1
|
Hardtke HA, Zhang YJ. Collaborators or competitors: the communication between RNA polymerase II and the nucleosome during eukaryotic transcription. Crit Rev Biochem Mol Biol 2024; 59:1-19. [PMID: 38288999 PMCID: PMC11209794 DOI: 10.1080/10409238.2024.2306365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 04/22/2024]
Abstract
Decades of scientific research have been devoted to unraveling the intricacies of eukaryotic transcription since the groundbreaking discovery of eukaryotic RNA polymerases in the late 1960s. RNA polymerase II, the polymerase responsible for mRNA synthesis, has always attracted the most attention. Despite its structural resemblance to its bacterial counterpart, eukaryotic RNA polymerase II faces a unique challenge in progressing transcription due to the presence of nucleosomes that package DNA in the nuclei. In this review, we delve into the impact of RNA polymerase II and histone signaling on the progression of eukaryotic transcription. We explore the pivotal points of interactions that bridge the RNA polymerase II and histone signaling systems. Finally, we present an analysis of recent cryo-electron microscopy structures, which captured RNA polymerase II-nucleosome complexes at different stages of the transcription cycle. The combination of the signaling crosstalk and the direct visualization of RNA polymerase II-nucleosome complexes provides a deeper understanding of the communication between these two major players in eukaryotic transcription.
Collapse
Affiliation(s)
- Haley A. Hardtke
- Department of Molecular Biosciences, University of Texas, Austin
| | - Y. Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin
| |
Collapse
|
2
|
Histone Modifications and Non-Coding RNAs: Mutual Epigenetic Regulation and Role in Pathogenesis. Int J Mol Sci 2022; 23:ijms23105801. [PMID: 35628612 PMCID: PMC9146199 DOI: 10.3390/ijms23105801] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/07/2022] Open
Abstract
In the last few years, more and more scientists have suggested and confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. This is particularly interesting for a better understanding of processes that occur in the development and progression of various diseases. Appearing on the preclinical stages of diseases, epigenetic aberrations may be prominent biomarkers. Being dynamic and reversible, epigenetic modifications could become targets for a novel option for therapy. Therefore, in this review, we are focusing on histone modifications and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.
Collapse
|
3
|
Khwaja S, Kumar K, Das R, Negi AS. Microtubule associated proteins as targets for anticancer drug development. Bioorg Chem 2021; 116:105320. [PMID: 34492559 DOI: 10.1016/j.bioorg.2021.105320] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/28/2022]
Abstract
The dynamic equilibrium of tubulin-microtubule is an essential aspect of cell survivality. Modulation of this dynamics has become an important target for the cancer drug development. Tubulin exists in the alpha-beta dimer form which polymerizes to form microtubule and further depolymerizes back to tubulin dimer. The microtubule plays an essential role in mitosis and cell multiplication. Antitubulin drugs disturb the microtubule dynamics which is essentially required for DNA segregation and cell division during mitosis so killing the cancerous cells. Microtubule Associated Proteins (MAPs) interact with cellular cytoskeletal microtubules. MAPs bind to the either polymerized or depolymerized tubulin dimers within the cell and mostly causing stabilization of microtubules. Some of the tubulin binding drugs are in clinical use and others in clinical trial. MAPs inhibitors are also in clinical trial. Post-translational modification of lysine-40 either in histone or in alpha tubulin has an important role in gene expression and is balanced between histone deacetylases (HDACs) and histone acetyltransferases (HATs). HDAC inhibitors have the anticancer properties to form a drug for the treatment of cancer. They act by inducing cell cycle arrest and cell death. Some of the HDAC inhibitors are approved to be used as anticancer drug while others are under different phases of clinical trial. The present review updates on various MAPs, their role in cancer progression, MAPs inhibitors and their future prospects.
Collapse
Affiliation(s)
- Sadiya Khwaja
- CSIR-Central Institute of Medicinal and Aromatics Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kapil Kumar
- CSIR-Central Institute of Medicinal and Aromatics Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow 226015, India
| | - Ranjana Das
- CSIR-Central Institute of Medicinal and Aromatics Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow 226015, India
| | - Arvind Singh Negi
- CSIR-Central Institute of Medicinal and Aromatics Plants (CSIR-CIMAP) P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Decoding post translational modification crosstalk with proteomics. Mol Cell Proteomics 2021; 20:100129. [PMID: 34339852 PMCID: PMC8430371 DOI: 10.1016/j.mcpro.2021.100129] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/06/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modification (PTM) of proteins allows cells to regulate protein functions, transduce signals and respond to perturbations. PTMs expand protein functionality and diversity, which leads to increased proteome complexity. PTM crosstalk describes the combinatorial action of multiple PTMs on the same or on different proteins for higher order regulation. Here we review how recent advances in proteomic technologies, mass spectrometry instrumentation, and bioinformatics spurred the proteome-wide identification of PTM crosstalk through measurements of PTM sites. We provide an overview of the basic modes of PTM crosstalk, the proteomic methods to elucidate PTM crosstalk, and approaches that can inform about the functional consequences of PTM crosstalk. Description of basic modules and different modes of PTM crosstalk. Overview of current proteomic methods to identify and infer PTM crosstalk. Discussion of large-scale approaches to characterize functional PTM crosstalk. Future directions and potential proteomic methods for elucidating PTM crosstalk.
Collapse
|
5
|
A novel histone deacetylase inhibitor MPT0L184 dysregulates cell-cycle checkpoints and initiates unscheduled mitotic signaling. Biomed Pharmacother 2021; 138:111485. [PMID: 33740521 DOI: 10.1016/j.biopha.2021.111485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/16/2023] Open
Abstract
Aberrant alteration of epigenetic information disturbs chromatin structure and gene function, thereby facilitating cancer development. Several drugs targeting histone deacetylases (HDACs), a group of epigenetic enzymes, have been approved for treating hematologic malignancies in the clinic. However, patients who suffer from solid tumors often respond poorly to these drugs. In this study, we report a selective entinostat derivative, MPT0L184, with potent cancer-killing activity in both cell-based and mouse xenograft models. A time-course analysis of cell-cycle progression revealed that MPT0L184 treatment elicited an early onset of mitosis but prevented the division of cells with duplicated chromosomes. We show that MPT0L184 possessed potent inhibitory activity toward HDAC1 and 2, and its HDAC-inhibitory activity was required for initiating premature mitotic signaling. HDAC inhibition by MPT0L184 reduced WEE1 expression at the transcription level. In addition, MPT0L184 treatment also downregulated ATR-mediated CHK1 phosphorylation independent of HDAC inhibition. Furthermore, gastric cancer cells resistant to HDAC inhibitors were vulnerable to MPT0L184. Taken together, our study discovers MPT0L184 as a novel HDAC inhibitor that can trigger premature mitosis and potentially counteract drug resistance of cancers.
Collapse
|
6
|
Osipyan A, Chen D, Dekker FJ. Epigenetic regulation in macrophage migration inhibitory factor (MIF)-mediated signaling in cancer and inflammation. Drug Discov Today 2021; 26:1728-1734. [PMID: 33746067 DOI: 10.1016/j.drudis.2021.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/19/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
Epigenetic mechanisms are important for the regular development and maintenance of the tissue-specific expression of cytokine genes. One of the crucial cytokines involved in cancer and inflammation is macrophage migration inhibitory factor (MIF), which triggers the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling pathways by binding to CD74 and other receptors. Altered expression of this cytokine and altered activity states of the connected pathways are linked to inflammatory disease and cancer. Therapeutic strategies based on epigenetic mechanisms have the potential to regulate MIF-mediated signaling in cancer and inflammation.
Collapse
Affiliation(s)
- Angelina Osipyan
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Deng Chen
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
7
|
Komar D, Juszczynski P. Rebelled epigenome: histone H3S10 phosphorylation and H3S10 kinases in cancer biology and therapy. Clin Epigenetics 2020; 12:147. [PMID: 33054831 PMCID: PMC7556946 DOI: 10.1186/s13148-020-00941-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Background With the discovery that more than half of human cancers harbor mutations in chromatin proteins, deregulation of epigenetic mechanisms has been recognized a hallmark of malignant transformation. Post-translational modifications (PTMs) of histone proteins, as main components of epigenetic regulatory machinery, are also broadly accepted as therapeutic target. Current “epigenetic” therapies target predominantly writers, erasers and readers of histone acetylation and (to a lesser extent) methylation, leaving other types of PTMs largely unexplored. One of them is the phosphorylation of serine 10 on histone H3 (H3S10ph). Main body H3S10ph is emerging as an important player in the initiation and propagation of cancer, as it facilitates cellular malignant transformation and participates in fundamental cellular functions. In normal cells this histone mark dictates the hierarchy of additional histone modifications involved in the formation of protein binding scaffolds, transcriptional regulation, blocking repressive epigenetic information and shielding gene regions from heterochromatin spreading. During cell division, this mark is essential for chromosome condensation and segregation. It is also involved in the function of specific DNA–RNA hybrids, called R-loops, which modulate transcription and facilitate chromosomal instability. Increase in H3S10ph is observed in numerous cancer types and its abundance has been associated with inferior prognosis. Many H3S10-kinases, including MSK1/2, PIM1, CDK8 and AURORA kinases, have been long considered targets in cancer therapy. However, since these proteins also participate in other critical processes, including signal transduction, apoptotic signaling, metabolic fitness and transcription, their chromatin functions are often neglected. Conclusions H3S10ph and enzymes responsible for deposition of this histone modification are important for chromatin activity and oncogenesis. Epigenetic-drugs targeting this axis of modifications, potentially in combination with conventional or targeted therapy, provide a promising angle in search for knowledge-driven therapeutic strategies in oncology.
