1
|
Ding S, Chen Y, Huang C, Song L, Liang Z, Wei B. Perception and response of skeleton to mechanical stress. Phys Life Rev 2024; 49:77-94. [PMID: 38564907 DOI: 10.1016/j.plrev.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Mechanical stress stands as a fundamental factor in the intricate processes governing the growth, development, morphological shaping, and maintenance of skeletal mass. The profound influence of stress in shaping the skeletal framework prompts the assertion that stress essentially births the skeleton. Despite this acknowledgment, the mechanisms by which the skeleton perceives and responds to mechanical stress remain enigmatic. In this comprehensive review, our scrutiny focuses on the structural composition and characteristics of sclerotin, leading us to posit that it serves as the primary structure within the skeleton responsible for bearing and perceiving mechanical stress. Furthermore, we propose that osteocytes within the sclerotin emerge as the principal mechanical-sensitive cells, finely attuned to perceive mechanical stress. And a detailed analysis was conducted on the possible transmission pathways of mechanical stress from the extracellular matrix to the nucleus.
Collapse
Affiliation(s)
- Sicheng Ding
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yiren Chen
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Chengshuo Huang
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lijun Song
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhen Liang
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| | - Bo Wei
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
2
|
Szwec S, Kapłucha Z, Chamberlain JS, Konieczny P. Dystrophin- and Utrophin-Based Therapeutic Approaches for Treatment of Duchenne Muscular Dystrophy: A Comparative Review. BioDrugs 2024; 38:95-119. [PMID: 37917377 PMCID: PMC10789850 DOI: 10.1007/s40259-023-00632-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
Duchenne muscular dystrophy is a devastating disease that leads to progressive muscle loss and premature death. While medical management focuses mostly on symptomatic treatment, decades of research have resulted in first therapeutics able to restore the affected reading frame of dystrophin transcripts or induce synthesis of a truncated dystrophin protein from a vector, with other strategies based on gene therapy and cell signaling in preclinical or clinical development. Nevertheless, recent reports show that potentially therapeutic dystrophins can be immunogenic in patients. This raises the question of whether a dystrophin paralog, utrophin, could be a more suitable therapeutic protein. Here, we compare dystrophin and utrophin amino acid sequences and structures, combining published data with our extended in silico analyses. We then discuss these results in the context of therapeutic approaches for Duchenne muscular dystrophy. Specifically, we focus on strategies based on delivery of micro-dystrophin and micro-utrophin genes with recombinant adeno-associated viral vectors, exon skipping of the mutated dystrophin pre-mRNAs, reading through termination codons with small molecules that mask premature stop codons, dystrophin gene repair by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated genetic engineering, and increasing utrophin levels. Our analyses highlight the importance of various dystrophin and utrophin domains in Duchenne muscular dystrophy treatment, providing insights into designing novel therapeutic compounds with improved efficacy and decreased immunoreactivity. While the necessary actin and β-dystroglycan binding sites are present in both proteins, important functional distinctions can be identified in these domains and some other parts of truncated dystrophins might need redesigning due to their potentially immunogenic qualities. Alternatively, therapies based on utrophins might provide a safer and more effective approach.
Collapse
Affiliation(s)
- Sylwia Szwec
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Zuzanna Kapłucha
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
| | - Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
3
|
McCourt JL, Stearns-Reider KM, Mamsa H, Kannan P, Afsharinia MH, Shu C, Gibbs EM, Shin KM, Kurmangaliyev YZ, Schmitt LR, Hansen KC, Crosbie RH. Multi-omics analysis of sarcospan overexpression in mdx skeletal muscle reveals compensatory remodeling of cytoskeleton-matrix interactions that promote mechanotransduction pathways. Skelet Muscle 2023; 13:1. [PMID: 36609344 PMCID: PMC9817407 DOI: 10.1186/s13395-022-00311-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The dystrophin-glycoprotein complex (DGC) is a critical adhesion complex of the muscle cell membrane, providing a mechanical link between the extracellular matrix (ECM) and the cortical cytoskeleton that stabilizes the sarcolemma during repeated muscle contractions. One integral component of the DGC is the transmembrane protein, sarcospan (SSPN). Overexpression of SSPN in the skeletal muscle of mdx mice (murine model of DMD) restores muscle fiber attachment to the ECM in part through an associated increase in utrophin and integrin adhesion complexes at the cell membrane, protecting the muscle from contraction-induced injury. In this study, we utilized transcriptomic and ECM protein-optimized proteomics data sets from wild-type, mdx, and mdx transgenic (mdxTG) skeletal muscle tissues to identify pathways and proteins driving the compensatory action of SSPN overexpression. METHODS The tibialis anterior and quadriceps muscles were isolated from wild-type, mdx, and mdxTG mice and subjected to bulk RNA-Seq and global proteomics analysis using methods to enhance capture of ECM proteins. Data sets were further analyzed through the ingenuity pathway analysis (QIAGEN) and integrative gene set enrichment to identify candidate networks, signaling pathways, and upstream regulators. RESULTS Through our multi-omics approach, we identified 3 classes of differentially expressed genes and proteins in mdxTG muscle, including those that were (1) unrestored (significantly different from wild type, but not from mdx), (2) restored (significantly different from mdx, but not from wild type), and (3) compensatory (significantly different from both wild type and mdx). We identified signaling pathways that may contribute to the rescue phenotype, most notably cytoskeleton and ECM organization pathways. ECM-optimized proteomics revealed an increased abundance of collagens II, V, and XI, along with β-spectrin in mdxTG samples. Using ingenuity pathway analysis, we identified upstream regulators that are computationally predicted to drive compensatory changes, revealing a possible mechanism of SSPN rescue through a rewiring of cell-ECM bidirectional communication. We found that SSPN overexpression results in upregulation of key signaling molecules associated with regulation of cytoskeleton organization and mechanotransduction, including Yap1, Sox9, Rho, RAC, and Wnt. CONCLUSIONS Our findings indicate that SSPN overexpression rescues dystrophin deficiency partially through mechanotransduction signaling cascades mediated through components of the ECM and the cortical cytoskeleton.
Collapse
Affiliation(s)
- Jackie L McCourt
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Kristen M Stearns-Reider
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hafsa Mamsa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Pranav Kannan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | | | - Cynthia Shu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Elizabeth M Gibbs
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Kara M Shin
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Yerbol Z Kurmangaliyev
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lauren R Schmitt
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver, CO, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver, CO, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA.
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Abstract
The ankyrin proteins (Ankyrin-R, Ankyrin-B, and Ankyrin-G) are a family of scaffolding, or membrane adaptor proteins necessary for the regulation and targeting of several types of ion channels and membrane transporters throughout the body. These include voltage-gated sodium, potassium, and calcium channels in the nervous system, heart, lungs, and muscle. At these sites, ankyrins recruit ion channels, and other membrane proteins, to specific subcellular domains, which are then stabilized through ankyrin's interaction with the submembranous spectrin-based cytoskeleton. Several recent studies have expanded our understanding of both ankyrin expression and their ion channel binding partners. This review provides an updated overview of ankyrin proteins and their known channel and transporter interactions. We further discuss several potential avenues of future research that would expand our understanding of these important organizational proteins.
Collapse
Affiliation(s)
- Sharon R. Stevens
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA,CONTACT Matthew N. Rasband Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX77030, USA
| |
Collapse
|
5
|
York NS, Sanchez-Arias JC, McAdam ACH, Rivera JE, Arbour LT, Swayne LA. Mechanisms underlying the role of ankyrin-B in cardiac and neurological health and disease. Front Cardiovasc Med 2022; 9:964675. [PMID: 35990955 PMCID: PMC9386378 DOI: 10.3389/fcvm.2022.964675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The ANK2 gene encodes for ankyrin-B (ANKB), one of 3 members of the ankyrin family of proteins, whose name is derived from the Greek word for anchor. ANKB was originally identified in the brain (B denotes “brain”) but has become most widely known for its role in cardiomyocytes as a scaffolding protein for ion channels and transporters, as well as an interacting protein for structural and signaling proteins. Certain loss-of-function ANK2 variants are associated with a primarily cardiac-presenting autosomal-dominant condition with incomplete penetrance and variable expressivity characterized by a predisposition to supraventricular and ventricular arrhythmias, arrhythmogenic cardiomyopathy, congenital and adult-onset structural heart disease, and sudden death. Another independent group of ANK2 variants are associated with increased risk for distinct neurological phenotypes, including epilepsy and autism spectrum disorders. The mechanisms underlying ANKB's roles in cells in health and disease are not fully understood; however, several clues from a range of molecular and cell biological studies have emerged. Notably, ANKB exhibits several isoforms that have different cell-type–, tissue–, and developmental stage– expression profiles. Given the conservation within ankyrins across evolution, model organism studies have enabled the discovery of several ankyrin roles that could shed important light on ANKB protein-protein interactions in heart and brain cells related to the regulation of cellular polarity, organization, calcium homeostasis, and glucose and fat metabolism. Along with this accumulation of evidence suggesting a diversity of important ANKB cellular functions, there is an on-going debate on the role of ANKB in disease. We currently have limited understanding of how these cellular functions link to disease risk. To this end, this review will examine evidence for the cellular roles of ANKB and the potential contribution of ANKB functional variants to disease risk and presentation. This contribution will highlight the impact of ANKB dysfunction on cardiac and neuronal cells and the significance of understanding the role of ANKB variants in disease.
