1
|
Flieger J, Forma A, Flieger W, Flieger M, Gawlik PJ, Dzierżyński E, Maciejewski R, Teresiński G, Baj J. Carotenoid Supplementation for Alleviating the Symptoms of Alzheimer's Disease. Int J Mol Sci 2024; 25:8982. [PMID: 39201668 PMCID: PMC11354426 DOI: 10.3390/ijms25168982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by, among other things, dementia and a decline in cognitive performance. In AD, dementia has neurodegenerative features and starts with mild cognitive impairment (MCI). Research indicates that apoptosis and neuronal loss occur in AD, in which oxidative stress plays an important role. Therefore, reducing oxidative stress with antioxidants is a natural strategy to prevent and slow down the progression of AD. Carotenoids are natural pigments commonly found in fruits and vegetables. They include lipophilic carotenes, such as lycopene, α- and β-carotenes, and more polar xanthophylls, for example, lutein, zeaxanthin, canthaxanthin, and β-cryptoxanthin. Carotenoids can cross the blood-brain barrier (BBB) and scavenge free radicals, especially singlet oxygen, which helps prevent the peroxidation of lipids abundant in the brain. As a result, carotenoids have neuroprotective potential. Numerous in vivo and in vitro studies, as well as randomized controlled trials, have mostly confirmed that carotenoids can help prevent neurodegeneration and alleviate cognitive impairment in AD. While carotenoids have not been officially approved as an AD therapy, they are indicated in the diet recommended for AD, including the consumption of products rich in carotenoids. This review summarizes the latest research findings supporting the potential use of carotenoids in preventing and alleviating AD symptoms. A literature review suggests that a diet rich in carotenoids should be promoted to avoid cognitive decline in AD. One of the goals of the food industry should be to encourage the enrichment of food products with functional substances, such as carotenoids, which may reduce the risk of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Wojciech Flieger
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Michał Flieger
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Piotr J. Gawlik
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Eliasz Dzierżyński
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Ryszard Maciejewski
- Institute of Health Sciences, John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
2
|
Kuil LE, Chauhan RK, de Graaf BM, Cheng WW, Kakiailatu NJM, Lasabuda R, Verhaeghe C, Windster JD, Schriemer D, Azmani Z, Brooks AS, Edie S, Reeves RH, Eggen BJL, Shepherd IT, Burns AJ, Hofstra RMW, Melotte V, Brosens E, Alves MM. ATP5PO levels regulate enteric nervous system development in zebrafish, linking Hirschsprung disease to Down Syndrome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166991. [PMID: 38128843 DOI: 10.1016/j.bbadis.2023.166991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Hirschsprung disease (HSCR) is a complex genetic disorder characterized by the absence of enteric nervous system (ENS) in the distal region of the intestine. Down Syndrome (DS) patients have a >50-fold higher risk of developing HSCR than the general population, suggesting that overexpression of human chromosome 21 (Hsa21) genes contribute to HSCR etiology. However, identification of responsible genes remains challenging. Here, we describe a genetic screening of potential candidate genes located on Hsa21, using the zebrafish. Candidate genes were located in the DS-HSCR susceptibility region, expressed in the human intestine, were known potential biomarkers for DS prenatal diagnosis, and were present in the zebrafish genome. With this approach, four genes were selected: RCAN1, ITSN1, ATP5PO and SUMO3. However, only overexpression of ATP5PO, coding for a component of the mitochondrial ATPase, led to significant reduction of ENS cells. Paradoxically, in vitro studies showed that overexpression of ATP5PO led to a reduction of ATP5PO protein levels. Impaired neuronal differentiation and reduced mitochondrial ATP production, were also detected in vitro, after overexpression of ATP5PO in a neuroblastoma cell line. Finally, epistasis was observed between ATP5PO and ret, the most important HSCR gene. Taken together, our results identify ATP5PO as the gene responsible for the increased risk of HSCR in DS patients in particular if RET variants are also present, and show that a balanced expression of ATP5PO is required for normal ENS development.
Collapse
Affiliation(s)
- L E Kuil
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - R K Chauhan
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - B M de Graaf
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - W W Cheng
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - N J M Kakiailatu
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - R Lasabuda
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - C Verhaeghe
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - J D Windster
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Pediatric Surgery, Erasmus University Medical Center Rotterdam, Sophia's Children's Hospital, Rotterdam, the Netherlands
| | - D Schriemer
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Z Azmani
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - A S Brooks
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - S Edie
- Johns Hopkins University School of Medicine, Department of Physiology and McKusick-Nathans Department of Genetic Medicine, Baltimore, MD, United States of America
| | - R H Reeves
- Johns Hopkins University School of Medicine, Department of Physiology and McKusick-Nathans Department of Genetic Medicine, Baltimore, MD, United States of America
| | - B J L Eggen
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - I T Shepherd
- Department of Biology, Emory University, Atlanta, GA, United States of America
| | - A J Burns
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands; Birth Defects Research Centre, UCL Institute of Child Health, London, United Kingdom; Gastrointestinal Drug Discovery Unit, Takeda Pharmaceuticals, Cambridge, MA, United States of America
| | - R M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - V Melotte
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Pathology, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - E Brosens
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - M M Alves
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Pediatric Surgery, Erasmus University Medical Center Rotterdam, Sophia's Children's Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Wang Q, Guo S, Hu D, Dong X, Meng Z, Jiang Y, Feng Z, Zhou W, Song W. Enhanced Gasdermin-E-mediated Pyroptosis in Alzheimer's Disease. Neuroscience 2024; 536:1-11. [PMID: 37944579 DOI: 10.1016/j.neuroscience.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Amyloid β protein (Aβ) is a critical factor in the pathogenesis of Alzheimer's disease (AD). Aβ induces apoptosis, and gasdermin-E (GSDME) expression can switch apoptosis to pyroptosis. In this study, we demonstrated that GSDME was highly expressed in the hippocampus of APP23/PS45 mouse models compared to that in age-matched wild-type mice. Aβ treatment induced pyroptosis by active caspase-3/GSDME in SH-SY5Y cells. Furthermore, the knockdown of GSDME improved the cognitive impairments of APP23/PS45 mice by alleviating inflammatory response. Our findings reveal that GSDME, as a modulator of Aβ and pyroptosis, plays a potential role in Alzheimer's disease pathogenesis and shows that GSDME is a therapeutic target for AD.
Collapse
Affiliation(s)
- Qunxian Wang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shipeng Guo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dongjie Hu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangjun Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Meng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanshuang Jiang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijuan Feng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
4
|
Mackiewicz J, Lisek M, Boczek T. Targeting CaN/NFAT in Alzheimer's brain degeneration. Front Immunol 2023; 14:1281882. [PMID: 38077352 PMCID: PMC10701682 DOI: 10.3389/fimmu.2023.1281882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of cognitive functions. While the exact causes of this debilitating disorder remain elusive, numerous investigations have characterized its two core pathologies: the presence of β-amyloid plaques and tau tangles. Additionally, multiple studies of postmortem brain tissue, as well as results from AD preclinical models, have consistently demonstrated the presence of a sustained inflammatory response. As the persistent immune response is associated with neurodegeneration, it became clear that it may also exacerbate other AD pathologies, providing a link between the initial deposition of β-amyloid plaques and the later development of neurofibrillary tangles. Initially discovered in T cells, the nuclear factor of activated T-cells (NFAT) is one of the main transcription factors driving the expression of inflammatory genes and thus regulating immune responses. NFAT-dependent production of inflammatory mediators is controlled by Ca2+-dependent protein phosphatase calcineurin (CaN), which dephosphorylates NFAT and promotes its transcriptional activity. A substantial body of evidence has demonstrated that aberrant CaN/NFAT signaling is linked to several pathologies observed in AD, including neuronal apoptosis, synaptic deficits, and glia activation. In view of this, the role of NFAT isoforms in AD has been linked to disease progression at different stages, some of which are paralleled to diminished cognitive status. The use of classical inhibitors of CaN/NFAT signaling, such as tacrolimus or cyclosporine, or adeno-associated viruses to specifically inhibit astrocytic NFAT activation, has alleviated some symptoms of AD by diminishing β-amyloid neurotoxicity and neuroinflammation. In this article, we discuss the recent findings related to the contribution of CaN/NFAT signaling to the progression of AD and highlight the possible benefits of targeting this pathway in AD treatment.
Collapse
Affiliation(s)
| | | | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
5
|
Hu D, Dong X, Wang Q, Liu M, Luo S, Meng Z, Feng Z, Zhou W, Song W. PCP4 Promotes Alzheimer's Disease Pathogenesis by Affecting Amyloid-β Protein Precursor Processing. J Alzheimers Dis 2023:JAD230192. [PMID: 37302034 DOI: 10.3233/jad-230192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND Down syndrome (DS) is caused by an extra copy of all or part of chromosome 21. The patients with DS develop typical Alzheimer's disease (AD) neuropathology, indicating the role of genes on human chromosome 21 (HSA21) in the pathogenesis of AD. Purkinje cell protein 4 (PCP4), also known as brain-specific protein 19, is a critical gene located on HSA21. However, the role of PCP4 in DS and AD pathogenesis is not clear. OBJECTIVE To explore the role of PCP4 in amyloid-β protein precursor (AβPP) processing in AD. METHODS In this study, we investigated the role of PCP4 in AD progression in vitro and in vivo. In vitro experiments, we overexpressed PCP4 in human Swedish mutant AβPP stable expression or neural cell lines. In vitro experiments, APP23/PS45 double transgenic mice were selected and treated with AAV-PCP4. Multiple topics were detected by western blot, RT-PCR, immunohistochemical and behavioral test. RESULTS We found that PCP4 expression was altered in AD. PCP4 was overexpressed in APP23/PS45 transgenic mice and PCP4 affected the processing of AβPP. The production of amyloid-β protein (Aβ) was also promoted by PCP4. The upregulation of endogenous AβPP expression and the downregulation of ADAM10 were due to the transcriptional regulation of PCP4. In addition, PCP4 increased Aβ deposition and neural plaque formation in the brain, and exuberated learning and memory impairment in transgenic AD model mice. CONCLUSION Our finding reveals that PCP4 contributes to the pathogenesis of AD by affecting AβPP processing and suggests PCP4 as a novel therapeutic target for AD by targeting Aβ pathology.
Collapse
Affiliation(s)
- Dongjie Hu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangjun Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qunxian Wang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mingjing Liu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shuyue Luo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Meng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijuan Feng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Cai F, Song B, Yang Y, Liao H, Li R, Wang Z, Cao R, Chen H, Wang J, Wu Y, Zhang Y, Song W. USP25 contributes to defective neurogenesis and cognitive impairments. FASEB J 2023; 37:e22971. [PMID: 37171286 DOI: 10.1096/fj.202300057r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/25/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Both Down syndrome (DS) individuals and animal models exhibit hypo-cellularity in hippocampus and neocortex indicated by enhanced neuronal death and compromised neurogenesis. Ubiquitin-specific peptidase 25 (USP25), a human chromosome 21 (HSA21) gene, encodes for a deubiquitinating enzyme overexpressed in DS patients. Dysregulation of USP25 has been associated with Alzheimer's phenotypes in DS, but its role in defective neurogenesis in DS has not been defined. In this study, we found that USP25 upregulation impaired cell cycle regulation during embryonic neurogenesis and cortical development. Overexpression of USP25 in hippocampus promoted the neural stem cells to glial cell fates and suppressed neuronal cell fate by altering the balance between cyclin D1 and cyclin D2, thus reducing neurogenesis in the hippocampus. USP25-Tg mice showed increased anxiety/depression-like behaviors and learning and memory deficits. These results suggested that USP25 overexpression resulted in defective neurogenesis and cognitive impairments, which could contribute to the pathogenesis of DS. USP25 may be a potential pharmaceutical target for DS.
