1
|
Roudaire T, Marzari T, Landry D, Löffelhardt B, Gust AA, Jermakow A, Dry I, Winckler P, Héloir MC, Poinssot B. The grapevine LysM receptor-like kinase VvLYK5-1 recognizes chitin oligomers through its association with VvLYK1-1. FRONTIERS IN PLANT SCIENCE 2023; 14:1130782. [PMID: 36818830 PMCID: PMC9932513 DOI: 10.3389/fpls.2023.1130782] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The establishment of defense reactions to protect plants against pathogens requires the recognition of invasion patterns (IPs), mainly detected by plasma membrane-bound pattern recognition receptors (PRRs). Some IPs, also termed elicitors, are used in several biocontrol products that are gradually being developed to reduce the use of chemicals in agriculture. Chitin, the major component of fungal cell walls, as well as its deacetylated derivative, chitosan, are two elicitors known to activate plant defense responses. However, recognition of chitooligosaccharides (COS) in Vitis vinifera is still poorly understood, hampering the improvement and generalization of protection tools for this important crop. In contrast, COS perception in the model plant Arabidopsis thaliana is well described and mainly relies on a tripartite complex formed by the cell surface lysin motif receptor-like kinases (LysM-RLKs) AtLYK1/CERK1, AtLYK4 and AtLYK5, the latter having the strongest affinity for COS. In grapevine, COS perception has for the moment only been demonstrated to rely on two PRRs VvLYK1-1 and VvLYK1-2. Here, we investigated additional players by overexpressing in Arabidopsis the two putative AtLYK5 orthologs from grapevine, VvLYK5-1 and VvLYK5-2. Expression of VvLYK5-1 in the atlyk4/5 double mutant background restored COS sensitivity, such as chitin-induced MAPK activation, defense gene expression, callose deposition and conferred non-host resistance to grapevine downy mildew (Erysiphe necator). Protein-protein interaction studies conducted in planta revealed a chitin oligomer-triggered interaction between VvLYK5-1 and VvLYK1-1. Interestingly, our results also indicate that VvLYK5-1 mediates the perception of chitin but not chitosan oligomers showing a part of its specificity.
Collapse
Affiliation(s)
- Thibault Roudaire
- Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Tania Marzari
- Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - David Landry
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Birgit Löffelhardt
- Department of Plant Biochemistry, University of Tübingen, Center for Plant Molecular Biology, Tübingen, Germany
| | - Andrea A. Gust
- Department of Plant Biochemistry, University of Tübingen, Center for Plant Molecular Biology, Tübingen, Germany
| | - Angelica Jermakow
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia
| | - Ian Dry
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia
| | - Pascale Winckler
- Dimacell Imaging Facility, PAM UMR A 02.102, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Marie-Claire Héloir
- Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Benoit Poinssot
- Agroécologie, CNRS, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
2
|
Isolation and characterization of glycoprotein (CNP) isolated from Cocos nucifera L. nutshell and its immunomodulatory role on macrophage activation. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
3
|
Quilbé J, Nouwen N, Pervent M, Guyonnet R, Cullimore J, Gressent F, Araújo NH, Gully D, Klopp C, Giraud E, Arrighi JF. A mutant-based analysis of the establishment of Nod-independent symbiosis in the legume Aeschynomene evenia. PLANT PHYSIOLOGY 2022; 190:1400-1417. [PMID: 35876558 PMCID: PMC9516736 DOI: 10.1093/plphys/kiac325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Intensive research on nitrogen-fixing symbiosis in two model legumes has uncovered the molecular mechanisms, whereby rhizobial Nod factors activate a plant symbiotic signaling pathway that controls infection and nodule organogenesis. In contrast, the so-called Nod-independent symbiosis found between Aeschynomene evenia and photosynthetic bradyrhizobia, which does not involve Nod factor recognition nor infection thread formation, is less well known. To gain knowledge on how Nod-independent symbiosis is established, we conducted a phenotypic and molecular characterization of A. evenia lines carrying mutations in different nodulation genes. Besides investigating the effect of the mutations on rhizobial symbiosis, we examined their consequences on mycorrhizal symbiosis and in nonsymbiotic conditions. Analyzing allelic mutant series for AePOLLUX, Ca2+/calmodulin dependent kinase, AeCYCLOPS, nodulation signaling pathway 2 (AeNSP2), and nodule inception demonstrated that these genes intervene at several stages of intercellular infection and during bacterial accommodation. We provide evidence that AeNSP2 has an additional nitrogen-dependent regulatory function in the formation of axillary root hairs at lateral root bases, which are rhizobia-colonized infection sites. Our investigation of the recently discovered symbiotic actor cysteine-rich receptor-like kinase specified that it is not involved in mycorrhization; however, it is essential for both symbiotic signaling and early infection during nodulation. These findings provide important insights on the modus operandi of Nod-independent symbiosis and contribute to the general understanding of how rhizobial-legume symbioses are established by complementing the information acquired in model legumes.
Collapse
Affiliation(s)
| | | | | | - Rémi Guyonnet
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J-Campus de Baillarguet, Montpellier 34398, France
| | - Julie Cullimore
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, Castanet-Tolosan, France
| | - Frédéric Gressent
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J-Campus de Baillarguet, Montpellier 34398, France
- IRD, Plant Health Institute of Montpellier (PHIM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J – Campus de Baillarguet, Montpellier 34398, France
| | - Natasha Horta Araújo
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J-Campus de Baillarguet, Montpellier 34398, France
- IRD, Plant Health Institute of Montpellier (PHIM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J – Campus de Baillarguet, Montpellier 34398, France
| | - Djamel Gully
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J-Campus de Baillarguet, Montpellier 34398, France
- IRD, Plant Health Institute of Montpellier (PHIM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J – Campus de Baillarguet, Montpellier 34398, France
| | - Christophe Klopp
- Plateforme Bioinformatique Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J-Campus de Baillarguet, Montpellier 34398, France
- IRD, Plant Health Institute of Montpellier (PHIM), UMR IRD/SupAgro/INRAE/UM/CIRAD, TA-A82/J – Campus de Baillarguet, Montpellier 34398, France
| | | |
Collapse
|
4
|
Luu TB, Ourth A, Pouzet C, Pauly N, Cullimore J. A newly evolved chimeric lysin motif receptor-like kinase in Medicago truncatula spp. tricycla R108 extends its Rhizobia symbiotic partnership. THE NEW PHYTOLOGIST 2022; 235:1995-2007. [PMID: 35611584 DOI: 10.1111/nph.18270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Rhizobial lipochitooligosaccharidic Nod factors (NFs), specified by nod genes, are the primary determinants of host specificity in the legume-Rhizobia symbiosis. We examined the nodulation ability of Medicago truncatula cv Jemalong A17 and M. truncatula ssp. tricycla R108 with the Sinorhizobium meliloti nodF/nodL mutant, which produces modified NFs. We then applied genetic and functional approaches to study the genetic basis and mechanism of nodulation of R108 by this mutant. We show that the nodF/nodL mutant can nodulate R108 but not A17. Using genomics and reverse genetics, we identified a newly evolved, chimeric LysM receptor-like kinase gene in R108, LYK2bis, which is responsible for the phenotype and can allow A17 to gain nodulation with the nodF/nodL mutant. We found that LYK2bis is involved in nodulation by mutants producing nonO-acetylated NFs and interacts with the key receptor protein NFP. Many, but not all, natural S. meliloti and S. medicae strains tested require LYK2bis for efficient nodulation of R108. Our findings reveal that a newly evolved gene in R108, LYK2bis, extends nodulation specificity to mutants producing nonO-acetylated NFs and is important for nodulation by many natural Sinorhizobia. Evolution of this gene may present an adaptive advantage to allow nodulation by a greater variety of strains.
Collapse
Affiliation(s)
- Thi-Bich Luu
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326, Castanet-Tolosan Cedex, France
| | - Anna Ourth
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326, Castanet-Tolosan Cedex, France
| | - Cécile Pouzet
- FRAIB-TRI Imaging Platform Facilities, FR AIB, Université de Toulouse, CNRS, 31320, Castanet-Tolosan, France
| | - Nicolas Pauly
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326, Castanet-Tolosan Cedex, France
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRAE, CNRS, 06903, Sophia Antipolis Cedex, France
| | - Julie Cullimore
- Laboratory of Plant-Microbe Interactions and Environment (LIPME), University Toulouse III, INRAE, CNRS, 31326, Castanet-Tolosan Cedex, France
| |
Collapse
|
5
|
Karhoff S, Vargas-Garcia C, Lee S, Mian MAR, Graham MA, Dorrance AE, McHale LK. Identification of Candidate Genes for a Major Quantitative Disease Resistance Locus From Soybean PI 427105B for Resistance to Phytophthora sojae. FRONTIERS IN PLANT SCIENCE 2022; 13:893652. [PMID: 35774827 PMCID: PMC9237613 DOI: 10.3389/fpls.2022.893652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Phytophthora root and stem rot is a yield-limiting soybean disease caused by the soil-borne oomycete Phytophthora sojae. Although multiple quantitative disease resistance loci (QDRL) have been identified, most explain <10% of the phenotypic variation (PV). The major QDRL explaining up to 45% of the PV were previously identified on chromosome 18 and represent a valuable source of resistance for soybean breeding programs. Resistance alleles from plant introductions 427105B and 427106 significantly increase yield in disease-prone fields and result in no significant yield difference in fields with less to no disease pressure. In this study, high-resolution mapping reduced the QDRL interval to 3.1 cm, and RNA-seq analysis of near-isogenic lines (NILs) varying at QDRL-18 pinpointed a single gene of interest which was downregulated in inoculated NILs carrying the resistant allele compared to inoculated NILs with the susceptible allele. This gene of interest putatively encodes a serine-threonine kinase (STK) related to the AtCR4 family and may be acting as a susceptibility factor, based on the specific increase of jasmonic acid concentration in inoculated NILs. This work facilitates further functional analyses and marker-assisted breeding efforts by prioritizing candidate genes and narrowing the targeted region for introgression.