Collapse
Affiliation(s)
- Dorota Komar
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Gandhi 14 Str, 02-776, Warsaw, Poland.
| | - Przemyslaw Juszczynski
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Gandhi 14 Str, 02-776, Warsaw, Poland
| |
Collapse
|
8
|
Jong CJ, Merrill RA, Wilkerson EM, Herring LE, Graves LM, Strack S. Reduction of protein phosphatase 2A (PP2A) complexity reveals cellular functions and dephosphorylation motifs of the PP2A/B'δ holoenzyme. J Biol Chem 2020; 295:5654-5668. [PMID: 32156701 PMCID: PMC7186168 DOI: 10.1074/jbc.ra119.011270] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a large enzyme family responsible for most cellular Ser/Thr dephosphorylation events. PP2A substrate specificity, localization, and regulation by second messengers rely on more than a dozen regulatory subunits (including B/R2, B'/R5, and B″/R3), which form the PP2A heterotrimeric holoenzyme by associating with a dimer comprising scaffolding (A) and catalytic (C) subunits. Because of partial redundancy and high endogenous expression of PP2A holoenzymes, traditional approaches of overexpressing, knocking down, or knocking out PP2A regulatory subunits have yielded only limited insights into their biological roles and substrates. To this end, here we sought to reduce the complexity of cellular PP2A holoenzymes. We used tetracycline-inducible expression of pairs of scaffolding and regulatory subunits with complementary charge-reversal substitutions in their interaction interfaces. For each of the three regulatory subunit families, we engineered A/B charge-swap variants that could bind to one another, but not to endogenous A and B subunits. Because endogenous Aα was targeted by a co-induced shRNA, endogenous B subunits were rapidly degraded, resulting in expression of predominantly a single PP2A heterotrimer composed of the A/B charge-swap pair and the endogenous catalytic subunit. Using B'δ/PPP2R5D, we show that PP2A complexity reduction, but not PP2A overexpression, reveals a role of this holoenzyme in suppression of extracellular signal-regulated kinase signaling and protein kinase A substrate dephosphorylation. When combined with global phosphoproteomics, the PP2A/B'δ reduction approach identified consensus dephosphorylation motifs in its substrates and suggested that residues surrounding the phosphorylation site play roles in PP2A substrate specificity.
Collapse
Affiliation(s)
- Chian Ju Jong
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Ronald A Merrill
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Emily M Wilkerson
- Michael Hooker Proteomics Facility, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Laura E Herring
- Michael Hooker Proteomics Facility, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Lee M Graves
- Michael Hooker Proteomics Facility, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Stefan Strack
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
9
|
Ahn J, Lee JG, Chin C, In S, Yang A, Park HS, Kim J, Park JH. MSK1 functions as a transcriptional coactivator of p53 in the regulation of p21 gene expression. Exp Mol Med 2018; 50:1-12. [PMID: 30305627 PMCID: PMC6180136 DOI: 10.1038/s12276-018-0160-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022] Open
Abstract
Mitogen- and stress-activated kinase 1 (MSK1) is a chromatin kinase that facilitates activator-dependent transcription by altering chromatin structure through histone H3 phosphorylation. The kinase activity of MSK1 is activated by intramolecular autophosphorylation, which is initially triggered by the activation of upstream mitogen-activated protein kinases (MAPKs), such as p38 and ERK1/2. MSK1 has been implicated in the expression of p21, a p53 target gene; however, the precise connection between MSK1 and p53 has not been clearly elucidated. Here, using in vitro and cell-based transcription assays, we show that MSK1 functions as a transcriptional coactivator of p53 in p21 expression, an action associated with MAPK-dependent phosphorylation of MSK1 and elevated kinase activity. Of special significance, we show that MSK1 directly interacts with p53 and is recruited to the p21 promoter, where it phosphorylates histone H3 in a p53-dependent manner. In addition, phosphomimetic mutant analysis demonstrated that negative charges in the hydrophobic motif are critical for serine 212 phosphorylation in the N-terminal kinase domain, which renders MSK1 competent for histone kinase activity. These studies suggest that MSK1 acts through a direct interaction with p53 to function as a transcriptional coactivator and that MSK1 activation by upstream MAPK signaling is important for efficient p21 gene expression.
Collapse
Affiliation(s)
- Jihye Ahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Jin Gyeong Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Chuevin Chin
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Suna In
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Aerin Yang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| | - Jeong Hyeon Park
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand.
| |
Collapse
|
10
|
Targeting Histone Deacetylase Activity to Arrest Cell Growth and Promote Neural Differentiation in Ewing Sarcoma. Mol Neurobiol 2018; 55:7242-7258. [PMID: 29397557 DOI: 10.1007/s12035-018-0874-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/07/2018] [Indexed: 12/20/2022]
Abstract
There is an urgent need for advances in the treatment of Ewing sarcoma (EWS), an aggressive childhood tumor with possible neuroectodermal origin. Inhibition of histone deacetylases (HDAC) can revert aberrant epigenetic states and reduce growth in different experimental cancer types. Here, we investigated whether the potent HDAC inhibitor, sodium butyrate (NaB), has the ability to reprogram EWS cells towards a more differentiated state and affect their growth and survival. Exposure of two EWS cell lines to NaB resulted in rapid and potent inhibition of HDAC activity (1 h, IC50 1.5 mM) and a significant arrest of cell cycle progression (72 h, IC50 0.68-0.76 mM), marked by G0/G1 accumulation. Delayed cell proliferation and reduced colony formation ability were observed in EWS cells after long-term culture. NaB-induced effects included suppression of cell proliferation accompanied by reduced transcriptional expression of the EWS-FLI1 fusion oncogene, decreased expression of key survival and pluripotency-associated genes, and re-expression of the differentiation neuronal marker βIII-tubulin. Finally, NaB reduced c-MYC levels and impaired survival in putative EWS cancer stem cells. Our findings support the use of HDAC inhibition as a strategy to impair cell growth and survival and to reprogram EWS tumors towards differentiation. These results are consistent with our previous studies indicating that HDis can inhibit the growth and modulate differentiation of cells from other types of childhood pediatric tumors possibly originating from neural stem cells.
Collapse
|
11
|
Abstract
Parkinson's disease is a progressive neurodegenerative disease characterized by Lewy body pathology of which the primary constituent is aggregated misfolded alpha-synuclein protein. Currently, there are no clinical therapies for treatment of the underlying alpha-synuclein dysfunction and accumulation, and the standard of care for patients with Parkinson's disease focuses only on symptom management, creating an immense therapeutic gap that needs to be filled. Defects in autophagy have been strongly implicated in Parkinson's disease. Here, we review evidence from human, mouse, and cell culture studies to briefly explain these defects in autophagy in Parkinson's disease and the necessity for autophagy to be carefully and precisely tuned to maintain neuron survival. We summarize recent experimental agents for treating alpha-synuclein accumulation in α-synuclein Parkinson's disease and related synucleinopathies. Most of the efforts for developing experimental agents have focused on immunotherapeutic strategies, but we discuss why those efforts are misplaced. Finally, we emphasize why increasing autophagy flux for alpha-synuclein clearance is the most promising therapeutic strategy. Activating autophagy has been successful in preclinical models of Parkinson's disease and yields promising results in clinical trials.
Collapse
Affiliation(s)
- Alan J Fowler
- Department of Neurology, Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Room 203-C, Building D, 4000 Reservoir Rd. NW, Washington, DC, USA
| | - Charbel E-H Moussa
- Department of Neurology, Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Room 203-C, Building D, 4000 Reservoir Rd. NW, Washington, DC, USA.
| |
Collapse
|
12
|
Haj M, Wijeweera A, Rudnizky S, Taunton J, Pnueli L, Melamed P. Mitogen- and stress-activated protein kinase 1 is required for gonadotropin-releasing hormone-mediated activation of gonadotropin α-subunit expression. J Biol Chem 2017; 292:20720-20731. [PMID: 29054929 DOI: 10.1074/jbc.m117.797845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/29/2017] [Indexed: 12/20/2022] Open
Abstract
Pituitary gonadotropin hormones are regulated by gonadotropin-releasing hormone (GnRH) via MAPK signaling pathways that stimulate gene transcription of the common α-subunit (Cga) and the hormone-specific β-subunits of gonadotropin. We have reported previously that GnRH-induced activities at these genes include various histone modifications, but we did not examine histone phosphorylation. This modification adds a negative charge to residues of the histone tails that interact with the negatively charged DNA, is associated with closed chromatin during mitosis, but is increased at certain genes for transcriptional activation. Thus, the functions of this modification are unclear. We initially hypothesized that GnRH might induce phosphorylation of Ser-10 in histone 3 (H3S10p) as part of its regulation of gonadotropin gene expression, possibly involving cross-talk with H3K9 acetylation. We found that GnRH increases the levels of both modifications around the Cga gene transcriptional start site and that JNK inhibition dramatically reduces H3S10p levels. However, this modification had only a minor effect on Cga expression and no effect on H3K9ac. GnRH also increased H3S28p and H3K27ac levels and also those of activated mitogen- and stress-activated protein kinase 1 (MSK1). MSK1 inhibition dramatically reduced H3S28p levels in untreated and GnRH-treated cells and also affected H3K27ac levels. Although not affecting basal Cga expression, MSK1/2 inhibition repressed GnRH activation of Cga expression. Moreover, ChIP analysis revealed that GnRH-activated MSK1 targets the first nucleosome just downstream from the TSS. Given that the elongating RNA polymerase II (RNAPII) stalls at this well positioned nucleosome, GnRH-induced H3S28p, possibly in association with H3K27ac, would facilitate the progression of RNAPII.
Collapse
Affiliation(s)
- Majd Haj
- From the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Andrea Wijeweera
- From the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Sergei Rudnizky
- From the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Jack Taunton
- the Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158
| | - Lilach Pnueli
- From the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Philippa Melamed
- From the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| |
Collapse
|
13
|
Zhu BY, Shang BY, Du Y, Li Y, Li L, Xu XD, Zhen YS. A new HDAC inhibitor cinnamoylphenazine shows antitumor activity in association with intensive macropinocytosis. Oncotarget 2017; 8:14748-14758. [PMID: 28107195 PMCID: PMC5362440 DOI: 10.18632/oncotarget.14714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/08/2017] [Indexed: 02/06/2023] Open
Abstract
Previous studies have shown that intensive macropinocytosis occurs in cancer cells and neutral red (NR) is noted for its capability to enter into the cell massively through a process mimetic to macropinocytosis. In addition, trans-cinnamic acid (tCA) has been found to be an inhibitor of histone deacetylase (HDAC). In the present study, cinnamoylphenazine (CA-PZ) that consists of NR and tCA moieties was synthesized and evaluated. As shown, CA-PZ massively entered into colon carcinoma HT-29 cells and pancreatic carcinoma MIA PaCa-2 cells and this entry was blocked by 5-(N-ethyl-N-isopropyl) amiloride (EIPA, an inhibitor of macropinocytosis), indicating a macropinocytosis-mediated uptake. Furthermore, CA-PZ markedly increased the protein expression levels of acetyl-H3, acetyl-H4 and p21 in HT-29 cells and MIA PaCa-2 cells. CA-PZ significantly inhibited the growth of colon carcinoma HT-29 and pancreatic carcinoma MIA PaCa-2 xenografts. By in vivo imaging, CA-PZ displayed prominent accumulation in the tumor xenografts. The study indicates that the newly synthesized CA-PZ acts as an HDAC inhibitor in association with intensive macropinocytosis-mediated intracellular delivery in cancer cells. The use of neutral red for preparation of chimeric molecules with the attribute of macropinocytosis-mediated intracellular delivery might open an alternative way for development of HDAC inhibitors.