Collapse
Affiliation(s)
- Fang Cai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, School of Mental Health, Affiliated Kangning Hospital, The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Townsend Family Laboratories, Department of Psychiatry, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Beibei Song
- Townsend Family Laboratories, Department of Psychiatry, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yi Yang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, School of Mental Health, Affiliated Kangning Hospital, The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haikang Liao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, School of Mental Health, Affiliated Kangning Hospital, The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ran Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, School of Mental Health, Affiliated Kangning Hospital, The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhao Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, School of Mental Health, Affiliated Kangning Hospital, The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruixue Cao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, School of Mental Health, Affiliated Kangning Hospital, The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huaqiu Chen
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Juelu Wang
- Townsend Family Laboratories, Department of Psychiatry, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yili Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, School of Mental Health, Affiliated Kangning Hospital, The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, School of Mental Health, Affiliated Kangning Hospital, The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Townsend Family Laboratories, Department of Psychiatry, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia, Canada
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Choi C, Kim H, Oh J, Park C, Kim M, Kim CS, Park J. DSCR1 deficiency ameliorates the Aβ pathology of Alzheimer's disease by enhancing microglial activity. Life Sci Alliance 2023; 6:6/2/e202201556. [PMID: 36450444 PMCID: PMC9713304 DOI: 10.26508/lsa.202201556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Microglial phagocytosis and clearance are important for the removal of amyloid-β (Aβ) plaques in Alzheimer's disease (AD). Chronic exposure of microglia to Aβ plaques leads to microglial metabolic dysfunction, and dysregulation of microglia can accelerate the deposition of Aβ plaques and cause learning and memory impairment. Thus, regulating microglial Aβ clearance is crucial for the development of therapeutics for AD-related dementia. Here, Down syndrome critical region 1 (DSCR1) deficiency ameliorated Aβ plaque deposition in the 5xFAD mouse model of AD by altering microglial activity; however, the Aβ synthesis pathway was not affected. DSCR1 deficiency improved spatial learning and memory impairment in 5xFAD mice. Furthermore, DSCR1-deficient microglia exhibited accelerated lysosomal degradation of Aβ after phagocytosis, and BV2 cells with stable knockdown of DSCR1 demonstrated enhanced lysosomal activity. RNA-sequencing analysis showed that the transcriptional signatures associated with responses to IFN-γ were significantly up-regulated in DSCR1-knockdown BV2 cells treated with Aβ. Our data strongly suggest that DSCR1 is a critical mediator of microglial degradation of amyloid plaques and a new potential microglial therapeutic target in AD.
Collapse
Affiliation(s)
- Chiyeol Choi
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hyerin Kim
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jiyoung Oh
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Chanho Park
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Min Kim
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Chu-Sook Kim
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jiyoung Park
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
8
|
Yang X, Yun Y, Wang P, Zhao J, Sun X. Upregulation of RCAN1.4 by HIF1α alleviates OGD-induced inflammatory response in astrocytes. Ann Clin Transl Neurol 2022; 9:1224-1240. [PMID: 35836352 PMCID: PMC9380140 DOI: 10.1002/acn3.51624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Ischemic stroke is a leading cause of human mortality and long-term disability worldwide. As one of the main forms of regulator of calcineurin 1 (RCAN1), the contribution of RCAN1.4 in diverse biological and pathological conditions has been implicated. But the role of RCAN1.4 in ischemic stroke progression remains elusive. This study is to explore the expression changes and roles of RCAN1.4 in ischemic stroke as well as the underlying mechanisms for these changes and effects of RCAN1.4 in ischemic stroke. METHODS Middle cerebral artery occlusion model in C57BL/6J mice and oxygen-glucose deprivation (OGD) model in primary astrocytes were performed to induce the cerebral ischemic stroke. The expression pattern of RCAN1.4 was assessed using real-time quantitative PCR and western blotting in vivo and in vitro. Mechanistically, the underlying mechanism for the elevation of RCAN1.4 in the upstream was investigated. Lentiviruses were administrated, and the effect of RCAN1.4 in postischemic inflammation was clearly clarified. RESULTS Here we uncovered that RCAN1.4 was dramatically increased in mouse ischemic brains and OGD-induced primary astrocytes. HIF1α, activated upon OGD, significantly upregulated RCAN1.4 gene expression through specifically binding to the RCAN1.4 promoter region and activating its promoter activity. The functional hypoxia-responsive element (HRE) was located between -254 and -245 bp in the RCAN1.4 promoter region. Moreover, elevated RCAN1.4 alleviated the release of pro-inflammatory cytokines TNFα, IL1β, IL6 and reduced expression of iNOS, COX2 in primary astrocytes upon OGD, whereas RCAN1.4 silencing has the opposite effect. Of note, RCAN1.4 overexpression inhibited OGD-induced NF-κB activation in primary astrocytes, leading to decreased degradation of IκBα and reduced nuclear translocation of NF-κB/p65. INTERPRETATION Our results reveal a novel mechanism underscoring the upregulation of RCAN1.4 by HIF1α and the protective effect of RCAN1.4 against postischemic inflammation, suggesting its significance as a promising therapeutic target for ischemic stroke treatment.
Collapse
Affiliation(s)
- Xiaxin Yang
- Department of NeurologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
| | - Yan Yun
- Department of RadiologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
| | - Pin Wang
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
- Department of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
| | - Juan Zhao
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
- Department of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
| | - Xiulian Sun
- NHC Key Laboratory of OtorhinolaryngologyQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
- Brain Research InstituteQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health CommissionQilu Hospital of Shandong UniversityJinanShandong ProvinceChina
| |
Collapse
|
9
|
Yun Y, Yang X, Tan S, Wang P, Ji Y, Sun X. Targeting upregulated RNA binding protein RCAN1.1: a promising strategy for neuroprotection in acute ischemic stroke. CNS Neurosci Ther 2022; 28:1814-1828. [PMID: 35900849 PMCID: PMC9532900 DOI: 10.1111/cns.13921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022] Open
Abstract
Aims To explore the expression changes and roles of the RNA‐binding protein RCAN1.1 in acute ischemic stroke (AIS), and to preliminarily confirm the medicinal value of the RNA aptamer R1SR13 in AIS by targeting RCAN1.1. Methods Two mouse AIS models of middle cerebral artery occlusion (MCAO) and right common carotid artery ligation (R‐CCAL) and oxygen glucose deprivation (OGD) model of AIS in primary neurons and SH‐SY5Y were performed. The expression pattern of RCAN1.1 was assessed using real‐time quantitative PCR (RT‐qPCR) and western blotting (WB) in vivo and in vitro. The underlying mechanism for the elevation of RCAN1.1 in the upstream was investigated. Lentiviruses were administrated and the effect of RCAN1.1 in AIS was assessed by ATP level, caspase 3/7 assay, TUNEL and WB. The protective function of R1SR13 in AIS was evaluated both in vivo and in vitro. Results In two mouse models of AIS, RCAN1.1 mRNA and RCAN1.1 L protein were significantly upregulated in the ischemic brain tissue. The same results were detected in the OGD model of primary neurons and SH‐SY5Y. The mechanistic analysis proved that hypoxia‐inducible factor‐1α (HIF1α) could specifically activate the RCAN1.1 gene promoter through combining with the functional hypoxia‐responsive element (HRE) site (−325 to −322 bp). The increased expression of RCAN1.1 L markedly depleted ATP production and aggravated neuronal apoptosis under OGD condition. R1SR13, an antagonizing RNA aptamer of RCAN1.1, was demonstrated to reduce neuronal apoptosis caused by the elevated RCAN1.1 L in the cellular and animal models of AIS. Conclusion RCAN1.1 is a novel target gene of HIF1α and the functional HRE in the RCAN1.1 promoter region is −325 to −322 bp. The marked upregulation of RCAN1.1 in AIS promoted neuronal apoptosis, an effect that could be reversed by its RNA aptamer R1SR13 in vivo and in vitro. Thus, R1SR13 represents a promising strategy for neuroprotection in AIS and our study lays a theoretical foundation for it to become a clinically targeted drug.
Collapse
Affiliation(s)
- Yan Yun
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaxin Yang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Shichuan Tan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Pin Wang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China.,Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Yanbin Ji
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiulian Sun
- Brain Research Institute, Qilu Hospital of Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
10
|
Lao M, Zhang X, Yang H, Bai X, Liang T. RCAN1-mediated calcineurin inhibition as a target for cancer therapy. Mol Med 2022; 28:69. [PMID: 35717152 PMCID: PMC9206313 DOI: 10.1186/s10020-022-00492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Regulator of calcineurin 1 (RCAN1), as a patent endogenous inhibitor of calcineurin, plays crucial roles in the pathogenesis of cancers. Except for hypopharyngeal and laryngopharynx cancer, high expression of RCAN1 inhibits tumor progression. Molecular antitumor functions of RCAN1 are largely dependent on calcineurin. In this review, we highlight current research on RCAN1 characteristics, and the interaction between RCAN1 and calcineurin. Moreover, the dysregulation of RCAN1 in various cancers is reviewed, and the potential of targeting RCAN1 as a new therapeutic approach is discussed.
Collapse
Affiliation(s)
- Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310009, Zhejiang, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
11
|
Sarić N, Hashimoto-Torii K, Jevtović-Todorović V, Ishibashi N. Nonapoptotic caspases in neural development and in anesthesia-induced neurotoxicity. Trends Neurosci 2022; 45:446-458. [PMID: 35491256 PMCID: PMC9117442 DOI: 10.1016/j.tins.2022.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Apoptosis, classically initiated by caspase pathway activation, plays a prominent role during normal brain development as well as in neurodegeneration. The noncanonical, nonlethal arm of the caspase pathway is evolutionarily conserved and has also been implicated in both processes, yet is relatively understudied. Dysregulated pathway activation during critical periods of neurodevelopment due to environmental neurotoxins or exposure to compounds such as anesthetics can have detrimental consequences for brain maturation and long-term effects on behavior. In this review, we discuss key molecular characteristics and roles of the noncanonical caspase pathway and how its dysregulation may adversely affect brain development. We highlight both genetic and environmental factors that regulate apoptotic and sublethal caspase responses and discuss potential interventions that target the noncanonical caspase pathway for developmental brain injuries.