Collapse
Affiliation(s)
- Stephanie Karhoff
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for Soybean Research, The Ohio State University, Columbus, OH, United States
| | - Christian Vargas-Garcia
- Center for Soybean Research, The Ohio State University, Columbus, OH, United States
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - Sungwoo Lee
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - M. A. Rouf Mian
- United States Department of Agriculture-Agricultural Research Service, Soybean Research Unit, Raleigh, NC, United States
| | - Michelle A. Graham
- Department of Agronomy, Iowa State University, Ames, IA, United States
- United States Department of Agriculture-Agricultural Research Service, Corn Insects and Crop Genetics Resources Unit, Ames, IA, United States
| | - Anne E. Dorrance
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for Soybean Research, The Ohio State University, Columbus, OH, United States
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
| | - Leah K. McHale
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for Soybean Research, The Ohio State University, Columbus, OH, United States
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
6
|
Giovannoni M, Lironi D, Marti L, Paparella C, Vecchi V, Gust AA, De Lorenzo G, Nürnberger T, Ferrari S. The Arabidopsis thaliana LysM-containing Receptor-Like Kinase 2 is required for elicitor-induced resistance to pathogens. PLANT, CELL & ENVIRONMENT 2021; 44:3545-3562. [PMID: 34558681 PMCID: PMC9293440 DOI: 10.1111/pce.14192] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/02/2021] [Accepted: 09/13/2021] [Indexed: 05/12/2023]
Abstract
In Arabidopsis thaliana, perception of chitin from fungal cell walls is mediated by three LysM-containing Receptor-Like Kinases (LYKs): CERK1, which is absolutely required for chitin perception, and LYK4 and LYK5, which act redundantly. The role in plant innate immunity of a fourth LYK protein, LYK2, is currently not known. Here we show that CERK1, LYK2 and LYK5 are dispensable for basal susceptibility to B. cinerea but are necessary for chitin-induced resistance to this pathogen. LYK2 is dispensable for chitin perception and early signalling events, though it contributes to callose deposition induced by this elicitor. Notably, LYK2 is also necessary for enhanced resistance to B. cinerea and Pseudomonas syringae induced by flagellin and for elicitor-induced priming of defence gene expression during fungal infection. Consistently, overexpression of LYK2 enhances resistance to B. cinerea and P. syringae and results in increased expression of defence-related genes during fungal infection. LYK2 appears to be required to establish a primed state in plants exposed to biotic elicitors, ensuring a robust resistance to subsequent pathogen infections.
Collapse
Affiliation(s)
- Moira Giovannoni
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”Sapienza Università di RomaRomeItaly
| | - Damiano Lironi
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”Sapienza Università di RomaRomeItaly
| | - Lucia Marti
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”Sapienza Università di RomaRomeItaly
| | - Chiara Paparella
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”Sapienza Università di RomaRomeItaly
| | - Valeria Vecchi
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”Sapienza Università di RomaRomeItaly
| | - Andrea A. Gust
- Department of Plant BiochemistryUniversity of Tübingen, Center for Plant Molecular BiologyTübingenGermany
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”Sapienza Università di RomaRomeItaly
| | - Thorsten Nürnberger
- Department of Plant BiochemistryUniversity of Tübingen, Center for Plant Molecular BiologyTübingenGermany
| | - Simone Ferrari
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”Sapienza Università di RomaRomeItaly
| |
Collapse
|
7
|
He J, Zhang C, Dai H, Liu H, Zhang X, Yang J, Chen X, Zhu Y, Wang D, Qi X, Li W, Wang Z, An G, Yu N, He Z, Wang YF, Xiao Y, Zhang P, Wang E. A LysM Receptor Heteromer Mediates Perception of Arbuscular Mycorrhizal Symbiotic Signal in Rice. MOLECULAR PLANT 2019; 12:1561-1576. [PMID: 31706032 DOI: 10.1016/j.molp.2019.10.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Symbiotic microorganisms improve nutrient uptake by plants. To initiate mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi, plants perceive Myc factors, including lipochitooligosaccharides (LCOs) and short-chain chitooligosaccharides (CO4/CO5), secreted by AM fungi. However, the molecular mechanism of Myc factor perception remains elusive. In this study, we identified a heteromer of LysM receptor-like kinases consisting of OsMYR1/OsLYK2 and OsCERK1 that mediates the perception of AM fungi in rice. CO4 directly binds to OsMYR1, promoting the dimerization and phosphorylation of this receptor complex. Compared with control plants, Osmyr1 and Oscerk1 mutant rice plants are less sensitive to Myc factors and show decreased AM colonization. We engineered transgenic rice by expressing chimeric receptors that respectively replaced the ectodomains of OsMYR1 and OsCERK1 with those from the homologous Nod factor receptors MtNFP and MtLYK3 of Medicago truncatula. Transgenic plants displayed increased calcium oscillations in response to Nod factors compared with control rice. Our study provides significant mechanistic insights into AM symbiotic signal perception in rice. Expression of chimeric Nod/Myc receptors achieves a potentially important step toward generating cereals that host nitrogen-fixing bacteria.
Collapse
Affiliation(s)
- Jiangman He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Huiling Dai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huan Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xi Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yayun Zhu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Dapeng Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Xiaofeng Qi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Weichao Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhihui Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Guoyong An
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Nan Yu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Youli Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
8
|
Cross-Microbial Protection via Priming a Conserved Immune Co-Receptor through Juxtamembrane Phosphorylation in Plants. Cell Host Microbe 2019; 26:810-822.e7. [DOI: 10.1016/j.chom.2019.10.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/20/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022]
|
9
|
Gibelin-Viala C, Amblard E, Puech-Pages V, Bonhomme M, Garcia M, Bascaules-Bedin A, Fliegmann J, Wen J, Mysore KS, le Signor C, Jacquet C, Gough C. The Medicago truncatula LysM receptor-like kinase LYK9 plays a dual role in immunity and the arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2019; 223:1516-1529. [PMID: 31058335 DOI: 10.1111/nph.15891] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/24/2019] [Indexed: 05/26/2023]
Abstract
Plant -specific lysin-motif receptor-like kinases (LysM-RLKs) are implicated in the perception of N-acetyl glucosamine-containing compounds, some of which are important signal molecules in plant-microbe interactions. Among these, both lipo-chitooligosaccharides (LCOs) and chitooligosaccharides (COs) are proposed as arbuscular mycorrhizal (AM) fungal symbiotic signals. COs can also activate plant defence, although there are scarce data about CO production by pathogens, especially nonfungal pathogens. We tested Medicago truncatula mutants in the LysM-RLK MtLYK9 for their abilities to interact with the AM fungus Rhizophagus irregularis and the oomycete pathogen Aphanomyces euteiches. This prompted us to analyse whether A. euteiches can produce COs. Compared with wild-type plants, Mtlyk9 mutants had fewer infection events and were less colonised by the AM fungus. By contrast, Mtlyk9 mutants were more heavily infected by A. euteiches and showed more disease symptoms. Aphanomyces euteiches was also shown to produce short COs, mainly CO II, but also CO III and CO IV, and traces of CO V, both ex planta and in planta. MtLYK9 thus has a dual role in plant immunity and the AM symbiosis, which raises questions about the functioning and the ancestral origins of such a receptor protein.
Collapse
Affiliation(s)
| | - Emilie Amblard
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Virginie Puech-Pages
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Maxime Bonhomme
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Magali Garcia
- LIPM, INRA, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Adeline Bascaules-Bedin
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Judith Fliegmann
- LIPM, INRA, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Jiangqi Wen
- Noble Research Institute, LLC., 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Noble Research Institute, LLC., 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | | | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Clare Gough
- LIPM, INRA, CNRS, Université de Toulouse, 31326, Castanet-Tolosan, France
| |
Collapse
|
10
|
Bhattacharya A, Paul A, Chakrabarti D, DasGupta M. Gatekeeper-Activation Loop Cross-Talk Determines Distinct Autoactivation States of Symbiosis Receptor Kinase. Biochemistry 2019; 58:2419-2431. [PMID: 31021099 DOI: 10.1021/acs.biochem.9b00071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plant receptor-like kinases (RLKs) have a Tyr in the "gatekeeper" position adjacent to the hinge region. The gatekeeper is phosphorylated in several RLKs, including symbiosis receptor kinase (SYMRK), but the significance of this remains unknown. Gatekeeper substitution did not inactivate Arachis hypogaea SYMRK but affected autophosphorylation at selected sites. Herein, we show that nonphosphorylatable gatekeepers (Y670F and Y670A) restrict SYMRK to be a Ser/Thr kinase with a basal level of phosphorylation (∼5 P/polypeptide, termed state I) whereas phosphorylatable gatekeepers (Y670 and Y670T) allowed SYMRK to be dual specific (Ser/Thr/Tyr) with a maximal level of phosphorylation (∼10 P/polypeptide, termed state II). State II SYMRKs were phosphorylated on gatekeeper residues, and the phosphocode in their activation segment was distinct from state I. The kcat/ Km for substrate phosphorylation was ∼10-fold higher for state II, though for autophosphorylation, it was comparable with those of state I SYMRKs. To identify other determinants of state I features, we mutagenized all nine sites where phosphorylation was affected by nonphosphorylatable gatekeepers (Y670F and Y670A). Only two such mutants, S754A and S757A, located on the activation loop failed to phosphorylate gatekeeper Tyr and restricted SYMRK in state I. Double mutants like Y670F/S754A retained the features of state I, but Y670F/S757A was significantly inactivated, indicating a nonphosphorylatable gatekeeper can bypass phosphorylation of S754 but not S757 in the activation segment. We propose a working model for the hierarchical phosphorylation of SYMRK on gatekeeper and activation segments for its pS757-mediated activation as a Ser/Thr kinase in selfie mode (autophosphorylation) to a pS754/pY670-mediated activation as a Ser/Thr/Tyr kinase that functions in dual mode (both autophosphorylation and substrate phosphorylation).
Collapse
Affiliation(s)
- Avisek Bhattacharya
- Department of Biochemistry , University of Calcutta , Kolkata 700019 , India
| | - Anindita Paul
- Department of Biochemistry , University of Calcutta , Kolkata 700019 , India
| | | | - Maitrayee DasGupta
- Department of Biochemistry , University of Calcutta , Kolkata 700019 , India
| |
Collapse
|
11
|
Caddell DF, Wei T, Sharma S, Oh MH, Park CJ, Canlas P, Huber SC, Ronald PC. Four tyrosine residues of the rice immune receptor XA21 are not required for interaction with the co-receptor OsSERK2 or resistance to Xanthomonas oryzae pv. oryzae. PeerJ 2018; 6:e6074. [PMID: 30581670 PMCID: PMC6294051 DOI: 10.7717/peerj.6074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/02/2018] [Indexed: 11/23/2022] Open
Abstract
Tyrosine phosphorylation has emerged as an important regulator of plasma membrane-localized immune receptors activity. Here, we investigate the role of tyrosine phosphorylation in the regulation of rice XANTHOMONAS RESISTANCE 21 (XA21)-mediated immunity. We demonstrate that the juxtamembrane and kinase domain of Escherichia coli–expressed XA21 (XA21JK) autophosphorylates on tyrosine residues. Directed mutagenesis of four out of the nine tyrosine residues in XA21JK reduced autophosphorylation. These sites include Tyr698 in the juxtamembrane domain, and Tyr786, Tyr907, and Tyr909 in the kinase domain. Rice plants expressing XA21-GFP fusion proteins or proteins with these tyrosine residues individually mutated to phenylalanine (XA21YF-GFP), which prevents phosphorylation at these sites, maintain resistance to Xanthomonas oryzae pv. oryzae. In contrast, plants expressing phosphomimetic XA21 variants with tyrosine mutated to aspartate (XA21YD-GFP) were susceptible. In vitro purified XA21JKY698F, XA21JKY907F, and XA21JKY909F variants are catalytically active, whereas activity was not detected in XA21JKY768F and the four XA21JKYD variants. We previously demonstrated that interaction of XA21 with the co-receptor OsSERK2 is critical for biological function. Four of the XA21JKYF variants maintain interaction with OsSERK2 as well as the XA21 binding (XB) proteins XB3 and XB15 in yeast, suggesting that these four tyrosine residues are not required for their interaction. Taken together, these results suggest that XA21 is capable of tyrosine autophosphorylation, but the identified tyrosine residues are not required for activation of XA21-mediated immunity or interaction with predicted XA21 signaling proteins.