Collapse
Affiliation(s)
- Nicole S. York
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Alexa C. H. McAdam
- Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
| | - Joel E. Rivera
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Laura T. Arbour
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
- *Correspondence: Laura T. Arbour
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Cellular and Physiological Sciences and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Leigh Anne Swayne
| |
Collapse
|
6
|
Kikkawa Y, Matsunuma M, Kan R, Yamada Y, Hamada K, Nomizu M, Negishi Y, Nagamori S, Toda T, Tanaka M, Kanagawa M. Laminin α5_CD239_Spectrin is a candidate association that compensates the linkage between the basement membrane and cytoskeleton in skeletal muscle fibers. Matrix Biol Plus 2022; 15:100118. [PMID: 35990309 PMCID: PMC9382564 DOI: 10.1016/j.mbplus.2022.100118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/06/2022] Open
Abstract
Laminin α5_CD239_spectrin complex is a candidate linkage in sarcolemma. The linkage molecules are expressed in embryonic and regenerative muscle fibers. CD239 expression is upregulated by steroid therapy for muscular dystrophy. The compensatory linkage may be a therapeutic target for muscular dystrophy.
The linkage between the basement membrane (BM) and cytoskeleton is crucial for muscle fiber stability and signal transduction. Mutations in the linkage molecules can cause various types of muscular dystrophies. The different severities and times of onset suggest that compensatory linkages occur at the sarcolemma. Cluster of differentiation 239 (CD239) binds to the α5 subunit of laminin-511 extracellularly and is connected to spectrin intracellularly, resulting in a linkage between the BM and cytoskeleton. In this study, we explored the linkage of laminin α5_CD239_spectrin in skeletal muscles. Although laminin α5, CD239, and spectrin were present in embryonic skeletal muscles, they disappeared in adult skeletal muscle tissues, except for the soleus and diaphragm. Laminin α5_CD239_spectrin was localized in the skeletal muscle tissues of Duchenne muscular dystrophy and congenital muscular dystrophy mouse models. The experimental regeneration of skeletal muscle increased the CD239-mediated linkage, indicating that it responds to regeneration, but not to genetic influence. Furthermore, in silico analysis showed that laminin α5_CD239_spectrin was upregulated by steroid therapy for muscular dystrophy. Therefore, CD239-mediated linkage may serve as a therapeutic target to prevent the progression of muscular dystrophy.
Collapse
|
7
|
Caporizzo MA, Prosser BL. The microtubule cytoskeleton in cardiac mechanics and heart failure. Nat Rev Cardiol 2022; 19:364-378. [PMID: 35440741 PMCID: PMC9270871 DOI: 10.1038/s41569-022-00692-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
The microtubule network of cardiac muscle cells has unique architectural and biophysical features to accommodate the demands of the working heart. Advances in live-cell imaging and in deciphering the 'tubulin code' have shone new light on this cytoskeletal network and its role in heart failure. Microtubule-based transport orchestrates the growth and maintenance of the contractile apparatus through spatiotemporal control of translation, while also organizing the specialized membrane systems required for excitation-contraction coupling. To withstand the high mechanical loads of the working heart, microtubules are post-translationally modified and physically reinforced. In response to stress to the myocardium, the microtubule network remodels, typically through densification, post-translational modification and stabilization. Under these conditions, physically reinforced microtubules resist the motion of the cardiomyocyte and increase myocardial stiffness. Accordingly, modified microtubules have emerged as a therapeutic target for reducing stiffness in heart failure. In this Review, we discuss the latest evidence on the contribution of microtubules to cardiac mechanics, the drivers of microtubule network remodelling in cardiac pathologies and the therapeutic potential of targeting cardiac microtubules in acquired heart diseases.
Collapse
Affiliation(s)
- Matthew A Caporizzo
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT, USA
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Pierantozzi E, Szentesi P, Paolini C, Dienes B, Fodor J, Oláh T, Colombini B, Rassier DE, Rubino EM, Lange S, Rossi D, Csernoch L, Bagni MA, Reggiani C, Sorrentino V. Impaired Intracellular Ca 2+ Dynamics, M-Band and Sarcomere Fragility in Skeletal Muscles of Obscurin KO Mice. Int J Mol Sci 2022; 23:1319. [PMID: 35163243 PMCID: PMC8835721 DOI: 10.3390/ijms23031319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Obscurin is a giant sarcomeric protein expressed in striated muscles known to establish several interactions with other proteins of the sarcomere, but also with proteins of the sarcoplasmic reticulum and costameres. Here, we report experiments aiming to better understand the contribution of obscurin to skeletal muscle fibers, starting with a detailed characterization of the diaphragm muscle function, which we previously reported to be the most affected muscle in obscurin (Obscn) KO mice. Twitch and tetanus tension were not significantly different in the diaphragm of WT and Obscn KO mice, while the time to peak (TTP) and half relaxation time (HRT) were prolonged. Differences in force-frequency and force-velocity relationships and an enhanced fatigability are observed in an Obscn KO diaphragm with respect to WT controls. Voltage clamp experiments show that a sarcoplasmic reticulum's Ca2+ release and SERCA reuptake rates were decreased in muscle fibers from Obscn KO mice, suggesting that an impairment in intracellular Ca2+ dynamics could explain the observed differences in the TTP and HRT in the diaphragm. In partial contrast with previous observations, Obscn KO mice show a normal exercise tolerance, but fiber damage, the altered sarcomere ultrastructure and M-band disarray are still observed after intense exercise.
Collapse
Affiliation(s)
- Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy; (E.P.); (E.M.R.); (D.R.)
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (P.S.); (B.D.); (J.F.); (T.O.); (L.C.)
| | - Cecilia Paolini
- Department of Neuroscience, Imaging and Clinical Sciences, University Gabriele d’ Annunzio of Chieti, 66100 Chieti, Italy;
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (P.S.); (B.D.); (J.F.); (T.O.); (L.C.)
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (P.S.); (B.D.); (J.F.); (T.O.); (L.C.)
| | - Tamás Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (P.S.); (B.D.); (J.F.); (T.O.); (L.C.)
| | - Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (B.C.); (M.A.B.)
| | - Dilson E. Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC H2W 1S4, Canada;
| | - Egidio Maria Rubino
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy; (E.P.); (E.M.R.); (D.R.)
| | - Stephan Lange
- Biomedical Research Facility 2, School of Medicine, University of California, La Jolla, CA 92093, USA;
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy; (E.P.); (E.M.R.); (D.R.)
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (P.S.); (B.D.); (J.F.); (T.O.); (L.C.)
| | - Maria Angela Bagni
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (B.C.); (M.A.B.)
| | - Carlo Reggiani
- Department of Biomedical Science, University of Padova, 35121 Padova, Italy;
- Science and Research Center Koper, Institute for Kinesiology Research, 6000 Koper, Slovenia
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, 53100 Siena, Italy; (E.P.); (E.M.R.); (D.R.)
| |
Collapse
|
9
|
Di Meo D, Ravindran P, Sadhanasatish T, Dhumale P, Püschel AW. The balance of mitochondrial fission and fusion in cortical axons depends on the kinases SadA and SadB. Cell Rep 2021; 37:110141. [PMID: 34936879 DOI: 10.1016/j.celrep.2021.110141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/17/2021] [Accepted: 11/29/2021] [Indexed: 01/21/2023] Open
Abstract
Neurons are highly polarized cells that display characteristic differences in the organization of their organelles in axons and dendrites. The kinases SadA and SadB (SadA/B) promote the formation of distinct axonal and dendritic extensions during the development of cortical and hippocampal neurons. Here, we show that SadA/B are required for the specific dynamics of axonal mitochondria. Ankyrin B (AnkB) stimulates the activity of SadA/B that function as regulators of mitochondrial dynamics through the phosphorylation of tau. Suppression of SadA/B or AnkB in cortical neurons induces the elongation of mitochondria by disrupting the balance of fission and fusion. SadA/B-deficient neurons show an accumulation of hyper-fused mitochondria and activation of the integrated stress response (ISR). The normal dynamics of axonal mitochondria could be restored by mild actin destabilization. Thus, the elongation after loss of SadA/B results from an excessive stabilization of actin filaments and reduction of Drp1 recruitment to mitochondria.