Collapse
Affiliation(s)
- Nemanja Sarić
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Nobuyuki Ishibashi
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Children's National Heart Institute, Children's National Hospital, Washington, DC, USA.
| |
Collapse
|
12
|
Wong H, Buck JM, Borski C, Pafford JT, Keller BN, Milstead RA, Hanson JL, Stitzel JA, Hoeffer CA. RCAN1 knockout and overexpression recapitulate an ensemble of rest-activity and circadian disruptions characteristic of Down syndrome, Alzheimer's disease, and normative aging. J Neurodev Disord 2022; 14:33. [PMID: 35610565 PMCID: PMC9128232 DOI: 10.1186/s11689-022-09444-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Regulator of calcineurin 1 (RCAN1) is overexpressed in Down syndrome (DS), but RCAN1 levels are also increased in Alzheimer's disease (AD) and normal aging. AD is highly comorbid among individuals with DS and is characterized in part by progressive neurodegeneration that resembles accelerated aging. Importantly, abnormal RCAN1 levels have been demonstrated to promote memory deficits and pathophysiology that appear symptomatic of DS, AD, and aging. Anomalous diurnal rest-activity patterns and circadian rhythm disruptions are also common in DS, AD, and aging and have been implicated in facilitating age-related cognitive decline and AD progression. However, no prior studies have assessed whether RCAN1 dysregulation may also promote the age-associated alteration of rest-activity profiles and circadian rhythms, which could in turn contribute to neurodegeneration in DS, AD, and aging. METHODS The present study examined the impacts of RCAN1 deficiency and overexpression on the photic entrainment, circadian periodicity, intensity and distribution, diurnal patterning, and circadian rhythmicity of wheel running in young (3-6 months old) and aged (9-14 months old) mice of both sexes. RESULTS We found that daily RCAN1 levels in the hippocampus and suprachiasmatic nucleus (SCN) of light-entrained young mice are generally constant and that balanced RCAN1 expression is necessary for normal circadian locomotor activity rhythms. While the light-entrained diurnal period was unaltered, RCAN1-null and RCAN1-overexpressing mice displayed lengthened endogenous (free-running) circadian periods like mouse models of AD and aging. In light-entrained young mice, RCAN1 deficiency and overexpression also recapitulated the general hypoactivity, diurnal rest-wake pattern fragmentation, and attenuated amplitudes of circadian activity rhythms reported in DS, preclinical and clinical AD, healthily aging individuals, and rodent models thereof. Under constant darkness, RCAN1-null and RCAN1-overexpressing mice displayed altered locomotor behavior indicating circadian clock dysfunction. Using the Dp(16)1Yey/+ (Dp16) mouse model for DS, which expresses three copies of Rcan1, we found reduced wheel running activity and rhythmicity in both light-entrained and free-running young Dp16 mice like young RCAN1-overexpressing mice. Critically, these diurnal and circadian deficits were rescued in part or entirely by restoring Rcan1 to two copies in Dp16 mice. We also found that RCAN1 deficiency but not RCAN1 overexpression altered protein levels of the clock gene Bmal1 in the SCN. CONCLUSIONS Collectively, this study's findings suggest that both loss and aberrant gain of RCAN1 precipitate anomalous light-entrained diurnal and circadian activity patterns emblematic of DS, AD, and possibly aging.
Collapse
Affiliation(s)
- Helen Wong
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Curtis Borski
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Jessica T Pafford
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Bailey N Keller
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
| | - Ryan A Milstead
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Jessica L Hanson
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA
| | - Charles A Hoeffer
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80309-0447, USA.
- Department of Integrative Physiology, University of Colorado, Boulder, CO, 80303, USA.
- Linda Crnic Institute, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
13
|
Wu CI, Vinton EA, Pearse RV, Heo K, Aylward AJ, Hsieh YC, Bi Y, Adeleye S, Fancher S, Duong DM, Seyfried NT, Schwarz TL, Young-Pearse TL. APP and DYRK1A regulate axonal and synaptic vesicle protein networks and mediate Alzheimer's pathology in trisomy 21 neurons. Mol Psychiatry 2022; 27:1970-1989. [PMID: 35194165 PMCID: PMC9133025 DOI: 10.1038/s41380-022-01454-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 01/18/2022] [Indexed: 11/09/2022]
Abstract
Trisomy 21 (T21) causes Down syndrome and an early-onset form of Alzheimer's disease (AD). Here, we used human induced pluripotent stem cells (hiPSCs) along with CRISPR-Cas9 gene editing to investigate the contribution of chromosome 21 candidate genes to AD-relevant neuronal phenotypes. We utilized a direct neuronal differentiation protocol to bypass neurodevelopmental cell fate phenotypes caused by T21 followed by unbiased proteomics and western blotting to define the proteins dysregulated in T21 postmitotic neurons. We show that normalization of copy number of APP and DYRK1A each rescue elevated tau phosphorylation in T21 neurons, while reductions of RCAN1 and SYNJ1 do not. To determine the T21 alterations relevant to early-onset AD, we identified common pathways altered in familial Alzheimer's disease neurons and determined which of these were rescued by normalization of APP and DYRK1A copy number in T21 neurons. These studies identified disruptions in T21 neurons in both the axonal cytoskeletal network and presynaptic proteins that play critical roles in axonal transport and synaptic vesicle cycling. These alterations in the proteomic profiles have functional consequences: fAD and T21 neurons exhibit dysregulated axonal trafficking and T21 neurons display enhanced synaptic vesicle release. Taken together, our findings provide insights into the initial molecular alterations within neurons that ultimately lead to synaptic loss and axonal degeneration in Down syndrome and early-onset AD.
Collapse
Affiliation(s)
- Chun-I Wu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elizabeth A Vinton
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Richard V Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Keunjung Heo
- Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Aimee J Aylward
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Yi-Chen Hsieh
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yan Bi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Sopefoluwa Adeleye
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Seeley Fancher
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Duc M Duong
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory School of Medicine, Atlanta, GA, USA
| | - Thomas L Schwarz
- Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Duan Y, Zhang D, Ye Y, Zheng S, Huang P, Zhang F, Mo G, Huang F, Yin Q, Li J, Han L. Integrated Metabolomics and Network Pharmacology to Establish the Action Mechanism of Qingrekasen Granule for Treating Nephrotic Syndrome. Front Pharmacol 2021; 12:765563. [PMID: 34938183 PMCID: PMC8685401 DOI: 10.3389/fphar.2021.765563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/05/2021] [Indexed: 01/09/2023] Open
Abstract
Nephrotic syndrome (NS) is a clinical syndrome resulting from abnormal glomerular permeability, mainly manifesting as edema and proteinuria. Qingrekasen granule (QRKSG), a Chinese Uyghur folk medicine, is a single-flavor preparation made from chicory (Cichorium intybus L.), widely used in treating dysuria and edema. Chicory, the main component in QRKSG, effectively treats edema and protects kidneys. However, the active components in QRKSG and its underlying mechanism for treating NS remain unclear. This study explored the specific mechanism and composition of QRKSG on an NS rat model using integrated metabolomics and network pharmacology. First, metabolomics explored the relevant metabolic pathways impacted by QRKSG in the treatment of NS. Secondly, network pharmacology further explored the possible metabolite targets. Afterward, a comprehensive network was constructed using the results from the network pharmacology and metabolomics analysis. Finally, the interactions between the active components and targets were predicted by molecular docking, and the differential expression levels of the target protein were verified by Western blotting. The metabolomics results showed “D-Glutamine and D-glutamate metabolism” and “Alanine, aspartate, and glutamate metabolism” as the main targeted metabolic pathways for treating NS in rats. AKT1, BCL2L1, CASP3, and MTOR were the core QRKSG targets in the treatment of NS. Molecular docking revealed that these core targets have a strong affinity for flavonoids, terpenoids, and phenolic acids. Moreover, the expression levels of p-PI3K, p-AKT1, p-mTOR, and CASP3 in the QRKSG group significantly decreased, while BCL2L1 increased compared to the model group. These findings established the underlying mechanism of QRKSG, such as promoting autophagy and anti-apoptosis through the expression of AKT1, CASP3, BCL2L1, and mTOR to protect podocytes and maintain renal tubular function.
Collapse
Affiliation(s)
- Yanfen Duan
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Dongning Zhang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan Ye
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Sili Zheng
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Huang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Fengyun Zhang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Guoyan Mo
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, China
| | - Fang Huang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiang Yin
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Xinjiang Uygur Pharmaceutical Co., Ltd., Urumqi, China
| | - Jingjing Li
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Lintao Han
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.,Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, China
| |
Collapse
|
15
|
Song XJ, Zhou HY, Sun YY, Huang HC. Phosphorylation and Glycosylation of Amyloid-β Protein Precursor: The Relationship to Trafficking and Cleavage in Alzheimer's Disease. J Alzheimers Dis 2021; 84:937-957. [PMID: 34602469 DOI: 10.3233/jad-210337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder in the central nervous system, and this disease is characterized by extracellular senile plaques and intracellular neurofibrillary tangles. Amyloid-β (Aβ) peptide is the main constituent of senile plaques, and this peptide is derived from the amyloid-β protein precursor (AβPP) through the successive cleaving by β-site AβPP-cleavage enzyme 1 (BACE1) and γ-secretase. AβPP undergoes the progress of post-translational modifications, such as phosphorylation and glycosylation, which might affect the trafficking and the cleavage of AβPP. In the recent years, about 10 phosphorylation sites of AβPP were identified, and they play complex roles in glycosylation modification and cleavage of AβPP. In this article, we introduced the transport and the cleavage pathways of AβPP, then summarized the phosphorylation and glycosylation sites of AβPP, and further discussed the links and relationship between phosphorylation and glycosylation on the pathways of AβPP trafficking and cleavage in order to provide theoretical basis for AD research.
Collapse
Affiliation(s)
- Xi-Jun Song
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| | - He-Yan Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| | - Yu-Ying Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| |
Collapse
|
16
|
Yang Y, Zhou X, Liu X, Song R, Gao Y, Wang S. Implications of FBXW7 in Neurodevelopment and Neurodegeneration: Molecular Mechanisms and Therapeutic Potential. Front Cell Neurosci 2021; 15:736008. [PMID: 34512273 PMCID: PMC8424092 DOI: 10.3389/fncel.2021.736008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) mediated protein degradation is crucial to maintain quantitive and functional homeostasis of diverse proteins. Balanced cellular protein homeostasis controlled by UPS is fundamental to normal neurological functions while impairment of UPS can also lead to some neurodevelopmental and neurodegenerative disorders. Functioning as the substrate recognition component of the SCF-type E3 ubiquitin ligase, FBXW7 is essential to multiple aspects of cellular processes via targeting a wide range of substrates for proteasome-mediated degradation. Accumulated evidence shows that FBXW7 is fundamental to neurological functions and especially implicated in neurodevelopment and the nosogenesis of neurodegeneration. In this review, we describe general features of FBXW7 gene and proteins, and mainly present recent findings that highlight the vital roles and molecular mechanisms of FBXW7 in neurodevelopment such as neurogenesis, myelination and cerebral vasculogenesis and in the pathogenesis of some typical neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease. Additionally, we also provide a prospect on focusing FBXW7 as a potential therapeutic target to rescue neurodevelopmental and neurodegenerative impairment.
Collapse
Affiliation(s)
- Yu Yang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Xuan Zhou
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China.,Research Center for Quality of Life and Applied Psychology, School of Humanities and Management, Guangdong Medical University, Dongguan, China
| | - Xinpeng Liu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Ruying Song
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Yiming Gao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Shuai Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
17
|
Cioffi F, Adam RHI, Bansal R, Broersen K. A Review of Oxidative Stress Products and Related Genes in Early Alzheimer's Disease. J Alzheimers Dis 2021; 83:977-1001. [PMID: 34420962 PMCID: PMC8543250 DOI: 10.3233/jad-210497] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress is associated with the progression of Alzheimer’s disease (AD). Reactive oxygen species can modify lipids, DNA, RNA, and proteins in the brain. The products of their peroxidation and oxidation are readily detectable at incipient stages of disease. Based on these oxidation products, various biomarker-based strategies have been developed to identify oxidative stress levels in AD. Known oxidative stress-related biomarkers include lipid peroxidation products F2-isoprostanes, as well as malondialdehyde and 4-hydroxynonenal which both conjugate to specific amino acids to modify proteins, and DNA or RNA oxidation products 8-hydroxy-2’-deoxyguanosine (8-OHdG) and 8-hydroxyguanosine (8-OHG), respectively. The inducible enzyme heme oxygenase type 1 (HO-1) is found to be upregulated in response to oxidative stress-related events in the AD brain. While these global biomarkers for oxidative stress are associated with early-stage AD, they generally poorly differentiate from other neurodegenerative disorders that also coincide with oxidative stress. Redox proteomics approaches provided specificity of oxidative stress-associated biomarkers to AD pathology by the identification of oxidatively damaged pathology-specific proteins. In this review, we discuss the potential combined diagnostic value of these reported biomarkers in the context of AD and discuss eight oxidative stress-related mRNA biomarkers in AD that we newly identified using a transcriptomics approach. We review these genes in the context of their reported involvement in oxidative stress regulation and specificity for AD. Further research is warranted to establish the protein levels and their functionalities as well as the molecular mechanisms by which these potential biomarkers are involved in regulation of oxidative stress levels and their potential for determination of oxidative stress and disease status of AD patients.