Collapse
Affiliation(s)
- Bing-Yan Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bo-Yang Shang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yue Du
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liang Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xian-Dong Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yong-Su Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
14
|
Sidoli S, Lu C, Coradin M, Wang X, Karch KR, Ruminowicz C, Garcia BA. Metabolic labeling in middle-down proteomics allows for investigation of the dynamics of the histone code. Epigenetics Chromatin 2017; 10:34. [PMID: 28683815 PMCID: PMC5501349 DOI: 10.1186/s13072-017-0139-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/27/2017] [Indexed: 01/15/2023] Open
Abstract
Background Middle-down mass spectrometry (MS), i.e., analysis of long (~50–60 aa) polypeptides, has become the method with the highest throughput and accuracy for the characterization of combinatorial histone posttranslational modifications (PTMs). The discovery of histone readers with multiple domains, and overall the cross talk of PTMs that decorate histone proteins, has revealed that histone marks have synergistic roles in modulating enzyme recruitment and subsequent chromatin activities. Here, we demonstrate that the middle-down MS strategy can be combined with metabolic labeling for enhanced quantification of histone proteins and their combinatorial PTMs in a dynamic manner. Methods We used a nanoHPLC-MS/MS system consisting of hybrid weak cation exchange–hydrophilic interaction chromatography combined with high resolution MS and MS/MS with ETD fragmentation. After spectra identification, we filtered confident hits and quantified polypeptides using our in-house software isoScale. Results We first verified that middle-down MS can discriminate and differentially quantify unlabeled from heavy labeled histone N-terminal tails (heavy lysine and arginine residues). Results revealed no bias toward identifying and quantifying unlabeled versus heavy labeled tails, even if the heavy labeled peptides presented the typical skewed isotopic pattern typical of long protein sequences that hardly get 100% labeling. Next, we plated epithelial cells into a media with heavy methionine-(methyl-13CD3), the precursor of the methyl donor S-adenosylmethionine and stimulated epithelial to mesenchymal transition (EMT). We assessed that results were reproducible across biological replicates and with data obtained using the more widely adopted bottom-up MS strategy, i.e., analysis of short tryptic peptides. We found remarkable differences in the incorporation rate of methylations in non-confluent cells versus confluent cells. Moreover, we showed that H3K27me3 was a critical player during the EMT process, as a consistent portion of histones modified as H3K27me2K36me2 in epithelial cells were converted into H3K27me3K36me2 in mesenchymal cells. Conclusions We demonstrate that middle-down MS, despite being a more scarcely exploited MS technique than bottom-up, is a robust quantitative method for histone PTM characterization. In particular, middle-down MS combined with metabolic labeling is currently the only methodology available for investigating turnover of combinatorial histone PTMs in dynamic systems. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0139-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simone Sidoli
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Room 9-124, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104, USA
| | - Congcong Lu
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Room 9-124, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104, USA
| | - Mariel Coradin
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Room 9-124, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104, USA
| | - Xiaoshi Wang
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Room 9-124, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104, USA
| | - Kelly R Karch
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Room 9-124, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104, USA
| | | | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Room 9-124, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104, USA.
| |
Collapse
|
15
|
Hu C, Yu M, Ren Y, Li K, Maggio DM, Mei C, Ye L, Wei J, Jin J, Zhuang Z, Tong H. PP2A inhibition from LB100 therapy enhances daunorubicin cytotoxicity in secondary acute myeloid leukemia via miR-181b-1 upregulation. Sci Rep 2017; 7:2894. [PMID: 28588271 PMCID: PMC5460144 DOI: 10.1038/s41598-017-03058-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/21/2017] [Indexed: 12/11/2022] Open
Abstract
Patients with secondary acute myeloid leukemia (sAML) arising from myelodysplastic syndromes have a poor prognosis marked by an increased resistance to chemotherapy. An urgent need exists for adjuvant treatments that can enhance or replace current therapeutic options. Here we show the potential of LB100, a small-molecule protein phosphatase 2 A (PP2A) inhibitor, as a monotherapy and chemosensitizing agent for sAML using an in-vitro and in-vivo approach. We demonstrate that LB100 decreases cell viability through caspase activation and G2/M cell-cycle arrest. LB100 enhances daunorubicin (DNR) cytotoxicity resulting in decreased xenograft volumes and improved overall survival. LB100 profoundly upregulates miR-181b-1, which we show directly binds to the 3′ untranslated region of Bcl-2 mRNA leading to its translational inhibition. MiR-181b-1 ectopic overexpression further diminishes Bcl-2 expression leading to suppression of sAML cell growth, and enhancement of DNR cytotoxicity. Our research highlights the therapeutic potential of LB100, and provides new insights into the mechanism of LB100 chemosensitization.
Collapse
Affiliation(s)
- Chao Hu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Mengxia Yu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China.,Department of Hematology, Hangzhou First People's Hospital, Hangzhou, 310006, Zhejiang Province, People's Republic of China
| | - Yanling Ren
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Kongfei Li
- Department of Hematology, Yin Zhou People's Hospital, Ningbo, 315040, Zhejiang Province, People's Republic of China
| | - Dominic M Maggio
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chen Mei
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Li Ye
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Juying Wei
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China. .,Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
16
|
Wagley Y, Law PY, Wei LN, Loh HH. Epigenetic Activation of μ-Opioid Receptor Gene via Increased Expression and Function of Mitogen- and Stress-Activated Protein Kinase 1. Mol Pharmacol 2017; 91:357-372. [PMID: 28153853 PMCID: PMC5363709 DOI: 10.1124/mol.116.106567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/31/2017] [Indexed: 11/22/2022] Open
Abstract
Since the discovery of μ-opioid receptor (MOR) gene two decades ago, various regulatory factors have been shown to interact with the MOR promoter and modulate transcript levels. However, the majority of early transcriptional studies on MOR gene have not addressed how intracellular signaling pathways mediate extracellular modulators. In this study, we demonstrate that MOR epigenetic regulation requires multiple coordinated signals converging at the MOR promoter, involving mitogen-activated protein kinase (MAPK) activation and mitogen- and stress-activated protein kinase 1 (MSK1)-ranges of intracellular signaling pathways similar to those activated by opioid agonists. Inhibiting p38 MAPK or extracellular signal-regulated kinase (ERK) 1/2 MAPK (upstream activators of MSK1) reduced MOR expression levels; accordingly, the functional role of MSK1, but not MSK2, was demonstrated using genetic approaches. However, for maximal MSK1 effect, an open chromatin configuration was required, because in vitro CpG methylation of the MOR promoter abolished MSK1 activity. Finally, endogenous MSK1 levels concomitantly increased to regulate MOR gene expression during neuronal differentiation of P19 cells, suggesting a conserved role of this kinase in the epigenic activation of MOR in neurons. Taken together, our findings indicate that the expression of MOR gene requires the activity of intracellular signaling pathways that have been implicated in the behavioral outcomes of opioid drugs, which suggests that an autoregulatory mechanism may function in opioid systems.
Collapse
Affiliation(s)
- Yadav Wagley
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
17
|
Wang L, Huang X, Chai Y, Zou L, Chedrawe M, Ding Y. Octreotide inhibits the proliferation of gastric cancer cells through P300-HAT activity and the interaction of ZAC and P300. Oncol Rep 2017; 37:2041-2048. [PMID: 28260048 DOI: 10.3892/or.2017.5451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/28/2016] [Indexed: 11/06/2022] Open
Abstract
Somatostatin (SST) exhibits a wide range of physiological functions, including the regulation of tumor cell growth. Octreotide (OCT) is a synthetic analogue of SST that can be used to slow gastrointestinal bleeding, inhibit the release of growth hormone and impede gastrointestinal tumor growth. The aim of the present study was to investigate the molecular mechanism of OCT underlying the inhibition of gastric cancer cell proliferation. Proteins of interest were detected using western blotting, and the zinc finger protein (ZAC)-P300 complex was quantified using co-immunoprecipitation. P300-histone acetyltransferase (P300-HAT) activity was determined spectrophotometrically. The results showed that OCT decreased the phosphorylation of Akt which caused the level of ZAC to increase. In turn, the interaction between ZAC and P300 increased the activity of P300-HAT; ultimately, the phosphorylation of serine 10 in histone H3 (pS10-H3) was decreased and the acetylation of lysine 14 in histone H3 (acK14-H3) was increased. These results suggest that OCT attenuates SGC-7901 cell proliferation by enhancing P300-HAT activity through the interaction of ZAC and P300, causing a reduction in pS10-H3 and an increase in acK14-H3. These findings provide insight for future research on OCT and further demonstrate the potential of OCT to be used as a therapeutic agent for gastric cancer.
Collapse
Affiliation(s)
- Liping Wang
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xin Huang
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yurong Chai
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Liyang Zou
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Matthew Chedrawe
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Yi Ding
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
18
|
Sharma SK, Yamamoto M, Mukai Y. Dual modified antiphospho (Ser10)-acetyl (Lys14)-histone H3 predominantly mark the pericentromeric chromatin during mitosis in monokinetic plants. J Genet 2016; 95:965-973. [PMID: 27994196 DOI: 10.1007/s12041-016-0723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epigenetic regulatory posttranslational histone modification marks not only function individually but also capable to act in combination as a unique pattern. A total of 16 plant species belonging to 11 genera of eight families (five dicots and three monocots) including land plants, epiphytes (orchids) and the holokinetic taxa (Drosera spp.) were analysed for chromosomal distribution of dual modified antiphospho (Ser10)-acetyl (K14)-histone H3 (H3S10phK14ac) to understand the combinatorial chromatin dynamics during mitotic cell division in plants. The anti-H3S10phK14ac evidently mark the pericentromeric chromatin on mitotic chromosomes of the plants excluding the holokinetic Drosera species, which revealed the immunolabelling of whole chromosomes all along the arms. The dual modified immunosignals were absent during early stages of mitosis, appeared intensively at metaphase and remained visible until late-anaphase/telophase however, labelled the whole chromosomes during meiotic metaphase I. Colocalization of anti-H3S10phK14ac with an onion's CENH3 antibody on mitotic chromosomes of Allium revealed the chromosomal location of anti-H3S10phK14ac in the region between signals for CENH3 detection. Overall analysis suggests that the unique localization of combinatorial histone modification mark at pericentromeric chromatin might have attributed through 'phospho-acetyl' cross talk that ultimately facilitate the sister chromatid cohesion at pericentromeres following condensation events in mitotic chromosomes. Here, we propose that dual modified H3S10phK14ac histone may serve as an additional cytogenetic landmark to identify pericentromeric chromatin during mitosis in plants. The plausible role of histone cross talk and future perspectives of combinatorial histone modification marks in plant cytogenetics with special reference to chromatin dynamics have been discussed.