Collapse
Affiliation(s)
- Danila Di Meo
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, 48149 Münster, Germany; Cells-in-Motion Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Priyadarshini Ravindran
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, 48149 Münster, Germany
| | - Tanmay Sadhanasatish
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, 48149 Münster, Germany; Cells-in-Motion Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Pratibha Dhumale
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, 48149 Münster, Germany; Cells-in-Motion Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Andreas W Püschel
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, 48149 Münster, Germany; Cells-in-Motion Interfaculty Center, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
10
|
The rs45454496 (E1813K) variant in the adiposity gene ANK2 doesn't associate with obesity in Southern European subjects. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Lau CK, O’Reilly FJ, Santhanam B, Lacey SE, Rappsilber J, Carter AP. Cryo-EM reveals the complex architecture of dynactin's shoulder region and pointed end. EMBO J 2021; 40:e106164. [PMID: 33734450 PMCID: PMC8047447 DOI: 10.15252/embj.2020106164] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 11/09/2022] Open
Abstract
Dynactin is a 1.1 MDa complex that activates the molecular motor dynein for ultra-processive transport along microtubules. In order to do this, it forms a tripartite complex with dynein and a coiled-coil adaptor. Dynactin consists of an actin-related filament whose length is defined by its flexible shoulder domain. Despite previous cryo-EM structures, the molecular architecture of the shoulder and pointed end of the filament is still poorly understood due to the lack of high-resolution information in these regions. Here we combine multiple cryo-EM datasets and define precise masking strategies for particle signal subtraction and 3D classification. This overcomes domain flexibility and results in high-resolution maps into which we can build the shoulder and pointed end. The unique architecture of the shoulder securely houses the p150 subunit and positions the four identical p50 subunits in different conformations to bind dynactin's filament. The pointed end map allows us to build the first structure of p62 and reveals the molecular basis for cargo adaptor binding to different sites at the pointed end.
Collapse
Affiliation(s)
- Clinton K Lau
- Structural Studies DivisionMRC Laboratory of Molecular BiologyCambridgeUK
| | - Francis J O’Reilly
- BioanalyticsInstitute of BiotechnologyTechnische Universität BerlinBerlinGermany
| | - Balaji Santhanam
- Structural Studies DivisionMRC Laboratory of Molecular BiologyCambridgeUK
| | - Samuel E Lacey
- Structural Studies DivisionMRC Laboratory of Molecular BiologyCambridgeUK
| | - Juri Rappsilber
- BioanalyticsInstitute of BiotechnologyTechnische Universität BerlinBerlinGermany
| | - Andrew P Carter
- Structural Studies DivisionMRC Laboratory of Molecular BiologyCambridgeUK
| |
Collapse
|
12
|
Gorza L, Sorge M, Seclì L, Brancaccio M. Master Regulators of Muscle Atrophy: Role of Costamere Components. Cells 2021; 10:cells10010061. [PMID: 33401549 PMCID: PMC7823551 DOI: 10.3390/cells10010061] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
The loss of muscle mass and force characterizes muscle atrophy in several different conditions, which share the expression of atrogenes and the activation of their transcriptional regulators. However, attempts to antagonize muscle atrophy development in different experimental contexts by targeting contributors to the atrogene pathway showed partial effects in most cases. Other master regulators might independently contribute to muscle atrophy, as suggested by our recent evidence about the co-requirement of the muscle-specific chaperone protein melusin to inhibit unloading muscle atrophy development. Furthermore, melusin and other muscle mass regulators, such as nNOS, belong to costameres, the macromolecular complexes that connect sarcolemma to myofibrils and to the extracellular matrix, in correspondence with specific sarcomeric sites. Costameres sense a mechanical load and transduce it both as lateral force and biochemical signals. Recent evidence further broadens this classic view, by revealing the crucial participation of costameres in a sarcolemmal “signaling hub” integrating mechanical and humoral stimuli, where mechanical signals are coupled with insulin and/or insulin-like growth factor stimulation to regulate muscle mass. Therefore, this review aims to enucleate available evidence concerning the early involvement of costamere components and additional putative master regulators in the development of major types of muscle atrophy.
Collapse
Affiliation(s)
- Luisa Gorza
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
- Correspondence:
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| |
Collapse
|
13
|
Lorenzo DN. Cargo hold and delivery: Ankyrins, spectrins, and their functional patterning of neurons. Cytoskeleton (Hoboken) 2020; 77:129-148. [PMID: 32034889 DOI: 10.1002/cm.21602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/12/2023]
Abstract
The highly polarized, typically very long, and nonmitotic nature of neurons present them with unique challenges in the maintenance of their homeostasis. This architectural complexity serves a rich and tightly controlled set of functions that enables their fast communication with neighboring cells and endows them with exquisite plasticity. The submembrane neuronal cytoskeleton occupies a pivotal position in orchestrating the structural patterning that determines local and long-range subcellular specialization, membrane dynamics, and a wide range of signaling events. At its center is the partnership between ankyrins and spectrins, which self-assemble with both remarkable long-range regularity and micro- and nanoscale specificity to precisely position and stabilize cell adhesion molecules, membrane transporters, ion channels, and other cytoskeletal proteins. To accomplish these generally conserved, but often functionally divergent and spatially diverse, roles these partners use a combinatorial program of a couple of dozens interacting family members, whose code is not fully unraveled. In a departure from their scaffolding roles, ankyrins and spectrins also enable the delivery of material to the plasma membrane by facilitating intracellular transport. Thus, it is unsurprising that deficits in ankyrins and spectrins underlie several neurodevelopmental, neurodegenerative, and psychiatric disorders. Here, I summarize key aspects of the biology of spectrins and ankyrins in the mammalian neuron and provide a snapshot of the latest advances in decoding their roles in the nervous system.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
14
|
Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1462. [PMID: 31407867 PMCID: PMC6916202 DOI: 10.1002/wsbm.1462] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Decades of research in skeletal muscle physiology have provided multiscale insights into the structural and functional complexity of this important anatomical tissue, designed to accomplish the task of generating contraction, force and movement. Skeletal muscle can be viewed as a biomechanical device with various interacting components including the autonomic nerves for impulse transmission, vasculature for efficient oxygenation, and embedded regulatory and metabolic machinery for maintaining cellular homeostasis. The "omics" revolution has propelled a new era in muscle research, allowing us to discern minute details of molecular cross-talk required for effective coordination between the myriad interacting components for efficient muscle function. The objective of this review is to provide a systems-level, comprehensive mapping the molecular mechanisms underlying skeletal muscle structure and function, in health and disease. We begin this review with a focus on molecular mechanisms underlying muscle tissue development (myogenesis), with an emphasis on satellite cells and muscle regeneration. We next review the molecular structure and mechanisms underlying the many structural components of the muscle: neuromuscular junction, sarcomere, cytoskeleton, extracellular matrix, and vasculature surrounding muscle. We highlight aberrant molecular mechanisms and their possible clinical or pathophysiological relevance. We particularly emphasize the impact of environmental stressors (inflammation and oxidative stress) in contributing to muscle pathophysiology including atrophy, hypertrophy, and fibrosis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Developmental Biology > Developmental Processes in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of BioengineeringUniversity of CaliforniaSan DiegoCalifornia
| | - Shankar Subramaniam
- Department of Bioengineering, Bioinformatics & Systems BiologyUniversity of CaliforniaSan DiegoCalifornia
- Department of Computer Science and EngineeringUniversity of CaliforniaSan DiegoCalifornia
- Department of Cellular and Molecular Medicine and NanoengineeringUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
15
|
Oddoux S, Randazzo D, Kenea A, Alonso B, Zaal KJM, Ralston E. Misplaced Golgi Elements Produce Randomly Oriented Microtubules and Aberrant Cortical Arrays of Microtubules in Dystrophic Skeletal Muscle Fibers. Front Cell Dev Biol 2019; 7:176. [PMID: 31620435 PMCID: PMC6759837 DOI: 10.3389/fcell.2019.00176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
Differentiated mammalian cells and tissues, such as skeletal muscle fibers, acquire an organization of Golgi complex and microtubules profoundly different from that in proliferating cells and still poorly understood. In adult rodent skeletal muscle, the multinucleated muscle fibers have hundreds of Golgi elements (GE), small stacks of cisternae that serve as microtubule-organizing centers. We are interested in the role of the GE in organizing a peculiar grid of microtubules located in the fiber cortex, against the sarcolemma. Modifications of this grid in the mdx mouse model of Duchenne muscular dystrophy have led to identifying dystrophin, the protein missing in both human disease and mouse model, as a microtubule guide. Compared to wild-type (WT), mdx microtubules are disordered and more dense and they have been linked to the dystrophic pathology. GE themselves are disordered in mdx. Here, to identify the causes of GE and microtubule alterations in the mdx muscle, we follow GFP-tagged microtubule markers in live mdx fibers and investigate the recovery of GE and microtubules after treatment with nocodazole. We find that mdx microtubules grow 10% faster but in 30% shorter bouts and that they begin to form a tangled network, rather than an orthogonal grid, right after nucleation from GE. Strikingly, a large fraction of microtubules in mdx muscle fibers seem to dissociate from GE after nucleation. Moreover, we report that mdx GE are mispositioned and increased in number and size. These results were replicated in WT fibers overexpressing the beta-tubulin tubb6, which is elevated in Duchenne muscular dystrophy, in mdx and in regenerating muscle. Finally, we examine the association of GE with ER exit sites and ER-to-Golgi intermediate compartment, which starts during muscle differentiation, and find it persisting in mdx and tubb6 overexpressing fibers. We conclude that GE are full, small, Golgi complexes anchored, and positioned through ER Exit Sites. We propose a model in which GE mispositioning, together with the absence of microtubule guidance due to the lack of dystrophin, determines the differences in GE and microtubule organization between WT and mdx muscle fibers.