Collapse
Affiliation(s)
- Federica Cioffi
- Department of Nanobiophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Department of Nanobiophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Department of Medical Cell Biophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.,Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Kerensa Broersen
- Department of Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
18
|
Choi C, Park J, Kim H, Chang KT, Park J, Min KT. DSCR1 upregulation enhances dural meningeal lymphatic drainage to attenuate amyloid pathology of Alzheimer's disease. J Pathol 2021; 255:296-310. [PMID: 34312845 DOI: 10.1002/path.5767] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 01/11/2023]
Abstract
Highly developed meningeal lymphatics remove waste products from the brain. Disruption of meningeal lymphatic vessels in a mouse model of amyloid pathology (5XFAD) accelerates the accumulation of amyloid plaques in the meninges and brain, and causes learning and memory deficits, suggesting that clearance of toxic wastes by lymphatic vessels plays a key role in neurodegenerative diseases. Here, we discovered that DSCR1 (Down syndrome critical region 1, known also as RCAN1, regulator of calcineurin 1) facilitates the drainage of waste products by increasing the coverage of dorsal meningeal lymphatic vessels. Furthermore, upregulation of DSCR1 in 5XFAD mice diminishes Aβ pathology in the brain and improves memory defects. Surgical ligation of cervical lymphatic vessels afferent to dcLN blocks the beneficial effects of DSCR1 on Aβ accumulation and cognitive function. Interestingly, intracerebroventricular delivery of AAV1-DSCR1 to 5XFAD mice is sufficient to rebuild the meningeal lymphatic system and re-establish cognitive performance. Collectively, our data indicate that DSCR1 facilitates the growth of dorsal meningeal lymphatics to improve drainage efficiency and protect against Alzheimer's disease (AD) pathologies, further highlighting that improving meningeal lymphatic function is a feasible treatment strategy for AD. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chiyeol Choi
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jiwon Park
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hyerin Kim
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Karen T Chang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiyoung Park
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Kyung-Tai Min
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
19
|
Shi Y, Ye D, Huang R, Xu Y, Lu P, Chen H, Huang J. Down Syndrome Critical Region 1 Reduces Oxidative Stress-Induced Retinal Ganglion Cells Apoptosis via CREB-Bcl-2 Pathway. Invest Ophthalmol Vis Sci 2021; 61:23. [PMID: 33104163 PMCID: PMC7594594 DOI: 10.1167/iovs.61.12.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Irreversible retina ganglion cell (RGC) loss is a key process during glaucoma progression. Down syndrome critical region 1 (DSCR1) has been shown to have protective effects against neuronal death. In this study, we aimed to investigate the neuroprotective mechanisms of DSCR1 on RGCs. Methods DBA/2J mice and optic nerve crush (ONC) rat model were used for vivo assays. Oxidative stress model of primary RGCs was carried out with in vitro transduction. DSCR1 protein localization was assessed by immunofluorescence. Differential protein expression was validated by Western blot, and gene expression was detected by real-time PCR. TUNEL was used to identify cell apoptosis, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was used to analyze cell viability. Results Significant upregulation of DSCR1 was observed in DBA/2J mice, ONC rat model, and RGCs treated with H2O2, reaching peaks at the age of 6 months in DBA/2J mice, 5 days after ONC in rats, and 24 hours after H2O2 treatment in RGCs, respectively. DSCR1 was shown to be expressed in the ganglion cell layer. In vitro, overexpressed DSCR1 significantly promoted phosphorylation of cyclic AMP response element binding protein (CREB), B-cell lymphoma 2 (Bcl-2) expression, and RGC survival rate while reducing cleaved caspase 3 expression in H2O2-treated RGCs. On the other hand, the opposite effects were shown after knockdown of DSCR1. In addition, silencing of CREB inhibited expression of DSCR1. Conclusions Our results suggested that DSCR1 might protect the RGCs against oxidative stress via the CREB–Bcl-2 pathway, which may provide a theoretical basis for future treatments of glaucoma.
Collapse
Affiliation(s)
- Yuxun Shi
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Dan Ye
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Rong Huang
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Peng Lu
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hailiu Chen
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
mir-182-5p Regulates Cell Growth of Liver Cancer via Targeting RCAN1. Gastroenterol Res Pract 2021; 2021:6691305. [PMID: 33959160 PMCID: PMC8075694 DOI: 10.1155/2021/6691305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/02/2021] [Accepted: 03/02/2021] [Indexed: 12/28/2022] Open
Abstract
Regulator of calcineurin 1 (RCAN1) is an endogenous protein that is involved in the regulation of the occurrence and progression of a variety of cancers, but currently, people know little about its potential mechanism. This study investigated the function and mechanism of RCAN1 and miR-182-5p in liver cancer cells. In this study, reliable data demonstrated that RCAN1 suppressed cell proliferation, migration, invasion, and cell cycle progression of liver cancer. Additionally, the expression of RCAN1 was noted to be regulated by its upstream regulator miR-182-5p, and miR-182-5p was prominently highly expressed in liver cancer cells. Based on this, it was further proved through cell experiments that miR-182-5p facilitated cell growth of liver cancer through RCAN1 downregulation, showing that RCAN1 may be a fresh biomarker and target for diagnosis and treatment of liver cancer.
Collapse
|
21
|
Regulator of calcineurin 1 is a novel RNA-binding protein to regulate neuronal apoptosis. Mol Psychiatry 2021; 26:1361-1375. [PMID: 31451750 DOI: 10.1038/s41380-019-0487-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/16/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Posttranscriptional regulation of gene expression plays an important role in the maturation, transport, stability and translation of coding and noncoding RNAs. RNA-binding protein (RBP) is a key factor of the regulation. Regulator of calcineurin 1 (RCAN1) is a multifunctional protein involved in neurodegeneration, mitochondrial dysfunction, inflammation and protein glycosylation, and plays an important role in the pathogenesis of Down syndrome and Alzheimer's disease. In this report, we discovered that RCNA1 is a novel RNA-binding protein. A 23 nucleotide sequence of adenine nucleotide translocator (ANT1) mRNA was identified as the binding motif of RCAN1. Furthermore, we found that R1SR13, as the RNA aptamer of RCAN1 identified by SELEX, blocked RCAN1-induced inhibition of the nuclear factor of activated T cells (NFAT) and NF-κB signaling pathways, and reduced neuronal apoptosis. Taken together, our results demonstrate that RCAN1 is a novel RNA-binding protein and the RNA aptamer of RCAN1 plays a neuroprotective role.
Collapse
|
22
|
Moorthy H, Govindaraju T. Dendrimer Architectonics to Treat Cancer and Neurodegenerative Diseases with Implications in Theranostics and Personalized Medicine. ACS APPLIED BIO MATERIALS 2021; 4:1115-1139. [PMID: 35014470 DOI: 10.1021/acsabm.0c01319] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Integration of diagnostic and therapeutic functions in a single platform namely theranostics has become a cornerstone for personalized medicine. Theranostics platform facilitates noninvasive detection and treatment while allowing the monitoring of disease progression and therapeutic efficacy in case of chronic conditions of cancer and Alzheimer's disease (AD). Theranostic tools function by themselves or with the aid of carrier, viz. liposomes, micelles, polymers, or dendrimers. The dendrimer architectures (DA) are well-characterized molecular nanoobjects with a large number of terminal functional groups to enhance solubility and offer multivalency and multifunctional properties. Various noninvasive diagnostic tools like magnetic resonance imaging (MRI), computed tomography (CT), gamma scintigraphy, and optical techniques have been accomplished utilizing DAs for simultaneous imaging and drug delivery. Obstacles in the formulation design, drug loading, payload delivery, biocompatibility, overcoming cellular membrane and blood-brain barrier (BBB), and systemic circulation remain a bottleneck in translational efforts. This review focuses on the diagnostic, therapeutic and theranostic potential of DA-based nanocarriers in treating cancer and neurodegenerative disorders like AD and Parkinson's disease (PD), among others. In view of the inverse relationship between cancer and AD, designing suitable DA-based theranostic nanodrug with high selectivity has tremendous implications in personalized medicine to treat cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru, Karnataka 560064, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru, Karnataka 560064, India
| |
Collapse
|
23
|
Tian S, Tan S, Jia W, Zhao J, Sun X. Activation of Wnt/β-catenin signaling restores insulin sensitivity in insulin resistant neurons through transcriptional regulation of IRS-1. J Neurochem 2020; 157:467-478. [PMID: 33336396 DOI: 10.1111/jnc.15277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/14/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
Aberrant expression and phosphorylation of insulin receptor substrate 1 (IRS-1) contribute to brain insulin resistance. However, the underlying mechanism remains elusive. The insulin signaling and Wnt/β-catenin signaling are two critical pathways for normal cellular function, which interact in both peripheral tissues and the brain and may contribute to insulin resistance. In this study, we aimed to investigate the regulation of IRS-1 and its downstream insulin signaling by Wnt/β-catenin signaling in primary neurons. We found that the Wnt agonist Wnt3a enhances the insulin signaling in neurons at the basal state via up-regulation of IRS-1. Moreover, Wnt3a up-regulates IRS-1 expression and effectively ameliorates insulin resistance in rat primary neurons induced by chronic high insulin exposure. The insulin-mediated glucose uptake is also stimulated by Wnt3a at both basal and insulin resistant states. We observed that Wnt activation up-regulates IRS-1 gene transcription and the subsequent protein expression in SH-SY5Y cells and rat primary neurons via different means of Wnt/β-catenin signaling activation, including S33Y β-catenin over-expression, CHIR99021 and Wnt3a treatment. We further clarified the molecular mechanism of IRS-1 transcriptional activation by Wnt/β-catenin signaling. The Wnt transcription factor TCF4 binds to the -529 bp to -516 bp of the human IRS-1 promoter fragment and activates IRS-1 transcription. Overall, these data suggested that Wnt/β-catenin signaling positively regulates IRS-1 and insulin signaling and protects against insulin resistance in neurons.