Collapse
Affiliation(s)
- Santosh Kumar Sharma
- Laboratory of Plant Molecular Genetics, Division of Natural Sciences, Osaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan.
| | | | | |
Collapse
|
19
|
Zhang S, Mu Z, He C, Zhou M, Liu D, Zhao XF, Goldman D, Xu H. Antiviral Drug Ganciclovir Is a Potent Inhibitor of the Proliferation of Müller Glia-Derived Progenitors During Zebrafish Retinal Regeneration. Invest Ophthalmol Vis Sci 2016; 57:1991-2000. [PMID: 27096757 PMCID: PMC4849886 DOI: 10.1167/iovs.15-18669] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose The purpose of this study was to investigate the effect of the antiviral drug ganciclovir (GCV) on Müller glia dedifferentiation and proliferation and the underlying cellular and molecular mechanisms in adult zebrafish. Methods A Tg(1016tuba1a:GFP) transgenic line was generated to identify injury-induced dedifferentiation of Müller glia. Mechanical retinal damage was induced by a needle-poke injury on the back of the eyes in adult zebrafish. Phosphate-buffered saline or GCV was injected into the vitreous of the eye at the time of injury or through the cornea. The GCV clearance rate from the eye was determined by a reversed-phase HPLC method. Green fluorescent protein (GFP) and bromodeoxyuridine (BrdU) immunofluorescence were used to determine the effect of GCV on retinal regeneration. Cell apoptosis was evaluated by TUNEL staining. Microglia were labeled by vitreous injection of isolectin IB4 conjugates. Quantitative (q)PCR and Western blot analysis were used to determine gene expression in the retina. Results Ganciclovir treatment significantly reduced the number of BrdU+ Müller glia–derived progenitor cells (MGPCs) at 4 days post injury. Further analysis showed that GCV had no impact on Müller glia dedifferentiation and the initial formation of MGPCs. Our data indicate that GCV irreversibly inhibited MGPC proliferation likely through a p53-p21cip1–dependent pathway. Interestingly, unlike control cells, GCV-treated Müller glia cells were “locked” in a prolonged dedifferentiated state. Conclusions Our study uncovered a novel inhibitory effect of GCV on MGPC proliferation and suggests its potential use as a tool to uncover molecular mechanisms underlying retinal regeneration in zebrafish.
Collapse
Affiliation(s)
- Shuqiang Zhang
- Jiangsu Key Lab of Neuroregeneration Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Zhaoxia Mu
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Chunjiao He
- Jiangsu Key Lab of Neuroregeneration Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Minmin Zhou
- College of Biological Science, Nantong University, Nantong, Jiangsu Province, China
| | - Dong Liu
- Jiangsu Key Lab of Neuroregeneration Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Feng Zhao
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| | - Daniel Goldman
- Molecular and Behavioral Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, United States
| | - Hui Xu
- Jiangsu Key Lab of Neuroregeneration Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
20
|
Schwämmle V, Sidoli S, Ruminowicz C, Wu X, Lee CF, Helin K, Jensen ON. Systems Level Analysis of Histone H3 Post-translational Modifications (PTMs) Reveals Features of PTM Crosstalk in Chromatin Regulation. Mol Cell Proteomics 2016; 15:2715-29. [PMID: 27302890 DOI: 10.1074/mcp.m115.054460] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Indexed: 12/21/2022] Open
Abstract
Histones are abundant chromatin constituents carrying numerous post-translational modifications (PTMs). Such PTMs mediate a variety of biological functions, including recruitment of enzymatic readers, writers and erasers that modulate DNA replication, transcription and repair. Individual histone molecules contain multiple coexisting PTMs, some of which exhibit crosstalk, i.e. coordinated or mutually exclusive activities. Here, we present an integrated experimental and computational systems level molecular characterization of histone PTMs and PTM crosstalk. Using wild type and engineered mouse embryonic stem cells (mESCs) knocked out in components of the Polycomb Repressive Complex 2 (PRC2, Suz12(-/-)), PRC1 (Ring1A/B(-/-)) and (Dnmt1/3a/3b(-/-)) we performed comprehensive PTM analysis of histone H3 tails (50 aa) by utilizing quantitative middle-down proteome analysis by tandem mass spectrometry. We characterized combinatorial PTM features across the four mESC lines and then applied statistical data analysis to predict crosstalk between histone H3 PTMs. We detected an overrepresentation of positive crosstalk (codependent marks) between adjacent mono-methylated and acetylated marks, and negative crosstalk (mutually exclusive marks) among most of the seven characterized di- and tri-methylated lysine residues in the H3 tails. We report novel features of PTM interplay involving hitherto poorly characterized arginine methylation and lysine methylation sites, including H3R2me, H3R8me and H3K37me. Integration of the H3 data with RNAseq data by coabundance clustering analysis of histone PTMs and histone modifying enzymes revealed correlations between PTM and enzyme levels. We conclude that middle-down proteomics is a powerful tool to determine conserved or dynamic interdependencies between histone marks, which paves the way for detailed investigations of the histone code. Histone H3 PTM data is publicly available in the CrossTalkDB repository at http://crosstalkdb.bmb.sdu.dk.
Collapse
Affiliation(s)
- Veit Schwämmle
- From the ‡Centre for Epigenetics and VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark;
| | - Simone Sidoli
- From the ‡Centre for Epigenetics and VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Chrystian Ruminowicz
- From the ‡Centre for Epigenetics and VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Xudong Wu
- §Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Chung-Fan Lee
- §Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Kristian Helin
- §Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, DK-2200, Copenhagen, Denmark; ¶The Danish Stem Cell Centre (Danstem), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Ole N Jensen
- From the ‡Centre for Epigenetics and VILLUM Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
21
|
Sidoli S, Bhanu NV, Karch KR, Wang X, Garcia BA. Complete Workflow for Analysis of Histone Post-translational Modifications Using Bottom-up Mass Spectrometry: From Histone Extraction to Data Analysis. J Vis Exp 2016:54112. [PMID: 27286567 PMCID: PMC4927705 DOI: 10.3791/54112] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nucleosomes are the smallest structural unit of chromatin, composed of 147 base pairs of DNA wrapped around an octamer of histone proteins. Histone function is mediated by extensive post-translational modification by a myriad of nuclear proteins. These modifications are critical for nuclear integrity as they regulate chromatin structure and recruit enzymes involved in gene regulation, DNA repair and chromosome condensation. Even though a large part of the scientific community adopts antibody-based techniques to characterize histone PTM abundance, these approaches are low throughput and biased against hypermodified proteins, as the epitope might be obstructed by nearby modifications. This protocol describes the use of nano liquid chromatography (nLC) and mass spectrometry (MS) for accurate quantification of histone modifications. This method is designed to characterize a large variety of histone PTMs and the relative abundance of several histone variants within single analyses. In this protocol, histones are derivatized with propionic anhydride followed by digestion with trypsin to generate peptides of 5 - 20 aa in length. After digestion, the newly exposed N-termini of the histone peptides are derivatized to improve chromatographic retention during nLC-MS. This method allows for the relative quantification of histone PTMs spanning four orders of magnitude.
Collapse
Affiliation(s)
- Simone Sidoli
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania
| | - Natarajan V Bhanu
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania
| | - Kelly R Karch
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania
| | - Xiaoshi Wang
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania;
| |
Collapse
|
22
|
Wang L, Chen G, Chen K, Ren Y, Li H, Jiang X, Jia L, Fu S, Li Y, Liu X, Wang S, Yang J, Wu C. Dual targeting of retinoid X receptor and histone deacetylase with DW22 as a novel antitumor approach. Oncotarget 2016; 6:9740-55. [PMID: 25762635 PMCID: PMC4496394 DOI: 10.18632/oncotarget.3149] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 01/17/2015] [Indexed: 11/26/2022] Open
Abstract
Retinoid X receptor (RXR) and Histone deacetylase (HDAC) are considered important targets for cancer therapy due to their crucial roles in genetic or epigenetic regulations of cancer development and progression. Here, we evaluated the potential of dual targeting of RXR and HDAC using DW22 as a novel therapeutic approach to cancer treatment. We found that the co-expression of RXR-α and HDAC1 was frequently appeared in lung cancer and breast cancer tissues and cell lines. RXR was activated by DW22 in RXRα and HDAC1 overexpressed A549 and MDA-MB-435 cell lines. Meanwhile, DW22 inhibited the activity of HDAC by decreasing its expression in A549 and MDA-MB-435 cell lines, but not in RXRα and HDAC1 deficient cell lines. Moreover, DW22 suppressed cell growth, induced cell differentiation, prompted cell apoptosis and arrested cell cycle in A549, MDA-MB-435 or HL60 cell lines. Treatment human umbilical vascular endothelial cells (HUVECs) with DW22 suppressed migration, invasion and tube formation through decreasing VEGF expression. The up-regulation of Ac-H3 and p21, and down-regulation of VEGF caused by DW22 was markedly attenuated by silencing of HDAC1. Furthermore, knockdown of RXRα by siRNA completely blocked DW22-induced cell differentiation, but partially attenuated DW22-caused inhibition of cell proliferation, induction of cell apoptosis, and suppression of cell migration, invasion and tube formation. Moreover, intravenous administration of DW22 significantly retarded tumor growth of A549 and MDA-MB-435 xenograft mice models, and induced no substantial weight loss and gross toxicity. In addition, DW22 also reduced cell proliferation, angiogenesis, and induced cell apoptosis in vivo. Collectively, our data demonstrates that dual targeting of RXR and HDAC using DW22 possesses pleiotropic antitumor activities both in vitro and in vivo, providing a novel therapeutic approach for cancer treatment.