Collapse
Affiliation(s)
- Sarah Oddoux
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Davide Randazzo
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Aster Kenea
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Bruno Alonso
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kristien J M Zaal
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Evelyn Ralston
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
16
|
Caporizzo MA, Chen CY, Prosser BL. Cardiac microtubules in health and heart disease. Exp Biol Med (Maywood) 2019; 244:1255-1272. [PMID: 31398994 DOI: 10.1177/1535370219868960] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cardiomyocytes are large (∼40,000 µm3), rod-shaped muscle cells that provide the working force behind each heartbeat. These highly structured cells are packed with dense cytoskeletal networks that can be divided into two groups—the contractile (i.e. sarcomeric) cytoskeleton that consists of filamentous actin-myosin arrays organized into myofibrils, and the non-sarcomeric cytoskeleton, which is composed of β- and γ-actin, microtubules, and intermediate filaments. Together, microtubules and intermediate filaments form a cross-linked scaffold, and these networks are responsible for the delivery of intracellular cargo, the transmission of mechanical signals, the shaping of membrane systems, and the organization of myofibrils and organelles. Microtubules are extensively altered as part of both adaptive and pathological cardiac remodeling, which has diverse ramifications for the structure and function of the cardiomyocyte. In heart failure, the proliferation and post-translational modification of the microtubule network is linked to a number of maladaptive processes, including the mechanical impediment of cardiomyocyte contraction and relaxation. This raises the possibility that reversing microtubule alterations could improve cardiac performance, yet therapeutic efforts will strongly benefit from a deeper understanding of basic microtubule biology in the heart. The aim of this review is to summarize the known physiological roles of the cardiomyocyte microtubule network, the consequences of its pathological remodeling, and to highlight the open and intriguing questions regarding cardiac microtubules. Impact statement Advancements in cell biological and biophysical approaches and super-resolution imaging have greatly broadened our view of tubulin biology over the last decade. In the heart, microtubules and microtubule-based transport help to organize and maintain key structures within the cardiomyocyte, including the sarcomere, intercalated disc, protein clearance machinery and transverse-tubule and sarcoplasmic reticulum membranes. It has become increasingly clear that post translational regulation of microtubules is a key determinant of their sub-cellular functionality. Alterations in microtubule network density, stability, and post-translational modifications are hallmarks of pathological cardiac remodeling, and modified microtubules can directly impede cardiomyocyte contractile function in various forms of heart disease. This review summarizes the functional roles and multi-leveled regulation of the cardiac microtubule cytoskeleton and highlights how refined experimental techniques are shedding mechanistic clarity on the regionally specified roles of microtubules in cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Matthew A Caporizzo
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christina Yingxian Chen
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Grimes KM, Prasad V, McNamara JW. Supporting the heart: Functions of the cardiomyocyte's non-sarcomeric cytoskeleton. J Mol Cell Cardiol 2019; 131:187-196. [PMID: 30978342 DOI: 10.1016/j.yjmcc.2019.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
The non-contractile cytoskeleton in cardiomyocytes is comprised of cytoplasmic actin, microtubules, and intermediate filaments. In addition to providing mechanical support to these cells, these structures are important effectors of tension-sensing and signal transduction and also provide networks for the transport of proteins and organelles. The majority of our knowledge on the function and structure of these cytoskeletal networks comes from research on proliferative cell types. However, in recent years, researchers have begun to show that there are important cardiomyocyte-specific functions of the cytoskeleton. Here we will discuss the current state of cytoskeletal biology in cardiomyocytes, as well as research from other cell types, that together suggest there is a wealth of knowledge on cardiac health and disease waiting to be uncovered through exploration of the complex signaling networks of cardiomyocyte non-sarcomeric cytoskeletal proteins.
Collapse
Affiliation(s)
- Kelly M Grimes
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Vikram Prasad
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James W McNamara
- Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
18
|
Nelson DM, Lindsay A, Judge LM, Duan D, Chamberlain JS, Lowe DA, Ervasti JM. Variable rescue of microtubule and physiological phenotypes in mdx muscle expressing different miniaturized dystrophins. Hum Mol Genet 2019; 27:2090-2100. [PMID: 29618008 DOI: 10.1093/hmg/ddy113] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/26/2018] [Indexed: 01/08/2023] Open
Abstract
Delivery of miniaturized dystrophin genes via adeno-associated viral vectors is one leading approach in development to treat Duchenne muscular dystrophy. Here we directly compared the functionality of five mini- and micro-dystrophins via skeletal muscle-specific transgenic expression in dystrophin-deficient mdx mice. We evaluated their ability to rescue defects in the microtubule network, passive stiffness and contractility of skeletal muscle. Transgenic mdx mice expressing the short dystrophin isoform Dp116 served as a negative control. All mini- and micro-dystrophins restored elevated detyrosinated α-tubulin and microtubule density of mdx muscle to values not different from C57BL/10, however, only mini-dystrophins restored the transverse component of the microtubule lattice back to C57BL/10. Passive stiffness values in mdx muscles expressing mini- or micro-dystrophins were not different from C57BL/10. While all mini- and micro-dystrophins conferred significant protection from eccentric contraction-induced force loss in vivo and ex vivo compared to mdx, removal of repeats two and three resulted in less protection from force drop caused by eccentric contraction ex vivo. Our data reveal subtle yet significant differences in the relative functionalities for different therapeutic constructs of miniaturized dystrophin in terms of protection from ex vivo eccentric contraction-induced force loss and restoration of an organized microtubule lattice.
Collapse
Affiliation(s)
- D'anna M Nelson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Angus Lindsay
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Luke M Judge
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
| | | | - Dawn A Lowe
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
19
|
Belanto JJ, Olthoff JT, Mader TL, Chamberlain CM, Nelson DM, McCourt PM, Talsness DM, Gundersen GG, Lowe DA, Ervasti JM. Independent variability of microtubule perturbations associated with dystrophinopathy. Hum Mol Genet 2018; 25:4951-4961. [PMID: 28171583 DOI: 10.1093/hmg/ddw318] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/15/2016] [Accepted: 09/12/2016] [Indexed: 11/14/2022] Open
Abstract
Absence of the protein dystrophin causes Duchenne muscular dystrophy. Dystrophin directly binds to microtubules in vitro, and its absence in vivo correlates with disorganization of the subsarcolemmal microtubule lattice, increased detyrosination of α-tubulin, and altered redox signaling. We previously demonstrated that the dystrophin homologue utrophin neither binds microtubules in vitro nor rescues microtubule lattice organization when overexpressed in muscles of dystrophin-deficient mdx mice. Here, we fine-mapped the dystrophin domain necessary for microtubule binding to spectrin-like repeats 20–22. We show that transgenic mdx mice expressing a full-length dystrophin/utrophin chimera completely lacking microtubule binding activity are surprisingly rescued for all measured dystrophic phenotypes, including full restoration of microtubule lattice organization. Conversely, despite the presence of dystrophin at the sarcolemma, β-sarcoglycan-deficient skeletal muscle presents with a disorganized and densified microtubule lattice. Finally, we show that the levels of α-tubulin detyrosination remain significantly elevated to that of mdx levels in transgenic mdx mice expressing nearly full-length dystrophin. Our results demonstrate that the microtubule-associated perturbations of mdx muscle are distinct, separable, and can vary independently from other parameters previously ascribed to dystrophin deficiency.