Collapse
Affiliation(s)
- Shijiao Tian
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China.,Brain Research Institute, Qilu Hospital of Shandong University, Jinan, China
| | - Shichuan Tan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China.,Brain Research Institute, Qilu Hospital of Shandong University, Jinan, China
| | - Wenming Jia
- NHC Key Laboratory of Otorhinolaryngology, Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China
| | - Juan Zhao
- NHC Key Laboratory of Otorhinolaryngology, Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China
| | - Xiulian Sun
- Brain Research Institute, Qilu Hospital of Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
24
|
Cho KO, Jeong KH, Cha JH, Kim SY. Spatiotemporal expression of RCAN1 and its isoform RCAN1-4 in the mouse hippocampus after pilocarpine-induced status epilepticus. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:81-88. [PMID: 31908577 PMCID: PMC6940495 DOI: 10.4196/kjpp.2020.24.1.81] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/17/2019] [Accepted: 11/22/2019] [Indexed: 11/15/2022]
Abstract
Regulator of calcineurin 1 (RCAN1) can be induced by an intracellular calcium increase and oxidative stress, which are characteristic features of temporal lobe epilepsy. Thus, we investigated the spatiotemporal expression and cellular localization of RCAN1 protein and mRNA in the mouse hippocampus after pilocarpine-induced status epilepticus (SE). Male C57BL/6 mice were given pilocarpine hydrochloride (280 mg/kg, i.p.) and allowed to develop 2 h of SE. Then the animals were given diazepam (10 mg/kg, i.p.) to stop the seizures and sacrificed at 1, 3, 7, 14, or 28 day after SE. Cresyl violet staining showed that pilocarpine-induced SE resulted in cell death in the CA1 and CA3 subfields of the hippocampus from 3 day after SE. RCAN1 immunoreactivity showed that RCAN1 was mainly expressed in neurons in the shammanipulated hippocampi. At 1 day after SE, RCAN1 expression became detected in hippocampal neuropils. However, RCAN1 signals were markedly enhanced in cells with stellate morphology at 3 and 7 day after SE, which were confirmed to be reactive astrocytes, but not microglia by double immunofluorescence. In addition, real-time reverse transcriptase–polymerase chain reaction showed a significant upregulation of RCAN1 isoform 4 (RCAN1-4) mRNA in the SE-induced hippocampi. Finally, in situ hybridization with immunohistochemistry revealed astrocytic expression of RCAN1-4 after SE. These results demonstrate astrocytic upregulation of RCAN1 and RCAN1-4 in the mouse hippocampus in the acute and subacute phases of epileptogenesis, providing foundational information for the potential role of RCAN1 in reactive astrocytes during epileptogenesis.
Collapse
Affiliation(s)
- Kyung-Ok Cho
- Department of Pharmacology, Department of Biomedicine & Health Sciences, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Kyoung Hoon Jeong
- Department of Pharmacology, Department of Biomedicine & Health Sciences, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jung-Ho Cha
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seong Yun Kim
- Department of Pharmacology, Department of Biomedicine & Health Sciences, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
25
|
Wang S, Wang Y, Qiu K, Zhu J, Wu Y. RCAN1 in cardiovascular diseases: molecular mechanisms and a potential therapeutic target. Mol Med 2020; 26:118. [PMID: 33267791 PMCID: PMC7709393 DOI: 10.1186/s10020-020-00249-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Considerable efforts are needed to elucidate the underlying mechanisms for the prevention and treatment of CVDs. Regulator of calcineurin 1 (RCAN1) is involved in both development/maintenance of the cardiovascular system and the pathogenesis of CVDs. RCAN1 reduction protects against atherosclerosis by reducing the uptake of oxidized low-density lipoproteins, whereas RCAN1 has a protective effect on myocardial ischemia/reperfusion injury, myocardial hypertrophy and intramural hematoma/aortic rupture mainly mediated by maintaining mitochondrial function and inhibiting calcineurin and Rho kinase activity, respectively. In this review, the regulation and the function of RCAN1 are summarized. Moreover, the dysregulation of RCAN1 in CVDs is reviewed. In addition, the beneficial role of RCAN1 reduction in atherosclerosis and the protective role of RCAN1 in myocardial ischemia/reperfusion injury, myocardial hypertrophy and intramural hematoma /aortic rupture are discussed, as well as underlying mechanisms. Furthermore, the therapeutic potential and challenges of targeting RCAN1 for CVDs treatment are also discussed.
Collapse
Affiliation(s)
- Shuai Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China
| | - Yuqing Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Cheeloo College of Medicine, Shandong University, Wenhua West Road No. 44, Lixia District, JinanShandong, 250012, China
| | - Kaixin Qiu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Cheeloo College of Medicine, Shandong University, Wenhua West Road No. 44, Lixia District, JinanShandong, 250012, China
| | - Jin Zhu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China
| | - Yili Wu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China. .,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jianshe South Road No. 45, Rencheng District, Jining, 272013, Shandong, China.
| |
Collapse
|
26
|
Lee SK, Ahnn J. Regulator of Calcineurin (RCAN): Beyond Down Syndrome Critical Region. Mol Cells 2020; 43:671-685. [PMID: 32576715 PMCID: PMC7468584 DOI: 10.14348/molcells.2020.0060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
The regulator of calcineurin (RCAN) was first reported as a novel gene called DSCR1, encoded in a region termed the Down syndrome critical region (DSCR) of human chromosome 21. Genome sequence comparisons across species using bioinformatics revealed three members of the RCAN gene family, RCAN1, RCAN2, and RCAN3, present in most jawed vertebrates, with one member observed in most invertebrates and fungi. RCAN is most highly expressed in brain and striated muscles, but expression has been reported in many other tissues, as well, including the heart and kidneys. Expression levels of RCAN homologs are responsive to external stressors such as reactive oxygen species, Ca2+, amyloid β, and hormonal changes and upregulated in pathological conditions, including Alzheimer's disease, cardiac hypertrophy, diabetes, and degenerative neuropathy. RCAN binding to calcineurin, a Ca2+/calmodulin-dependent phosphatase, inhibits calcineurin activity, thereby regulating different physiological events via dephosphorylation of important substrates. Novel functions of RCANs have recently emerged, indicating involvement in mitochondria homeostasis, RNA binding, circadian rhythms, obesity, and thermogenesis, some of which are calcineurin-independent. These developments suggest that besides significant contributions to DS pathologies and calcineurin regulation, RCAN is an important participant across physiological systems, suggesting it as a favorable therapeutic target.
Collapse
Affiliation(s)
- Sun-Kyung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Joohong Ahnn
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
27
|
Lloret A, Monllor P, Fuchsberger T, Giraldo E, Perluigi M, Vina J. Increased basal antioxidant levels in RCAN1 - deficient mice lowers oxidative injury after acute paraquat insult. Free Radic Res 2020; 54:442-454. [PMID: 32686528 DOI: 10.1080/10715762.2020.1798002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
RCAN1 is an inhibitor of the phosphatase calcineurin, which is involved in the regulation of oxidative stress and apoptosis, among other important cell processes. Here we have used RCAN1 deficient mice (RCAN1-/-) to elucidate its role after an acute oxidative insult such as paraquat injection. We have observed that RCAN1-/- mice show less oxidative damage than wildtype (WT) mice after treatment. Under basal conditions, RCAN1-/- animals express more calcineurin, heme oxygenase-1, Nrf2, and catalase compared to WT mice (controls). This may explain the less severe effect of paraquat treatment on RCAN1-/- mice compared to WT. We showed that oxidative stress is involved in the early stages of apoptosis, thus we determined the apoptotic effector BAD and found that decreases in RCAN1-/- mice after treatment with paraquat compared with WT in similar experimental conditions. Our results suggest that RCAN1 may be involved in the balance between oxidant and antioxidant species production in vivo.
Collapse
Affiliation(s)
- Ana Lloret
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - Paloma Monllor
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - Tanja Fuchsberger
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - Esther Giraldo
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain.,Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain.,The Principe Felipe Research Center, Valencia, Spain
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Jose Vina
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| |
Collapse
|
28
|
RCAN1 Inhibits BACE2 Turnover by Attenuating Proteasome-Mediated BACE2 Degradation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1920789. [PMID: 32566665 PMCID: PMC7293731 DOI: 10.1155/2020/1920789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/22/2020] [Indexed: 11/23/2022]
Abstract
Amyloid-β protein (Aβ) is the main component of neuritic plaques, the pathological hallmark of Alzheimer's disease (AD). β-site APP cleaving enzyme 1 (BACE1) is a major β-secretase contributing to Aβ generation. β-site APP cleaving enzyme 2 (BACE2), the homolog of BACE1, is not only a θ-secretase but also a conditional β-secretase. Previous studies showed that regulator of calcineurin 1 (RCAN1) is markedly increased by AD and promotes BACE1 expression. However, the role of RCAN1 in BACE2 regulation remains elusive. Here, we showed that RCAN1 increases BACE2 protein levels. Moreover, RCAN1 inhibits the turnover of BACE2 protein. Furthermore, RCAN1 attenuates proteasome-mediated BACE2 degradation, but not lysosome-mediated BACE2 degradation. Taken together, our work indicates that RCAN1 inhibits BACE2 turnover by attenuating proteasome-mediated BACE2 degradation. It advances our understanding of BACE2 regulation and provides a potential mechanism of BACE2 dysregulation in AD.
Collapse
|
29
|
Ibarra-Bracamontes VJ, Escobar-Herrera J, Kristofikova Z, Rípova D, Florán-Garduño B, Garcia-Sierra F. Early but not late conformational changes of tau in association with ubiquitination of neurofibrillary pathology in Alzheimer's disease brains. Brain Res 2020; 1744:146953. [PMID: 32526294 DOI: 10.1016/j.brainres.2020.146953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 10/24/2022]
Abstract
In Alzheimer's disease, tau protein undergoes post-translational modifications including hyperphosphorylation and truncation, which promotes two major conformational changes associated with progressive N-terminal folding. Along with the development of the disease, tau ubiquitination was previously shown to emerge in the early and intermediate stages of the disease, which is closely associated with early tau truncation at aspartic acid 421, but not with a subsequently truncated tau molecule at glutamic acid 391. In the same group of cases, using multiple immunolabeling and confocal microscopy, a possible relationship between the ubiquitin-targeting of tau and the progression of conformational changes adopted by the N-terminus of this molecule was further studied. A comparable number of neurofibrillary tangles was found displaying ubiquitin, an early conformation recognized by the Alz-50 antibody, and a phosphorylation. However, a more reduced number of neurofibrillary tangles were immunoreactive to Tau-66 antibody, a late tau conformational change marker. When double-labeling profiles of neurofibrillary tangles were assessed, ubiquitination was clearly demonstrated in tau molecules undergoing early N-terminal folding, but was barely observed in late conformational changes of the N-terminus adopted by tau. The same pattern of colocalization was visualized in neuritic pathology. Overall, these results indicate that a more intact conformation of the N-terminus of tau may facilitate tau ubiquitination, but this modification may not occur in a late truncated and more compressed folding of the N-terminus of the tau molecule.
Collapse
Affiliation(s)
- Vanessa J Ibarra-Bracamontes
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Jaime Escobar-Herrera
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | | | - Daniela Rípova
- National Institute of Mental Health, Klecany, Czech Republic
| | - Benjamín Florán-Garduño
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Francisco Garcia-Sierra
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico.
| |
Collapse
|
30
|
Qiu K, Liang W, Wang S, Kong T, Wang X, Li C, Wang Z, Wu Y. BACE2 degradation is mediated by both the proteasome and lysosome pathways. BMC Mol Cell Biol 2020; 21:13. [PMID: 32160867 PMCID: PMC7066761 DOI: 10.1186/s12860-020-00260-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alzheimer's disease is the most common neurodegenerative disease in the elderly. Amyloid-β protein (Aβ) is the major component of neuritic plaques which are the hallmark of AD pathology. β-site APP cleaving enzyme 1 (BACE1) is the major β-secretase contributing to Aβ generation. β-site APP-cleaving enzyme 2 (BACE2), the homolog of BACE1, might play a complex role in the pathogenesis of Alzheimer's disease as it is not only a θ-secretase but also a conditional β-secretase. Dysregulation of BACE2 is observed in Alzheimer's disease. However, the regulation of BACE2 is less studied compared with BACE1, including its degradation pathways. In this study, we investigated the turnover rates and degradation pathways of BACE2 in both neuronal cells and non-neuronal cells. RESULTS Both lysosomal inhibition and proteasomal inhibition cause a time- and dose-dependent increase of transiently overexpressed BACE2 in HEK293 cells. The half-life of transiently overexpressed BACE2 protein is approximately 6 h. Moreover, the half-life of endogenous BACE2 protein is approximately 4 h in both HEK293 cells and mouse primary cortical neurons. Furthermore, both lysosomal inhibition and proteasomal inhibition markedly increases endogenous BACE2 in HEK293 cells and mouse primary cortical neurons. CONCLUSIONS This study demonstrates that BACE2 is degraded by both the proteasome and lysosome pathways in both neuronal and non-neuronal cells at endogenous level and in transient overexpression system. It indicates that BACE2 dysregulation might be mediated by the proteasomal and lysosomal impairment in Alzheimer's disease. This study advances our understanding of the regulation of BACE2 and provides a potential mechanism of its dysregulation in Alzheimer's disease.