Collapse
Affiliation(s)
- Daniel F Caddell
- Department of Plant Biology and the Genome Center, University of California, Davis, CA, USA
| | - Tong Wei
- Department of Plant Biology and the Genome Center, University of California, Davis, CA, USA
| | - Sweta Sharma
- Department of Plant Biology and the Genome Center, University of California, Davis, CA, USA
| | - Man-Ho Oh
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chang-Jin Park
- Department of Plant Biology and the Genome Center, University of California, Davis, CA, USA
| | - Patrick Canlas
- Department of Plant Biology and the Genome Center, University of California, Davis, CA, USA
| | - Steven C Huber
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Agricultural Research Service, United States Department of Agriculture, Urbana, IL, USA
| | - Pamela C Ronald
- Department of Plant Biology and the Genome Center, University of California, Davis, CA, USA
| |
Collapse
|
12
|
Kirienko AN, Porozov YB, Malkov NV, Akhtemova GA, Le Signor C, Thompson R, Saffray C, Dalmais M, Bendahmane A, Tikhonovich IA, Dolgikh EA. Role of a receptor-like kinase K1 in pea Rhizobium symbiosis development. PLANTA 2018; 248:1101-1120. [PMID: 30043288 DOI: 10.1007/s00425-018-2944-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/29/2018] [Indexed: 05/22/2023]
Abstract
MAIN CONCLUSION The LysM receptor-like kinase K1 is involved in regulation of pea-rhizobial symbiosis development. The ability of the crop legume Pisum sativum L. to perceive the Nod factor rhizobial signals may depend on several receptors that differ in ligand structure specificity. Identification of pea mutants defective in two types of LysM receptor-like kinases (LysM-RLKs), SYM10 and SYM37, featuring different phenotypic manifestations and impaired at various stages of symbiosis development, corresponds well to this assumption. There is evidence that one of the receptor proteins involved in symbiosis initiation, SYM10, has an inactive kinase domain. This implies the presence of an additional component in the receptor complex, together with SYM10, that remains unknown. Here, we describe a new LysM-RLK, K1, which may serve as an additional component of the receptor complex in pea. To verify the function of K1 in symbiosis, several P. sativum non-nodulating mutants in the k1 gene were identified using the TILLING approach. Phenotyping revealed the blocking of symbiosis development at an appropriately early stage, strongly suggesting the importance of LysM-RLK K1 for symbiosis initiation. Moreover, the analysis of pea mutants with weaker phenotypes provides evidence for the additional role of K1 in infection thread distribution in the cortex and rhizobia penetration. The interaction between K1 and SYM10 was detected using transient leaf expression in Nicotiana benthamiana and in the yeast two-hybrid system. Since the possibility of SYM10/SYM37 complex formation was also shown, we tested whether the SYM37 and K1 receptors are functionally interchangeable using a complementation test. The interaction between K1 and other receptors is discussed.
Collapse
Affiliation(s)
- Anna N Kirienko
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, St. Petersburg, 196608, Russia
| | - Yuri B Porozov
- ITMO University, 49 Kronverksky Av., St. Petersburg, 197101, Russia
- I.M. Sechenov First Moscow State Medical University, Trubetskaya st. 8-2, Moscow, 119991, Russia
| | - Nikita V Malkov
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, St. Petersburg, 196608, Russia
| | - Gulnara A Akhtemova
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, St. Petersburg, 196608, Russia
| | - Christine Le Signor
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Richard Thompson
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Christine Saffray
- IPS2, UMR9213/UMR1403, CNRS, INRA, UPSud, UPD, SPS, 91405, Orsay, France
| | - Marion Dalmais
- IPS2, UMR9213/UMR1403, CNRS, INRA, UPSud, UPD, SPS, 91405, Orsay, France
| | | | - Igor A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, St. Petersburg, 196608, Russia
| | - Elena A Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky chausse 3, Pushkin, St. Petersburg, 196608, Russia.
| |
Collapse
|
13
|
Extracellular DAMPs in Plants and Mammals: Immunity, Tissue Damage and Repair. Trends Immunol 2018; 39:937-950. [PMID: 30293747 DOI: 10.1016/j.it.2018.09.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 01/13/2023]
Abstract
Innate immune receptors, well known mediators of response to non-self-molecules and inflammation, also act as mediators of immunity triggered by 'damage-associated molecular patterns' (DAMPs). Pathogen-associated molecular patterns (PAMPs) cause inflammation in mammals and a rapid immune response in plants, while DAMPs trigger more complex responses, including immunity, tissue maintenance and repair. DAMPs, their receptors and downstream transduction mechanisms are often conserved within a kingdom or, due to convergent evolution, are similar across the kingdoms of life. Herein, we describe the dynamics and functionality of specific extracellular DAMP classes and their receptors in immunity, inflammation and repair of tissue damage in plants and mammals.
Collapse
|
14
|
Liu J, Liu B, Chen S, Gong BQ, Chen L, Zhou Q, Xiong F, Wang M, Feng D, Li JF, Wang HB, Wang J. A Tyrosine Phosphorylation Cycle Regulates Fungal Activation of a Plant Receptor Ser/Thr Kinase. Cell Host Microbe 2018; 23:241-253.e6. [DOI: 10.1016/j.chom.2017.12.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/22/2017] [Accepted: 12/12/2017] [Indexed: 11/24/2022]
|
15
|
Buendia L, Girardin A, Wang T, Cottret L, Lefebvre B. LysM Receptor-Like Kinase and LysM Receptor-Like Protein Families: An Update on Phylogeny and Functional Characterization. FRONTIERS IN PLANT SCIENCE 2018; 9:1531. [PMID: 30405668 PMCID: PMC6207691 DOI: 10.3389/fpls.2018.01531] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/28/2018] [Indexed: 05/18/2023]
Abstract
Members of plant specific families of receptor-like kinases (RLKs) and receptor-like proteins (RLPs), containing 3 extracellular LysMs have been shown to directly bind and/or to be involved in perception of lipo-chitooligosaccharides (LCO), chitooligosaccharides (CO), and peptidoglycan (PGN), three types of GlcNAc-containing molecules produced by microorganisms. These receptors are involved in microorganism perception by plants and can activate different plant responses leading either to symbiosis establishment or to defense responses against pathogens. LysM-RLK/Ps belong to multigenic families. Here, we provide a phylogeny of these families in eight plant species, including dicotyledons and monocotyledons, and we discuss known or putative biological roles of the members in each of the identified phylogenetic groups. We also report and discuss known biochemical properties of the LysM-RLK/Ps.
Collapse
|
16
|
Plekhanova E, Vishnyakova MA, Bulyntsev S, Chang PL, Carrasquilla-Garcia N, Negash K, Wettberg EV, Noujdina N, Cook DR, Samsonova MG, Nuzhdin SV. Genomic and phenotypic analysis of Vavilov's historic landraces reveals the impact of environment and genomic islands of agronomic traits. Sci Rep 2017; 7:4816. [PMID: 28684880 PMCID: PMC5500531 DOI: 10.1038/s41598-017-05087-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 05/24/2017] [Indexed: 12/30/2022] Open
Abstract
The Vavilov Institute of Plant Genetic Resources (VIR), in St. Petersburg, Russia, houses a unique genebank, with historical collections of landraces. When they were collected, the geographical distribution and genetic diversity of most crops closely reflected their historical patterns of cultivation established over the preceding millennia. We employed a combination of genomics, computational biology and phenotyping to characterize VIR's 147 chickpea accessions from Turkey and Ethiopia, representing chickpea's center of origin and a major location of secondary diversity. Genotyping by sequencing identified 14,059 segregating polymorphisms and genome-wide association studies revealed 28 GWAS hits in potential candidate genes likely to affect traits of agricultural importance. The proportion of polymorphisms shared among accessions is a strong predictor of phenotypic resemblance, and of environmental similarity between historical sampling sites. We found that 20 out of 28 polymorphisms, associated with multiple traits, including days to maturity, plant phenology, and yield-related traits such as pod number, localized to chromosome 4. We hypothesize that selection and introgression via inadvertent hybridization between more and less advanced morphotypes might have resulted in agricultural improvement genes being aggregated to genomic 'agro islands', and in genotype-to-phenotype relationships resembling widespread pleiotropy.
Collapse
Affiliation(s)
- Elena Plekhanova
- Department of Applied Mathematics, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
| | - Margarita A Vishnyakova
- Federal Research Centre All-Russian N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - Sergey Bulyntsev
- Federal Research Centre All-Russian N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - Peter L Chang
- Department of Plant Pathology, University of California, Davis, CA, USA.,Program Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA
| | | | - Kassaye Negash
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Eric von Wettberg
- Department of Biological Sciences and International Center for Tropical Botany, Florida International University, Miami, FL, USA
| | - Nina Noujdina
- School of Architecture, University of Southern California, Los Angeles, CA, USA
| | - Douglas R Cook
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Maria G Samsonova
- Department of Applied Mathematics, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
| | - Sergey V Nuzhdin
- Department of Applied Mathematics, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia. .,Program Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Jayaraman D, Richards AL, Westphall MS, Coon JJ, Ané JM. Identification of the phosphorylation targets of symbiotic receptor-like kinases using a high-throughput multiplexed assay for kinase specificity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1196-1207. [PMID: 28267253 PMCID: PMC5461195 DOI: 10.1111/tpj.13529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 02/17/2017] [Accepted: 03/01/2017] [Indexed: 05/29/2023]
Abstract
Detecting the phosphorylation substrates of multiple kinases in a single experiment is a challenge, and new techniques are being developed to overcome this challenge. Here, we used a multiplexed assay for kinase specificity (MAKS) to identify the substrates directly and to map the phosphorylation site(s) of plant symbiotic receptor-like kinases. The symbiotic receptor-like kinases nodulation receptor-like kinase (NORK) and lysin motif domain-containing receptor-like kinase 3 (LYK3) are indispensable for the establishment of root nodule symbiosis. Although some interacting proteins have been identified for these symbiotic receptor-like kinases, very little is known about their phosphorylation substrates. Using this high-throughput approach, we identified several other potential phosphorylation targets for both these symbiotic receptor-like kinases. In particular, we also discovered the phosphorylation of LYK3 by NORK itself, which was also confirmed by pairwise kinase assays. Motif analysis of potential targets for these kinases revealed that the acidic motif xxxsDxxx was common to both of them. In summary, this high-throughput technique catalogs the potential phosphorylation substrates of multiple kinases in a single efficient experiment, the biological characterization of which should provide a better understanding of phosphorylation signaling cascade in symbiosis.
