited to animal experiments, further clinical research is required to determine the function of miR-155 and its mechanism related to sepsis.
Collapse
|
11
|
Poveda J, Cassidy DP, Zhou Y, Alderuccio JP, Lossos IS, Vega F, Chapman J. Expression of germinal center cell markers by extranodal marginal zone lymphomas of MALT type within colonized follicles, a diagnostic pitfall with follicular lymphoma. Leuk Lymphoma 2020; 62:1116-1122. [PMID: 33283568 DOI: 10.1080/10428194.2020.1855347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We reviewed 341 consecutive cases of marginal zone lymphoma (MZL) (47) or follicular lymphoma (FL) (294) of which 7 were difficult to distinguish due to perceived coexpression of BCL6 and BCL2 by tumor cells in follicular foci. This stimulated us to develop dual BCL6/BCL2 immunohistochemistry, allowing us to assess coexpression among individual cells. Dual staining confirmed coexpression in 6 of 7 cases, all extranodal MZL (ENMZL) based on overall features and representing 13% of MZL in this series. These findings confirm that MZL cells have plasticity regarding protein expression within the germinal center (GC) microenvironment, an important diagnostic pitfall. Intriguingly, in all MZL expressing BCL6, non-neoplastic GC B cells within colonized follicles showed diminished or absent CD10 expression but preserved BCL6 and high ki67. This finding suggests plasticity of CD10 expression in non-neoplastic GC B cells in the context of colonization by MZL, possibly related to NF-kB dysregulation.
Collapse
Affiliation(s)
- Julio Poveda
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami/Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Daniel P Cassidy
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami/Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Yi Zhou
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami/Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Juan Pablo Alderuccio
- Division of Hematology, Department of Medicine, University of Miami/Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Izidore S Lossos
- Division of Hematology, Department of Medicine, University of Miami/Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Francisco Vega
- Division of Hematopathology, Department of Pathology, MDAnderson Cancer Center, Houston, TX, USA
| | - Jennifer Chapman
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami/Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
12
|
Zeng J, Zhang D, Wan X, Bai Y, Yuan C, Wang T, Yuan D, Zhang C, Liu C. Chlorogenic Acid Suppresses miR-155 and Ameliorates Ulcerative Colitis through the NF-κB/NLRP3 Inflammasome Pathway. Mol Nutr Food Res 2020; 64:e2000452. [PMID: 33078870 DOI: 10.1002/mnfr.202000452] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/08/2020] [Indexed: 12/12/2022]
Abstract
SCOPE The over-activation of the nucleotide-binding domain like receptor protein 3 (NLRP3) inflammasome plays an important role in the pathogenesis of ulcerative colitis (UC). Chlorogenic acid (CGA) exposure is identified as an effective strategy for repressing inflammatory responses. METHODS AND RESULTS In this study, the NLRP3 inflammasome model with LPS/ATP-induced RAW264.7 cells in vitro and dextran-sulfate-sodium (DSS)-induced colitis in mice are used to evaluate the effect of CGA on NLRP3 inflammasome-related signaling. The results suggest that CGA suppressed the expression of NLRP3 inflammasome-related genes (apoptosis-associated speck-like protein containing CARD (ASC), cysteine-requiring aspartate protease (Caspase)-1 p45, Caspase-1 p20, pro-/cleaved-interleukin (IL)-1β, pro-/cleaved-IL-18), p-nuclear factor kappa B (NF-κB) protein, and miR-155 in mice with colitis. Gain- and loss-of-function studies of miR-155 are performed to elucidate its role in inflammation. Moreover, activation of the NF-κB/NLRP3 inflammasome pathway and miR-155 expression is investigated. CGA exposure in lipopolysaccharide (LPS)/adenosine triphosphate (ATP)-stimulated RAW264.7 cells leads to a decrease in p-NK-κB and NLRP3 inflammasome-related proteins, which is dependent on the downregulation of miR-155 expression. CONCLUSIONS These findings indicate that CGA prevented colitis by downregulating miR-155 expression and inactivating the NF-κB/NLRP3 inflammasome pathway in macrophages. The current study has promising therapeutic implications in the treatment of UC.
Collapse
Affiliation(s)
- Junhao Zeng
- College of Medical Science, China Three Gorges University, Yichang, Hubei, 443000, China
| | - Dengqing Zhang
- College of Medical Science, China Three Gorges University, Yichang, Hubei, 443000, China
| | - Xiaoyu Wan
- College of Medical Science, China Three Gorges University, Yichang, Hubei, 443000, China
| | - Yuanling Bai
- College of Medical Science, China Three Gorges University, Yichang, Hubei, 443000, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, Hubei, 443000, China
| | - Ting Wang
- College of Medical Science, China Three Gorges University, Yichang, Hubei, 443000, China
| | - Ding Yuan
- College of Medical Science, China Three Gorges University, Yichang, Hubei, 443000, China
| | - Changcheng Zhang
- College of Medical Science, China Three Gorges University, Yichang, Hubei, 443000, China
| | - Chaoqi Liu
- College of Medical Science, China Three Gorges University, Yichang, Hubei, 443000, China
| |
Collapse
|
13
|
Heydari Z, Rahaie M, Alizadeh AM, Agah S, Khalighfard S, Bahmani S. Effects of Lactobacillus acidophilus and Bifidobacterium bifidum Probiotics on the Expression of MicroRNAs 135b, 26b, 18a and 155, and Their Involving Genes in Mice Colon Cancer. Probiotics Antimicrob Proteins 2020; 11:1155-1162. [PMID: 30311185 DOI: 10.1007/s12602-018-9478-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A wide range of sources supports that the link between diet and colorectal cancer may be due to an imbalance of the intestinal microflora. In this case, it seems that the probiotics may have a possible molecular mechanism via microRNAs (miRNAs). The present study is aimed to evaluate the effects of Lactobacillus acidophilus and Bifidobacterium bifidum probiotics on the expression of miRNAs 135b, 26b, 18a, and 155 and their target genes, including APC, PTEN, KRAS, and PU.1 in mouse azoxymethane (AOM)-induced colon cancer. Thirty-eight male BALB/c mice were randomly divided into four groups: the control, AOM, Lactobacillus acidophilus, and Bifidobacterium bifidum to deliberate the effects of the probiotics on the miRNAs and their target genes. Except for the control group, the rest groups were weekly given AOM (15 mg/kg, s.c) in three consecutive weeks to induce mouse colon cancer. The animals were given 1.5 g powders of L. acidophilus (1 × 109 cfu/g) and B. bifidum (1 × 109 cfu/g) in 30 cc drinking water in the related groups for 5 months. At the end of the study, the animals were sacrificed and their blood and colon samples were removed for the molecular analyses. The results showed that the expression of the miR-135b, miR-155, and KRAS was increased in the AOM group compared to the control group in both the plasma and the colon tissue samples, and the consumption of the probiotics decreased their expression. Moreover, the miR-26b, miR-18a, APC, PU.1, and PTEN expressions were decreased in the AOM group compared to the control group and the consumption of the probiotics increased their expressions. It seems that Lactobacillus acidophilus and Bifidobacterium bifidum though increasing the expression of the tumor suppressor miRNAs and their target genes and decreasing the oncogenes can improve colon cancer treatment.
Collapse
Affiliation(s)
- Zahra Heydari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mahdi Rahaie
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.