Collapse
Affiliation(s)
- Joseph J Belanto
- Department of Biochemistry, Molecular Biology, and Biophysics, and Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - John T Olthoff
- Department of Biochemistry, Molecular Biology, and Biophysics, and Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Tara L Mader
- Programs in Rehabilitation Science and Physical Therapy, Department of Physical Medicine and Rehabilitation, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Christopher M Chamberlain
- Department of Biochemistry, Molecular Biology, and Biophysics, and Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - D'anna M Nelson
- Department of Biochemistry, Molecular Biology, and Biophysics, and Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Preston M McCourt
- Department of Biochemistry, Molecular Biology, and Biophysics, and Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Dana M Talsness
- Department of Biochemistry, Molecular Biology, and Biophysics, and Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Gregg G Gundersen
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Dawn A Lowe
- Programs in Rehabilitation Science and Physical Therapy, Department of Physical Medicine and Rehabilitation, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, and Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
20
|
Wang Y, Ji T, Nelson AD, Glanowska K, Murphy GG, Jenkins PM, Parent JM. Critical roles of αII spectrin in brain development and epileptic encephalopathy. J Clin Invest 2018; 128:760-773. [PMID: 29337302 DOI: 10.1172/jci95743] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/28/2017] [Indexed: 12/26/2022] Open
Abstract
The nonerythrocytic α-spectrin-1 (SPTAN1) gene encodes the cytoskeletal protein αII spectrin. Mutations in SPTAN1 cause early infantile epileptic encephalopathy type 5 (EIEE5); however, the role of αII spectrin in neurodevelopment and EIEE5 pathogenesis is unknown. Prior work suggests that αII spectrin is absent in the axon initial segment (AIS) and contributes to a diffusion barrier in the distal axon. Here, we have shown that αII spectrin is expressed ubiquitously in rodent and human somatodendritic and axonal domains. CRISPR-mediated deletion of Sptan1 in embryonic rat forebrain by in utero electroporation caused altered dendritic and axonal development, loss of the AIS, and decreased inhibitory innervation. Overexpression of human EIEE5 mutant SPTAN1 in embryonic rat forebrain and mouse hippocampal neurons led to similar developmental defects that were also observed in EIEE5 patient-derived neurons. Additionally, patient-derived neurons displayed aggregation of spectrin complexes. Taken together, these findings implicate αII spectrin in critical aspects of dendritic and axonal development and synaptogenesis, and support a dominant-negative mechanism of SPTAN1 mutations in EIEE5.
Collapse
Affiliation(s)
| | | | | | | | - Geoffrey G Murphy
- Molecular and Behavioral Neuroscience Institute.,Department of Molecular and Integrative Physiology, and
| | - Paul M Jenkins
- Department of Pharmacology.,Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jack M Parent
- Department of Neurology.,Ann Arbor VA Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Lorenzo DN, Bennett V. Cell-autonomous adiposity through increased cell surface GLUT4 due to ankyrin-B deficiency. Proc Natl Acad Sci U S A 2017; 114:12743-12748. [PMID: 29133412 PMCID: PMC5715754 DOI: 10.1073/pnas.1708865114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Obesity typically is linked to caloric imbalance as a result of overnutrition. Here we propose a cell-autonomous mechanism for adiposity as a result of persistent cell surface glucose transporter type 4 (GLUT4) in adipocytes resulting from impaired function of ankyrin-B (AnkB) in coupling GLUT4 to clathrin-mediated endocytosis. Adipose tissue-specific AnkB-KO mice develop obesity and progressive pancreatic islet dysfunction with age or high-fat diet (HFD). AnkB-deficient adipocytes exhibit increased lipid accumulation associated with increased glucose uptake and impaired endocytosis of GLUT4. AnkB binds directly to GLUT4 and clathrin and promotes their association in adipocytes. AnkB variants that fail to restore normal lipid accumulation and GLUT4 localization in adipocytes are present in 1.3% of European Americans and 8.4% of African Americans, and are candidates to contribute to obesity susceptibility in humans.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Howard Hughes Medical Institute, Duke University, Durham, NC 27710;
- Department of Biochemistry, Duke University, Durham, NC 27710
| | - Vann Bennett
- Howard Hughes Medical Institute, Duke University, Durham, NC 27710;
- Department of Biochemistry, Duke University, Durham, NC 27710
| |
Collapse
|
22
|
Abstract
Over the past decade, ankyrin-B has been identified as a prominent player in cardiac physiology. Ankyrin-B has a multitude of functions, with roles in expression, localization, and regulation of proteins critical for cardiac excitability, cytoskeletal integrity, and signaling. Furthermore, human ANK2 variants that result in ankyrin-B loss of function are associated with "ankyrin-B syndrome," a complex cardiac phenotype that may include bradycardia and heart rate variability, conduction block, atrial fibrillation, QT interval prolongation, and potentially fatal catecholaminergic polymorphic ventricular tachycardia. However, our understanding of the molecular mechanisms underlying ankyrin-B function at baseline and in disease is still not fully developed owing to the complexity of ankyrin-B gene regulation, number of ankyrin-B-associated molecules, multiple roles of ankyrin-B in the heart and other organs that modulate cardiac function, and a host of unexpected clinical phenotypes. In this review, we summarize known roles of ankyrin-B in the heart and the impact of ankyrin-B dysfunction in animal models and in human disease as well as highlight important new findings illustrating the complexity of ankyrin-B signaling.
Collapse
Affiliation(s)
- Sara N Koenig
- Dorothy M. Davis Heart & Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Wexner Medical Center, Columbus, Ohio.
| | - Peter J Mohler
- Dorothy M. Davis Heart & Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
23
|
Manring HR, Carter OA, Ackermann MA. Obscure functions: the location-function relationship of obscurins. Biophys Rev 2017; 9:245-258. [PMID: 28510116 DOI: 10.1007/s12551-017-0254-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/05/2017] [Indexed: 12/18/2022] Open
Abstract
The obscurin family of polypeptides is essential for normal striated muscle function and contributes to the pathogenesis of fatal diseases, including cardiomyopathies and cancers. The single mammalian obscurin gene, OBSCN, gives rise to giant (∼800 kDa) and smaller (∼40-500 kDa) proteins that are composed of tandem adhesion and signaling motifs. Mammalian obscurin proteins are expressed in a variety of cell types, including striated muscles, and localize to distinct subcellular compartments where they contribute to diverse cellular processes. Obscurin homologs in Caenorhabditis elegans and Drosophila possess a similar domain architecture and are also expressed in striated muscles. The long sought after question, "what does obscurin do?" is complex and cannot be addressed without taking into consideration the subcellular distribution of these proteins and local isoform concentration. Herein, we present an overview of the functions of obscurins and begin to define the intricate relationship between their subcellular distributions and functions in striated muscles.
Collapse
Affiliation(s)
- Heather R Manring
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA
| | - Olivia A Carter
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA.,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA
| | - Maegen A Ackermann
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA. .,Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
24
|
Qu F, Lorenzo DN, King SJ, Brooks R, Bear JE, Bennett V. Ankyrin-B is a PI3P effector that promotes polarized α5β1-integrin recycling via recruiting RabGAP1L to early endosomes. eLife 2016; 5. [PMID: 27718357 PMCID: PMC5089861 DOI: 10.7554/elife.20417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/07/2016] [Indexed: 01/03/2023] Open
Abstract
Endosomal membrane trafficking requires coordination between phosphoinositide lipids, Rab GTPases, and microtubule-based motors to dynamically determine endosome identity and promote long-range organelle transport. Here we report that ankyrin-B (AnkB), through integrating all three systems, functions as a critical node in the protein circuitry underlying polarized recycling of α5β1-integrin in mouse embryonic fibroblasts, which enables persistent fibroblast migration along fibronectin gradients. AnkB associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles in fibroblasts and binds dynactin to promote their long-range motility. We demonstrate that AnkB binds to Rab GTPase Activating Protein 1-Like (RabGAP1L) and recruits it to PI3P-positive organelles, where RabGAP1L inactivates Rab22A, and promotes polarized trafficking to the leading edge of migrating fibroblasts. We further determine that α5β1-integrin depends on an AnkB/RabGAP1L complex for polarized recycling. Our results reveal AnkB as an unexpected key element in coordinating polarized transport of α5β1-integrin and likely of other specialized endocytic cargos.