Collapse
Affiliation(s)
- Dhileepkumar Jayaraman
- Department of Agronomy, 1575 Linden Drive, University of Wisconsin–Madison, WI 53706, USA
| | - Alicia L. Richards
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin–Madison, 425 Henry Mall, WI 53706, USA
| | - Michael S. Westphall
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin–Madison, 425 Henry Mall, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, 420 Henry Mall, WI 53706, USA
| | - Joshua J. Coon
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin–Madison, 425 Henry Mall, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, 420 Henry Mall, WI 53706, USA
| | - Jean-Michel Ané
- Department of Agronomy, 1575 Linden Drive, University of Wisconsin–Madison, WI 53706, USA
- Department of Bacteriology, 1550 Linden Drive, University of Wisconsin–Madison, WI 53706, USA
| |
Collapse
|
18
|
Kosentka PZ, Zhang L, Simon YA, Satpathy B, Maradiaga R, Mitoubsi O, Shpak ED. Identification of critical functional residues of receptor-like kinase ERECTA. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1507-1518. [PMID: 28207053 PMCID: PMC5441908 DOI: 10.1093/jxb/erx022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In plants, extracellular signals are primarily sensed by plasma membrane-localized receptor-like kinases (RLKs). ERECTA is a leucine-rich repeat RLK that together with its paralogs ERECTA-like 1 (ERL1) and ERL2 regulates multiple aspects of plant development. ERECTA forms complexes with a range of co-receptors and senses secreted cysteine-rich small proteins from the EPF/EPFL family. Currently the mechanism of the cytoplasmic domain activation and transmission of the signal by ERECTA is unclear. To gain a better understanding we performed a structure-function analysis by introducing altered ERECTA genes into erecta and erecta erl1 erl2 mutants. These experiments indicated that ERECTA's ability to phosphorylate is functionally significant, and that while the cytoplasmic juxtamembrane domain is important for ERECTA function, the C-terminal tail is not. An analysis of multiple putative phosphorylation sites identified four amino acids in the activation segment of the kinase domain as functionally important. Homology of those residues to functionally significant amino acids in multiple other plant RLKs emphasizes similarities in RLK function. Specifically, our data predicts Thr812 as a primary site of phosphor-activation and potential inhibitory phosphorylation of Tyr815 and Tyr820. In addition, our experiments suggest that there are differences in the molecular mechanism of ERECTA function during regulation of stomata development and in elongation of above-ground organs.
Collapse
Affiliation(s)
- Pawel Z Kosentka
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Liang Zhang
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Yonas A Simon
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Binita Satpathy
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Richard Maradiaga
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Omar Mitoubsi
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Elena D Shpak
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
19
|
Suzuki M, Shibuya M, Shimada H, Motoyama N, Nakashima M, Takahashi S, Suto K, Yoshida I, Matsui S, Tsujimoto N, Ohnishi M, Ishibashi Y, Fujimoto Z, Desaki Y, Kaku H, Kito K, Shibuya N. Autophosphorylation of Specific Threonine and Tyrosine Residues in Arabidopsis CERK1 is Essential for the Activation of Chitin-Induced Immune Signaling. PLANT & CELL PHYSIOLOGY 2016; 57:2312-2322. [PMID: 27565204 DOI: 10.1093/pcp/pcw150] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/17/2016] [Indexed: 05/06/2023]
Abstract
Pattern recognition receptors on the plant cell surface mediate the recognition of microbe/damage-associated molecular patterns (MAMPs/DAMPs) and activate downstream immune signaling. Autophosphorylation of signaling receptor-like kinases is a critical event for the activation of downstream responses but the function of each phosphorylation site in the regulation of immune signaling is not well understood. In this study, 41 Ser/Thr/Tyr and 15 Ser/Thr residues were identified as in vitro and in vivo autophosphorylation sites of Arabidopsis CERK1, which is essential for chitin signaling. Comprehensive analysis of transgenic plants expressing mutated CERK1 genes for each phosphorylation site in the cerk1-2 background indicated that the phosphorylation of T479 in the activation segment and Y428 located upstream of the catalytic loop is important for the activation of chitin-triggered defense responses. Contribution of the phosphorylation of T573 to the chitin responses was also suggested. In vitro evaluation of kinase activities of mutated kinase domains indicated that the phosphorylation of T479 and T573 is directly involved in the regulation of kinase activity of CERK1 but the phosphorylation of Y428 regulates chitin signaling independently of the regulation of kinase activity. These results indicated that the phosphorylation of specific residues in the kinase domain contributes to the regulation of downstream signaling either through the regulation of kinase activity or the different mechanisms, e.g. regulation of protein-protein interactions.
Collapse
Affiliation(s)
- Maruya Suzuki
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
- These authors contributed equally to this work
| | - Masatoshi Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
- These authors contributed equally to this work
| | - Hikaru Shimada
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
- These authors contributed equally to this work
| | - Noriko Motoyama
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
- These authors contributed equally to this work
| | - Masato Nakashima
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Shohei Takahashi
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Kenkichi Suto
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Issei Yoshida
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Saki Matsui
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Natsumi Tsujimoto
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Mihoko Ohnishi
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Yuko Ishibashi
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Zui Fujimoto
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Yoshitake Desaki
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Hanae Kaku
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Keiji Kito
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Naoto Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571, Japan
| |
Collapse
|
20
|
Fliegmann J, Jauneau A, Pichereaux C, Rosenberg C, Gasciolli V, Timmers ACJ, Burlet-Schiltz O, Cullimore J, Bono JJ. LYR3, a high-affinity LCO-binding protein of Medicago truncatula, interacts with LYK3, a key symbiotic receptor. FEBS Lett 2016; 590:1477-87. [PMID: 27129432 DOI: 10.1002/1873-3468.12191] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 01/24/2023]
Abstract
LYR3, LYK3, and NFP are lysin motif-containing receptor-like kinases (LysM-RLKs) from Medicago truncatula, involved in perception of symbiotic lipo-chitooligosaccharide (LCO) signals. Here, we show that LYR3, a high-affinity LCO-binding protein, physically interacts with LYK3, a key player regulating symbiotic interactions. In vitro, LYR3 is phosphorylated by the active kinase domain of LYK3. Fluorescence lifetime imaging/Förster resonance energy transfer (FLIM/FRET) experiments in tobacco protoplasts show that the interaction between LYR3 and LYK3 at the plasma membrane is disrupted or inhibited by addition of LCOs. Moreover, LYR3 attenuates the cell death response, provoked by coexpression of NFP and LYK3 in tobacco leaves.
Collapse
Affiliation(s)
- Judith Fliegmann
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Alain Jauneau
- Plateforme Imagerie-Microscopie, Fédération de Recherche FR3450 - Agrobiosciences, Interactions et Biodiversité, CNRS, Université de Toulouse, UPS, Castanet-Tolosan, France
| | - Carole Pichereaux
- Fédération de Recherche FR3450 - Agrobiosciences, Interactions et Biodiversité, CNRS, Université de Toulouse, UPS, Castanet-Tolosan, France
| | | | | | | | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julie Cullimore
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | |
Collapse
|
21
|
Saha S, Paul A, Herring L, Dutta A, Bhattacharya A, Samaddar S, Goshe MB, DasGupta M. Gatekeeper Tyrosine Phosphorylation of SYMRK Is Essential for Synchronizing the Epidermal and Cortical Responses in Root Nodule Symbiosis. PLANT PHYSIOLOGY 2016; 171:71-81. [PMID: 26960732 PMCID: PMC4854696 DOI: 10.1104/pp.15.01962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/09/2016] [Indexed: 05/04/2023]
Abstract
Symbiosis receptor kinase (SYMRK) is indispensable for activation of root nodule symbiosis (RNS) at both epidermal and cortical levels and is functionally conserved in legumes. Previously, we reported SYMRK to be phosphorylated on "gatekeeper" Tyr both in vitro as well as in planta. Since gatekeeper phosphorylation was not necessary for activity, the significance remained elusive. Herein, we show that substituting gatekeeper with nonphosphorylatable residues like Phe or Ala significantly affected autophosphorylation on selected targets on activation segment/αEF and β3-αC loop of SYMRK. In addition, the same gatekeeper mutants failed to restore proper symbiotic features in a symrk null mutant where rhizobial invasion of the epidermis and nodule organogenesis was unaffected but rhizobia remain restricted to the epidermis in infection threads migrating parallel to the longitudinal axis of the root, resulting in extensive infection patches at the nodule apex. Thus, gatekeeper phosphorylation is critical for synchronizing epidermal/cortical responses in RNS.
Collapse
Affiliation(s)
- Sudip Saha
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India (S. Saha, A.P., A.D., A.B., S. Samaddar, M.D.); andDepartment of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695 (L.H., M.B.G.)
| | - Anindita Paul
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India (S. Saha, A.P., A.D., A.B., S. Samaddar, M.D.); andDepartment of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695 (L.H., M.B.G.)
| | - Laura Herring
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India (S. Saha, A.P., A.D., A.B., S. Samaddar, M.D.); andDepartment of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695 (L.H., M.B.G.)
| | - Ayan Dutta
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India (S. Saha, A.P., A.D., A.B., S. Samaddar, M.D.); andDepartment of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695 (L.H., M.B.G.)
| | - Avisek Bhattacharya
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India (S. Saha, A.P., A.D., A.B., S. Samaddar, M.D.); andDepartment of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695 (L.H., M.B.G.)
| | - Sandip Samaddar
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India (S. Saha, A.P., A.D., A.B., S. Samaddar, M.D.); andDepartment of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695 (L.H., M.B.G.)
| | - Michael B Goshe
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India (S. Saha, A.P., A.D., A.B., S. Samaddar, M.D.); andDepartment of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695 (L.H., M.B.G.)
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India (S. Saha, A.P., A.D., A.B., S. Samaddar, M.D.); andDepartment of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695 (L.H., M.B.G.)
| |
Collapse
|
22
|
Taylor I, Wang Y, Seitz K, Baer J, Bennewitz S, Mooney BP, Walker JC. Analysis of Phosphorylation of the Receptor-Like Protein Kinase HAESA during Arabidopsis Floral Abscission. PLoS One 2016; 11:e0147203. [PMID: 26784444 PMCID: PMC4718614 DOI: 10.1371/journal.pone.0147203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/30/2015] [Indexed: 11/29/2022] Open
Abstract
Receptor-like protein kinases (RLKs) are the largest family of plant transmembrane signaling proteins. Here we present functional analysis of HAESA, an RLK that regulates floral organ abscission in Arabidopsis. Through in vitro and in vivo analysis of HAE phosphorylation, we provide evidence that a conserved phosphorylation site on a region of the HAE protein kinase domain known as the activation segment positively regulates HAE activity. Additional analysis has identified another putative activation segment phosphorylation site common to multiple RLKs that potentially modulates HAE activity. Comparative analysis suggests that phosphorylation of this second activation segment residue is an RLK specific adaptation that may regulate protein kinase activity and substrate specificity. A growing number of RLKs have been shown to exhibit biologically relevant dual specificity toward serine/threonine and tyrosine residues, but the mechanisms underlying dual specificity of RLKs are not well understood. We show that a phospho-mimetic mutant of both HAE activation segment residues exhibits enhanced tyrosine auto-phosphorylation in vitro, indicating phosphorylation of this residue may contribute to dual specificity of HAE. These results add to an emerging framework for understanding the mechanisms and evolution of regulation of RLK activity and substrate specificity.