Collapse
Affiliation(s)
- Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, P.R. China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, P.R. China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Kang Chen
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, P.R. China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, P.R. China
| | - Yong Ren
- Department of Pathology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, P.R. China
| | - Huahuan Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, P.R. China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, P.R. China
| | - Xiaorui Jiang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, P.R. China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, P.R. China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Shiyuan Fu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, P.R. China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, P.R. China
| | - Yi Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, P.R. China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, P.R. China
| | - Xinwei Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, P.R. China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, P.R. China
| | - Shuang Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, P.R. China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, P.R. China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, P.R. China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, P.R. China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, P.R. China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi, P.R. China
| |
Collapse
|
23
|
Jadhav V, Ray P, Sachdeva G, Bhatt P. Biocompatible arsenic trioxide nanoparticles induce cell cycle arrest by p21WAF1/CIP1 expression via epigenetic remodeling in LNCaP and PC3 cell lines. Life Sci 2016; 148:41-52. [DOI: 10.1016/j.lfs.2016.02.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/29/2016] [Accepted: 02/10/2016] [Indexed: 01/02/2023]
|
24
|
Vandamme J, Sidoli S, Mariani L, Friis C, Christensen J, Helin K, Jensen ON, Salcini AE. H3K23me2 is a new heterochromatic mark in Caenorhabditis elegans. Nucleic Acids Res 2015; 43:9694-710. [PMID: 26476455 PMCID: PMC4787770 DOI: 10.1093/nar/gkv1063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/01/2015] [Indexed: 12/05/2022] Open
Abstract
Genome-wide analyses in Caenorhabditis elegans show that post-translational modifications (PTMs) of histones are evolutionary conserved and distributed along functionally distinct genomic domains. However, a global profile of PTMs and their co-occurrence on the same histone tail has not been described in this organism. We used mass spectrometry based middle-down proteomics to analyze histone H3 N-terminal tails from C. elegans embryos for the presence, the relative abundance and the potential cross-talk of co-existing PTMs. This analysis highlighted that the lysine 23 of histone H3 (H3K23) is extensively modified by methylation and that tri-methylated H3K9 (H3K9me3) is exclusively detected on histone tails with di-methylated H3K23 (H3K23me2). Chromatin immunoprecipitation approaches revealed a positive correlation between H3K23me2 and repressive marks. By immunofluorescence analyses, H3K23me2 appears differentially regulated in germ and somatic cells, in part by the action of the histone demethylase JMJD-1.2. H3K23me2 is enriched in heterochromatic regions, localizing in H3K9me3 and heterochromatin protein like-1 (HPL-1)-positive foci. Biochemical analyses indicated that HPL-1 binds to H3K23me2 and interacts with a conserved CoREST repressive complex. Thus, our study suggests that H3K23me2 defines repressive domains and contributes to organizing the genome in distinct heterochromatic regions during embryogenesis.
Collapse
Affiliation(s)
- Julien Vandamme
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Simone Sidoli
- Centre for Epigenetics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Luca Mariani
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Carsten Friis
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Jesper Christensen
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Kristian Helin
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark The Danish Stem Cell Centre (Danstem), University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Ole N Jensen
- Centre for Epigenetics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Anna Elisabetta Salcini
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
25
|
Chhabria SV, Akbarsha MA, Li AP, Kharkar PS, Desai KB. In situ allicin generation using targeted alliinase delivery for inhibition of MIA PaCa-2 cells via epigenetic changes, oxidative stress and cyclin-dependent kinase inhibitor (CDKI) expression. Apoptosis 2015; 20:1388-1409. [PMID: 26286853 DOI: 10.1007/s10495-015-1159-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Allicin, an extremely active constituent of freshly crushed garlic, is produced upon reaction of substrate alliin with the enzyme alliinase (EC 4.4.1.4). Allicin has been shown to be toxic to several mammalian cells in vitro in a dose-dependent manner. In the present study this cytotoxicity was taken to advantage to develop a novel approach to cancer treatment, based on site directed generation of allicin. Alliinase was chemically conjugated to a monoclonal antibody (mAb) which was directed against a specific pancreatic cancer marker, CA19-9. After the CA19-9 mAb-alliinase conjugate was bound to targeted pancreatic cancer cells (MIA PaCa-2 cells), on addition of alliin, the cancer cell-localized alliinase produced allicin, which effectively induced apoptosis in MIA PaCa-2 cells. Specificity of anticancer activity of in situ generated allicin was demonstrated using a novel in vitro system-integrated discrete multiple organ co-culture technique. Further, allicin-induced caspase-3 expression, DNA fragmentation, cell cycle arrest, p21(Waf1/Cip1) cyclin-dependent kinase inhibitor expression, ROS generation, GSH depletion, and led to various epigenetic modifications which resulted in stimulation of apoptosis. This approach offers a new therapeutic strategy, wherein alliin and alliinase-bound antibody work together to produce allicin at targeted locations which would reverse gene silencing and suppress cancer cell growth, suggesting that combination of these targeted agents may improve pancreatic cancer therapy.
Collapse
Affiliation(s)
- Sagar V Chhabria
- Department of Biological Sciences, School of Science, SVKM's NMIMS University, Vile Parle (W), Mumbai, 400056, India
| | | | | | | | | |
Collapse
|
26
|
Passeri E, Mocchetti I, Moussa C. Is human immunodeficiency virus-mediated dementia an autophagic defect that leads to neurodegeneration? CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2015; 13:1571-9. [PMID: 25106633 DOI: 10.2174/1871527313666140806125841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/04/2014] [Accepted: 06/06/2014] [Indexed: 11/22/2022]
Abstract
Autophagy is a cellular process that mediates selective degradation of cellular components in lysosomes. Autophagy may protect against neuronal apoptosis, which is induced in a number of neurodegenerative diseases. Thus, compounds that modulate autophagy could be beneficial to treat neurological disorders characterized by apoptosis such as Parkinson's and Alzheimer's diseases, as well as human-immunodeficiency virus-dementia complex. In this paper, we review new and old evidence on the role of autophagy in neuronal cell survival and we present evidence that humanimmunodeficiency virus may have adapted strategies to alter autophagic pathways in neurons. Moreover, we discuss the usefulness of drugs that facilitate autophagic clearance of proteins that are associated with neurodegeneration.
Collapse
Affiliation(s)
| | | | - Charbel Moussa
- Georgetown University Medical Center, Department of Neuroscience, NRB WP13, 3970 Reservoir Rd, NW, Washington, DC 20057, USA.
| |
Collapse
|
27
|
Berghauser Pont LM, Kleijn A, Kloezeman JJ, van den Bossche W, Kaufmann JK, de Vrij J, Leenstra S, Dirven CM, Lamfers ML. The HDAC Inhibitors Scriptaid and LBH589 Combined with the Oncolytic Virus Delta24-RGD Exert Enhanced Anti-Tumor Efficacy in Patient-Derived Glioblastoma Cells. PLoS One 2015; 10:e0127058. [PMID: 25993039 PMCID: PMC4436250 DOI: 10.1371/journal.pone.0127058] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 04/10/2015] [Indexed: 01/12/2023] Open
Abstract
Background A phase I/II trial for glioblastoma with the oncolytic adenovirus Delta24-RGD was recently completed. Delta24-RGD conditionally replicates in cells with a disrupted retinoblastoma-pathway and enters cells via αvβ3/5 integrins. Glioblastomas are differentially sensitive to Delta24-RGD. HDAC inhibitors (HDACi) affect integrins and share common cell death pathways with Delta24-RGD. We studied the combination treatment effects of HDACi and Delta24-RGD in patient-derived glioblastoma stem-like cells (GSC), and we determined the most effective HDACi. Methods SAHA, Valproic Acid, Scriptaid, MS275 and LBH589 were combined with Delta24-RGD in fourteen distinct GSCs. Synergy was determined by Chou Talalay method. Viral infection and replication were assessed using luciferase and GFP encoding vectors and hexon-titration assays. Coxsackie adenovirus receptor and αvβ3 integrin levels were determined by flow cytometry. Oncolysis and mechanisms of cell death were studied by viability, caspase-3/7, LDH and LC3B/p62, phospho-p70S6K. Toxicity was studied on normal human astrocytes. MGMT promotor methylation status, TCGA classification, Rb-pathway and integrin gene expression levels were assessed as markers of responsiveness. Results Scriptaid and LBH589 acted synergistically with Delta24-RGD in approximately 50% of the GSCs. Both drugs moderately increased αvβ3 integrin levels and viral infection in responding but not in non-responding GSCs. LBH589 moderately increased late viral gene expression, however, virus titration revealed diminished viral progeny production by both HDACi, Scriptaid augmented caspase-3/7 activity, LC3B conversion, p62 and phospho-p70S6K consumption, as well as LDH levels. LBH589 increased LDH and phospho-p70S6K consumption. Responsiveness correlated with expression of various Rb-pathway genes and integrins. Combination treatments induced limited toxicity to human astrocytes. Conclusion LBH589 and Scriptaid combined with Delta24-RGD revealed synergistic anti-tumor activity in a subset of GSCs. Both HDACi moderately augmented viral infection and late gene expression, but slightly reduced progeny production. The drugs differentially activated multiple cell death pathways. The limited toxicity on astrocytes supports further evaluation of the proposed combination therapies.
Collapse
Affiliation(s)
| | - Anne Kleijn
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, The Netherlands
| | - Jenneke J. Kloezeman
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, The Netherlands
| | | | - Johanna K. Kaufmann
- Department of Neurosurgery, Harvey Cushing Neuro-Oncology Laboratories, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeroen de Vrij
- Department of Neurosurgery, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, The Netherlands
- Department of Neurosurgery, Elisabeth Hospital, Tilburg, The Netherlands
| | - Clemens M.F. Dirven
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, The Netherlands
| | - Martine L.M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
28
|
He Y, Cai C, Tang D, Sun S, Li H. Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts. Front Cell Neurosci 2014; 8:382. [PMID: 25431550 PMCID: PMC4230041 DOI: 10.3389/fncel.2014.00382] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/27/2014] [Indexed: 11/13/2022] Open
Abstract
In humans, auditory hair cells are not replaced when injured. Thus, cochlear hair cell loss causes progressive and permanent hearing loss. Conversely, non-mammalian vertebrates are capable of regenerating lost sensory hair cells. The zebrafish lateral line has numerous qualities that make it well-suited for studying hair cell development and regeneration. Histone deacetylase (HDAC) activity has been shown to have an important role in regenerative processes in vertebrates, but its function in hair cell regeneration in vivo is not fully understood. Here, we have examined the role of HDAC activity in hair cell regeneration in the zebrafish lateral line. We eliminated lateral line hair cells of 5-day post-fertilization larvae using neomycin and then treated the larvae with HDAC inhibitors. To assess hair cell regeneration, we used 5-bromo-2-deoxyuridine (BrdU) incorporation in zebrafish larvae to label mitotic cells after hair cell loss. We found that pharmacological inhibition of HDACs using trichostatin A (TSA) or valproic acid (VPA) increased histone acetylation in the regenerated neuromasts following neomycin-induced damage. We also showed that treatment with TSA or VPA decreased the number of supporting cells and regenerated hair cells in response to hair cell damage. Additionally, BrdU immunostaining and western blot analysis showed that TSA or VPA treatment caused a significant decrease in the percentage of S-phase cells and induced p21(Cip1) and p27(Kip1) expression, both of which are likely to explain the decrease in the amount of newly regenerated hair cells in treated embryos. Finally, we showed that HDAC inhibitors induced no observable cell death in neuromasts as measured by cleaved caspase-3 immunohistochemistry and western blot analysis. Taken together, our results demonstrate that HDAC activity has an important role in the regeneration of hair cells in the lateral line.