- Cancer Biology Research Center, Tehran University of Medical Science, Tehran, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Solmaz Khalighfard
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, 1419733141, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sahar Bahmani
- Research and Development Department, Zist Takhmir Company, Tehran, Iran
| |
Collapse
|
14
|
Maternal Overweight Downregulates MME (Neprilysin) in Feto-Placental Endothelial Cells and in Cord Blood. Int J Mol Sci 2020; 21:ijms21030834. [PMID: 32012940 PMCID: PMC7037888 DOI: 10.3390/ijms21030834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/25/2022] Open
Abstract
Maternal overweight in pregnancy alters the metabolic environment and generates chronic low-grade inflammation. This affects fetal development and programs the offspring’s health for developing cardiovascular and metabolic disease later in life. MME (membrane-metalloendopeptidase, neprilysin) cleaves various peptides regulating vascular tone. Endothelial cells express membrane-bound and soluble MME. In adults, the metabolic environment of overweight and obesity upregulates endothelial and circulating MME. We here hypothesized that maternal overweight increases MME in the feto-placental endothelium. We used primary feto-placental endothelial cells (fpEC) isolated from placentas after normal vs. overweight pregnancies and determined MME mRNA, protein, and release. Additionally, soluble cord blood MME was analyzed. The effect of oxygen and tumor necrosis factor α (TNFα) on MME protein in fpEC was investigated in vitro. Maternal overweight reduced MME mRNA (−39.9%, p < 0.05), protein (−42.5%, p = 0.02), and MME release from fpEC (−64.7%, p = 0.02). Both cellular and released MME protein negatively correlated with maternal pre-pregnancy BMI. Similarly, cord blood MME was negatively associated with pre-pregnancy BMI (r = −0.42, p = 0.02). However, hypoxia and TNFα, potential negative regulators of MME expression, did not affect MME protein. Reduction of MME protein in fpEC and in cord blood may alter the balance of vasoactive peptides. Our study highlights the fetal susceptibility to maternal metabolism and inflammatory state.
Collapse
|
15
|
Chronic psychological stress impairs germinal center response by repressing miR-155. Brain Behav Immun 2019; 76:48-60. [PMID: 30414952 DOI: 10.1016/j.bbi.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 12/25/2022] Open
Abstract
Germinal centers (GC) are vital to adaptive immunity. BCL6 and miR-155 are implicated in control of GC reaction and lymphomagenesis. FBXO11 causes BCL6 degradation through ubiquitination in B-cell lymphomas. Chronic psychological stress is known to drive immunosuppression. Corticosterone (CORT) is an adrenal hormone expressed in response to stress and can similarly impair immune functions. However, whether GC formation is disrupted by chronic psychological stress and its molecular mechanism remain to be elucidated. To address this issue, we established a GC formation model in vivo, and a GC B cell differentiation model in vitro. Comparing Naive B cells to GC B cells in vivo and in vitro, the differences of BCL6 and FBXO11 mRNA do not match the changes at the protein level and miR-155 levels that were observed. Next we demonstrated that CORT increase, induced by chronic psychological stress, reduced GC response, IgG1 antibody production and miR-155 level in vivo. The effect of chronic psychological stress can be blocked by a glucocorticoid receptor (GR) antagonist. Similarly, impaired GC B cell generation and isotope class switching were observed. Furthermore, we found that miR-155 and BCL6 expression were downregulated, but FBXO11 expression was upregulated in GC B cells treated with CORT in vitro. In addition, we demonstrated that miR-155 directly down-regulated FBXO11 expression by binding to its 3́-untranslated region. The subsequent overexpression of miR-155 significantly blocked the stress-induced impairment of GC response, due to changes in FBXO11 and BCL6 expression, as well as increased apoptosis in B cells both in vivo and in vitro. Our findings suggest perturbation of GC reaction may play a role in chronic psychological stress-induced immunosuppression through a glucocorticoid pathway, and miR-155-mediated post-transcriptional regulation of FBXO11 and BCL6 expression may contribute to the impaired GC response.
Collapse
|
16
|
Qian F, Hu Q, Tian Y, Wu J, Li D, Tao M, Qin L, Shen B, Xie Y. ING4 suppresses hepatocellular carcinoma via a NF-κB/miR-155/FOXO3a signaling axis. Int J Biol Sci 2019; 15:369-385. [PMID: 30745827 PMCID: PMC6367549 DOI: 10.7150/ijbs.28422] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
The tumor suppressor ING4 has been shown to be reduced in human HCC. The alteration of ING4 contributes to HCC progression. However, its effect in HCC and the potential mechanism is largely unclear. Herein, we found that downregulation of ING4 in HCC tumor tissues was closely associated with cancer staging, tumor size and vascular invasion. Lentivirus-mediated ING4 overexpression significantly inhibited proliferation, migration and invasion, and induced cell cycle G1 phase arrest and apoptosis in MHCC97H human HCC cells. Moreover, overexpression of ING4 dramatically suppressed MHCC97H tumor cell growth and metastasis to lung in vivo in athymic BALB/c nude mice. Mechanistic studies revealed that overexpression of ING4 markedly increased expression of FOXO3a both at the mRNA and protein level as well as enhanced nuclear level and transcriptional activity of FOXO3a in MHCC97H tumor cells. In addition, ING4 repressed transcriptional activity of NF-κB and expression of miR-155 targeting FOXO3a. Knockdown of ING4 exhibited opposing effects in MHCC97L human HCC cells. Interestingly, knockdown of FOXO3a attenuated not only ING4-elicited tumor suppression but also ING4-mediated regulatory effect on FOXO3a downstream targets, confirming that FOXO3a is involved in ING4-directed tumor-inhibitory effect in HCC. Overexpression of miR-155 attenuated ING4-induced upregulation of FOXO3a, whereas inhibition of miR-155 blunted ING4 knockdown-induced reduction of FOXO3a. Furthermore, inhibition of NF-κB markedly impaired ING4 knockdown-induced upregulation of miR-155 and downregulation of FOXO3a. Taken together, our study provided the first compelling evidence that ING4 can suppress human HCC growth and metastasis to a great extent via a NF-κB/miR-155/FOXO3a pathway.
Collapse
Affiliation(s)
- Fuliang Qian
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Qingqing Hu
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yali Tian
- Department of Oncology, Suzhou Science & Technology Town Hospital, Suzhou 215153, China
| | - Jie Wu
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Dapeng Li
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Min Tao
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lei Qin
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Bairong Shen
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Yufeng Xie
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
17
|
Tang L, Peng YZ, Li CG, Jiang HW, Mei H, Hu Y. Prognostic and Clinicopathological Significance of MiR-155 in Hematologic Malignancies: A Systematic Review and Meta-analysis. J Cancer 2019; 10:654-664. [PMID: 30719163 PMCID: PMC6360418 DOI: 10.7150/jca.28537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/05/2018] [Indexed: 12/24/2022] Open
Abstract
Background: Aberrant miR-155 expression has been reported in various types of hematologic malignancies. However, the prognostic and clinicopathological value of miR-155 remains unclear. Here, we performed this systemic review and meta-analysis to comprehensively evaluate the prognostic and clinicopathological significance of miR-155 expression in hematologic malignancies. Methods: We systematically searched the PubMed, EMBASE, ISI Web of Science, Cochrane library databases and OVID to identify eligible studies published from Jan 1, 2008 to Aug 1, 2018. The pooled hazard ratios (HRs) and odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were used to detect the prognostic and clinicopathological role of miR-155 in hematologic malignancies. Results: A total of 18 studies including 2316 patients were enrolled in the present meta-analysis, indicating significant association between elevated miR-155 expression and poor overall survival (OS) in 2114 patients (pooled HR = 1.72, 95%CI [1.50-1.97], p<0.001). Elevated miR-155 expression level was related to shorter event free survival (EFS, pooled HR = 1.55, 95%CI [0.94-2.57], P=0.002), disease free survival (DFS, pooled HR = 1.38, 95%CI [1.13-1.68], P=0.001), progress free survival (PFS, pooled HR = 1.58, 95%CI [1.06-2.35], p<0.001) and treatment free survival (TFS, pooled HR = 1.67, 95%CI [1.16-2.39], P=0.006). Additionally, overexpression of miR-155 was found to be significantly related to FLT3/ITD presence (OR=4.751, 95%CI [3.229-6.990], P<0.001), more WT1 mutation (OR=2.090, 95%CI [1.240-3.522], P=0.006) and less CEBPA mutation (OR=0.477, 95%CI [0.286-0.794], P=0.004) in 552 AML patients. Conclusion: MiR-155 expression was found to be associated with several leukemia-related phenotype and poor prognosis in hematologic malignancies. Therefore, miR-155 overexpression might be a convinced unfavorable prognostic indicator that helps the clinical decision-making process.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei clinical medical center of cell therapy for neoplastic disease
| | - Yi-Zhong Peng
- Institute of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng-Gong Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei clinical medical center of cell therapy for neoplastic disease
| | - Hui-Wen Jiang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei clinical medical center of cell therapy for neoplastic disease
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei clinical medical center of cell therapy for neoplastic disease.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei clinical medical center of cell therapy for neoplastic disease.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
18
|
Anatomical site as a parameter in the predictive model of diffuse large B cell lymphoma. Leuk Res 2018; 76:112-113. [PMID: 30473330 DOI: 10.1016/j.leukres.2018.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 12/30/2022]
|
19
|
Solé C, Arnaiz E, Lawrie CH. MicroRNAs as Biomarkers of B-cell Lymphoma. Biomark Insights 2018; 13:1177271918806840. [PMID: 30349178 PMCID: PMC6195009 DOI: 10.1177/1177271918806840] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
B-cell lymphomas represent a diverse group of neoplasms classified primarily by histopatholgy and are often challenging to accurately diagnose. Despite having been recognized less than 20 years ago, microRNAs (miRNAs) have emerged as one of the most promising class of cancer molecular biomarkers and are particularly attractive as they can be readily detected in formalin-fixed paraffin-embedded biopsy material and biological fluids such as blood. Many of the identified B-cell lymphoma miRNA biomarkers also play crucial regulatory roles in normal B-cell development. Below we consider the identity, function, and biomarker potential of miRNAs in B-cell lymphoma and most importantly the barriers that remain to be overcome if they are really to become part of routine clinical practice.