Collapse
Affiliation(s)
- Isaiah Taylor
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Ying Wang
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Kati Seitz
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - John Baer
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Stefan Bennewitz
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Brian P. Mooney
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
- Charles W. Gehrke Proteomics Center and Division of Biochemistry, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - John C. Walker
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
23
|
Shi Q, Febres VJ, Jones JB, Moore GA. A survey of FLS2 genes from multiple citrus species identifies candidates for enhancing disease resistance to Xanthomonas citri ssp. citri. HORTICULTURE RESEARCH 2016; 3:16022. [PMID: 27222722 PMCID: PMC4863249 DOI: 10.1038/hortres.2016.22] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/03/2016] [Accepted: 04/05/2016] [Indexed: 05/20/2023]
Abstract
Pathogen-associated molecular patterns (PAMPs)-triggered immunity (PTI) is an important component of plant innate immunity. In a previous study, we showed that the PAMP flg22 from Xanthomonas citri ssp. citri (Xflg22), the causal agent of citrus canker, induced PTI in citrus, which correlated with the observed levels of canker resistance. Here, we identified and sequenced two bacterial flagellin/flg22 receptors (FLS2-1 and FLS2-2) from 'Duncan' grapefruit (Citrus paradisi, CpFLS2-1 and CpFLS2-2) and 'Sun Chu Sha' mandarin (C. reticulata, CrFLS2-1 and CrFLS2-2). We were able to isolate only one FLS2 from 'Nagami' kumquat (Fortunella margarita, FmFLS2-1) and gene flanking sequences suggest a rearrangement event that resulted in the deletion of FLS2-2 from the genome. Phylogenetic analysis, gene structure and presence of critical amino acid domains all indicate we identified the true FLS2 genes in citrus. FLS2-2 was more transcriptionally responsive to Xflg22 than FLS2-1, with induced expression levels higher in canker-resistant citrus than in susceptible ones. Interestingly, 'Nagami' kumquat showed the highest FLS2-1 steady-state expression levels, although it was not induced by Xflg22. We selected FmFLS2-1, CrFLS2-2 and CpFLS2-2 to further evaluate their capacity to enhance bacterial resistance using Agrobacterium-mediated transient expression assays. Both FmFLS2-1 and CrFLS2-2, the two proteins from canker-resistant species, conferred stronger Xflg22 responses and reduced canker symptoms in leaves of the susceptible grapefruit genotype. These two citrus genes will be useful resources to enhance PTI and achieve resistance against canker and possibly other bacterial pathogens in susceptible citrus types.
Collapse
Affiliation(s)
- Qingchun Shi
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Vicente J Febres
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Jeffrey B Jones
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA
| | - Gloria A Moore
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
24
|
Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity. Biochem J 2015; 472:379-91. [PMID: 26472115 PMCID: PMC4661564 DOI: 10.1042/bj20150147] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 10/15/2015] [Indexed: 11/17/2022]
Abstract
Phytosulfokine is perceived by a leucine-rich repeat receptor-like kinase with auto- and trans-phosphorylation activity. Phosphosite mapping indicated that multisite serine/threonine autophosphorylation probably occurs within the activation loop of the kinase. Phosphoablative mutations differentially impair kinase activity in vitro and receptor function in planta. PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser696 and Ser698 in the JM (juxtamembrane) region and probably Ser886 and/or Ser893 in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser717 in the JM, and at Ser733, Thr752, Ser783, Ser864, Ser911, Ser958 and Thr998 in the kinase domain. The LC–ESI–MS/MS spectra provided support that up to three sites (Thr890, Ser893 and Thr894) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr890, Ser893, Thr894 and Thr899, differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response.
Collapse
|
25
|
Fliegmann J, Bono JJ. Lipo-chitooligosaccharidic nodulation factors and their perception by plant receptors. Glycoconj J 2015; 32:455-64. [PMID: 26233756 DOI: 10.1007/s10719-015-9609-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/15/2015] [Accepted: 07/01/2015] [Indexed: 02/03/2023]
Abstract
Lipo-chitooligosaccharides produced by nitrogen-fixing rhizobia are signaling molecules involved in the establishment of an important agronomical and ecological symbiosis with plants. These compounds, known as Nod factors, are biologically active on plant roots at very low concentrations indicating that they are perceived by specific receptors. This article summarizes the main strategies developed for the syntheses of bioactive Nod factors and their derivatives in order to better understand their mode of perception. Different Nod factor receptors and LCO-binding proteins identified by genetic or biochemical approaches are also presented, indicating perception mechanisms that seem to be more complicated than expected, probably involving multi-component receptor complexes.
Collapse
Affiliation(s)
- Judith Fliegmann
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, 31326, Castanet-Tolosan, France.,CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, 31326, Castanet-Tolosan, France
| | - Jean-Jacques Bono
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, 31326, Castanet-Tolosan, France. .,CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, 31326, Castanet-Tolosan, France.
| |
Collapse
|
26
|
Zakhrabekova S, Dockter C, Ahmann K, Braumann I, Gough SP, Wendt T, Lundqvist U, Mascher M, Stein N, Hansson M. Genetic linkage facilitates cloning of Ert-m regulating plant architecture in barley and identified a strong candidate of Ant1 involved in anthocyanin biosynthesis. PLANT MOLECULAR BIOLOGY 2015; 88:609-626. [PMID: 26228300 DOI: 10.1007/s11103-015-0350-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/22/2015] [Indexed: 06/04/2023]
Abstract
The erectoides-m anthocyanin-less 1 (ert-m ant1) double mutants are among the very few examples of induced double mutants in barley. From phenotypic observations of mutant plants it is known that the Ert-m gene product regulates plant architecture whereas the Ant1 gene product is involved in anthocyanin biosynthesis. We used a near-isogenic line of the cultivar Bowman, BW316 (ert-m.34), to create four F2-mapping populations by crosses to the barley cultivars Barke, Morex, Bowman and Quench. We phenotyped and genotyped 460 plants, allowing the ert-m mutation to be mapped to an interval of 4.7 cM on the short arm of barley chromosome 7H. Bioinformatic searches identified 21 candidate gene models in the mapped region. One gene was orthologous to a regulator of Arabidopsis thaliana plant architecture, ERECTA, encoding a leucine-rich repeat receptor-like kinase. Sequencing of HvERECTA in barley ert-m mutant accessions identified severe DNA changes in 15 mutants, including full gene deletions in ert-m.40 and ert-m.64. Both deletions, additionally causing anthocyanin deficiency, were found to stretch over a large region including two putative candidate genes for the anthocyanin biosynthesis locus Ant1. Analyses of ert-m and ant1 single- and double-deletion mutants suggest Ant1 as a closely linked gene encoding a R2R3 myeloblastosis transcription factor.
Collapse
|
27
|
Kessler SA, Lindner H, Jones DS, Grossniklaus U. Functional analysis of related CrRLK1L receptor-like kinases in pollen tube reception. EMBO Rep 2014; 16:107-15. [PMID: 25490905 DOI: 10.15252/embr.201438801] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The Catharanthus roseus Receptor-Like Kinase 1-like (CrRLK1L) family of 17 receptor-like kinases (RLKs) has been implicated in a variety of signaling pathways in Arabidopsis, ranging from pollen tube (PT) reception and tip growth to hormonal responses. The extracellular domains of these RLKs have malectin-like domains predicted to bind carbohydrate moieties. Domain swap analysis showed that the extracellular domains of the three members analyzed (FER, ANX1, HERK1) are not interchangeable, suggesting distinct upstream components, such as ligands and/or co-factors. In contrast, their intercellular domains are functionally equivalent for PT reception, indicating that they have common downstream targets in their signaling pathways. The kinase domain is necessary for FER function, but kinase activity itself is not, indicating that other kinases may be involved in signal transduction during PT reception.
Collapse
Affiliation(s)
- Sharon A Kessler
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Heike Lindner
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Daniel S Jones
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Ueli Grossniklaus
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| |
Collapse
|
28
|
Moling S, Pietraszewska-Bogiel A, Postma M, Fedorova E, Hink MA, Limpens E, Gadella TWJ, Bisseling T. Nod factor receptors form heteromeric complexes and are essential for intracellular infection in medicago nodules. THE PLANT CELL 2014; 26:4188-99. [PMID: 25351493 PMCID: PMC4247574 DOI: 10.1105/tpc.114.129502] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/08/2014] [Accepted: 10/09/2014] [Indexed: 05/18/2023]
Abstract
Rhizobial Nod factors are the key signaling molecules in the legume-rhizobium nodule symbiosis. In this study, the role of the Nod factor receptors NOD FACTOR PERCEPTION (NFP) and LYSIN MOTIF RECEPTOR-LIKE KINASE3 (LYK3) in establishing the symbiotic interface in root nodules was investigated. It was found that inside Medicago truncatula nodules, NFP and LYK3 localize at the cell periphery in a narrow zone of about two cell layers at the nodule apex. This restricted accumulation is narrower than the region of promoter activity/mRNA accumulation and might serve to prevent the induction of defense-like responses and/or to restrict the rhizobium release to precise cell layers. The distal cell layer where the receptors accumulate at the cell periphery is part of the meristem, and the proximal layer is part of the infection zone. In these layers, the receptors can most likely perceive the bacterial Nod factors to regulate the formation of symbiotic interface. Furthermore, our Förster resonance energy transfer-fluorescence lifetime imaging microscopy analysis indicates that NFP and LYK3 form heteromeric complexes at the cell periphery in M. truncatula nodules.