Collapse
Affiliation(s)
- Yingzi He
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan UniversityShanghai, China
| | - Chengfu Cai
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiamen UniversityXiamen, Fujian, China
| | - Dongmei Tang
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan UniversityShanghai, China
| | - Shan Sun
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan UniversityShanghai, China
| | - Huawei Li
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan UniversityShanghai, China
- State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China
- Institute of Stem Cell and Regeneration Medicine, Institutions of Biomedical Science, Fudan UniversityShanghai, China
- Key Laboratory of Hearing Science, Ministry of Health, EENT Hospital, Fudan UniversityShanghai, China
| |
Collapse
|
29
|
Riffo-Campos ÁL, Castillo J, Tur G, González-Figueroa P, Georgieva EI, Rodríguez JL, López-Rodas G, Rodrigo MI, Franco L. Nucleosome-specific, time-dependent changes in histone modifications during activation of the early growth response 1 (Egr1) gene. J Biol Chem 2014; 290:197-208. [PMID: 25378406 DOI: 10.1074/jbc.m114.579292] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Histone post-translational modifications and nucleosome remodeling are coordinate events involved in eukaryotic transcriptional regulation. There are relatively few data on the time course with which these events occur in individual nucleosomes. As a contribution to fill this gap, we first describe the nature and time course of structural changes in the nucleosomes -2, -1, and +1 of the murine Egr1 gene upon induction. To initiate the transient activation of the gene, we used the stimulation of MLP29 cells with phorbol esters and the in vivo activation after partial hepatectomy. In both models, nucleosomes -1 and +1 are partially evicted, whereas nucleosomes +1 and -2 slide downstream during transcription. The sliding of the latter nucleosome allows the EGR1 protein to bind its site, resulting in the repression of the gene. To decide whether EGR1 is involved in the sliding of nucleosome -2, Egr1 was knocked down. In the absence of detectable EGR1, the nucleosome still slides and remains downstream longer than in control cells, suggesting that the product of the gene may be rather involved in the returning of the nucleosome to the basal position. Moreover, the presence of eight epigenetic histone marks has been determined at a mononucleosomal level in that chromatin region. H3S10phK14ac, H3K4me3, H3K9me3, and H3K27me3 are characteristic of nucleosome +1, and H3K9ac and H4K16ac are mainly found in nucleosome -1, and H3K27ac predominates in nucleosomes -2 and -1. The temporal changes in these marks suggest distinct functions for some of them, although changes in H3K4me3 may result from histone turnover.
Collapse
Affiliation(s)
- Ángela L Riffo-Campos
- From the Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, 46100 Valencia and Institute of Health Research INCLIVA, 46010 Valencia, Spain
| | - Josefa Castillo
- From the Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, 46100 Valencia and Institute of Health Research INCLIVA, 46010 Valencia, Spain
| | - Gema Tur
- From the Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, 46100 Valencia and
| | - Paula González-Figueroa
- From the Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, 46100 Valencia and
| | - Elena I Georgieva
- From the Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, 46100 Valencia and
| | - José L Rodríguez
- From the Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, 46100 Valencia and
| | - Gerardo López-Rodas
- From the Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, 46100 Valencia and Institute of Health Research INCLIVA, 46010 Valencia, Spain
| | - M Isabel Rodrigo
- From the Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, 46100 Valencia and Institute of Health Research INCLIVA, 46010 Valencia, Spain
| | - Luis Franco
- From the Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, 46100 Valencia and Institute of Health Research INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
30
|
Sawicka A, Hartl D, Goiser M, Pusch O, Stocsits RR, Tamir IM, Mechtler K, Seiser C. H3S28 phosphorylation is a hallmark of the transcriptional response to cellular stress. Genome Res 2014; 24:1808-20. [PMID: 25135956 PMCID: PMC4216922 DOI: 10.1101/gr.176255.114] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/14/2014] [Indexed: 12/26/2022]
Abstract
The selectivity of transcriptional responses to extracellular cues is reflected by the deposition of stimulus-specific chromatin marks. Although histone H3 phosphorylation is a target of numerous signaling pathways, its role in transcriptional regulation remains poorly understood. Here, for the first time, we report a genome-wide analysis of H3S28 phosphorylation in a mammalian system in the context of stress signaling. We found that this mark targets as many as 50% of all stress-induced genes, underlining its importance in signal-induced transcription. By combining ChIP-seq, RNA-seq, and mass spectrometry we identified the factors involved in the biological interpretation of this histone modification. We found that MSK1/2-mediated phosphorylation of H3S28 at stress-responsive promoters contributes to the dissociation of HDAC corepressor complexes and thereby to enhanced local histone acetylation and subsequent transcriptional activation of stress-induced genes. Our data reveal a novel function of the H3S28ph mark in the activation of mammalian genes in response to MAP kinase pathway activation.
Collapse
Affiliation(s)
- Anna Sawicka
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Dominik Hartl
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Malgorzata Goiser
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, 1030 Vienna, Austria; Research Institute of Molecular Pathology, 1030 Vienna, Austria
| | - Oliver Pusch
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Ido M Tamir
- Campus Science Support Facilities GmbH, 1030 Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology, 1030 Vienna, Austria; Protein Chemistry Facility, IMBA Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Christian Seiser
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, 1030 Vienna, Austria;
| |
Collapse
|
31
|
Sidoli S, Schwämmle V, Ruminowicz C, Hansen TA, Wu X, Helin K, Jensen ON. Middle-down hybrid chromatography/tandem mass spectrometry workflow for characterization of combinatorial post-translational modifications in histones. Proteomics 2014; 14:2200-11. [DOI: 10.1002/pmic.201400084] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/19/2014] [Accepted: 07/24/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Simone Sidoli
- Department of Biochemistry and Molecular Biology; Centre for Epigenetics, University of Southern Denmark; Odense M Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology; Centre for Epigenetics, University of Southern Denmark; Odense M Denmark
| | - Chrystian Ruminowicz
- Department of Biochemistry and Molecular Biology; Centre for Epigenetics, University of Southern Denmark; Odense M Denmark
| | - Thomas A. Hansen
- Department of Biochemistry and Molecular Biology; Centre for Epigenetics, University of Southern Denmark; Odense M Denmark
| | - Xudong Wu
- Biotech Research and Innovation Centre; Centre for Epigenetics, University of Copenhagen; Copenhagen Denmark
- Department of Cell Biology; Tianjin Medical University; Tianjin P. R. China
| | - Kristian Helin
- Biotech Research and Innovation Centre; Centre for Epigenetics, University of Copenhagen; Copenhagen Denmark
| | - Ole N. Jensen
- Department of Biochemistry and Molecular Biology; Centre for Epigenetics, University of Southern Denmark; Odense M Denmark
- Biotech Research and Innovation Centre; Centre for Epigenetics, University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
32
|
14-3-3 proteins play a role in the cell cycle by shielding cdt2 from ubiquitin-mediated degradation. Mol Cell Biol 2014; 34:4049-61. [PMID: 25154416 DOI: 10.1128/mcb.00838-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cdt2 is the substrate recognition adaptor of CRL4(Cdt2) E3 ubiquitin ligase complex and plays a pivotal role in the cell cycle by mediating the proteasomal degradation of Cdt1 (DNA replication licensing factor), p21 (cyclin-dependent kinase [CDK] inhibitor), and Set8 (histone methyltransferase) in S phase. Cdt2 itself is attenuated by SCF(FbxO11)-mediated proteasomal degradation. Here, we report that 14-3-3 adaptor proteins interact with Cdt2 phosphorylated at threonine 464 (T464) and shield it from polyubiquitination and consequent proteasomal degradation. Depletion of 14-3-3 proteins promotes the interaction of FbxO11 with Cdt2. Overexpressing 14-3-3 proteins shields Cdt2 that has a phospho-mimicking mutation (T464D [change of T to D at position 464]) but not Cdt2(T464A) from ubiquitination. Furthermore, the delay of the cell cycle in the G2/M phase and decrease in cell proliferation seen upon depletion of 14-3-3γ is partly due to the accumulation of the CRL4(Cdt2) substrate, Set8 methyltransferase. Therefore, the stabilization of Cdt2 is an important function of 14-3-3 proteins in cell cycle progression.
Collapse
|
33
|
Sardiu ME, Smith KT, Groppe BD, Gilmore JM, Saraf A, Egidy R, Peak A, Seidel CW, Florens L, Workman JL, Washburn MP. Suberoylanilide hydroxamic acid (SAHA)-induced dynamics of a human histone deacetylase protein interaction network. Mol Cell Proteomics 2014; 13:3114-25. [PMID: 25073741 DOI: 10.1074/mcp.m113.037127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylases (HDACs) are targets for cancer therapy. Suberoylanilide hydroxamic acid (SAHA) is an HDAC inhibitor approved by the U.S. Food and Drug Administration for the treatment of cutaneous T-cell lymphoma. To obtain a better mechanistic understanding of the Sin3/HDAC complex in cancer, we extended its protein-protein interaction network and identified a mutually exclusive pair within the complex. We then assessed the effects of SAHA on the disruption of the complex network through six homologous baits. SAHA perturbs multiple protein interactions and therefore compromises the composition of large parts of the Sin3/HDAC network. A comparison of the effect of SAHA treatment on gene expression in breast cancer cells to a knockdown of the ING2 subunit indicated that a portion of the anticancer effects of SAHA may be attributed to the disruption of ING2's association with the complex. Our dynamic protein interaction network resource provides novel insights into the molecular mechanism of SAHA action and demonstrates the potential for drugs to rewire networks.