Collapse
Affiliation(s)
- Kaixin Qiu
- Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, LixiaDistrict, Jinan, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of mental disorders, Institute of Mental Health, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, 272067, Shandong, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, Shandong, China
| | - Wenping Liang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Shuai Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of mental disorders, Institute of Mental Health, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, 272067, Shandong, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, Shandong, China
| | - Tingting Kong
- Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, LixiaDistrict, Jinan, Shandong, China
| | - Xin Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of mental disorders, Institute of Mental Health, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, 272067, Shandong, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, Shandong, China
| | - Chunyan Li
- Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, LixiaDistrict, Jinan, Shandong, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of mental disorders, Institute of Mental Health, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, 272067, Shandong, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, Shandong, China
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yili Wu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of mental disorders, Institute of Mental Health, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, 272067, Shandong, China.
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, Shandong, China.
| |
Collapse
|
31
|
Yang S, Wang J, Guo S, Huang D, Lorigados IB, Nie X, Lou D, Li Y, Liu M, Kang Y, Zhou W, Song W. Transcriptional activation of USP16 gene expression by NFκB signaling. Mol Brain 2019; 12:120. [PMID: 31888715 PMCID: PMC6937840 DOI: 10.1186/s13041-019-0535-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 12/11/2019] [Indexed: 12/22/2022] Open
Abstract
Ubiquitin Specific Peptidase 16 (USP16) has been reported to contribute to somatic stem-cell defects in Down syndrome. However, how this gene being regulated is largely unknown. To study the mechanism underlying USP16 gene expression, USP16 gene promoter was cloned and analyzed by luciferase assay. We identified that the 5′ flanking region (− 1856 bp ~ + 468 bp) of the human USP16 gene contained the functional promotor to control its transcription. Three bona fide NFκB binding sites were found in USP16 promoter. We showed that p65 overexpression enhanced endogenous USP16 mRNA level. Furthermore, LPS and TNFα, strong activators of the NFκB pathway, upregulated the USP16 transcription. Our data demonstrate that USP16 gene expression is tightly regulated at transcription level. NFκB signaling regulates the human USP16 gene expression through three cis-acting elements. The results provide novel insights into a potential role of dysregulation of USP16 expression in Alzheimer’s dementia in Down Syndrome.
Collapse
Affiliation(s)
- Shou Yang
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Juelu Wang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Shipeng Guo
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Daochao Huang
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Isabel Bestard Lorigados
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Xing Nie
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Dandan Lou
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yanhua Li
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Mingjing Liu
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yu Kang
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Weihui Zhou
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Weihong Song
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
32
|
Tian S, Jia W, Lu M, Zhao J, Sun X. Dual-specificity tyrosine phosphorylation-regulated kinase 1A ameliorates insulin resistance in neurons by up-regulating IRS-1 expression. J Biol Chem 2019; 294:20164-20176. [PMID: 31723029 PMCID: PMC6937568 DOI: 10.1074/jbc.ra119.010809] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/10/2019] [Indexed: 11/06/2022] Open
Abstract
Insulin resistance in the brain is a pathological mechanism that is shared between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Although aberrant expression and phosphorylation of insulin receptor substrate 1 (IRS-1) contribute to insulin resistance, the underlying mechanism remains elusive. In this study, we used several approaches, including adeno-associated virus-based protein overexpression, immunoblotting, immunoprecipitation, immunohistochemistry, and in situ proximal ligation assays, to investigate the function of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) in IRS-1 regulation and the downstream insulin signaling in neurons. We found that DYRK1A overexpression up-regulated IRS-1 expression by slowing turnover of the IRS-1 protein. We further observed that DYRK1A directly interacted with IRS-1 and phosphorylated IRS-1's multiple serine residues. Of note, DYRK1A and IRS-1 were coordinately up-regulated in the prefrontal cortex of db/db mice brain. Furthermore, DYRK1A overexpression ameliorated chronic high insulin-induced insulin resistance in SH-SY5Y cells as well as in primary rat neurons. These findings suggest that DYRK1A protects against insulin resistance in the brain by elevating IRS-1 expression.
Collapse
Affiliation(s)
- Shijiao Tian
- Department of Neurology, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Rd., 250012 Jinan, China
- Brain Research Institute, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Rd., 250012 Jinan, China
| | - Wenming Jia
- NHC Key Laboratory of Otorhinolaryngology, Chinese Ministry of Health, Qilu Hospital of Shandong University, No. 44 Wenhuaxi Rd., 250012 Jinan, China
| | - Mei Lu
- Department of Geriatrics, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Rd., 250012 Jinan, China
| | - Juan Zhao
- NHC Key Laboratory of Otorhinolaryngology, Chinese Ministry of Health, Qilu Hospital of Shandong University, No. 44 Wenhuaxi Rd., 250012 Jinan, China
| | - Xiulian Sun
- Brain Research Institute, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Rd., 250012 Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Qilu Hospital of Shandong University, No. 107 West Wenhua Rd., Jinan, 250012 Shandong Province, China
| |
Collapse
|
33
|
Li X, Wu X, Gao Y, Hao L, Sun S. Apoptosis-linked antifungal effect of ambroxol hydrochloride by cystolic calcium concentration disturbance in resistant Candida albicans. SCIENCE CHINA. LIFE SCIENCES 2019; 62:1601-1604. [PMID: 31802417 DOI: 10.1007/s11427-018-9830-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Xiuyun Li
- Pharmaceutical Department, Qilu Children's Hospital of Shandong University, Jinan, 250022, China
| | - Xuexin Wu
- Pharmaceutical Department, Qilu Children's Hospital of Shandong University, Jinan, 250022, China
| | - Yan Gao
- Pharmaceutical Department, Qilu Children's Hospital of Shandong University, Jinan, 250022, China
| | - Lina Hao
- Pharmaceutical Department, Qilu Children's Hospital of Shandong University, Jinan, 250022, China.
| | - Shujuan Sun
- Pharmaceutical Department, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, 250014, China.
| |
Collapse
|
34
|
Tian Y, Wang S, Jiao F, Kong Q, Liu C, Wu Y. Telomere Length: A Potential Biomarker for the Risk and Prognosis of Stroke. Front Neurol 2019; 10:624. [PMID: 31263449 PMCID: PMC6585102 DOI: 10.3389/fneur.2019.00624] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide. Age is associated with increased risk of stroke, while telomere length shortening plays a pivotal role in the process of aging. Moreover, telomere length shortening is associated with many risk factors of stroke in addition to age. Accumulated evidence shows that short leukocyte telomere length is not only associated with stroke occurrence but also associated with post-stroke recovery in the elderly population. In this review, we aimed to summarize the association between leukocyte telomere length and stroke, and discuss that telomere length might serve as a potential biomarker to predict the risk and prognosis of stroke.
Collapse
Affiliation(s)
- Yanjun Tian
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| | - Shuai Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Fengjuan Jiao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Qingsheng Kong
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| | - Chuanxin Liu
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| | - Yili Wu
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China.,Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
35
|
Fang H, Li HF, Yang M, Liao R, Wang RR, Wang QY, Zheng PC, Zhang FX, Zhang JP. NF-κB signaling pathway inhibition suppresses hippocampal neuronal apoptosis and cognitive impairment via RCAN1 in neonatal rats with hypoxic-ischemic brain damage. Cell Cycle 2019; 18:1001-1018. [PMID: 30990350 PMCID: PMC6527272 DOI: 10.1080/15384101.2019.1608128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
NF-κB is a core transcription factor, the activation of which can lead to hypoxic-ischemic brain damage (HIBD), while RCAN1 plays a protective role in HIBD. However, the relationship between NF-κB and RCAN1 in HIBD remains unclear. This study aimed to explore the mechanism of NF-κB signaling pathway in hippocampal neuron apoptosis and cognitive impairment of neonatal rats with HIBD in relation to RCAN1. Initially, microarray analysis was used to determine the differentially expressed genes related to HIBD. After the establishment of HIBD rat models, gain- or loss-of-function assay was performed to explore the functional role of NF-κB signaling pathway in HIBD. Then, the learning and memory ability of rats was evaluated. Expression of RCAN1, NF-κB signaling pathway-related genes and glial fibrillary acidic protein (GFAP), S-100β and acetylcholine (Ach) level, and acetylcholinesterase (AchE) activity were determined with neuron apoptosis detected to further explore the function of NF-κB signaling pathway. RCAN1 could influence the development of HIBD. In the HIBD model, the expression of RCAN1 and NF-κB-related genes increased, and NF-κB p65 showed a significant nuclear shift. By activation of NF-κB or overexpression of RCAN1, the number of neuronal apoptosis, S-100β protein level, and AchE level increased significantly, Ach activity decreased significantly, and GFAP positive cells increased. In addition, after the activation of NF-κB or overexpression of RCAN1, the learning and memory ability of HIBD rats was inhibited. All the results show that activation of NF-κB signaling pathway promotes RCAN1 expression, thus increasing neuronal apoptosis and aggravating cognitive impairment in HIBD rats.