Collapse
MESH Headings
- Fluorescence Resonance Energy Transfer
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Host-Pathogen Interactions
- Lipopolysaccharides/metabolism
- Medicago truncatula/genetics
- Medicago truncatula/metabolism
- Medicago truncatula/microbiology
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Mutation
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Protein Kinases/chemistry
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Protein Multimerization
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Root Nodules, Plant/genetics
- Root Nodules, Plant/metabolism
- Root Nodules, Plant/microbiology
- Sinorhizobium meliloti/physiology
- Symbiosis
Collapse
Affiliation(s)
- Sjef Moling
- Department of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Anna Pietraszewska-Bogiel
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Marten Postma
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Elena Fedorova
- Department of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Mark A Hink
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Erik Limpens
- Department of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Theodorus W J Gadella
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Ton Bisseling
- Department of Molecular Biology, Wageningen University, 6708 PB Wageningen, The Netherlands College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
29
|
Paul A, Samaddar S, Bhattacharya A, Banerjee A, Das A, Chakrabarti S, DasGupta M. Gatekeeper tyrosine phosphorylation is autoinhibitory for Symbiosis Receptor Kinase. FEBS Lett 2014; 588:2881-9. [PMID: 24996184 DOI: 10.1016/j.febslet.2014.06.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/19/2014] [Accepted: 06/23/2014] [Indexed: 11/27/2022]
Abstract
Plant receptor-like kinases (RLKs) are distinguished by having a tyrosine in the 'gatekeeper' position. Previously we reported Symbiosis Receptor Kinase from Arachis hypogaea (AhSYMRK) to autophosphorylate on the gatekeeper tyrosine (Y670), though this phosphorylation was not necessary for the kinase activity. Here we report that recombinant catalytic domain of AhSYMRK with a phosphomimic substitution in the gatekeeper position (Y670E) is catalytically almost inactive and is conformationally quite distinct from the corresponding native enzyme. Additionally, we show that gatekeeper-phosphorylated AhSYMRK polypeptides are inactive and depletion of this inactive form leads to activation of intramolecular autophosphorylation of AhSYMRK. Together, our results suggest gatekeeper tyrosine autophosphorylation to be autoinhibitory for AhSYMRK.
Collapse
Affiliation(s)
- Anindita Paul
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Sandip Samaddar
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | | | - Anindyajit Banerjee
- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Abhishek Das
- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Saikat Chakrabarti
- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | | |
Collapse
|
30
|
Structural dynamic analysis of apo and ATP-bound IRAK4 kinase. Sci Rep 2014; 4:5748. [PMID: 25034608 PMCID: PMC4103033 DOI: 10.1038/srep05748] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 07/02/2014] [Indexed: 12/15/2022] Open
Abstract
Interleukin-1 receptor-associated kinases (IRAKs) are Ser/Thr protein kinases that play an important role as signaling mediators in the signal transduction facilitated by the Toll-like receptor (TLR) and interleukin-1 receptor families. Among IRAK family members, IRAK4 is one of the drug targets for diseases related to the TLR and IL-1R signaling pathways. Experimental evidence suggests that the IRAK4 kinase domain is phosphorylated in its activation loop at T342, T345, and S346 in the fully activated state. However, the molecular interactions of subdomains within the active and inactive IRAK4 kinase domain are poorly understood. Hence, we employed a long-range molecular dynamics (MD) simulation to compare apo IRAK4 kinase domains (phosphorylated and unphosphorylated) and ATP-bound phosphorylated IRAK4 kinase domains. The MD results strongly suggested that lobe uncoupling occurs in apo unphosphorylated IRAK4 kinase via the disruption of the R334/T345 and R310/T345 interaction. In addition, apo unphosphorylated trajectory result in high mobility, particularly in the N lobe, activation segment, helix αG, and its adjoining loops. The Asp-Phe-Gly (DFG) and His-Arg-Asp (HRD) conserved kinase motif analysis showed the importance of these motifs in IRAK4 kinase activation. This study provides important information on the structural dynamics of IRAK4 kinase, which will aid in inhibitor development.
Collapse
|
31
|
Bojar D, Martinez J, Santiago J, Rybin V, Bayliss R, Hothorn M. Crystal structures of the phosphorylated BRI1 kinase domain and implications for brassinosteroid signal initiation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:31-43. [PMID: 24461462 PMCID: PMC4260089 DOI: 10.1111/tpj.12445] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/14/2014] [Accepted: 01/16/2014] [Indexed: 05/18/2023]
Abstract
Brassinosteroids, which control plant growth and development, are sensed by the membrane receptor kinase BRASSINOSTEROID INSENSITIVE 1 (BRI1). Brassinosteroid binding to the BRI1 leucine-rich repeat (LRR) domain induces heteromerisation with a SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK)-family co-receptor. This process allows the cytoplasmic kinase domains of BRI1 and SERK to interact, trans-phosphorylate and activate each other. Here we report crystal structures of the BRI1 kinase domain in its activated form and in complex with nucleotides. BRI1 has structural features reminiscent of both serine/threonine and tyrosine kinases, providing insight into the evolution of dual-specificity kinases in plants. Phosphorylation of Thr1039, Ser1042 and Ser1044 causes formation of a catalytically competent activation loop. Mapping previously identified serine/threonine and tyrosine phosphorylation sites onto the structure, we analyse their contribution to brassinosteroid signaling. The location of known genetic missense alleles provide detailed insight into the BRI1 kinase mechanism, while our analyses are inconsistent with a previously reported guanylate cyclase activity. We identify a protein interaction surface on the C-terminal lobe of the kinase and demonstrate that the isolated BRI1, SERK2 and SERK3 cytoplasmic segments form homodimers in solution and have a weak tendency to heteromerise. We propose a model in which heterodimerisation of the BRI1 and SERK ectodomains brings their cytoplasmic kinase domains in a catalytically competent arrangement, an interaction that can be modulated by the BRI1 inhibitor protein BKI1.
Collapse
Affiliation(s)
- Daniel Bojar
- Structural Plant Biology Lab, Friedrich Miescher Laboratory of the Max Planck SocietySpemannstrasse 39, 72076, Tuebingen, Germany
| | - Jacobo Martinez
- Structural Plant Biology Lab, Friedrich Miescher Laboratory of the Max Planck SocietySpemannstrasse 39, 72076, Tuebingen, Germany
| | - Julia Santiago
- Structural Plant Biology Lab, Friedrich Miescher Laboratory of the Max Planck SocietySpemannstrasse 39, 72076, Tuebingen, Germany
| | - Vladimir Rybin
- Protein Expression and Purification Core Facility, European Molecular Biology LaboratoryMeyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Richard Bayliss
- Department of Biochemistry, University of LeicesterLancaster Road, Leicester, LE1 9HN, UK
| | - Michael Hothorn
- Structural Plant Biology Lab, Friedrich Miescher Laboratory of the Max Planck SocietySpemannstrasse 39, 72076, Tuebingen, Germany
- *For correspondence (e-mail )
| |
Collapse
|
32
|
Huard-Chauveau C, Perchepied L, Debieu M, Rivas S, Kroj T, Kars I, Bergelson J, Roux F, Roby D. An atypical kinase under balancing selection confers broad-spectrum disease resistance in Arabidopsis. PLoS Genet 2013; 9:e1003766. [PMID: 24068949 PMCID: PMC3772041 DOI: 10.1371/journal.pgen.1003766] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/17/2013] [Indexed: 11/18/2022] Open
Abstract
The failure of gene-for-gene resistance traits to provide durable and broad-spectrum resistance in an agricultural context has led to the search for genes underlying quantitative resistance in plants. Such genes have been identified in only a few cases, all for fungal or nematode resistance, and encode diverse molecular functions. However, an understanding of the molecular mechanisms of quantitative resistance variation to other enemies and the associated evolutionary forces shaping this variation remain largely unknown. We report the identification, map-based cloning and functional validation of QRX3 (RKS1, Resistance related KinaSe 1), conferring broad-spectrum resistance to Xanthomonas campestris (Xc), a devastating worldwide bacterial vascular pathogen of crucifers. RKS1 encodes an atypical kinase that mediates a quantitative resistance mechanism in plants by restricting bacterial spread from the infection site. Nested Genome-Wide Association mapping revealed a major locus corresponding to an allelic series at RKS1 at the species level. An association between variation in resistance and RKS1 transcription was found using various transgenic lines as well as in natural accessions, suggesting that regulation of RKS1 expression is a major component of quantitative resistance to Xc. The co-existence of long lived RKS1 haplotypes in A. thaliana is shared with a variety of genes involved in pathogen recognition, suggesting common selective pressures. The identification of RKS1 constitutes a starting point for deciphering the mechanisms underlying broad spectrum quantitative disease resistance that is effective against a devastating and vascular crop pathogen. Because putative RKS1 orthologous have been found in other Brassica species, RKS1 provides an exciting opportunity for plant breeders to improve resistance to black rot in crops. During the evolution of plant-pathogen interactions, plants have evolved the capability to defend themselves from pathogen infection by different overlapping mechanisms. Disease resistance is constituted by an elaborate, multilayered system of defense. Among these responses, quantitative resistance is a prevalent form of resistance in crops and natural plant populations, for which the genetic and molecular bases remain largely unknown. Thus, identification of the genes underlying quantitative resistance constitutes a major challenge in plant breeding and evolutionary biology, and might have enormous practical implications for human health by increasing crop yield and quality. Our work contributes to understanding the molecular bases of quantitative resistance to the vascular pathogen Xanthomonas campestris (Xc), which is responsible for black rot, an important disease of crucifers worldwide. By multiple approaches, we demonstrate that RKS1 is a quantitative resistance gene in Arabidopsis thaliana conferring broad-spectrum resistance to Xc and that this resistance mechanism in plants is associated with regulation of RKS1 expression. We also provide evidence that RKS1 allelic variation is a major component of quantitative resistance to Xc at the species level. Finally, the long-lived polymorphism associated with RKS1 suggests that evolutionary stable broad-spectrum resistance to Xc may be achieved in natural populations of A. thaliana.
Collapse
Affiliation(s)
- Carine Huard-Chauveau
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Laure Perchepied
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Marilyne Debieu
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université des Sciences et Technologies de Lille, Lille, Villeneuve d'Ascq, France
| | - Susana Rivas
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Thomas Kroj
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Ilona Kars
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Fabrice Roux
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université des Sciences et Technologies de Lille, Lille, Villeneuve d'Ascq, France
| | - Dominique Roby
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
- * E-mail:
| |
Collapse
|
33
|
Vaid N, Macovei A, Tuteja N. Knights in action: lectin receptor-like kinases in plant development and stress responses. MOLECULAR PLANT 2013; 6:1405-18. [PMID: 23430046 DOI: 10.1093/mp/sst033] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Receptor-Like Kinase (RLK) is a vast protein family with over 600 genes in Arabidopsis and 1100 in rice. The Lectin RLK (LecRLK) family is believed to play crucial roles in saccharide signaling as well as stress perception. All the LecRLKs possess three domains: an N-terminal lectin domain, an intermediate transmembrane domain, and a C-terminal kinase domain. On the basis of lectin domain variability, LecRLKs have been subgrouped into three subclasses: L-, G-, and C-type LecRLKs. While the previous studies on LecRLKs were dedicated to classification, comparative structural analysis and expression analysis by promoter-based studies, most of the recent studies on LecRLKs have laid special emphasis on the potential of this gene family in regulating biotic/abiotic stress and developmental pathways in plants, thus making the prospects of studying the LecRLK-mediated regulatory mechanism exceptionally promising. In this review, we have described in detail the LecRLK gene family with respect to a historical, evolutionary, and structural point of view. Furthermore, we have laid emphasis on the LecRLKs roles in development, stress conditions, and hormonal response. We have also discussed the exciting research prospects offered by the current knowledge on the LecRLK gene family. The multitude of the LecRLK gene family members and their functional diversity mark these genes as both interesting and worthy candidates for further analysis, especially in the field of crop improvement.