Collapse
Affiliation(s)
- Carla Solé
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - Esther Arnaiz
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - Charles H Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain.,Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, UK.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
20
|
Yun J, Yeo IJ, Hwang CJ, Choi DY, Im HS, Kim JY, Choi WR, Jung MH, Han SB, Hong JT. Estrogen deficiency exacerbates Aβ-induced memory impairment through enhancement of neuroinflammation, amyloidogenesis and NF-ĸB activation in ovariectomized mice. Brain Behav Immun 2018; 73:282-293. [PMID: 29782911 DOI: 10.1016/j.bbi.2018.05.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/27/2018] [Accepted: 05/17/2018] [Indexed: 12/23/2022] Open
Abstract
Estrogen is well known to have a preventative effect in Alzheimer's disease (AD) pathology. Several studies have demonstrated that nuclear factor kappa-B (NF-ĸB) can contribute to the effects of estrogen on the development of AD. We investigated whether NF-ĸB affects amyloid-beta (Aβ)-induced memory impairment in an estrogen-lacking condition. In the present study, nine-week-old Institute cancer research (ICR) mice were ovariectomized to block estrogen stimulation. Ten weeks after the ovariectomization, mice were administered with Aβ (300 pmol) via intracerebroventricular (ICV) infusion for 2 weeks. Memory impairment, neuroinflammatory protein expression, and amyloidogenic pathways were then measured. Ovariectomized mice demonstrated severe memory impairment, Aβ accumulation, neprilysin downregulation, and activation of NF-ĸB signaling compared to sham-control mice. In vitro experiments demonstrated that β-estradiol (10 μM) inhibited Aβ (1 μM)-induced neuroinflammation in microglial BV-2 cells and prevented Aβ-induced cell death in primary cultured neuronal cells. As in in vivo experiments, NF-ĸB activation was significantly upregulated in in vitro experiments. Furthermore β-estradiol treatment inhibited NF-ĸB activation in both of microglial BV-2 cells and cultured neuronal cells. These findings suggest that estrogen may protect against memory impairment through the regulation of Aβ accumulation and neurogenic inflammation by inhibiting NF-κB activity.
Collapse
Affiliation(s)
- Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea; College of Pharmacy, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, 280, Daehak-Ro, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| | - Hyung-Sik Im
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Ji Youg Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Won Rak Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Myung Hee Jung
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| |
Collapse
|
21
|
Zhao S, Fang S, Liu Y, Li X, Liao S, Chen J, Liu J, Zhao L, Li H, Zhou W, Shen W, Dong X, Xiang R, Wang L, Zhao Y. The long non-coding RNA NONHSAG026900 predicts prognosis as a favorable biomarker in patients with diffuse large B-cell lymphoma. Oncotarget 2018; 8:34374-34386. [PMID: 28423735 PMCID: PMC5470975 DOI: 10.18632/oncotarget.16163] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/24/2017] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs are known to be involved in cancer progression, but their biological functions and prognostic values are still largely unexplored in diffuse large B-cell lymphoma. In this study, long non-coding RNAs expression was characterized in 1,403 samples including normal and diffuse large B-cell lymphoma by repurposing 7 microarray datasets. Compared with any stage of normal B cells, NONHSAG026900 expression was significantly decreased in tumor samples. And in germinal center B-cell subtype, the significantly higher expression of NONHSAG026900 indicated it was a favorable prognosis biomarker. Then the prognostic power of NONHSAG026900 was validated with another independent dataset and NONHSAG026900 improved the predictive power of International Prognostic Index as an independent factor. Moreover, functional prediction and validation demonstrated that NONHSAG026900 could inhibit cell cycle activity to restrain tumor proliferation. These findings identified NONHSAG026900 as a novel prognostic biomarker and offered a new therapeutic target for diffuse large B-cell lymphoma patients.
Collapse
Affiliation(s)
- Shuangtao Zhao
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shuangsang Fang
- The Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Yanhua Liu
- The School of Medicine, Nankai University, Tianjin, China.,The Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin, China.,The Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin, China
| | - Xixi Li
- The School of Medicine, Nankai University, Tianjin, China.,Department of Pathology, Nankai University, Tianjin, China
| | - Shengyou Liao
- The Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Jinwen Chen
- The Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Jingjia Liu
- The Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Lianhe Zhao
- The Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- The Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Wei Zhou
- The School of Medicine, Nankai University, Tianjin, China.,The Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin, China.,The Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin, China
| | - Wenzhi Shen
- The School of Medicine, Nankai University, Tianjin, China.,The Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin, China.,The Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin, China
| | - Xiaoli Dong
- The School of Medicine, Nankai University, Tianjin, China.,The Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin, China.,The Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin, China
| | - Rong Xiang
- The School of Medicine, Nankai University, Tianjin, China.,The Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin, China.,The Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin, China
| | - Luhua Wang
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Zhao
- The Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Unexpected positive control of NFκB and miR-155 by DGKα and ζ ensures effector and memory CD8+ T cell differentiation. Oncotarget 2018; 7:33744-64. [PMID: 27014906 PMCID: PMC5085116 DOI: 10.18632/oncotarget.8164] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/04/2016] [Indexed: 11/25/2022] Open
Abstract
Signals from the T-cell receptor (TCR) and γ-chain cytokine receptors play crucial roles in initiating activation and effector/memory differentiation of CD8 T-cells. We report here that simultaneous deletion of both diacylglycerol kinase (DGK) α and ζ (DKO) severely impaired expansion of CD8 effector T cells and formation of memory CD8 T-cells after Listeria monocytogenes infection. Moreover, ablation of both DGKα and ζ in preformed memory CD8 T-cells triggered death and impaired homeostatic proliferation of these cells. DKO CD8 T-cells were impaired in priming due to decreased expression of chemokine receptors and migration to the draining lymph nodes. Moreover, DKO CD8 T-cells were unexpectedly defective in NFκB-mediated miR-155 transcript, leading to excessive SOCS1 expression and impaired γ-chain cytokine signaling. Our data identified a DGK-NFκB-miR-155-SOCS1 axis that bridges TCR and γ-chain cytokine signaling for robust CD8 T-cell primary and memory responses to bacterial infection.
Collapse
|
23
|
Solé C, Larrea E, Di Pinto G, Tellaetxe M, Lawrie CH. miRNAs in B-cell lymphoma: Molecular mechanisms and biomarker potential. Cancer Lett 2017; 405:79-89. [DOI: 10.1016/j.canlet.2017.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/06/2017] [Accepted: 07/14/2017] [Indexed: 12/16/2022]
|
24
|
Yu L, Li L, Medeiros LJ, Young KH. NF-κB signaling pathway and its potential as a target for therapy in lymphoid neoplasms. Blood Rev 2017; 31:77-92. [PMID: 27773462 PMCID: PMC5382109 DOI: 10.1016/j.blre.2016.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 01/01/2023]
Abstract
The NF-κB pathway, a critical regulator of apoptosis, plays a key role in many normal cellular functions. Genetic alterations and other mechanisms leading to constitutive activation of the NF-κB pathway contribute to cancer development, progression and therapy resistance by activation of downstream anti-apoptotic pathways, unfavorable microenvironment interactions, and gene dysregulation. Not surprisingly, given its importance to normal and cancer cell function, the NF-κB pathway has emerged as a target for therapy. In the review, we present the physiologic role of the NF-κB pathway and recent advances in better understanding of the pathologic roles of the NF-κB pathway in major types of lymphoid neoplasms. We also provide an update of clinical trials that use NF-κB pathway inhibitors. These trials are exploring the clinical efficiency of combining NF-κB pathway inhibitors with various agents that target diverse mechanisms of action with the goal being to optimize novel therapeutic opportunities for targeting oncogenic pathways to eradicate cancer cells.