Collapse
Affiliation(s)
- Fangfei Qu
- Department of Biochemistry, Duke University Medical Center, Durham, United States.,Department of Cell Biology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, United States
| | - Damaris N Lorenzo
- Department of Biochemistry, Duke University Medical Center, Durham, United States.,Department of Cell Biology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, United States
| | - Samantha J King
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Durham, United States.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Rebecca Brooks
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Durham, United States.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Durham, United States.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Vann Bennett
- Department of Biochemistry, Duke University Medical Center, Durham, United States.,Department of Cell Biology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, United States
| |
Collapse
|
25
|
Rao PV, Maddala R. Ankyrin-B in lens architecture and biomechanics: Just not tethering but more. BIOARCHITECTURE 2016; 6:39-45. [PMID: 27044909 DOI: 10.1080/19490992.2016.1156284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ankyrins are a family of well-characterized metazoan adaptor proteins that play a key role in linking various membrane-spanning proteins to the underlying spectrin-actin cytoskeleton; a mechanistic understanding of their role in tissue architecture and mechanics, however, remains elusive. Here we comment on a recent study demonstrating a key role for ankyrin-B in maintaining the hexagonal shape and radial alignment of ocular lens fiber cells by regulating the membrane organization of periaxin, dystrophins/dystroglycan, NrCAM and spectrin-actin network of proteins, and revealing that ankyrin-B deficiency impairs fiber cell shape and mechanical properties of the ocular lens. These observations indicate that ankyrin-B plays an important role in maintaining tissue cytoarchitecture, cell shape and biomechanical properties via engaging in key protein: protein interactions required for membrane anchoring and organization of the spectrin-actin skeleton, scaffolding proteins and cell adhesive proteins.
Collapse
Affiliation(s)
- Ponugoti Vasantha Rao
- a Department of Ophthalmology , Duke University School of Medicine , Durham , NC , USA.,b Department of Pharmacology & Cancer Biology , Duke University School of Medicine , Durham , NC , USA
| | - Rupalatha Maddala
- a Department of Ophthalmology , Duke University School of Medicine , Durham , NC , USA
| |
Collapse
|
26
|
An Adaptable Spectrin/Ankyrin-Based Mechanism for Long-Range Organization of Plasma Membranes in Vertebrate Tissues. CURRENT TOPICS IN MEMBRANES 2015; 77:143-84. [PMID: 26781832 DOI: 10.1016/bs.ctm.2015.10.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ankyrins are membrane-associated proteins that together with their spectrin partners are responsible for micron-scale organization of vertebrate plasma membranes, including those of erythrocytes, excitable membranes of neurons and heart, lateral membrane domains of columnar epithelial cells, and striated muscle. Ankyrins coordinate functionally related membrane transporters and cell adhesion proteins (15 protein families identified so far) within plasma membrane compartments through independently evolved interactions of intrinsically disordered sequences with a highly conserved peptide-binding groove formed by the ANK repeat solenoid. Ankyrins are coupled to spectrins, which are elongated organelle-sized proteins that form mechanically resilient arrays through cross-linking by specialized actin filaments. In addition to protein interactions, cellular targeting and assembly of spectrin/ankyrin domains also critically depend on palmitoylation of ankyrin-G by aspartate-histidine-histidine-cysteine 5/8 palmitoyltransferases, as well as interaction of beta-2 spectrin with phosphoinositide lipids. These lipid-dependent spectrin/ankyrin domains are not static but are locally dynamic and determine membrane identity through opposing endocytosis of bulk lipids as well as specific proteins. A partnership between spectrin, ankyrin, and cell adhesion molecules first emerged in bilaterians over 500 million years ago. Ankyrin and spectrin may have been recruited to plasma membranes from more ancient roles in organelle transport. The basic bilaterian spectrin-ankyrin toolkit markedly expanded in vertebrates through gene duplications combined with variation in unstructured intramolecular regulatory sequences as well as independent evolution of ankyrin-binding activity by ion transporters involved in action potentials and calcium homeostasis. In addition, giant vertebrate ankyrins with specialized roles in axons acquired new coding sequences by exon shuffling. We speculate that early axon initial segments and epithelial lateral membranes initially were based on spectrin-ankyrin-cell adhesion molecule assemblies and subsequently served as "incubators," where ion transporters independently acquired ankyrin-binding activity through positive selection.
Collapse
|
27
|
Maddala R, Walters M, Brophy PJ, Bennett V, Rao PV. Ankyrin-B directs membrane tethering of periaxin and is required for maintenance of lens fiber cell hexagonal shape and mechanics. Am J Physiol Cell Physiol 2015; 310:C115-26. [PMID: 26538089 DOI: 10.1152/ajpcell.00111.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/31/2015] [Indexed: 12/22/2022]
Abstract
Periaxin (Prx), a PDZ domain protein expressed preferentially in myelinating Schwann cells and lens fibers, plays a key role in membrane scaffolding and cytoarchitecture. Little is known, however, about how Prx is anchored to the plasma membrane. Here we report that ankyrin-B (AnkB), a well-characterized adaptor protein involved in linking the spectrin-actin cytoskeleton to integral membrane proteins, is required for membrane association of Prx in lens fibers and colocalizes with Prx in hexagonal fiber cells. Under AnkB haploinsufficiency, Prx accumulates in the soluble fraction with a concomitant loss from the membrane-enriched fraction of mouse lenses. Moreover, AnkB haploinsufficiency induced age-dependent disruptions in fiber cell hexagonal geometry and radial alignment and decreased compressive stiffness in mouse lenses parallel to the changes observed in Prx null mouse lens. Both AnkB- and Prx-deficient mice exhibit disruptions in membrane organization of the spectrin-actin network and the dystrophin-glycoprotein complex in lens fiber cells. Taken together, these observations reveal that AnkB is required for Prx membrane anchoring and for maintenance of lens fiber cell hexagonal geometry, membrane skeleton organization, and biomechanics.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Mark Walters
- Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, North Carolina
| | - Peter J Brophy
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - Vann Bennett
- Howard Hughes Medical Institute, Chevy Chase, Maryland; Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina; and
| | - Ponugoti V Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
28
|
Lorenzo DN, Healy JA, Hostettler J, Davis J, Yang J, Wang C, Hohmeier HE, Zhang M, Bennett V. Ankyrin-B metabolic syndrome combines age-dependent adiposity with pancreatic β cell insufficiency. J Clin Invest 2015; 125:3087-102. [PMID: 26168218 DOI: 10.1172/jci81317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/27/2015] [Indexed: 12/22/2022] Open
Abstract
Rare functional variants of ankyrin-B have been implicated in human disease, including hereditary cardiac arrhythmia and type 2 diabetes (T2D). Here, we developed murine models to evaluate the metabolic consequences of these alterations in vivo. Specifically, we generated knockin mice that express either the human ankyrin-B variant R1788W, which is present in 0.3% of North Americans of mixed European descent and is associated with T2D, or L1622I, which is present in 7.5% of African Americans. Young AnkbR1788W/R1788W mice displayed primary pancreatic β cell insufficiency that was characterized by reduced insulin secretion in response to muscarinic agonists, combined with increased peripheral glucose uptake and concomitantly increased plasma membrane localization of glucose transporter 4 (GLUT4) in skeletal muscle and adipocytes. In contrast, older AnkbR1788W/R1788W and AnkbL1622I/L1622I mice developed increased adiposity, a phenotype that was reproduced in cultured adipocytes, and insulin resistance. GLUT4 trafficking was altered in animals expressing mutant forms of ankyrin-B, and we propose that increased cell surface expression of GLUT4 in skeletal muscle and fatty tissue of AnkbR1788W/R1788W mice leads to the observed age-dependent adiposity. Together, our data suggest that ankyrin-B deficiency results in a metabolic syndrome that combines primary pancreatic β cell insufficiency with peripheral insulin resistance and is directly relevant to the nearly one million North Americans bearing the R1788W ankyrin-B variant.