Collapse
Affiliation(s)
- Mihaela E Sardiu
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Karen T Smith
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Brad D Groppe
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Joshua M Gilmore
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Anita Saraf
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Rhonda Egidy
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Allison Peak
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Chris W Seidel
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Laurence Florens
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Jerry L Workman
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Michael P Washburn
- From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110; ¶Department of Pathology and Laboratory Medicine, the University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160
| |
Collapse
|
34
|
Bu Q, Cui L, Li J, Du X, Zou W, Ding K, Pan J. SAHA and S116836, a novel tyrosine kinase inhibitor, synergistically induce apoptosis in imatinib-resistant chronic myelogenous leukemia cells. Cancer Biol Ther 2014; 15:951-62. [PMID: 24759597 DOI: 10.4161/cbt.28931] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Limited treatment options are available for chronic myelogenous leukemia (CML) patients who develop imatinib mesylate (IM) resistance. Here we proposed a novel combination regimen, a co-administration of S116836, a novel small molecule multi-targeted tyrosine kinase inhibitor that was synthesized by rational design, and histone deacetylases inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA), to overcome IM resistance in CML. S116836 at low concentrations used in the present study mildly downregulates auto-tyrosine phosphorylation of Bcr-Abl. SAHA, an FDA-approved HDACi drug, at 1 μM has modest anti-tumor activity in treating CML. However, we found a synergistic interaction between SAHA and S116836 in Bcr-Abl-positive CML cells that were sensitive or resistant to IM. Exposure of KBM5 and KBM5-T315I cells to minimal or non-toxic concentrations of SAHA and S116836 synergistically reduced cell viability and induced cell death. Co-treatment with SAHA and S116838 repressed the expressions of anti-apoptosis proteins, such as Mcl-1 and XIAP, but promoted Bim expression and mitochondrial damage. Of importance, treatment with both drugs significantly reduced cell viability of primary human CML cells, as compared with either agent alone. Taken together, our findings suggest that SAHA exerts synergistically with S116836 at a non-toxic concentration to promote apoptosis in the CML, including those resistant to imatinib or dasatinib.
Collapse
Affiliation(s)
- Qiangui Bu
- Department of Pathophysiology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou, PR China
| | - Lijing Cui
- Department of Pathophysiology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou, PR China
| | - Juan Li
- Department of Hematology; The First Affiliated Hospital; Sun Yat-sen University; Guangzhou, PR China
| | - Xin Du
- Department of Hematology; Guangdong Provincial People's Hospital; Guangzhou, PR China
| | - Waiyi Zou
- Department of Hematology; The First Affiliated Hospital; Sun Yat-sen University; Guangzhou, PR China
| | - Ke Ding
- Key Laboratory of Regenerative Biology and Institute of Chemical Biology; Guangzhou Institute of Biomedicine and Health; Chinese Academy of Sciences; Guangzhou, PR China
| | - Jingxuan Pan
- Department of Pathophysiology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou, PR China; State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center; Sun Yat-sen University; Guangzhou, PR China; Collaborative Innovation Center for Cancer Medicine; State Key Laboratory of Oncology in South China; Sun Yat-Sen University Cancer Center; Guangzhou, PR China
| |
Collapse
|
35
|
Sawicka A, Seiser C. Sensing core histone phosphorylation - a matter of perfect timing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:711-8. [PMID: 24747175 PMCID: PMC4103482 DOI: 10.1016/j.bbagrm.2014.04.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/23/2014] [Accepted: 04/11/2014] [Indexed: 11/24/2022]
Abstract
Systematic analysis of histone modifications has revealed a plethora of posttranslational modifications that mediate changes in chromatin structure and gene expression. Histone phosphorylation is a transient histone modification that becomes induced by extracellular signals, DNA damage or entry into mitosis. Importantly, phosphorylation of histone proteins does lead not only to the binding of specific reader proteins but also to changes in the affinity for readers or writers of other histone modifications. This induces a cross-talk between different chromatin modifications that allows the spatio-temporal control of chromatin-associated events. In this review we will summarize the progress in our current knowledge of factors sensing reversible histone phosphorylation in different biological scenarios. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function. Signal induced histone phosphorylation is associated with local chromatin opening and transcriptional activation. Histone phosphorylation is also linked with chromatin condensation during mitosis. Histone phosphorylation marks are important for regulation of the DNA damage response. Specific reader proteins recognize histone phosphorylation marks alone or in combination with other histone modifications. Histone phosphorylation affects the affinity of readers or writers of other histone modifications.
Collapse
Affiliation(s)
- Anna Sawicka
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Christian Seiser
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Vienna, Austria.
| |
Collapse
|
36
|
Valin A, Gill G. Enforcing the pause: transcription factor Sp3 limits productive elongation by RNA polymerase II. Cell Cycle 2013; 12:1828-34. [PMID: 23676218 DOI: 10.4161/cc.24992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The transition of paused RNA polymerase II into productive elongation is a highly dynamic process that serves to fine-tune gene expression in response to changing cellular environments. We have recently reported that the transcription factor Sp3 inhibits the transition of paused RNA Pol II to productive elongation at the promoter of the cyclin-dependent kinase inhibitor p21(CIP1) and other Sp3-repressed genes. Our studies support the view that Sp3 has three modes of action: activation, SUMO-Sp3-mediated heterochromatin silencing and SUMO-independent inhibition of elongation. At the p21(CIP1) promoter, binding of the positive elongation factor P-TEFb kinase was not affected by Sp3. In contrast, Sp3 promoted binding of the protein phosphatase PP1 to the p21(CIP1) promoter, suggesting that Sp3-dependent regulation of the local balance between kinase and phosphatase activities may contribute to gene expression. Our findings show that the transition of paused RNA Pol II to productive elongation is an important step regulated by both promoter-specific activators and repressors to finely modulate mRNA expression levels.
Collapse
Affiliation(s)
- Alvaro Valin
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
37
|
Khan DH, Davie JR. HDAC inhibitors prevent the induction of the immediate-early gene FOSL1, but do not alter the nucleosome response. FEBS Lett 2013; 587:1510-7. [PMID: 23542037 DOI: 10.1016/j.febslet.2013.03.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/11/2013] [Accepted: 03/18/2013] [Indexed: 11/30/2022]
Abstract
Dynamic histone acetylation, catalyzed by lysine acetyltransferases and HDACs, is critical to IEG expression. Expression of IEGs, such as FOSL1, is induced by several signal transduction pathways resulting in activation of the protein kinase MSK and phosphorylation of histone H3 at serine 10 of nucleosomes (the nucleosome response) at the upstream promoter and regulatory region of target genes. HDAC inhibitors prevent FOSL1 gene induction and the association of HDAC1, 2 and 3 with the gene body. However, HDAC inhibitors did not prevent the nucleosome response. Thus HDAC inhibitors perturb events downstream of the nucleosome response required for FOSL1 transcription initiation.
Collapse
Affiliation(s)
- Dilshad H Khan
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
38
|
Amaru Calzada A, Pedrini O, Finazzi G, Leoni F, Mascagni P, Introna M, Rambaldi A, Golay J. Givinostat and hydroxyurea synergize in vitro to induce apoptosis of cells from JAK2V617F myeloproliferative neoplasm patients. Exp Hematol 2013; 41:253-60.e2. [DOI: 10.1016/j.exphem.2012.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
|
39
|
Transcription factor Sp3 represses expression of p21CIP¹ via inhibition of productive elongation by RNA polymerase II. Mol Cell Biol 2013; 33:1582-93. [PMID: 23401853 DOI: 10.1128/mcb.00323-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Like that of many protein-coding genes, expression of the p21(CIP1) cell cycle inhibitor is regulated at the level of transcription elongation. While many transcriptional activators have been shown to stimulate elongation, the mechanisms by which promoter-specific repressors regulate pausing and elongation by RNA polymerase II (RNA PolII) are not well described. Here we report that the transcription factor Sp3 inhibits basal p21(CIP1) gene expression by promoter-bound RNA PolII. Knockdown of Sp3 led to increased p21(CIP1) mRNA levels and reduced occupancy of the negative elongation factor (NELF) at the p21(CIP1) promoter, although the level of binding of the positive transcription elongation factor b (P-TEFb) kinase was not increased. Sp3 depletion correlated with increased H3K36me3 and H2Bub1, two histone modifications associated with transcription elongation. Further, Sp3 was shown to promote the binding of protein phosphatase 1 (PP1) to the p21(CIP1) promoter, leading to reduced H3S10 phosphorylation, a finding consistent with Sp3-dependent regulation of the local balance between kinase and phosphatase activities. Analysis of other targets of Sp3-mediated repression suggests that, in addition to previously described SUMO modification-dependent chromatin-silencing mechanisms, inhibition of the transition of paused RNA PolII to productive elongation, described here for p21(CIP1), is a general mechanism by which transcription factor Sp3 fine-tunes gene expression.
Collapse
|
40
|
Sawicka A, Seiser C. Histone H3 phosphorylation - a versatile chromatin modification for different occasions. Biochimie 2012; 94:2193-201. [PMID: 22564826 PMCID: PMC3480636 DOI: 10.1016/j.biochi.2012.04.018] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/16/2012] [Indexed: 12/11/2022]
Abstract
Post-translation modifications of histones modulate the accessibility and transcriptional competence of specific chromatin regions within the eukaryotic genome. Phosphorylation of histone H3 is unique in the sense that it associates on one hand with open chromatin during gene activation and marks on the other hand highly condensed chromatin during mitosis. Phosphorylation of serine residues at histone H3 is a highly dynamic process that creates together with acetylation and methylation marks at neighboring lysine residues specific combinatorial patterns that are read by specific detector proteins. In this review we describe the importance of different histone H3 phosphorylation marks for chromatin condensation during mitosis. In addition, we review the signals that trigger histone H3 phosphorylation and the factors that control this reversible modification during interphase and mediate the biological readout of the signal. Finally, we discuss different models describing the role of histone H3 phosphorylation in the activation of transcription of poised genes or by transient derepression of epigenetically silenced genes. We propose that histone H3 phosphorylation in the context with lysine methylation might temporarily relieve the silencing of specific genes without affecting the epigenetic memory.