Collapse
Affiliation(s)
- Li Yu
- Department of Hematopathology, The University of Texas MD, Anderson Cancer Center, 6 Houston, TX, USA
- Department of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD, Anderson Cancer Center, 6 Houston, TX, USA
| | - Ken H. Young
- Department of Hematopathology, The University of Texas MD, Anderson Cancer Center, 6 Houston, TX, USA
- The University of Texas Graduate School of Biomedical Science, Houston, TX, USA
| |
Collapse
|
25
|
Vanoni S, Tsai YT, Waddell A, Waggoner L, Klarquist J, Divanovic S, Hoebe K, Steinbrecher KA, Hogan SP. Myeloid-derived NF-κB negative regulation of PU.1 and c/EBP-β-driven pro-inflammatory cytokine production restrains LPS-induced shock. Innate Immun 2017; 23:175-187. [PMID: 27932520 PMCID: PMC5563821 DOI: 10.1177/1753425916681444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sepsis is a life-threatening event predominantly caused by Gram-negative bacteria. Bacterial infection causes a pronounced macrophage (MΦ) and dendritic cell activation that leads to excessive pro-inflammatory cytokine IL-1β, IL-6 and TNF-α production (cytokine storm), resulting in endotoxic shock. Previous experimental studies have revealed that inhibiting NF-κB signaling ameliorates disease symptoms; however, the contribution of myeloid p65 in endotoxic shock remains elusive. In this study, we demonstrate increased mortality in mice lacking p65 in the myeloid lineage (p65Δmye) compared with wild type mice upon ultra-pure LPS challenge. We show that increased susceptibility to LPS-induced shock was associated with elevated serum level of IL-1β and IL-6. Mechanistic analyses revealed that LPS-induced pro-inflammatory cytokine production was ameliorated in p65-deficient bone marrow-derived MΦs; however, p65-deficient 'activated' peritoneal MΦs exhibited elevated IL-1β and IL-6. We show that the elevated pro-inflammatory cytokine secretion was due, in part, to increased accumulation of IL-1β mRNA and protein in activated inflammatory MΦs. The increased IL-1β was linked with heightened binding of PU.1 and CCAAT/enhancer binding protein-β to Il1b and Il6 promoters in activated inflammatory MΦs. Our data provide insight into a role for NF-κB in the negative regulation of pro-inflammatory cytokines in myeloid cells.
Collapse
Affiliation(s)
- Simone Vanoni
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Yi Ting Tsai
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Amanda Waddell
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Lisa Waggoner
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Jared Klarquist
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Senad Divanovic
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Kasper Hoebe
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Kris A. Steinbrecher
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| | - Simon P. Hogan
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229
| |
Collapse
|
26
|
Wang H, Men CP. Correlation of Increased Expression of MicroRNA-155 in Bladder Cancer and Prognosis. Lab Med 2016; 46:118-22. [PMID: 25918190 DOI: 10.1309/lmwr9cea2k2xvsox] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To investigate the expression level and clinical significance of microRNA-155 (miR-155) in bladder cancer. METHODS We collected 102 pairs of tissue specimens from patients with primary bladder cancer and adjacent normal bladder specimens between March 2008 and May 2013. Quantitative real-time polymerase chain reaction (QRT-PCR) was performed to detect the expression levels of miR-155. We performed univariate survival analyses using the Kaplan-Meier method and assessed statistical significance between survival curves via the log-rank test. RESULTS The mean (SD) level of miR-155 expression in tissues with bladder cancer was 13.78 (4.80), which was significantly higher on average than that in adjacent normal bladder tissues (6.14 [2.26], P <.001). Progression-free survival (PFS) was significantly lower for patients with bladder cancer who had a high expression level of miR-155 (5-year survival rate, 23.0%) than those with a low miR-155 expression level (5-year survival rate, 48.9%; P <.001). CONCLUSIONS We found that elevated expression of miR-155 is correlated with a poor outcome for patients with bladder cancer; this suggests that miR-155 is a potential biomarker for bladder cancer prognosis.
Collapse
Affiliation(s)
- Hui Wang
- Department of Urology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Chang-Ping Men
- Department of Urology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
27
|
Fernandez-Mercado M, Manterola L, Lawrie CH. MicroRNAs in Lymphoma: Regulatory Role and Biomarker Potential. Curr Genomics 2016; 16:349-58. [PMID: 27047255 PMCID: PMC4763973 DOI: 10.2174/1389202916666150707160147] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 12/19/2022] Open
Abstract
Although it is now evident that microRNAs (miRNAs) play a critical regulatory role in many, if not all, pathological and physiological processes, remarkably they have only formally been recognized for less than fifteen years. These endogenously produced short non-coding RNAs have created a new paradigm of gene control and have utility as both novel biomarkers of cancer and as potential therapeutics. In this review we consider the role of miRNAs in lymphoid biology both under physiological (i.e. lymphopoiesis) and malignant (i.e. lymphomagenesis) conditions. In addition to the functional significance of aberrant miRNA expression in lymphomas we discuss their use as novel biomarkers, both as a in situ tumour biomarker and as a non-invasive surrogate for the tumour by testing miRNAs in the blood of patients. Finally we consider the use of these molecules as potential therapeutic agents for lymphoma (and other cancer) patients and discuss some of the hurdles yet to be overcome in order to translate this potential into clinical practice
Collapse
Affiliation(s)
| | - Lorea Manterola
- Oncology area, Biodonostia Research Institute, San Sebastián, Spain
| | - Charles H Lawrie
- Oncology area, Biodonostia Research Institute, San Sebastián, Spain; ; Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford, UK;; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
28
|
Atarod S, Ahmed MM, Lendrem C, Pearce KF, Cope W, Norden J, Wang XN, Collin M, Dickinson AM. miR-146a and miR-155 Expression Levels in Acute Graft-Versus-Host Disease Incidence. Front Immunol 2016; 7:56. [PMID: 27014257 PMCID: PMC4782155 DOI: 10.3389/fimmu.2016.00056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 02/05/2016] [Indexed: 12/02/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for numerous hematological malignancies. However, acute graft-versus-host disease (aGVHD) is still the major complication causing mortality. MicroRNAs (miRNAs) play a significant role in inflammation and have potential as prognostic and diagnostic biomarkers. This study investigated the role of two immune-specific miRNAs (miR-146a and miR-155) as biomarkers for aGVHD incidence in the peripheral blood of allo-HSCT patients prior to disease onset. The study showed that miR-146a and its statistical interaction with miR-155 at day +28 were predictive of aGVHD incidence. Interestingly, the expression levels of miR-146a and miR-155 negatively correlated with the transcription factor, SPI1 (PU.1gene) mRNA expression.