Collapse
|
29
|
Exon organization and novel alternative splicing of Ank3 in mouse heart. PLoS One 2015; 10:e0128177. [PMID: 26024478 PMCID: PMC4449188 DOI: 10.1371/journal.pone.0128177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/24/2015] [Indexed: 12/02/2022] Open
Abstract
Ankyrin-G is an adaptor protein that links membrane proteins to the underlying cytoskeletal network. Alternative splicing of the Ank3 gene gives rise to multiple ankyrin-G isoforms in numerous tissues. To date, only one ankyrin-G isoform has been characterized in heart and transcriptional regulation of the Ank3 gene is completely unknown. In this study, we describe the first comprehensive analysis of Ank3 expression in heart. Using a PCR-based screen of cardiac mRNA transcripts, we identify two new exons and 28 alternative splice variants of the Ank3 gene. We measure the relative expression of each splice variant using quantitative real-time PCR and exon-exon boundary spanning primers that specifically amplify individual Ank3 variants. Six variants are rarely expressed (<1%), while the remaining variants display similar expression patterns in three hearts. Of the five first exons in the Ank3 gene, exon 1d is only expressed in heart and skeletal muscle as it was not detected in brain, kidney, cerebellum, and lung. Immunoblot analysis reveals multiple ankyrin-G isoforms in heart, and two ankyrin-G subpopulations are detected in adult cardiomyocytes by immunofluorescence. One population co-localizes with the voltage-gated sodium channel NaV1.5 at the intercalated disc, while the other population expresses at the Z-line. Two of the rare splice variants excise a portion of the ZU5 motif, which encodes the minimal spectrin-binding domain, and these variants lack β-spectrin binding. Together, these data demonstrate that Ank3 is subject to complex splicing regulation resulting in a diverse population of ankyrin-G isoforms in heart.
Collapse
|
30
|
Lorenzo DN, Badea A, Davis J, Hostettler J, He J, Zhong G, Zhuang X, Bennett V. A PIK3C3-ankyrin-B-dynactin pathway promotes axonal growth and multiorganelle transport. ACTA ACUST UNITED AC 2015; 207:735-52. [PMID: 25533844 PMCID: PMC4274267 DOI: 10.1083/jcb.201407063] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Interactions between ankyrin-B and both dynactin and phosphatidylinositol 3-phosphate lipids promote fast axonal transport of organelles. Axon growth requires long-range transport of organelles, but how these cargoes recruit their motors and how their traffic is regulated are not fully resolved. In this paper, we identify a new pathway based on the class III PI3-kinase (PIK3C3), ankyrin-B (AnkB), and dynactin, which promotes fast axonal transport of synaptic vesicles, mitochondria, endosomes, and lysosomes. We show that dynactin associates with cargo through AnkB interactions with both the dynactin subunit p62 and phosphatidylinositol 3-phosphate (PtdIns(3)P) lipids generated by PIK3C3. AnkB knockout resulted in shortened axon tracts and marked reduction in membrane association of dynactin and dynein, whereas it did not affect the organization of spectrin–actin axonal rings imaged by 3D-STORM. Loss of AnkB or of its linkages to either p62 or PtdIns(3)P or loss of PIK3C3 all impaired organelle transport and particularly retrograde transport in hippocampal neurons. Our results establish new functional relationships between PIK3C3, dynactin, and AnkB that together promote axonal transport of organelles and are required for normal axon length.
Collapse
Affiliation(s)
- Damaris Nadia Lorenzo
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 Department of Biochemistry and Department of Radiology, Duke University, Durham, NC 27708
| | - Alexandra Badea
- Department of Biochemistry and Department of Radiology, Duke University, Durham, NC 27708
| | - Jonathan Davis
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 Department of Biochemistry and Department of Radiology, Duke University, Durham, NC 27708
| | - Janell Hostettler
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 Department of Biochemistry and Department of Radiology, Duke University, Durham, NC 27708
| | - Jiang He
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138 Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138
| | - Guisheng Zhong
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138 Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138 Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138
| | - Vann Bennett
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 Department of Biochemistry and Department of Radiology, Duke University, Durham, NC 27708
| |
Collapse
|
31
|
Curran J, Mohler PJ. Alternative Paradigms for Ion Channelopathies: Disorders of Ion Channel Membrane Trafficking and Posttranslational Modification. Annu Rev Physiol 2015; 77:505-24. [DOI: 10.1146/annurev-physiol-021014-071838] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jerry Curran
- The Dorothy M. Davis Heart & Lung Research Institute,
- Department of Physiology and Cell Biology, and
| | - Peter J. Mohler
- The Dorothy M. Davis Heart & Lung Research Institute,
- Department of Physiology and Cell Biology, and
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210;
| |
Collapse
|
32
|
Peterson SJ, Krasnow MA. Subcellular trafficking of FGF controls tracheal invasion of Drosophila flight muscle. Cell 2014; 160:313-23. [PMID: 25557078 DOI: 10.1016/j.cell.2014.11.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/07/2014] [Accepted: 11/15/2014] [Indexed: 11/16/2022]
Abstract
To meet the extreme oxygen demand of insect flight muscle, tracheal (respiratory) tubes ramify not only on its surface, as in other tissues, but also within T-tubules and ultimately surrounding every mitochondrion. Although this remarkable physiological specialization has long been recognized, its cellular and molecular basis is unknown. Here, we show that Drosophila tracheoles invade flight muscle T-tubules through transient surface openings. Like other tracheal branching events, invasion requires the Branchless FGF pathway. However, localization of the FGF chemoattractant changes from all muscle membranes to T-tubules as invasion begins. Core regulators of epithelial basolateral membrane identity localize to T-tubules, and knockdown of AP-1γ, required for basolateral trafficking, redirects FGF from T-tubules to surface, increasing tracheal surface ramification and preventing invasion. We propose that tracheal invasion is controlled by an AP-1-dependent switch in FGF trafficking. Thus, subcellular targeting of a chemoattractant can direct outgrowth to specific domains, including inside the cell.
Collapse
Affiliation(s)
- Soren J Peterson
- Howard Hughes Medical Institute and Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | - Mark A Krasnow
- Howard Hughes Medical Institute and Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA.
| |
Collapse
|
33
|
Wang C, Wei Z, Chen K, Ye F, Yu C, Bennett V, Zhang M. Structural basis of diverse membrane target recognitions by ankyrins. eLife 2014; 3. [PMID: 25383926 PMCID: PMC4358367 DOI: 10.7554/elife.04353] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/07/2014] [Indexed: 12/24/2022] Open
Abstract
Ankyrin adaptors together with their spectrin partners coordinate diverse ion channels and cell adhesion molecules within plasma membrane domains and thereby promote physiological activities including fast signaling in the heart and nervous system. Ankyrins specifically bind to numerous membrane targets through their 24 ankyrin repeats (ANK repeats), although the mechanism for the facile and independent evolution of these interactions has not been resolved. Here we report the structures of ANK repeats in complex with an inhibitory segment from the C-terminal regulatory domain and with a sodium channel Nav1.2 peptide, respectively, showing that the extended, extremely conserved inner groove spanning the entire ANK repeat solenoid contains multiple target binding sites capable of accommodating target proteins with very diverse sequences via combinatorial usage of these sites. These structures establish a framework for understanding the evolution of ankyrins' membrane targets, with implications for other proteins containing extended ANK repeat domains. DOI:http://dx.doi.org/10.7554/eLife.04353.001 Proteins are made up of smaller building blocks called amino acids that are linked to form long chains that then fold into specific shapes. Each protein gets its unique identity from the number and order of the amino acids that it contains, but different proteins can contain similar arrangements of amino acids. These similar sequences, known as motifs, are usually short and typically mark the sites within proteins that bind to other molecules or proteins. A single protein can contain many motifs, including multiple repeats of the same motif. One common motif is called the ankyrin (or ANK) repeat, which is found in 100s of proteins in different species, including bacteria and humans. Ankyrin proteins perform a range of important functions, such as connecting proteins in the cell surface membrane to a scaffold-like structure underneath the membrane. Proteins containing ankyrin repeats are known to interact with a diverse range of other proteins (or targets) that are different in size and shape. The 24 repeats found in human ankyrin proteins appear to have essentially remained unchanged for the last 500 million years. As such, it remains unclear how the conserved ankyrin repeats can bind to such a wide variety of protein targets. Now, Wang, Wei et al. have uncovered the three-dimensional structure of ankyrin repeats from a human ankyrin protein while it was bound either to a regulatory fragment from another ankyrin protein or to a region of a target protein (which transports sodium ions in and out of cells). The ankyrin repeats were shown to form an extended ‘left-handed helix’: a structure that has also been seen in other proteins with different repeating motifs. Wang, Wei et al. found that the ankyrin protein fragment bound to the inner surface of the part of the helix formed by the first 14 ankyrin repeats. The target protein region also bound to the helix's inner surface. Wang, Wei et al. show that this surface contains many binding sites that can be used, in different combinations, to allow ankyrins to interact with diverse proteins. Other proteins with long sequences of repeats are widespread in nature, but uncovering the structures of these proteins is technically challenging. Wang, Wei et al.'s findings might reveal new insights into the functions of many of such proteins in a wide range of living species. Furthermore, the new structures could help explain why specific mutations in the genes that encode ankyrins (or their binding targets) can cause various diseases in humans—including heart diseases and psychiatric disorders. DOI:http://dx.doi.org/10.7554/eLife.04353.002
Collapse
Affiliation(s)
- Chao Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Zhiyi Wei
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Keyu Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Fei Ye
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Cong Yu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Vann Bennett
- Department of Biochemistry, Howard Hughes Medical Institute, Duke University Medical Center, Durham, United States
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| |
Collapse
|
34
|
Khanna MR, Mattie FJ, Browder KC, Radyk MD, Crilly SE, Bakerink KJ, Harper SL, Speicher DW, Thomas GH. Spectrin tetramer formation is not required for viable development in Drosophila. J Biol Chem 2014; 290:706-15. [PMID: 25381248 DOI: 10.1074/jbc.m114.615427] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The dominant paradigm for spectrin function is that (αβ)2-spectrin tetramers or higher order oligomers form membrane-associated two-dimensional networks in association with F-actin to reinforce the plasma membrane. Tetramerization is an essential event in such structures. We characterize the tetramerization interaction between α-spectrin and β-spectrins in Drosophila. Wild-type α-spectrin binds to both β- and βH-chains with high affinity, resembling other non-erythroid spectrins. However, α-spec(R22S), a tetramerization site mutant homologous to the pathological α-spec(R28S) allele in humans, eliminates detectable binding to β-spectrin and reduces binding to βH-spectrin ∼1000-fold. Even though spectrins are essential proteins, α-spectrin(R22S) rescues α-spectrin mutants to adulthood with only minor phenotypes indicating that tetramerization, and thus conventional network formation, is not the essential function of non-erythroid spectrin. Our data provide the first rigorous test for the general requirement for tetramer-based non-erythroid spectrin networks throughout an organism and find that they have very limited roles, in direct contrast to the current paradigm.