Collapse
Affiliation(s)
| | - Christian Seiser
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, Medical University of Vienna, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria
| |
Collapse
|
41
|
Delcuve GP, Khan DH, Davie JR. Targeting class I histone deacetylases in cancer therapy. Expert Opin Ther Targets 2012; 17:29-41. [PMID: 23062071 DOI: 10.1517/14728222.2013.729042] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Class I histone deacetylases (HDACs) are often overexpressed in cancer, and their inhibition typically leads cancer cells, but not normal cells, to apoptosis. Hence, the field of cancer therapy has experienced a continued surge in the development of HDAC inhibitors. AREAS COVERED Class I comprises of HDAC1, 2, 3 and 8. HDAC1, 2 and 3 are active as subunits of multiprotein complexes while an HDAC8 complex has not been identified. Besides being a major contributor to poor prognosis in childhood neuroblastoma, little is known of HDAC8 functions and substrates. The targeting and activities of HDAC1 - 3 are modulated by post-translational modifications and association with numerous proteins. The composition of the various HDAC complexes is cell type dependent and fluctuates with intra- and intercellular stimuli. These HDAC complexes play roles at multiple levels in gene expression and genome stability. The application of isoform-specific HDAC inhibitors has met with varying success in clinical trials. EXPERT OPINION To elucidate the mechanism and cellular impact of HDAC inhibitors, we need to identify the spectrum of class I HDAC complexes and their functions. In the cases of HDAC1 - 3, selectivity of HDAC inhibitors should be directed against relevant complexes. HDAC8 active site unique features facilitate the design of selective inhibitors.
Collapse
Affiliation(s)
- Geneviève P Delcuve
- University of Manitoba, Manitoba Institute of Child Health, 715 McDermot Avenue, Room 600A, Winnipeg, Manitoba, R3E 3P4, Canada
| | | | | |
Collapse
|
42
|
Berendsen S, Broekman M, Seute T, Snijders T, van Es C, de Vos F, Regli L, Robe P. Valproic acid for the treatment of malignant gliomas: review of the preclinical rationale and published clinical results. Expert Opin Investig Drugs 2012; 21:1391-415. [DOI: 10.1517/13543784.2012.694425] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Pierre Robe
- UMC Utrecht,
Utrecht, Netherlands
- University of Liège,
Liège, Belgium
| |
Collapse
|
43
|
Sidoli S, Cheng L, Jensen ON. Proteomics in chromatin biology and epigenetics: Elucidation of post-translational modifications of histone proteins by mass spectrometry. J Proteomics 2012; 75:3419-33. [PMID: 22234360 DOI: 10.1016/j.jprot.2011.12.029] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/18/2011] [Accepted: 12/20/2011] [Indexed: 12/11/2022]
Affiliation(s)
- Simone Sidoli
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | |
Collapse
|
44
|
Delcuve GP, Khan DH, Davie JR. Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Clin Epigenetics 2012; 4:5. [PMID: 22414492 PMCID: PMC3320549 DOI: 10.1186/1868-7083-4-5] [Citation(s) in RCA: 375] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 03/12/2012] [Indexed: 12/11/2022] Open
Abstract
The zinc-dependent mammalian histone deacetylase (HDAC) family comprises 11 enzymes, which have specific and critical functions in development and tissue homeostasis. Mounting evidence points to a link between misregulated HDAC activity and many oncologic and nononcologic diseases. Thus the development of HDAC inhibitors for therapeutic treatment garners a lot of interest from academic researchers and biotechnology entrepreneurs. Numerous studies of HDAC inhibitor specificities and molecular mechanisms of action are ongoing. In one of these studies, mass spectrometry was used to characterize the affinities and selectivities of HDAC inhibitors toward native HDAC multiprotein complexes in cell extracts. Such a novel approach reproduces in vivo molecular interactions more accurately than standard studies using purified proteins or protein domains as targets and could be very useful in the isolation of inhibitors with superior clinical efficacy and decreased toxicity compared to the ones presently tested or approved. HDAC inhibitor induced-transcriptional reprogramming, believed to contribute largely to their therapeutic benefits, is achieved through various and complex mechanisms not fully understood, including histone deacetylation, transcription factor or regulator (including HDAC1) deacetylation followed by chromatin remodeling and positive or negative outcome regarding transcription initiation. Although only a very low percentage of protein-coding genes are affected by the action of HDAC inhibitors, about 40% of noncoding microRNAs are upregulated or downregulated. Moreover, a whole new world of long noncoding RNAs is emerging, revealing a new class of potential targets for HDAC inhibition. HDAC inhibitors might also regulate transcription elongation and have been shown to impinge on alternative splicing.
Collapse
Affiliation(s)
- Geneviève P Delcuve
- Manitoba Institute of Cell Biology, University of Manitoba, 675 McDermot Avenue, Winnipeg, MB, R3E 0V9, Canada.
| | | | | |
Collapse
|
45
|
Tobe BT, Hou J, Crain AM, Singec I, Snyder EY, Brill LM. Phosphoproteomic analysis: an emerging role in deciphering cellular signaling in human embryonic stem cells and their differentiated derivatives. Stem Cell Rev Rep 2012; 8:16-31. [PMID: 22009073 PMCID: PMC3839940 DOI: 10.1007/s12015-011-9317-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cellular signaling is largely controlled by protein phosphorylation. This post-translational modification (PTM) has been extensively analyzed when examining one or a few protein phosphorylation events that effect cell signaling. However, protein kinase-driven signaling networks, comprising total (phospho)proteomes, largely control cell fate. Therefore, large-scale analysis of differentially regulated protein phosphorylation is central to elucidating complex cellular events, including maintenance of pluripotency and differentiation of embryonic stem cells (ESCs). The current technology of choice for total phosphoproteome and combined total proteome plus total phosphoproteome (termed (phospho)proteome) analyses is multidimensional liquid chromatography-(MDLC) tandem mass spectrometry (MS/MS). Advances in the use of MDLC for separation of peptides comprising total (phospho)proteomes, phosphopeptide enrichment, separation of enriched fractions, and quantitative peptide identification by MS/MS have been rapid in recent years, as have improvements in the sensitivity, speed, and accuracy of mass spectrometers. Increasingly deep coverage of (phospho)proteomes is allowing an improved understanding of changes in protein phosphorylation networks as cells respond to stimuli and progress from one undifferentiated or differentiated state to another. Although MDLC-MS/MS studies are powerful, understanding the interpretation of the data is important, and targeted experimental pursuit of biological predictions provided by total (phospho)proteome analyses is needed. (Phospho)proteomic analyses of pluripotent stem cells are in their infancy at this time. However, such studies have already begun to contribute to an improved and accelerated understanding of basic pluripotent stem cell signaling and fate control, especially at the systems-biology level.
Collapse
Affiliation(s)
- Brian T.D. Tobe
- The Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Junjie Hou
- The Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Andrew M. Crain
- The Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Ilyas Singec
- The Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Evan Y. Snyder
- The Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Laurence M. Brill
- The Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| |
Collapse
|
46
|
Spiegel S, Milstien S, Grant S. Endogenous modulators and pharmacological inhibitors of histone deacetylases in cancer therapy. Oncogene 2011; 31:537-51. [PMID: 21725353 DOI: 10.1038/onc.2011.267] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The class-I histone deacetylases (HDACs) HDAC1 and HDAC2 belong to a family of 11 zinc-dependent human HDACs and are overexpressed in many cancers. Inhibitors of these HDACs now in clinical trials show activity against several types of cancers. This review is focused on recent advances in both clinical and preclinical efforts to understand the basis for the actions of HDACis, with emphasis on implications for rational combinations with conventional or other targeted agents. We will address new perspectives on the molecular mechanisms by which HDACs act and how these actions relate to cancer. We will also review new evidence showing that HDACs are direct intracellular targets of the potent sphingolipid mediator S1P, the first identified endogenous nuclear regulator of these enzymes, linking sphingolipid metabolism in the nucleus to remodeling of chromatin and epigenetic regulation of gene expression. Understanding how endogenous molecules regulate HDAC activity in vivo may facilitate the search for safer and more effective anticancer drugs capable of interfering with HDAC functions in a highly specific manner.
Collapse
Affiliation(s)
- S Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine Richmond, Richmond, VA 23298, USA.
| | | | | |
Collapse
|
47
|
Rajendran P, Delage B, Dashwood WM, Yu TW, Wuth B, Williams DE, Ho E, Dashwood RH. Histone deacetylase turnover and recovery in sulforaphane-treated colon cancer cells: competing actions of 14-3-3 and Pin1 in HDAC3/SMRT corepressor complex dissociation/reassembly. Mol Cancer 2011; 10:68. [PMID: 21624135 PMCID: PMC3127849 DOI: 10.1186/1476-4598-10-68] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 05/30/2011] [Indexed: 02/08/2023] Open
Abstract
Background Histone deacetylase (HDAC) inhibitors are currently undergoing clinical evaluation as anti-cancer agents. Dietary constituents share certain properties of HDAC inhibitor drugs, including the ability to induce global histone acetylation, turn-on epigenetically-silenced genes, and trigger cell cycle arrest, apoptosis, or differentiation in cancer cells. One such example is sulforaphane (SFN), an isothiocyanate derived from the glucosinolate precursor glucoraphanin, which is abundant in broccoli. Here, we examined the time-course and reversibility of SFN-induced HDAC changes in human colon cancer cells. Results Cells underwent progressive G2/M arrest over the period 6-72 h after SFN treatment, during which time HDAC activity increased in the vehicle-treated controls but not in SFN-treated cells. There was a time-dependent loss of class I and selected class II HDAC proteins, with HDAC3 depletion detected ahead of other HDACs. Mechanism studies revealed no apparent effect of calpain, proteasome, protease or caspase inhibitors, but HDAC3 was rescued by cycloheximide or actinomycin D treatment. Among the protein partners implicated in the HDAC3 turnover mechanism, silencing mediator for retinoid and thyroid hormone receptors (SMRT) was phosphorylated in the nucleus within 6 h of SFN treatment, as was HDAC3 itself. Co-immunoprecipitation assays revealed SFN-induced dissociation of HDAC3/SMRT complexes coinciding with increased binding of HDAC3 to 14-3-3 and peptidyl-prolyl cis/trans isomerase 1 (Pin1). Pin1 knockdown blocked the SFN-induced loss of HDAC3. Finally, SFN treatment for 6 or 24 h followed by SFN removal from the culture media led to complete recovery of HDAC activity and HDAC protein expression, during which time cells were released from G2/M arrest. Conclusion The current investigation supports a model in which protein kinase CK2 phosphorylates SMRT and HDAC3 in the nucleus, resulting in dissociation of the corepressor complex and enhanced binding of HDAC3 to 14-3-3 or Pin1. In the cytoplasm, release of HDAC3 from 14-3-3 followed by nuclear import is postulated to compete with a Pin1 pathway that directs HDAC3 for degradation. The latter pathway predominates in colon cancer cells exposed continuously to SFN, whereas the former pathway is likely to be favored when SFN has been removed within 24 h, allowing recovery from cell cycle arrest.
Collapse
Affiliation(s)
- Praveen Rajendran
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331-6512, USA
| | | | | | | | | | | | | | | |
Collapse
|