Collapse
Affiliation(s)
- Sadaf Atarod
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Mohammed Mahid Ahmed
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Clare Lendrem
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Kim Frances Pearce
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Wei Cope
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Jean Norden
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Xiao-Nong Wang
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Matthew Collin
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| | - Anne Mary Dickinson
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , UK
| |
Collapse
|
29
|
Osaka E, Kelly AD, Spentzos D, Choy E, Yang X, Shen JK, Yang P, Mankin HJ, Hornicek FJ, Duan Z. MicroRNA-155 expression is independently predictive of outcome in chordoma. Oncotarget 2016; 6:9125-39. [PMID: 25823817 PMCID: PMC4496207 DOI: 10.18632/oncotarget.3273] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/07/2015] [Indexed: 12/24/2022] Open
Abstract
Background Chordoma pathogenesis remains poorly understood. In this study, we aimed to evaluate the relationships between microRNA-155 (miR-155) expression and the clinicopathological features of chordoma patients, and to evaluate the functional role of miR-155 in chordoma. Methods The miRNA expression profiles were analyzed using miRNA microarray assays. Regulatory activity of miR-155 was assessed using bioinformatic tools. miR-155 expression levels were validated by reverse transcription-polymerase chain reaction. The relationships between miR-155 expression and the clinicopathological features of chordoma patients were analyzed. Proliferative, migratory and invasive activities were assessed by MTT, wound healing, and Matrigel invasion assays, respectively. Results The miRNA microarray assay revealed miR-155 to be highly expressed and biologically active in chordoma. miR-155 expression in chordoma tissues was significantly elevated, and this expression correlated significantly with disease stage (p = 0.036) and the presence of metastasis (p = 0.035). miR-155 expression also correlated significantly with poor outcomes for chordoma patients (hazard ratio, 5.32; p = 0.045). Inhibition of miR-155 expression suppressed proliferation, and the migratory and invasive activities of chordoma cells. Conclusions We have shown miR-155 expression to independently affect prognosis in chordoma. These results collectively indicate that miR-155 expression may serve not only as a prognostic marker, but also as a potential therapeutic target in chordoma.
Collapse
Affiliation(s)
- Eiji Osaka
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Andrew D Kelly
- Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Dimitrios Spentzos
- Division of Hematology/Oncology, Sarcoma Program, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Edwin Choy
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xiaoqian Yang
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jacson K Shen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pei Yang
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Henry J Mankin
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
30
|
Zhao S, Dong X, Shen W, Ye Z, Xiang R. Machine learning-based classification of diffuse large B-cell lymphoma patients by eight gene expression profiles. Cancer Med 2016; 5:837-52. [PMID: 26869285 PMCID: PMC4864813 DOI: 10.1002/cam4.650] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/22/2015] [Accepted: 01/03/2016] [Indexed: 12/12/2022] Open
Abstract
Gene expression profiling (GEP) had divided the diffuse large B‐cell lymphoma (DLBCL) into molecular subgroups: germinal center B‐cell like (GCB), activated B‐cell like (ABC), and unclassified (UC) subtype. However, this classification with prognostic significance was not applied into clinical practice since there were more than 1000 genes to detect and interpreting was difficult. To classify cancer samples validly, eight significant genes (MYBL1, LMO2, BCL6, MME, IRF4, NFKBIZ, PDE4B, and SLA) were selected in 414 patients treated with CHOP/R‐CHOP chemotherapy from Gene Expression Omnibus (GEO) data sets. Cutoffs for each gene were obtained using receiver–operating characteristic curves (ROC) new model based on the support vector machine (SVM) estimated the probability of membership into one of two subgroups: GCB and Non‐GCB (ABC and UC). Furtherly, multivariate analysis validated the model in another two cohorts including 855 cases in all. As a result, patients in the training and validated cohorts were stratified into two subgroups with 94.0%, 91.0%, and 94.4% concordance with GEP, respectively. Patients with Non‐GCB subtype had significantly poorer outcomes than that with GCB subtype, which agreed with the prognostic power of GEP classification. Moreover, the similar prognosis received in the low (0–2) and high (3–5) IPI scores group demonstrated that the new model was independent of IPI as well as GEP method. In conclusion, our new model could stratify DLBCL patients with CHOP/R‐CHOP regimen matching GEP subtypes effectively.
Collapse
Affiliation(s)
- Shuangtao Zhao
- School of Medicine, Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin, 300071, China.,Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin, 300071, China.,Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin, 300071, China
| | - Xiaoli Dong
- School of Medicine, Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin, 300071, China.,Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Wenzhi Shen
- School of Medicine, Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin, 300071, China.,Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhen Ye
- School of Medicine, Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin, 300071, China.,Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Rong Xiang
- School of Medicine, Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin, 300071, China.,Collaborative Innovation Center for Biotherapy, Nankai University, 94 Weijin Road, Tianjin, 300071, China.,Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin, 300071, China
| |
Collapse
|
31
|
Ranganath P. MicroRNA-155 and Its Role in Malignant Hematopoiesis. Biomark Insights 2015; 10:95-102. [PMID: 26523117 PMCID: PMC4620936 DOI: 10.4137/bmi.s27676] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/22/2022] Open
Abstract
MicroRNA-155 (miR-155) is a multifunctional molecule involved in both normal and malignant hematopoiesis. It has been found to be involved in the pathogenesis of many different hematological malignancies with either an oncogenic or a tumor-repressor effect, depending on the nature of the cell and the type of malignancy. In particular, it has been strongly implicated in the causation of diffuse large B-cell lymphomas. This review focuses on the molecular interactions of miR-155, its oncogenic mechanisms, and its potential as an effective therapeutic target for the associated malignancies.
Collapse
Affiliation(s)
- Prajnya Ranganath
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India. ; Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
32
|
Khamaneh AM, Alipour MR, Sheikhzadeh Hesari F, Ghadiri Soufi F. A signature of microRNA-155 in the pathogenesis of diabetic complications. J Physiol Biochem 2015; 71:301-9. [PMID: 25929727 DOI: 10.1007/s13105-015-0413-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/21/2015] [Indexed: 11/26/2022]
Abstract
The current study was designed to explore the potential involvement of miR-155 in the pathogenesis of diabetes complications. Male rats were divided into control and diabetic groups (n = 6). Type 2 diabetes was induced by a single-dose injection of nicotinamide (110 mg/kg; intraperitoneal (i.p.)), 15 min before injection of streptozotocin (STZ; 50 mg/kg; i.p.) in 12-h fasted rats. Two months after induction of diabetes, the rats were sacrificed for subsequent measurements. The nuclear factor kappa B (NF-κB) activity was higher in diabetic peripheral blood mononuclear cells (PBMCs), aorta, heart, kidney, liver, and sciatic nerve, than the control counterparts. Also, apoptosis rate was increased in these tissues, except the aorta. NF-κB messenger RNA (mRNA) expression level was higher in the kidney, heart, PBMCs, and sciatic nerve of diabetic rats than their control counterparts. Except the liver, the miR-155 expression level was significantly decreased in diabetic kidney, heart, aorta, PBMCs, and sciatic nerve versus the controls. Moreover, the expression of miR-155 was negatively correlated with NF-κB activity and apoptosis rate. These results suggest that changes in the expression of miR-155 may participate in the pathogenesis of diabetes-related complications, but causal relationship between miR-155 dysregulation and diabetic complications is unknown.
Collapse
Affiliation(s)
- Amir Mahdi Khamaneh
- School of advanced medical sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | |
Collapse
|
33
|
Zhang H, Goudeva L, Immenschuh S, Schambach A, Skokowa J, Eiz-Vesper B, Blasczyk R, Figueiredo C. miR-155 is associated with the leukemogenic potential of the class IV granulocyte colony-stimulating factor receptor in CD34⁺ progenitor cells. Mol Med 2015; 20:736-46. [PMID: 25730818 DOI: 10.2119/molmed.2014.00146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/15/2014] [Indexed: 11/06/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) is a major regulator of granulopoiesis on engagement with the G-CSF receptor (G-CSFR). The truncated, alternatively spliced, class IV G-CSFR (G-CSFRIV) has been associated with defective differentiation and relapse risk in pediatric acute myeloid leukemia (AML) patients. However, the detailed biological properties of G-CSFRIV in human CD34(+) hematopoietic stem and progenitor cells (HSPCs) and the potential leukemogenic mechanism of this receptor remain poorly understood. In the present study, we observed that G-CSFRIV-overexpressing (G-CSFRIV(+)) HSPCs demonstrated an enhanced proliferative and survival capacity on G-CSF stimulation. Cell cycle analyses showed a higher frequency of G-CSFRIV(+) cells in the S and G2/M phase. Also, apoptosis rates were significantly lower in G-CSFRIV(+) HSPCs. These findings were shown to be associated with a sustained Stat5 activation and elevated miR-155 expression. In addition, G-CSF showed to further induce G-CSFRIV and miR-155 expression of peripheral blood mononuclear cells isolated from AML patients. A Stat5 pharmacological inhibitor or ribonucleic acid (RNA) interference-mediated silencing of the expression of miR-155 abrogated the aberrant proliferative capacity of the G-CSFRIV(+) HSPCs. Hence, the dysregulation of Stat5/miR-155 pathway in the G-CSFRIV(+) HSPCs supports their leukemogenic potential. Specific miRNA silencing or the inhibition of Stat5-associated pathways might contribute to preventing the risk of leukemogenesis in G-CSFRIV(+) HSPCs. This study may promote the development of a personalized effective antileukemia therapy, in particular for the patients exhibiting higher expression levels of G-CSFRIV, and further highlights the necessity of pre-screening the patients for G-CSFR isoforms expression patterns before G-CSF administration.