Collapse
Affiliation(s)
- Hua Fang
- a Department of Anesthesiology , Guizhou Provincial People's Hospital , Guiyang , P. R. China.,b Department of Anesthesiology , Guizhou University People's Hospital, , Guiyang, P. R. China
| | - Hua-Feng Li
- c Department of Anesthesiology, West China Second University Hospital , Sichuan University , Chengdu , P. R. China
| | - Miao Yang
- a Department of Anesthesiology , Guizhou Provincial People's Hospital , Guiyang , P. R. China.,b Department of Anesthesiology , Guizhou University People's Hospital, , Guiyang, P. R. China
| | - Ren Liao
- d Department of Anesthesiology, West China Hospital , Sichuan University , Chengdu , P. R. China
| | - Ru-Rong Wang
- d Department of Anesthesiology, West China Hospital , Sichuan University , Chengdu , P. R. China
| | - Quan-Yun Wang
- d Department of Anesthesiology, West China Hospital , Sichuan University , Chengdu , P. R. China
| | - Peng-Cheng Zheng
- e Guizhou University Research Center for Analysis of Drugs and Metabolites , Guizhou University , Chengdu , P. R. China
| | - Fang-Xiang Zhang
- a Department of Anesthesiology , Guizhou Provincial People's Hospital , Guiyang , P. R. China.,b Department of Anesthesiology , Guizhou University People's Hospital, , Guiyang, P. R. China
| | - Jian-Ping Zhang
- a Department of Anesthesiology , Guizhou Provincial People's Hospital , Guiyang , P. R. China.,b Department of Anesthesiology , Guizhou University People's Hospital, , Guiyang, P. R. China
| |
Collapse
|
36
|
Zhang X, Wu Y, Cai F, Song W. Regulation of global gene expression in brain by TMP21. Mol Brain 2019; 12:39. [PMID: 31036051 PMCID: PMC6489340 DOI: 10.1186/s13041-019-0460-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022] Open
Abstract
TMP21, a type I transmembrane protein of thep24 protein family, mediates protein trafficking and maturation. Dysregulation of TMP21 is implicated in the pathogenesis of Alzheimer’s disease (AD). However, underlying mechanisms remain elusive. To reveal the function of TMP21 in the brain and the pathogenic role of TMP21 in the brain of AD, the global gene expression was profiled in the brain of TMP21 knockdown mice. We found that 8196 and 8195 genes are significantly altered in the hippocampus and cortex, respectively. The genes are involved in a number of brain function-related pathways, including glutamatergic synapse pathway, serotonergic synapse pathway, synaptic vesicle pathway, and long-term depression pathway. Moreover, the network analysis suggests that the TMP21 may contribute to the pathogenesis of AD by regulatingPI3K/Akt/GSK3β signalling pathway. Our study provides an insight into the physiological function of TMP21 in the brain and pathological role of TMP21 in AD.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Mental Disorders, Changsha, Hunan, China.,Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yili Wu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong, China
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
37
|
Giaume C, Sáez JC, Song W, Leybaert L, Naus CC. Connexins and pannexins in Alzheimer’s disease. Neurosci Lett 2019; 695:100-105. [DOI: 10.1016/j.neulet.2017.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/14/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022]
|
38
|
Stem Cells as Potential Targets of Polyphenols in Multiple Sclerosis and Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1483791. [PMID: 30112360 PMCID: PMC6077677 DOI: 10.1155/2018/1483791] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) and multiple sclerosis are major neurodegenerative diseases, which are characterized by the accumulation of abnormal pathogenic proteins due to oxidative stress, mitochondrial dysfunction, impaired autophagy, and pathogens, leading to neurodegeneration and behavioral deficits. Herein, we reviewed the utility of plant polyphenols in regulating proliferation and differentiation of stem cells for inducing brain self-repair in AD and multiple sclerosis. Firstly, we discussed the genetic, physiological, and environmental factors involved in the pathophysiology of both the disorders. Next, we reviewed various stem cell therapies available and how they have proved useful in animal models of AD and multiple sclerosis. Lastly, we discussed how polyphenols utilize the potential of stem cells, either complementing their therapeutic effects or stimulating endogenous and exogenous neurogenesis, against these diseases. We suggest that polyphenols could be a potential candidate for stem cell therapy against neurodegenerative disorders.
Collapse
|
39
|
Pang Z, Junkins RD, Raudonis R, MacNeil AJ, McCormick C, Cheng Z, Lin TJ. Regulator of calcineurin 1 differentially regulates TLR-dependent MyD88 and TRIF signaling pathways. PLoS One 2018; 13:e0197491. [PMID: 29799862 PMCID: PMC5969770 DOI: 10.1371/journal.pone.0197491] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/03/2018] [Indexed: 11/19/2022] Open
Abstract
Toll-like receptors (TLRs) recognize the conserved molecular patterns in microorganisms and trigger myeloid differentiation primary response 88 (MyD88) and/or TIR-domain-containing adapter-inducing interferon-β (TRIF) pathways that are critical for host defense against microbial infection. However, the molecular mechanisms that govern TLR signaling remain incompletely understood. Regulator of calcineurin-1 (RCAN1), a small evolutionarily conserved protein that inhibits calcineurin phosphatase activity, suppresses inflammation during Pseudomonas aeruginosa infection. Here, we define the roles for RCAN1 in P. aeruginosa lipopolysaccharide (LPS)-activated TLR4 signaling. We compared the effects of P. aeruginosa LPS challenge on bone marrow-derived macrophages from both wild-type and RCAN1-deficient mice and found that RCAN1 deficiency increased the MyD88-NF-κB-mediated cytokine production (IL-6, TNF and MIP-2), whereas TRIF-interferon-stimulated response elements (ISRE)-mediated cytokine production (IFNβ, RANTES and IP-10) was suppressed. RCAN1 deficiency caused increased IκBα phosphorylation and NF-κB activity in the MyD88-dependent pathway, but impaired ISRE activation and reduced IRF7 expression in the TRIF-dependent pathway. Complementary studies of a mouse model of P. aeruginosa LPS-induced acute pneumonia confirmed that RCAN1-deficient mice displayed greatly enhanced NF-κB activity and MyD88-NF-κB-mediated cytokine production, which correlated with enhanced pulmonary infiltration of neutrophils. By contrast, RCAN1 deficiency had little effect on the TRIF pathway in vivo. These findings demonstrate a novel regulatory role of RCAN1 in TLR signaling, which differentially regulates MyD88 and TRIF pathways.
Collapse
Affiliation(s)
- Zheng Pang
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert D. Junkins
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Renee Raudonis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Adam J. MacNeil
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Craig McCormick
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Zhenyu Cheng
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tong-Jun Lin
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
- Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
40
|
Izzo A, Mollo N, Nitti M, Paladino S, Calì G, Genesio R, Bonfiglio F, Cicatiello R, Barbato M, Sarnataro V, Conti A, Nitsch L. Mitochondrial dysfunction in down syndrome: molecular mechanisms and therapeutic targets. Mol Med 2018; 24:2. [PMID: 30134785 PMCID: PMC6016872 DOI: 10.1186/s10020-018-0004-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/13/2018] [Indexed: 01/11/2023] Open
Abstract
Trisomy of chromosome 21 (TS21) is the most common autosomal aneuploidy compatible with postnatal survival with a prevalence of 1 in 700 newborns. Its phenotype is highly complex with constant features, such as mental retardation, dysmorphic traits and hypotonia, and variable features including heart defects, susceptibility to Alzheimer’s disease (AD), type 2 diabetes, obesity and immune disorders. Overexpression of genes on chromosome-21 (Hsa21) is responsible for the pathogenesis of Down syndrome (DS) phenotypic features either in a direct or in an indirect manner since many Hsa21 genes can affect the expression of other genes mapping to different chromosomes. Many of these genes are involved in mitochondrial function and energy conversion, and play a central role in the mitochondrial dysfunction and chronic oxidative stress, consistently observed in DS subjects. Recent studies highlight the deep interconnections between mitochondrial dysfunction and DS phenotype. In this short review we first provide a basic overview of mitochondrial phenotype in DS cells and tissues. We then discuss how specific Hsa21 genes may be involved in determining the disruption of mitochondrial DS phenotype and biogenesis. Finally we briefly focus on drugs that affect mitochondrial function and mitochondrial network suggesting possible therapeutic approaches to improve and/or prevent some aspects of the DS phenotype.
Collapse
Affiliation(s)
- Antonella Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Nunzia Mollo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Maria Nitti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Gaetano Calì
- Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - Rita Genesio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Ferdinando Bonfiglio
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Rita Cicatiello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Maria Barbato
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Viviana Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Anna Conti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy.
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
41
|
RCAN1 Mutation and Functional Characterization in Children with Sporadic Congenital Heart Disease. Pediatr Cardiol 2018; 39:226-235. [PMID: 28993896 DOI: 10.1007/s00246-017-1746-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/30/2017] [Indexed: 01/15/2023]
Abstract
Congenital heart disease (CHD) is the most frequent birth defect. RCAN1 (regulator of calcineurin 1) contributes to CHD in Down syndrome. However, whether RCAN1 is also associated with nonsyndromic CHD remains unclear. This study sequenced the exons and flanking region of RCAN1 in 128 sporadic CHD patients and 150 normal controls. We identified six novel heterozygous mutations in CHD patients. Functional assay showed that the g.482G>T could obviously raise the promoter activity of RCAN1.4 in vitro; However, we failed to detect the expression of RCAN1 in the right auricle, which made it confused to evaluate the pathogenicity of this mutation. In addition, we demonstrated that c.290T>C and g.1056+58C>A had no effect on the alternative splicing of RCAN1. The *196C>T, *790G>A, and *1278C>G did not influence the translation of RCAN1 post transcription. In conclusion, a novel mutation of g.482G>T in RCAN1 may be related to CHD by causing overexpression of RCAN1.4.
Collapse
|
42
|
Stagni F, Giacomini A, Emili M, Guidi S, Bartesaghi R. Neurogenesis impairment: An early developmental defect in Down syndrome. Free Radic Biol Med 2018; 114:15-32. [PMID: 28756311 DOI: 10.1016/j.freeradbiomed.2017.07.026] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 02/06/2023]
Abstract
Down syndrome (DS) is characterized by brain hypotrophy and intellectual disability starting from early life stages. Accumulating evidence shows that the phenotypic features of the DS brain can be traced back to the fetal period since the DS brain exhibits proliferation potency reduction starting from the critical time window of fetal neurogenesis. This defect is worsened by the fact that neural progenitor cells exhibit reduced acquisition of a neuronal phenotype and an increase in the acquisition of an astrocytic phenotype. Consequently, the DS brain has fewer neurons in comparison with the typical brain. Although apoptotic cell death may be increased in DS, this does not seem to be the major cause of brain hypocellularity. Evidence obtained in brains of individuals with DS, DS-derived induced pluripotent stem cells (iPSCs), and DS mouse models has provided some insight into the mechanisms underlying the developmental defects due to the trisomic condition. Although many triplicated genes may be involved, in the light of the studies reviewed here, DYRK1A, APP, RCAN1 and OLIG1/2 appear to be particularly important determinants of many neurodevelopmental alterations that characterize DS because their triplication affects both the proliferation and fate of neural precursor cells as well as apoptotic cell death. Based on the evidence reviewed here, pathways downstream to these genes may represent strategic targets, for the design of possible interventions.
Collapse
Affiliation(s)
- Fiorenza Stagni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Andrea Giacomini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Emili
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
43
|
Fu Q, Wu Y. RCAN1 in the inverse association between Alzheimer's disease and cancer. Oncotarget 2017; 9:54-66. [PMID: 29416595 PMCID: PMC5787488 DOI: 10.18632/oncotarget.23094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/17/2017] [Indexed: 01/05/2023] Open
Abstract
The inverse association between Alzheimer’s disease (AD) and cancer has been reported in several population-based studies although both of them are age-related disorders. However, molecular mechanisms of the inverse association remain elusive. Increased expression of regulator of calcineurin 1 (RCAN1) promotes the pathogenesis of AD, while it suppresses cancer growth and progression in many types of cancer. Moreover, aberrant RCAN1 expression is detected in both AD and various types of cancer. It suggests that RCAN1 may play a key role in the inverse association between AD and cancer. In this article, we aim to review the role of RCAN1 in the inverse association and discuss underlying mechanisms, providing an insight into developing a novel approach to treat AD and cancer.
Collapse
Affiliation(s)
- Qiang Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yili Wu
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China.,Shandong Key Laboratory of Behavioral Medicine, Jining, Shandong, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining, Shandong, China
| |
Collapse
|
44
|
Peiris H, Keating DJ. The neuronal and endocrine roles of RCAN1 in health and disease. Clin Exp Pharmacol Physiol 2017; 45:377-383. [PMID: 29094385 DOI: 10.1111/1440-1681.12884] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 01/15/2023]
Abstract
The regulator of calcineurin 1 (RCAN1) was first discovered as a gene located on human chromosome 21, expressed in neurons and overexpressed in the brains of Down syndrome individuals. Increased expression of RCAN1 has been linked with not only Down syndrome-associated pathology but also an associated neurological disorder, Alzheimer's Disease, in which neuronal RCAN1 expression is also increased. RCAN1 has additionally been demonstrated to affect other cell types including endocrine cells, with links to the pathogenesis of β-cell dysfunction in type 2 diabetes. The primary functions of RCAN1 relate to the inhibition of the phosphatase calcineurin, and to the regulation of mitochondrial function. Various forms of cellular stress such as reactive oxygen species and hyperglycaemia cause transient increases in RCAN1 expression. The short term (hours to days) induction of RCAN1 expression is generally thought to have a protective effect by regulating the expression of pro-survival genes in multiple cell types, many of which are mediated via the calcineurin/NFAT transcriptional pathway. However, strong evidence also supports the notion that chronic (weeks-years) overexpression of RCAN1 has a detrimental effect on cells and that this may drive pathophysiological changes in neurons and endocrine cells linked to Down syndrome, Alzheimer's Disease and type 2 diabetes. Here we review the evidence related to these roles of RCAN1 in neurons and endocrine cells and their relationship to these human health disorders.