Collapse
Affiliation(s)
- Neha Vaid
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
34
|
Samaddar S, Dutta A, Sinharoy S, Paul A, Bhattacharya A, Saha S, Chien KY, Goshe MB, DasGupta M. Autophosphorylation of gatekeeper tyrosine by symbiosis receptor kinase. FEBS Lett 2013; 587:2972-9. [PMID: 23962520 DOI: 10.1016/j.febslet.2013.07.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 07/04/2013] [Accepted: 07/27/2013] [Indexed: 11/29/2022]
Abstract
Plant receptor-like kinases (RLKs) share their evolutionary origin with animal interleukin-1 receptor-associated kinase (IRAK)/Pelle family of soluble kinases and are distinguished by having tyrosine as 'gatekeeper'. This position is adjacent to the hinge region and is hidden in a hydrophobic pocket of the catalytic cleft of protein kinases and is therefore least probable to be a target for any modification. This communication illustrates the accessibility of the gatekeeper site (Y670) towards both autophosphorylation and dephosphorylation in the recombinant cytoplasmic domain of symbiosis receptor kinase from Arachis hypogaea (AhSYMRK). Autophosphorylation on gatekeeper tyrosine was detected prior to extraction but never under in vitro conditions. We hypothesize gatekeeper phosphorylation to be associated with synthesis/maturation of AhSYMRK and this phenomenon may be prevalent among RLKs.
Collapse
Affiliation(s)
- Sandip Samaddar
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pietraszewska-Bogiel A, Lefebvre B, Koini MA, Klaus-Heisen D, Takken FLW, Geurts R, Cullimore JV, Gadella TW. Interaction of Medicago truncatula lysin motif receptor-like kinases, NFP and LYK3, produced in Nicotiana benthamiana induces defence-like responses. PLoS One 2013; 8:e65055. [PMID: 23750228 PMCID: PMC3672211 DOI: 10.1371/journal.pone.0065055] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/20/2013] [Indexed: 11/19/2022] Open
Abstract
Receptor(-like) kinases with Lysin Motif (LysM) domains in their extracellular region play crucial roles during plant interactions with microorganisms; e.g. Arabidopsis thaliana CERK1 activates innate immunity upon perception of fungal chitin/chitooligosaccharides, whereas Medicago truncatula NFP and LYK3 mediate signalling upon perception of bacterial lipo-chitooligosaccharides, termed Nod factors, during the establishment of mutualism with nitrogen-fixing rhizobia. However, little is still known about the exact activation and signalling mechanisms of MtNFP and MtLYK3. We aimed at investigating putative molecular interactions of MtNFP and MtLYK3 produced in Nicotiana benthamiana. Surprisingly, heterologous co-production of these proteins resulted in an induction of defence-like responses, which included defence-related gene expression, accumulation of phenolic compounds, and cell death. Similar defence-like responses were observed upon production of AtCERK1 in N. benthamiana leaves. Production of either MtNFP or MtLYK3 alone or their co-production with other unrelated receptor(-like) kinases did not induce cell death in N. benthamiana, indicating that a functional interaction between these LysM receptor-like kinases is required for triggering this response. Importantly, structure-function studies revealed that the MtNFP intracellular region, specific features of the MtLYK3 intracellular region (including several putative phosphorylation sites), and MtLYK3 and AtCERK1 kinase activity were indispensable for cell death induction, thereby mimicking the structural requirements of nodulation or chitin-induced signalling. The observed similarity of N. benthamiana response to MtNFP and MtLYK3 co-production and AtCERK1 production suggests the existence of parallels between Nod factor-induced and chitin-induced signalling mediated by the respective LysM receptor(-like) kinases. Notably, the conserved structural requirements for MtNFP and MtLYK3 biological activity in M. truncatula (nodulation) and in N. benthamiana (cell death induction) indicates the relevance of the latter system for studies on these, and potentially other symbiotic LysM receptor-like kinases.
Collapse
Affiliation(s)
- Anna Pietraszewska-Bogiel
- Section of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Benoit Lefebvre
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326 Castanet-Tolosan, France
| | - Maria A. Koini
- Section of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Dörte Klaus-Heisen
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326 Castanet-Tolosan, France
| | - Frank L. W. Takken
- Section of Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - René Geurts
- Department of Plant Science, Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands
| | - Julie V. Cullimore
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326 Castanet-Tolosan, France
| | - Theodorus W.J. Gadella
- Section of Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Robatzek S, Wirthmueller L. Mapping FLS2 function to structure: LRRs, kinase and its working bits. PROTOPLASMA 2013; 250:671-81. [PMID: 23053766 DOI: 10.1007/s00709-012-0459-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 09/21/2012] [Indexed: 05/26/2023]
Abstract
The plasma membrane-localised FLAGELLIN SENSING 2 (FLS2) receptor is an important component of plant immunity against potentially pathogenic bacteria, acting to recognise the conserved flg22 peptide of flagellin. FLS2 shares the common structure of transmembrane receptor kinases with a receptor-like ectodomain composed of leucine-rich repeats (LRR) and an active intracellular kinase domain. Upon ligand binding, FLS2 dimerises with the regulatory LRR-receptor kinase BRI1-associated kinase 1, which in turn triggers downstream signalling cascades. Although lacking crystal structure data, recent advances have been made in our understanding of flg22 recognition based on structural and functional analyses of FLS2. These studies have revealed critical regions/residues of FLS2 and post-translational modifications that regulate the abundance and activity of this receptor. In this review, we present the current knowledge on the structural mechanism of the FLS2-flg22 interaction and subsequent receptor-mediated signalling.
Collapse
Affiliation(s)
- Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| | | |
Collapse
|
37
|
Rey T, Nars A, Bonhomme M, Bottin A, Huguet S, Balzergue S, Jardinaud MF, Bono JJ, Cullimore J, Dumas B, Gough C, Jacquet C. NFP, a LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens. THE NEW PHYTOLOGIST 2013; 198:875-886. [PMID: 23432463 DOI: 10.1111/nph.12198] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/17/2013] [Indexed: 05/03/2023]
Abstract
Plant LysM proteins control the perception of microbial-derived N-acetylglucosamine compounds for the establishment of symbiosis or activation of plant immunity. This raises questions about how plants, and notably legumes, can differentiate friends and foes using similar molecular actors and whether any receptors can intervene in both symbiosis and resistance. To study this question, nfp and lyk3 LysM-receptor like kinase mutants of Medicago truncatula that are affected in the early steps of nodulation, were analysed following inoculation with Aphanomyces euteiches, a root oomycete. The role of NFP in this interaction was further analysed by overexpression of NFP and by transcriptome analyses. nfp, but not lyk3, mutants were significantly more susceptible than wildtype plants to A. euteiches, whereas NFP overexpression increased resistance. Transcriptome analyses on A. euteiches inoculation showed that mutation in the NFP gene led to significant changes in the expression of c. 500 genes, notably involved in cell dynamic processes previously associated with resistance to pathogen penetration. nfp mutants also showed an increased susceptibility to the fungus Colletotrichum trifolii. These results demonstrate that NFP intervenes in M. truncatula immunity, suggesting an unsuspected role for NFP in the perception of pathogenic signals.
Collapse
Affiliation(s)
- Thomas Rey
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Amaury Nars
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Maxime Bonhomme
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Arnaud Bottin
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Stéphanie Huguet
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165, Université d'Evry Val d'Essonne, ERL CNRS 8196, CP 5708, F-91057, Evry Cedex, France
| | - Sandrine Balzergue
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165, Université d'Evry Val d'Essonne, ERL CNRS 8196, CP 5708, F-91057, Evry Cedex, France
| | - Marie-Françoise Jardinaud
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
| | - Jean-Jacques Bono
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Julie Cullimore
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Bernard Dumas
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Clare Gough
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Christophe Jacquet
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| |
Collapse
|
38
|
Reynoso MA, Blanco FA, Zanetti ME. Insights into post-transcriptional regulation during legume-rhizobia symbiosis. PLANT SIGNALING & BEHAVIOR 2013; 8:e23102. [PMID: 23221780 PMCID: PMC3657005 DOI: 10.4161/psb.23102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
During the past ten years, changes in the transcriptome have been assessed at different stages of the legume-rhizobia association by the use of DNA microarrays and, more recently, by RNA sequencing technologies. These studies allowed the identification of hundred or thousand of genes whose steady-state mRNA levels increase or decrease upon bacterial infection or in nodules as compared with uninfected roots. However, transcriptome based-approaches do not distinguish between mRNAs that are being actively translated, stored as messenger ribonucleoproteins (mRNPs) or targeted for degradation. Despite that the increase in steady-state levels of an mRNA does not necessarily correlate with an increase in abundance or activity of the encoded protein, this information has been commonly used to select genes that are candidates to play a role during nodule organogenesis or bacterial infection. Such criterion does not take into account the post-transcriptional mechanisms that contribute to the regulation of gene expression. One of such mechanisms, which has significant impact on gene expression, is the selective recruitment of mRNAs to the translational machinery. Here, we review the post-transcriptional mechanisms that contribute to the regulation of gene expression in the context of the ecological and agronomical important symbiotic interaction established between roots of legumes and the nitrogen fixing bacteria collectively known as rhizobia. In addition, we discuss how the development of new technologies that allow the assessment of these regulatory layers would help to understand the genetic network governing legume rhizobia symbiosis.
Collapse
|
39
|
Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proc Natl Acad Sci U S A 2012; 109:13859-64. [PMID: 22859506 DOI: 10.1073/pnas.1205171109] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lipochitin oligosaccharides called Nod factors function as primary rhizobial signal molecules triggering legumes to develop new plant organs: root nodules that host the bacteria as nitrogen-fixing bacteroids. Here, we show that the Lotus japonicus Nod factor receptor 5 (NFR5) and Nod factor receptor 1 (NFR1) bind Nod factor directly at high-affinity binding sites. Both receptor proteins were posttranslationally processed when expressed as fusion proteins and extracted from purified membrane fractions of Nicotiana benthamiana or Arabidopsis thaliana. The N-terminal signal peptides were cleaved, and NFR1 protein retained its in vitro kinase activity. Processing of NFR5 protein was characterized by determining the N-glycosylation patterns of the ectodomain. Two different glycan structures with identical composition, Man(3)XylFucGlcNAc(4), were identified by mass spectrometry and located at amino acid positions N68 and N198. Receptor-ligand interaction was measured by using ligands that were labeled or immobilized by application of chemoselective chemistry at the anomeric center. High-affinity ligand binding was demonstrated with both solid-phase and free solution techniques. The K(d) values obtained for Nod factor binding were in the nanomolar range and comparable to the concentration range sufficient for biological activity. Structure-dependent ligand specificity was shown by using chitin oligosaccharides. Taken together, our results suggest that ligand recognition through direct ligand binding is a key step in the receptor-mediated activation mechanism leading to root nodule development in legumes.