Collapse
Affiliation(s)
- HaiJiao Zhang
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Lilia Goudeva
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Excellence Cluster "From Regenerative Biology to Reconstructive Therapies," REBIRTH, Hannover Medical School, Hannover, Germany
| | - Julia Skokowa
- Department of Oncology, Hematology, Immunology, Rheumatology and Pulmonology, University Hospital of Tübingen, Tübingen, Germany
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany.,Excellence Cluster "From Regenerative Biology to Reconstructive Therapies," REBIRTH, Hannover Medical School, Hannover, Germany
| | - Constança Figueiredo
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany.,Excellence Cluster "From Regenerative Biology to Reconstructive Therapies," REBIRTH, Hannover Medical School, Hannover, Germany
| |
Collapse
|
34
|
Geraci NS, Tan JC, McDowell MA. Characterization of microRNA expression profiles in Leishmania-infected human phagocytes. Parasite Immunol 2015; 37:43-51. [PMID: 25376316 DOI: 10.1111/pim.12156] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/29/2014] [Indexed: 12/14/2022]
Abstract
Leishmania are intracellular protozoa that influence host immune responses eliciting parasite species-specific pathologies. MicroRNAs (miRNAs) are short single-stranded ribonucleic acids that complement gene transcripts to block protein translation and have been shown to regulate immune system molecular mechanisms. Human monocyte-derived dendritic cells (DC) and macrophages (MP) were infected in vitro with Leishmania major or Leishmania donovani parasites. Small RNAs were isolated from total RNA and sequenced to identify mature miRNAs associated with leishmanial infections. Normalized sequence read count profiles revealed a global downregulation in miRNA expression among host cells following infection. Most identified miRNAs were expressed at higher levels in L. donovani-infected cells relative to L. major-infected cells. Pathway enrichments using in silico-predicted gene targets of differentially expressed miRNAs showed evidence of potentially universal MAP kinase signalling pathway effects. Whereas JAK-STAT and TGF-β signalling pathways were more highly enriched using targets of miRNAs upregulated in L. donovani-infected cells, these data provide evidence in support of a selective influence on host cell miRNA expression and regulation in response to differential Leishmania infections.
Collapse
Affiliation(s)
- N S Geraci
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | | | | |
Collapse
|
35
|
Karnati HK, Raghuwanshi S, Sarvothaman S, Gutti U, Saladi RGV, Komati JK, Tummala PR, Gutti RK. microRNAs: Key Players in Hematopoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 887:171-211. [DOI: 10.1007/978-3-319-22380-3_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
MicroRNAs in B-cell lymphomas: how a complex biology gets more complex. Leukemia 2014; 29:1004-17. [PMID: 25541152 DOI: 10.1038/leu.2014.351] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) represent important regulators of gene expression besides transcriptional control. miRNA regulation can be involved in the cell developmental fate decisions, but can also have more subtle roles in buffering stochastic fluctuations in gene expression. They participate in pathways fundamental to B-cell development like B-cell receptor (BCR) signalling, B-cell migration/adhesion, cell-cell interactions in immune niches, and the production and class-switching of immunoglobulins. miRNAs influence B-cell maturation, generation of pre-, marginal zone, follicular, B1, plasma and memory B cells. In this review, we discuss miRNAs with essential functions in malignant B-cell development (such as miR-150, miR-155, miR-21, miR-34a, miR-17-92 and miR-15-16). We also put these miRNAs in the context of normal B-cell differentiation, as this is intimately connected to neoplastic B-cell development. We review miRNAs' role in the most common B-cell malignancies, including chronic lymphocytic leukaemia (CLL), diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL) and mantle cell lymphoma (MCL). We focus on miR-contribution to the regulation of important signalling pathways (such as NF-κB, PI3K/AKT and TGF-β), BCR signalling and its modulators (such as PTEN, SHIP-1, ZAP-70, GAB1 and BTK), anti- and pro-apoptotic proteins (such as BCL2, MCL1, TCL1, BIM, p53 and SIRT1) and transcription factors (such as MYC, MYB, PU.1, FOXP1 and BCL6). We also discuss the association of miRNAs' expression levels with the patients' survival and response to therapy, summarizing their potential use as predictive and prognostic markers. Importantly, the targeting of miRNAs (like use of anti-miR-155 or miR-34a mimic) could provide a novel therapeutic approach as evidenced by tumour regression in xenograft mouse models and initial promising data from clinical trials.
Collapse
|
37
|
Ji WG, Zhang XD, Sun XD, Wang XQ, Chang BP, Zhang MZ. miRNA-155 modulates the malignant biological characteristics of NK/T-cell lymphoma cells by targeting FOXO3a gene. ACTA ACUST UNITED AC 2014; 34:882-888. [DOI: 10.1007/s11596-014-1368-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/29/2014] [Indexed: 01/06/2023]
|
38
|
Trécul A, Morceau F, Gaigneaux A, Schnekenburger M, Dicato M, Diederich M. Valproic acid regulates erythro-megakaryocytic differentiation through the modulation of transcription factors and microRNA regulatory micro-networks. Biochem Pharmacol 2014; 92:299-311. [DOI: 10.1016/j.bcp.2014.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 10/24/2022]
|
39
|
Bandyopadhyay S, Long ME, Allen LAH. Differential expression of microRNAs in Francisella tularensis-infected human macrophages: miR-155-dependent downregulation of MyD88 inhibits the inflammatory response. PLoS One 2014; 9:e109525. [PMID: 25295729 PMCID: PMC4190180 DOI: 10.1371/journal.pone.0109525] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/08/2014] [Indexed: 12/22/2022] Open
Abstract
Francisella tularensis is a Gram-negative, facultative intracellular pathogen that replicates in the cytosol of macrophages and is the causative agent of the potentially fatal disease tularemia. A characteristic feature of F. tularensis is its limited proinflammatory capacity, but the mechanisms that underlie the diminished host response to this organism are only partially defined. Recently, microRNAs have emerged as important regulators of immunity and inflammation. In the present study we investigated the microRNA response of primary human monocyte-derived macrophages (MDMs) to F. tularensis and identified 10 microRNAs that were significantly differentially expressed after infection with the live vaccine strain (LVS), as judged by Taqman Low Density Array profiling. Among the microRNAs identified, miR-155 is of particular interest as its established direct targets include components of the Toll-like receptor (TLR) pathway, which is essential for innate defense and proinflammatory cytokine production. Additional studies demonstrated that miR-155 acted by translational repression to downregulate the TLR adapter protein MyD88 and the inositol 5′-phosphatase SHIP-1 in MDMs infected with F. tularensis LVS or the fully virulent strain Schu S4. Kinetic analyses indicated that miR-155 increased progressively 3-18 hours after infection with LVS or Schu S4, and target proteins disappeared after 12–18 hours. Dynamic modulation of MyD88 and SHIP-1 was confirmed using specific pre-miRs and anti-miRs to increase and decrease miR-155 levels, respectively. Of note, miR-155 did not contribute to the attenuated cytokine response triggered by F. tularensis phagocytosis. Instead, this microRNA was required for the ability of LVS-infected cells to inhibit endotoxin-stimulated TNFα secretion 18–24 hours after infection. Thus, our data are consistent with the ability of miR-155 to act as a global negative regulator of the inflammatory response in F. tularensis-infected human macrophages.