Collapse
Affiliation(s)
- Heshan Peiris
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Damien J Keating
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
45
|
Chen X, Hu Y, Wang S, Sun X. The regulator of calcineurin 1 (RCAN1) inhibits nuclear factor kappaB signaling pathway and suppresses human malignant glioma cells growth. Oncotarget 2017; 8:12003-12012. [PMID: 28061453 PMCID: PMC5355321 DOI: 10.18632/oncotarget.14479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/20/2016] [Indexed: 01/04/2023] Open
Abstract
Nuclear factor-kappaB (NF-κB) has a vital role in cell survival and inhibition of NF-κB had proven to be an efficient therapeutic pathway for various cancers though little is known about the underlying mechanism. Previously we identified regulator of calcineurin 1 (RCAN1) as an endogenous inhibitor of NF-κB signaling pathway in lymphoma. In the present study, we have solid data to show that RCAN1 can inhibit the nuclear translocation of NF-κB protein then affect the activity of NF-κB signaling pathway in glioma cells. Overexpression of RCAN1 markedly reduced glioma cells viability. We further found that the suppressing glioma cell growth was closely related to the pro-apoptosis effect, not by inhibiting proliferation by the arrest of cell cycle. Our study implicated a novel therapeutic approach for glioma by RCAN1 through inhibition of NF-κB signaling.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China.,China National Clinical Research Center for Neurological Diseases, Beijing, P. R. China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, P. R. China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, P. R. China
| | - Yuanyuan Hu
- Brain Research Institute, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China.,China National Clinical Research Center for Neurological Diseases, Beijing, P. R. China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, P. R. China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, P. R. China
| | - Xiulian Sun
- Brain Research Institute, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
46
|
Wang X, Zhou X, Li G, Zhang Y, Wu Y, Song W. Modifications and Trafficking of APP in the Pathogenesis of Alzheimer's Disease. Front Mol Neurosci 2017; 10:294. [PMID: 28966576 PMCID: PMC5605621 DOI: 10.3389/fnmol.2017.00294] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/31/2017] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is the leading cause of dementia. Neuritic plaque, one of the major characteristics of AD neuropathology, mainly consists of amyloid β (Aβ) protein. Aβ is derived from amyloid precursor protein (APP) by sequential cleavages of β- and γ-secretase. Although APP upregulation can promote AD pathogenesis by facilitating Aβ production, growing evidence indicates that aberrant post-translational modifications and trafficking of APP play a pivotal role in AD pathogenesis by dysregulating APP processing and Aβ generation. In this report, we reviewed the current knowledge of APP modifications and trafficking as well as their role in APP processing. More importantly, we discussed the effect of aberrant APP modifications and trafficking on Aβ generation and the underlying mechanisms, which may provide novel strategies for drug development in AD.
Collapse
Affiliation(s)
- Xin Wang
- Department of Psychiatry, Jining Medical UniversityJining, China.,Shandong Key Laboratory of Behavioral Medicine, Jining Medical UniversityJining, China
| | - Xuan Zhou
- Department of Psychiatry, Jining Medical UniversityJining, China.,Shandong Key Laboratory of Behavioral Medicine, Jining Medical UniversityJining, China
| | - Gongying Li
- Department of Psychiatry, Jining Medical UniversityJining, China.,Shandong Key Laboratory of Behavioral Medicine, Jining Medical UniversityJining, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical UniversityJining, China
| | - Yun Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British ColumbiaVancouver, BC, Canada
| | - Yili Wu
- Department of Psychiatry, Jining Medical UniversityJining, China.,Shandong Key Laboratory of Behavioral Medicine, Jining Medical UniversityJining, China.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical UniversityJining, China.,Townsend Family Laboratories, Department of Psychiatry, The University of British ColumbiaVancouver, BC, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, The University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
47
|
Jing R, Zhou Z, Kuang F, Huang L, Li C. microRNA-99a Reduces Lipopolysaccharide-Induced Oxidative Injury by Activating Notch Pathway in H9c2 Cells. Int Heart J 2017; 58:422-427. [PMID: 28484120 DOI: 10.1536/ihj.16-261] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
microRNA-99a (miR-99a) is recently recognized as a key regulator in various cancers and cardiovascular diseases. In the present study, we sought to investigate the effects of miR-99a in rat cardiomyocyte H9c2 cells against oxidative injury induced by lipopolysaccharide (LPS).MTT assay, reactive oxygen species (ROS) assay, flow cytometry and lactate dehydrogenase (LDH) assay were respectively used to explore viability, ROS levels, apoptosis, and cell death in H9c2 cells. Quantitative PCR (qRT-PCR) was performed to confirm the expression of miR-99a. Western blot was performed to determine the expression of Notch pathway factors.LPS could significantly suppress viability and increase cell death, apoptosis, and ROS level (P < 0.05). However, miR-99a could significantly increase the viability and decrease apoptosis and ROS level of H9c2 cells (P < 0.05). Overexpression of miR-99a could activate a Notch pathway and regulate the expression of B-cell CLL/lymphoma 2 (BCL2) and cleaved caspase 3.Our study found that overexpression of miR-99a could attenuate LPS-induced oxidative injury in H9c2 cells, possibly via a Notch pathway. These findings suggest that miR-99a may be a key factor in cardiomyocyte oxidative injury and could be a new therapeutic strategy for cardiovascular diseases.
Collapse
Affiliation(s)
- Ran Jing
- Department of Cardiovascular, Xiangya Hospital Central South University
| | - Zhengming Zhou
- Department of Radiology, Xiangya Hospital Central South University
| | - Feng Kuang
- Department of Cardiac Surgery, The First Affiliated Hospital of Xiamen University
| | - Lei Huang
- Department of Cardiac Surgery, Peking University Shenzhen Hospital
| | - Chuanchang Li
- Department of Geriatrics, Xiangya Hospital Central South University
| |
Collapse
|
48
|
Zhang C, Jiang H, Wang P, Liu H, Sun X. Transcription factor NF-kappa B represses ANT1 transcription and leads to mitochondrial dysfunctions. Sci Rep 2017; 7:44708. [PMID: 28317877 PMCID: PMC5357787 DOI: 10.1038/srep44708] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/13/2017] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are intracellular organelles involved in cell survival and death, and dysfunctions of mitochondria are related to neurodegenerative diseases. As the most abundant protein in the mitochondrial inner membrane, adenine nucleotide translocator 1 (ANT1) plays a critical role in mitochondrial function, including the exchange of adenosine triphosphate/adenosine diphosphate (ATP/ADP) in mitochondria, basal proton leak and mitochondrial permeability transition pore (mPTP). Here, we show that ANT1 transcription is regulated by transcription factor NF-kappa B (NF-κB). NF-κB is bound to two NF-κB responsive elements (NREs) located at +1 to +20 bp and +41 to +61 bp in the ANT1 promoter. An NF-κB signalling stimulator, tumour necrosis factor alpha (TNFα), suppresses ANT1 mRNA and protein expression. Activation of NF-κB by TNFα impairs ATP/ADP exchange and decreases ATP production in mitochondria. Activation of NF-κB by TNFα decreases calcium induced mPTP opening, elevates mitochondrial potential and increases reactive oxygen species (ROS) production in both T98G human glioblastoma cells and rat cortical neurons. These results demonstrate that NF-κB signalling may repress ANT1 gene transcription and impair mitochondrial functions.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Neurology, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Hui Jiang
- Department of Pediatrics, 2nd Hospital of Shandong University, No. 44 West Wenhua Road, Jinan, 250011, Shandong Province, China
| | - Pin Wang
- Otolaryngology Key, Lab of Ministry of Health, No. 44 West Wenhua Road, Jinan, China
| | - Heng Liu
- Otolaryngology Key, Lab of Ministry of Health, No. 44 West Wenhua Road, Jinan, China
| | - Xiulian Sun
- Brain Research Institute, Qilu Hospital of Shandong University, No.107 West Wenhua Road, Jinan, 250012, Shandong Province, China
| |
Collapse
|
49
|
Zhang X, Wu Y, Cai F, Liu S, Bromley-Brits K, Xia K, Song W. A Novel Alzheimer-Associated SNP in Tmp21 Increases Amyloidogenesis. Mol Neurobiol 2017; 55:1862-1870. [PMID: 28233271 DOI: 10.1007/s12035-017-0459-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
Recent studies suggest that TMP21 is a selective modulator of γ-secretase and its dysregulation affects APP processing, leading to increased Aβ generation. However, the genetic association between Tmp21 and Alzheimer's disease (AD) remains elusive. In this study, we identified that a novel single-nucleotide polymorphism (SNP) rs12435391 (IVS4-28T>C) in intron 4 of Tmp21 was genetically associated with AD. We found that allele C of the SNP rs12435391 did not affect splicing site recognition, but it significantly increased TMP21 gene expression. The stability of Tmp21 pre-mRNA and the transcription of Tmp21 were not affected by allele C of the SNP rs12435391. However, allele C of the SNP rs12435391 significantly increased the splicing efficiency of Tmp21 pre-mRNA, leading to the elevation of mature mRNA. Furthermore, allele C of the SNP rs12435391 significantly reduced C83 level and increased Aβ generation. Taken together, our study suggests that TMP21 is genetically associated with Alzheimer's disease, with the novel Tmp21 SNP as a risk factor for Alzheimer's pathogenesis.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yili Wu
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Shengchun Liu
- Department of Surgery, The First Affiliated Hospital, Chongqing Medical University, 1 Friendship Road, Yuzhong District, Chongqing, 410006, China
| | - Kelley Bromley-Brits
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kun Xia
- The State Key Lab of Medical Genetics of China, School of Life Sciences, Central South University, Changsha, 410000, China.
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
50
|
Lim S, Hwang S, Yu JH, Lim JW, Kim H. Lycopene inhibits regulator of calcineurin 1-mediated apoptosis by reducing oxidative stress and down-regulating Nucling in neuronal cells. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201600530] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/16/2016] [Accepted: 11/24/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Seiyoung Lim
- Department of Food and Nutrition; Brian Korea 21 PLUS Project; College of Human Ecology; Yonsei University; Seoul Republic of Korea
| | - Sinwoo Hwang
- Department of Food and Nutrition; Brian Korea 21 PLUS Project; College of Human Ecology; Yonsei University; Seoul Republic of Korea
| | - Ji Hoon Yu
- New Drug Development Center; Daegu-Gyeongbuk Medical Innovation Foundation; Daegu Korea
| | - Joo Weon Lim
- Department of Food and Nutrition; Brian Korea 21 PLUS Project; College of Human Ecology; Yonsei University; Seoul Republic of Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition; Brian Korea 21 PLUS Project; College of Human Ecology; Yonsei University; Seoul Republic of Korea
| |
Collapse
|