Collapse
|
40
|
Lefebvre B, Klaus-Heisen D, Pietraszewska-Bogiel A, Hervé C, Camut S, Auriac MC, Gasciolli V, Nurisso A, Gadella TWJ, Cullimore J. Role of N-glycosylation sites and CXC motifs in trafficking of medicago truncatula Nod factor perception protein to plasma membrane. J Biol Chem 2012; 287:10812-23. [PMID: 22334694 DOI: 10.1074/jbc.m111.281634] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The lysin motif receptor-like kinase, NFP (Nod factor perception), is a key protein in the legume Medicago truncatula for the perception of lipochitooligosaccharidic Nod factors, which are secreted bacterial signals essential for establishing the nitrogen-fixing legume-rhizobia symbiosis. Predicted structural and genetic analyses strongly suggest that NFP is at least part of a Nod factor receptor, but few data are available about this protein. Characterization of a variant encoded by the mutant allele nfp-2 revealed the sensitivity of this protein to the endoplasmic reticulum quality control mechanisms, affecting its trafficking to the plasma membrane. Further analysis revealed that the extensive N-glycosylation of the protein is not essential for biological activity. In the NFP extracellular region, two CXC motifs and two other Cys residues were found to be involved in disulfide bridges, and these are necessary for correct folding and localization of the protein. Analysis of the intracellular region revealed its importance for biological activity but suggests that it does not rely on kinase activity. This work shows that NFP trafficking to the plasma membrane is highly sensitive to regulation in the endoplasmic reticulum and has identified structural features of the protein, particularly disulfide bridges involving CXC motifs in the extracellular region that are required for its biological function.
Collapse
Affiliation(s)
- Benoit Lefebvre
- INRA, Laboratoire des Interactions Plantes-Microorganismes, UMR441, F-31326 Castanet-Tolosan, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Antolín-Llovera M, Ried MK, Binder A, Parniske M. Receptor kinase signaling pathways in plant-microbe interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:451-73. [PMID: 22920561 DOI: 10.1146/annurev-phyto-081211-173002] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant receptor-like kinases (RLKs) function in diverse signaling pathways, including the responses to microbial signals in symbiosis and defense. This versatility is achieved with a common overall structure: an extracytoplasmic domain (ectodomain) and an intracellular protein kinase domain involved in downstream signal transduction. Various surfaces of the leucine-rich repeat (LRR) ectodomain superstructure are utilized for interaction with the cognate ligand in both plant and animal receptors. RLKs with lysin-motif (LysM) ectodomains confer recognitional specificity toward N-acetylglucosamine-containing signaling molecules, such as chitin, peptidoglycan (PGN), and rhizobial nodulation factor (NF), that induce immune or symbiotic responses. Signaling downstream of RLKs does not follow a single pattern; instead, the detailed analysis of brassinosteroid (BR) signaling, innate immunity, and symbiosis revealed at least three largely nonoverlapping pathways. In this review, we focus on RLKs involved in plant-microbe interactions and contrast the signaling pathways leading to symbiosis and defense.
Collapse
|
42
|
Bensmihen S, de Billy F, Gough C. Contribution of NFP LysM domains to the recognition of Nod factors during the Medicago truncatula/Sinorhizobium meliloti symbiosis. PLoS One 2011; 6:e26114. [PMID: 22087221 PMCID: PMC3210742 DOI: 10.1371/journal.pone.0026114] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 09/19/2011] [Indexed: 12/24/2022] Open
Abstract
The root nodule nitrogen fixing symbiosis between legume plants and soil bacteria called rhizobia is of great agronomical and ecological interest since it provides the plant with fixed atmospheric nitrogen. The establishment of this symbiosis is mediated by the recognition by the host plant of lipo-chitooligosaccharides called Nod Factors (NFs), produced by the rhizobia. This recognition is highly specific, as precise NF structures are required depending on the host plant. Here, we study the importance of different LysM domains of a LysM-Receptor Like Kinase (LysM-RLK) from Medicago truncatula called Nod factor perception (NFP) in the recognition of different substitutions of NFs produced by its symbiont Sinorhizobium meliloti. These substitutions are a sulphate group at the reducing end, which is essential for host specificity, and a specific acyl chain at the non-reducing end, that is critical for the infection process. The NFP extracellular domain (ECD) contains 3 LysM domains that are predicted to bind NFs. By swapping the whole ECD or individual LysM domains of NFP for those of its orthologous gene from pea, SYM10 (a legume plant that interacts with another strain of rhizobium producing NFs with different substitutions), we showed that NFP is not directly responsible for specific recognition of the sulphate substitution of S. meliloti NFs, but probably interacts with the acyl substitution. Moreover, we have demonstrated the importance of the NFP LysM2 domain for rhizobial infection and we have pinpointed the importance of a single leucine residue of LysM2 in that step of the symbiosis. Together, our data put into new perspective the recognition of NFs in the different steps of symbiosis in M. truncatula, emphasising the probable existence of a missing component for early NF recognition and reinforcing the important role of NFP for NF recognition during rhizobial infection.
Collapse
Affiliation(s)
- Sandra Bensmihen
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, Castanet-Tolosan, France.
| | | | | |
Collapse
|
43
|
Popp C, Ott T. Regulation of signal transduction and bacterial infection during root nodule symbiosis. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:458-67. [PMID: 21489860 DOI: 10.1016/j.pbi.2011.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/15/2011] [Accepted: 03/18/2011] [Indexed: 05/08/2023]
Abstract
Among plant-microbe interactions, root nodule symbiosis is one of the most important beneficial interactions providing legume plants with nitrogenous compounds. Over the past years a number of genes required for root nodule symbiosis has been identified but most recently great advances have been made to dissect signalling pathways and molecular interactions triggered by a set of receptor-like kinases. Genetic and biochemical approaches have not only provided evidence for the cross talk between bacterial infection of the host plant and organogenesis of a root nodule but also gained insights into dynamic regulation processes underlying successful infection events. Here, we summarise recent progress in the understanding of molecular mechanisms that regulate and trigger cellular signalling cascades during this mutualistic interaction.
Collapse
Affiliation(s)
- Claudia Popp
- University of Munich, Genetics, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | | |
Collapse
|
44
|
Gough C, Cullimore J. Lipo-chitooligosaccharide signaling in endosymbiotic plant-microbe interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:867-78. [PMID: 21469937 DOI: 10.1094/mpmi-01-11-0019] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The arbuscular mycorrhizal (AM) and the rhizobia-legume (RL) root endosymbioses are established as a result of signal exchange in which there is mutual recognition of diffusible signals produced by plant and microbial partners. It was discovered 20 years ago that the key symbiotic signals produced by rhizobial bacteria are lipo-chitooligosaccharides (LCO), called Nod factors. These LCO are perceived via lysin-motif (LysM) receptors and activate a signaling pathway called the common symbiotic pathway (CSP), which controls both the RL and the AM symbioses. Recent work has established that an AM fungus, Glomus intraradices, also produces LCO that activate the CSP, leading to induction of gene expression and root branching in Medicago truncatula. These Myc-LCO also stimulate mycorrhization in diverse plants. In addition, work on the nonlegume Parasponia andersonii has shown that a LysM receptor is required for both successful mycorrhization and nodulation. Together these studies show that structurally related signals and the LysM receptor family are key components of both nodulation and mycorrhization. LysM receptors are also involved in the perception of chitooligosaccharides (CO), which are derived from fungal cell walls and elicit defense responses and resistance to pathogens in diverse plants. The discovery of Myc-LCO and a LysM receptor required for the AM symbiosis, therefore, not only raises questions of how legume plants discriminate fungal and bacterial endosymbionts but also, more generally, of how plants discriminate endosymbionts from pathogenic microorganisms using structurally related LCO and CO signals and of how these perception mechanisms have evolved.
Collapse
Affiliation(s)
- Clare Gough
- Laboratory of Plant-Microbe Interactions, UMR CNRS-INRA 2594-441, Castanet-Tolosan Cedex, France.
| | | |
Collapse
|
45
|
Haney CH, Riely BK, Tricoli DM, Cook DR, Ehrhardt DW, Long SR. Symbiotic rhizobia bacteria trigger a change in localization and dynamics of the Medicago truncatula receptor kinase LYK3. THE PLANT CELL 2011; 23:2774-87. [PMID: 21742993 PMCID: PMC3226205 DOI: 10.1105/tpc.111.086389] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 06/07/2011] [Accepted: 06/16/2011] [Indexed: 05/20/2023]
Abstract
To form nitrogen-fixing symbioses, legume plants recognize a bacterial signal, Nod Factor (NF). The legume Medicago truncatula has two predicted NF receptors that direct separate downstream responses to its symbiont Sinorhizobium meliloti. NOD FACTOR PERCEPTION encodes a putative low-stringency receptor that is responsible for calcium spiking and transcriptional responses. LYSIN MOTIF RECEPTOR-LIKE KINASE3 (LYK3) encodes a putative high-stringency receptor that mediates bacterial infection. We localized green fluorescent protein (GFP)-tagged LYK3 in M. truncatula and found that it has a punctate distribution at the cell periphery consistent with a plasma membrane or membrane-tethered vesicle localization. In buffer-treated control roots, LYK3:GFP puncta are dynamic. After inoculation with compatible S. meliloti, LYK3:GFP puncta are relatively stable. We show that increased LYK3:GFP stability depends on bacterial NF and NF structure but that NF is not sufficient for the change in LYK3:GFP dynamics. In uninoculated root hairs, LYK3:GFP has little codistribution with mCherry-tagged FLOTILLIN4 (FLOT4), another punctate plasma membrane-associated protein required for infection. In inoculated root hairs, we observed an increase in FLOT4:mCherry and LYK3:GFP colocalization; both proteins localize to positionally stable puncta. We also demonstrate that the localization of tagged FLOT4 is altered in plants carrying a mutation that inactivates the kinase domain of LYK3. Our work indicates that LYK3 protein localization and dynamics are altered in response to symbiotic bacteria.
Collapse
Affiliation(s)
- Cara H. Haney
- Department of Biology, Stanford University, Stanford, California 94305
| | - Brendan K. Riely
- Department of Plant Pathology, University of California, Davis, California 95616
| | - David M. Tricoli
- Department of Plant Pathology, University of California, Davis, California 95616
- The Ralph M. Parsons Foundation Plant Transformation Facility, University of California, Davis, California 95616
| | - Doug R. Cook
- Department of Plant Pathology, University of California, Davis, California 95616
| | - David W. Ehrhardt
- Department of Biology, Stanford University, Stanford, California 94305
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Sharon R. Long
- Department of Biology, Stanford University, Stanford, California 94305
- Address correspondence to
| |
Collapse
|