Collapse
Affiliation(s)
- Sarmistha Bandyopadhyay
- Inflammation Program, University of Iowa, Coralville, Iowa, United States of America
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Veteran's Administration Medical Center, Iowa City, Iowa, United States of America
| | - Matthew E. Long
- Inflammation Program, University of Iowa, Coralville, Iowa, United States of America
- Graduate Training Program in Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Lee-Ann H. Allen
- Inflammation Program, University of Iowa, Coralville, Iowa, United States of America
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Graduate Training Program in Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa, United States of America
- Veteran's Administration Medical Center, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
40
|
De Tullio G, De Fazio V, Sgherza N, Minoia C, Serratì S, Merchionne F, Loseto G, Iacobazzi A, Rana A, Petrillo P, Silvestris N, Iacopino P, Guarini A. Challenges and opportunities of microRNAs in lymphomas. Molecules 2014; 19:14723-81. [PMID: 25232701 PMCID: PMC6271734 DOI: 10.3390/molecules190914723] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/22/2014] [Accepted: 08/22/2014] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that control the expression of many target messenger RNAs (mRNAs) involved in normal cell functions (differentiation, proliferation and apoptosis). Consequently their aberrant expression and/or functions are related to pathogenesis of many human diseases including cancers. Haematopoiesis is a highly regulated process controlled by a complex network of molecular mechanisms that simultaneously regulate commitment, differentiation, proliferation, and apoptosis of hematopoietic stem cells (HSC). Alterations on this network could affect the normal haematopoiesis, leading to the development of haematological malignancies such as lymphomas. The incidence of lymphomas is rising and a significant proportion of patients are refractory to standard therapies. Accurate diagnosis, prognosis and therapy still require additional markers to be used for diagnostic and prognostic purpose and evaluation of clinical outcome. The dysregulated expression or function of miRNAs in various types of lymphomas has been associated with lymphoma pathogenesis. Indeed, many recent findings suggest that almost all lymphomas seem to have a distinct and specific miRNA profile and some miRNAs are related to therapy resistance or have a distinct kinetics during therapy. MiRNAs are easily detectable in fresh or paraffin-embedded diagnostic tissue and serum where they are highly stable and quantifiable within the diagnostic laboratory at each consultation. Accordingly they could be specific biomarkers for lymphoma diagnosis, as well as useful for evaluating prognosis or disease response to the therapy, especially for evaluation of early relapse detection and for greatly assisting clinical decisions making. Here we summarize the current knowledge on the role of miRNAs in normal and aberrant lymphopoiesis in order to highlight their clinical value as specific diagnosis and prognosis markers of lymphoid malignancies or for prediction of therapy response. Finally, we discuss their controversial therapeutic role and future applications in therapy by modulating miRNA.
Collapse
Affiliation(s)
- Giacoma De Tullio
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy.
| | - Vincenza De Fazio
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Nicola Sgherza
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Carla Minoia
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Simona Serratì
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Francesca Merchionne
- Haematology and Bone Marrow Transplantation Unit, Antonio Perrino Hospital, Brindisi 72100, Italy
| | - Giacomo Loseto
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Angela Iacobazzi
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Antonello Rana
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Patrizia Petrillo
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Pasquale Iacopino
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| | - Attilio Guarini
- Haematology Unit, National Cancer Research Centre, Istituto Tumori "Giovanni Paolo II", Bari 70124, Italy
| |
Collapse
|
41
|
Gerloff D, Grundler R, Wurm AA, Bräuer-Hartmann D, Katzerke C, Hartmann JU, Madan V, Müller-Tidow C, Duyster J, Tenen DG, Niederwieser D, Behre G. NF-κB/STAT5/miR-155 network targets PU.1 in FLT3-ITD-driven acute myeloid leukemia. Leukemia 2014; 29:535-47. [PMID: 25092144 DOI: 10.1038/leu.2014.231] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/11/2014] [Accepted: 07/21/2014] [Indexed: 01/07/2023]
Abstract
Almost 30% of all acute myeloid leukemias (AML) are associated with an internal tandem duplication (ITD) in the juxtamembrane domain of FMS-like tyrosine kinase 3 receptor (FLT3). Patients with FLT3-ITD mutations tend to have a poor prognosis. MicroRNAs (miRNAs) have a pivotal role in myeloid differentiation and leukemia. MiRNA-155 (MiR-155) was found to be upregulated in FLT3-ITD-associated AMLs. In this study, we discovered that FLT3-ITD signaling induces the oncogenic miR-155. We show in vitro and in vivo that miR-155 expression is regulated by FLT3-ITD downstream targets nuclear factor-κB (p65) and signal transducer and activator of transcription 5 (STAT5). Further, we demonstrate that miR-155 targets the myeloid transcription factor PU.1. Knockdown of miR-155 or overexpression of PU.1 blocks proliferation and induces apoptosis of FLT3-ITD-associated leukemic cells. Our data demonstrate a novel network in which FLT3-ITD signaling induces oncogenic miR-155 by p65 and STAT5 in AML, thereby targeting transcription factor PU.1.
Collapse
Affiliation(s)
- D Gerloff
- Division of Hematology and Oncology, Leipzig University Hospital, Leipzig, Germany
| | - R Grundler
- Department of Internal Medicine III, Technical University Munich, Munich, Germany
| | - A A Wurm
- Division of Hematology and Oncology, Leipzig University Hospital, Leipzig, Germany
| | - D Bräuer-Hartmann
- Division of Hematology and Oncology, Leipzig University Hospital, Leipzig, Germany
| | - C Katzerke
- Division of Hematology and Oncology, Leipzig University Hospital, Leipzig, Germany
| | - J-U Hartmann
- Division of Hematology and Oncology, Leipzig University Hospital, Leipzig, Germany
| | - V Madan
- Cancer Science Institute, National University of Singapore, Singapore
| | - C Müller-Tidow
- Department of Medicine IV, Hematology and Oncology, University of Halle, Halle, Germany
| | - J Duyster
- Department of Hematology/Oncology 1, University Medical Center Freiburg, Freiburg, Germany
| | - D G Tenen
- 1] Cancer Science Institute, National University of Singapore, Singapore [2] Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - D Niederwieser
- Division of Hematology and Oncology, Leipzig University Hospital, Leipzig, Germany
| | - G Behre
- Division of Hematology and Oncology, Leipzig University Hospital, Leipzig, Germany
| |
Collapse
|
42
|
Ji S, Li W, Bao L, Han P, Yang W, Ma L, Meng F, Cao B. PU.1 promotes miR-191 to inhibit adipogenesis in 3T3-L1 preadipocytes. Biochem Biophys Res Commun 2014; 451:329-33. [DOI: 10.1016/j.bbrc.2014.07.130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
|
43
|
Xu TP, Zhu CH, Zhang J, Xia R, Wu FL, Han L, Shen H, Liu LX, Shu YQ. MicroRNA-155 Expression has Prognostic Value in Patients with Non-small Cell Lung Cancer and Digestive System Carcinomas. Asian Pac J Cancer Prev 2013; 14:7085-90. [DOI: 10.7314/apjcp.2013.14.12.7085] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
44
|
Deeb SJ, Cox J, Schmidt-Supprian M, Mann M. N-linked glycosylation enrichment for in-depth cell surface proteomics of diffuse large B-cell lymphoma subtypes. Mol Cell Proteomics 2013; 13:240-51. [PMID: 24190977 DOI: 10.1074/mcp.m113.033977] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Global analysis of lymphoma genome integrity and transcriptomes tremendously advanced our understanding of their biology. Technological advances in mass spectrometry-based proteomics promise to complete the picture by allowing the global quantification of proteins and their post-translational modifications. Here we use N-glyco FASP, a recently developed mass spectrometric approach using lectin-enrichment, in conjunction with a super-SILAC approach to quantify N-linked glycoproteins in lymphoma cells. From patient-derived diffuse large B-cell lymphoma cell lines, we mapped 2383 glycosites on 1321 protein groups, which were highly enriched for cell membrane proteins. This N-glyco subproteome alone allowed the segregation of the ABC from the GCB subtypes of diffuse large B-cell lymphoma, which before gene expression studies had been considered one disease entity. Encouragingly, many of the glycopeptides driving the segregation belong to proteins previously characterized as segregators in a deep proteome study of these subtypes (S. J. Deeb et al. MCP 2012 PMID 22442255). This conforms to the high correlation that we observed between the expression level of the glycosites and their corresponding proteins. Detailed examination of glycosites and glycoprotein expression levels uncovered, among other interesting findings, enrichment of transcription factor binding motifs, including known NF-kappa-B related ones. Thus, enrichment of a class of post-translationally modified peptides can classify cancer types as well as reveal cancer specific mechanistic changes.
Collapse
Affiliation(s)
- Sally J Deeb
- Proteomics and Signal Transduction Department, Max-Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
45
|
Pang WJ, Lin LG, Xiong Y, Wei N, Wang Y, Shen QW, Yang GS. Knockdown of PU.1 AS lncRNA inhibits adipogenesis through enhancing PU.1 mRNA translation. J Cell Biochem 2013; 114:2500-12. [PMID: 23749759 DOI: 10.1002/jcb.24595] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 05/14/2013] [Indexed: 12/30/2022]
Abstract
PU.1 is an Ets family transcription factor involved in the myelo-lymphoid differentiation. We have previously demonstrated that PU.1 is also expressed in the adipocyte lineage. However, the expression levels of PU.1 mRNA and protein in preadipocytes do not match the levels in mature adipocytes. PU.1 mRNA level is higher in preadipocytes, whereas its protein is expressed in the adipocytes but not in the preadipocytes. The underlying mechanism remains elusive. Here, we find that miR-155 knockdown or overexpression has no effect on the levels of PU.1 mRNA and protein in preadipocytes or adipocytes. MiR-155 regulates adipogenesis not through PU.1, but via C/EBPβ which is another target of miR-155. We also checked the expression levels of PU.1 mRNA and antisense long non-coding RNA (AS lncRNA). Interestingly, compared with the level of PU.1 mRNA, the level of PU.1 AS lncRNA is much higher in preadipocytes, whereas it is opposite in the adipocytes. We further discover that PU.1 AS lncRNA binds to its mRNA forming an mRNA/AS lncRNA compound. The knockdown of PU.1 AS by siRNA inhibits adipogenesis and promotes PU.1 protein expression in both preadipocytes and adipocytes. Furthermore, the repression of PU.1 AS decreases the expression and secretion of adiponectin. We also find that the effect of retroviral-mediated PU.1 AS knockdown on adipogenesis is consistent with that of PU.1 AS knockdown by siRNA. Taken together, our results suggest that PU.1 AS lncRNA promotes adipogenesis through preventing PU.1 mRNA translation via binding to PU.1 mRNA to form mRNA/AS lncRNA duplex in preadipocytes.
Collapse
Affiliation(s)
- Wei-Jun Pang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, 77030
| | | | | | | | | | | | | |
Collapse
|
46
|
Banerjee S, Meng J, Das S, Krishnan A, Haworth J, Charboneau R, Zeng Y, Ramakrishnan S, Roy S. Morphine induced exacerbation of sepsis is mediated by tempering endotoxin tolerance through modulation of miR-146a. Sci Rep 2013; 3:1977. [PMID: 23756365 PMCID: PMC3679508 DOI: 10.1038/srep01977] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/24/2013] [Indexed: 12/22/2022] Open
Abstract
Development of tolerance to endotoxin prevents sustained hyper inflammation during systemic infections. Here we report for the first time that chronic morphine treatment tempers endotoxin tolerance resulting in persistent inflammation, septicemia and septic shock. Morphine was found to down-regulate endotoxin/LPS induced miR-146a and 155 in macrophages. However, only miR-146a over expression, but not miR-155 abrogates morphine mediated hyper-inflammation. Conversely, antagonizing miR-146a (but not miR-155) heightened the severity of morphine-mediated hyper-inflammation. These results suggest that miR-146a acts as a molecular switch controlling hyper-inflammation in clinical and/or recreational use of morphine.
Collapse
Affiliation(s)
- Santanu Banerjee
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Role of microRNAs and microRNA machinery in the pathogenesis of diffuse large B-cell lymphoma. Blood Cancer J 2013; 3:e152. [PMID: 24121164 PMCID: PMC3816210 DOI: 10.1038/bcj.2013.49] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 09/02/2013] [Accepted: 09/06/2013] [Indexed: 02/07/2023] Open
Abstract
Deregulation of microRNA (miRNA) expression has been documented in diffuse large B-cell lymphoma (DLBCL). However, the impact of miRNAs and their machinery in DLBCL is not fully determined. Here, we assessed the role of miRNA expression and their processing genes in DLBCL development. Using microarray and RT-qPCR approaches, we quantified global miRNAs and core components of miRNA-processing genes expression in 75 DLBCLs (56 de novo and 19 transformed) and 10 lymph nodes (LN). Differential miRNA signatures were identified between DLBCLs and LNs, or between the de novo and transformed DLBCLs. We also identified subsets of miRNAs associated with germinal center B-cell phenotype, BCL6 and IRF4 expression, and clinical staging. In addition, we showed a significant over-expression of TARBP2 in de novo DLBCLs as compared with LNs, and decreased expression of DROSHA, DICER, TARBP2 and PACT in transformed as compared with de novo cases. Interestingly, cases with high TARBP2 and DROSHA expression had a poorer chemotherapy response. We further showed that TARBP2 can regulate miRNA-processing efficiency in DLBCLs, and its expression inhibition decreases cell growth and increases apoptosis in DLBCL cell lines. Our findings provide new insights for the understanding of miRNAs and its machinery in DLBCL.
Collapse
|
48
|
Thompson RC, Vardinogiannis I, Gilmore TD. Identification of an NF-κB p50/p65-responsive site in the human MIR155HG promoter. BMC Mol Biol 2013; 14:24. [PMID: 24059932 PMCID: PMC3849010 DOI: 10.1186/1471-2199-14-24] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/16/2013] [Indexed: 12/15/2022] Open
Abstract
Background MicroRNA-155 (miR-155) is the diced product of the MIR155HG gene. miR-155 regulates the expression of many immune-specific transcripts, is overexpressed in many human lymphomas, and has oncogenic activity in mouse transgenic models. MIR155HG has been proposed to be a target gene for transcription factor NF-κB largely due to the positive correlation between high nuclear NF-κB activity and increased miR-155 expression following treatment with NF-κB inducers or in subsets of hematopoietic cancers. Nevertheless, direct regulation of the human MIR155HG promoter by NF-κB has not been convincingly demonstrated previously. Results This report shows that induction of NF-κB activity rapidly leads to increased levels of both primary MIR155HG mRNA and mature miR-155 transcripts. We have mapped an NF-κB-responsive element to a position approximately 178 nt upstream of the MIR155HG transcription start site. The -178 site is specifically bound by the NF-κB p50/p65 heterodimer and is required for p65-induced reporter gene activation. Moreover, the levels of miR-155 in nine human B-lymphoma cell lines generally correlate with increased nuclear NF-κB proteins. Conclusion Overall, the identification of an NF-κB-responsive site in the MIR155HG proximal promoter suggests that MIR155HG is a direct NF-κB target gene in vivo. Understanding NF-κB-mediated regulation of miR-155 could lead to improved immune cell-related diagnostic tools and targeted therapies.
Collapse
Affiliation(s)
- Ryan C Thompson
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | | | | |
Collapse
|
49
|
Genome-wide copy-number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma. Blood 2013; 123:1681-90. [PMID: 24037725 DOI: 10.1182/blood-2013-05-500595] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Follicular lymphoma (FL), the second most common type of non-Hodgkin lymphoma in the western world, is characterized by the t(14;18) translocation, which is present in up to 90% of cases. We studied 277 lymphoma samples (198 FL and 79 transformed FL [tFL]) using a single-nucleotide polymorphism array to identify the secondary chromosomal abnormalities that drive the development of FL and its transformation to diffuse large B-cell lymphoma. Common recurrent chromosomal abnormalities in FL included gains of 2, 5, 7, 6p, 8, 12, 17q, 18, 21, and X and losses on 6q and 17p. We also observed many frequent small abnormalities, including losses of 1p36.33-p36.31, 6q23.3-q24.1, and 10q23.1-q25.1 and gains of 2p16.1-p15, 8q24.13-q24.3, and 12q12-q13.13, and identified candidate genes that may be driving this selection. Recurrent abnormalities more frequent in tFL samples included gains of 3q27.3-q28 and chromosome 11 and losses of 9p21.3 and 15q. Four abnormalities, gain of X or Xp and losses of 6q23.2-24.1 or 6q13-15, predicted overall survival. Abnormalities associated with transformation of the disease likely impair immune surveillance, activate the nuclear factor-κB pathway, and deregulate p53 and B-cell transcription factors.
Collapse
|
50
|
|