Collapse
Affiliation(s)
- Mansi R Khanna
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Floyd J Mattie
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Kristen C Browder
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Megan D Radyk
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Stephanie E Crilly
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Katelyn J Bakerink
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Sandra L Harper
- the Systems Biology Division, The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - David W Speicher
- the Systems Biology Division, The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - Graham H Thomas
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| |
Collapse
|
35
|
Abstract
Dystrophin and utrophin are highly similar proteins that both link cortical actin filaments with a complex of sarcolemmal glycoproteins, yet localize to different subcellular domains within normal muscle cells. In mdx mice and Duchenne muscular dystrophy patients, dystrophin is lacking and utrophin is consequently up-regulated and redistributed to locations normally occupied by dystrophin. Transgenic overexpression of utrophin has been shown to significantly improve aspects of the disease phenotype in the mdx mouse; therefore, utrophin up-regulation is under intense investigation as a potential therapy for Duchenne muscular dystrophy. Here we biochemically compared the previously documented microtubule binding activity of dystrophin with utrophin and analyzed several transgenic mouse models to identify phenotypes of the mdx mouse that remain despite transgenic utrophin overexpression. Our in vitro analyses revealed that dystrophin binds microtubules with high affinity and pauses microtubule polymerization, whereas utrophin has no activity in either assay. We also found that transgenic utrophin overexpression does not correct subsarcolemmal microtubule lattice disorganization, loss of torque production after in vivo eccentric contractions, or physical inactivity after mild exercise. Finally, our data suggest that exercise-induced inactivity correlates with loss of sarcolemmal neuronal NOS localization in mdx muscle, whereas loss of in vivo torque production after eccentric contraction-induced injury is associated with microtubule lattice disorganization.
Collapse
|
36
|
Lim JA, Baek HJ, Jang MS, Choi EK, Lee YM, Lee SJ, Lim SC, Kim JY, Kim TH, Kim HS, Mishra L, Kim SS. Loss of β2-spectrin prevents cardiomyocyte differentiation and heart development. Cardiovasc Res 2014; 101:39-47. [PMID: 24064296 PMCID: PMC4229887 DOI: 10.1093/cvr/cvt222] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 09/10/2013] [Accepted: 09/16/2013] [Indexed: 02/07/2023] Open
Abstract
AIMS β2-Spectrin is an actin-binding protein that plays an important role in membrane integrity and the transforming growth factor (TGF)-β signalling pathway as an adaptor for Smads. Loss of β2-spectrin in mice (Spnb2(-/-)) results in embryonic lethality with gastrointestinal, liver, neural, and heart abnormalities that are similar to those in Smad2(+/-)Smad3(+/-) mice. However, to date, the role of β2-spectrin in embryogenesis, particularly in heart development, has been poorly delineated. Here, we demonstrated that β2-spectrin is required for the survival and differentiation of cardiomyocytes, and its loss resulted in defects in heart development with failure of ventricular wall thickening. METHODS AND RESULTS Disruption of β2-spectrin in primary muscle cells not only inhibited TGF-β/Smad signalling, but also reduced the expression of the cardiomyocyte differentiation markers Nkx2.5, dystrophin, and α-smooth muscle actin (α-SMA). Furthermore, cytoskeletal networks of dystrophin, F-actin, and α-SMA in cardiomyocytes were disorganized upon loss of β2-spectrin. In addition, deletion of β2-spectrin in mice (Spnb2(tm1a/tm1a)) prevented proper development of the heart in association with disintegration of dystrophin structure and markedly reduced survival. CONCLUSION These data suggest that β2-spectrin deficiency leads to inactivation of TGF-β/Smad signalling and contributes to dysregulation of the cell cycle, proliferation, differentiation, and the cytoskeletal network, and it leads to defective heart development. Our data demonstrate that β2-spectrin is required for proper development of the heart and that disruption of β2-spectrin is a potential underlying cause of congenital heart defects.
Collapse
Affiliation(s)
- Jeong A. Lim
- Radiation Medicine Branch, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Goyang 410-769, Korea
| | - Hye Jung Baek
- Radiation Medicine Branch, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Goyang 410-769, Korea
| | - Moon Sun Jang
- Radiation Medicine Branch, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Goyang 410-769, Korea
| | - Eun Kyoung Choi
- Radiation Medicine Branch, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Goyang 410-769, Korea
| | - Yong Min Lee
- Radiation Medicine Branch, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Goyang 410-769, Korea
| | - Sang Jin Lee
- Genitourinary Cancer Branch, National Cancer Center, Goyang, Korea
| | - Sung Chul Lim
- Department of Pathology, Chosun University, Gwangju, Korea
| | - Joo Young Kim
- Radiation Medicine Branch, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Goyang 410-769, Korea
| | - Tae Hyun Kim
- Radiation Medicine Branch, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Goyang 410-769, Korea
| | - Hye Sun Kim
- Department of Biological Science, Ajou University, Suwon, Korea
| | - Lopa Mishra
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sang Soo Kim
- Radiation Medicine Branch, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Goyang 410-769, Korea
| |
Collapse
|
37
|
Oddoux S, Zaal KJ, Tate V, Kenea A, Nandkeolyar SA, Reid E, Liu W, Ralston E. Microtubules that form the stationary lattice of muscle fibers are dynamic and nucleated at Golgi elements. ACTA ACUST UNITED AC 2013; 203:205-13. [PMID: 24145165 PMCID: PMC3812964 DOI: 10.1083/jcb.201304063] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Live imaging reveals that muscle microtubules are highly dynamic and build a durable network nucleated by static Golgi elements. Skeletal muscle microtubules (MTs) form a nonclassic grid-like network, which has so far been documented in static images only. We have now observed and analyzed dynamics of GFP constructs of MT and Golgi markers in single live fibers and in the whole mouse muscle in vivo. Using confocal, intravital, and superresolution microscopy, we find that muscle MTs are dynamic, growing at the typical speed of ∼9 µm/min, and forming small bundles that build a durable network. We also show that static Golgi elements, associated with the MT-organizing center proteins γ-tubulin and pericentrin, are major sites of muscle MT nucleation, in addition to the previously identified sites (i.e., nuclear membranes). These data give us a framework for understanding how muscle MTs organize and how they contribute to the pathology of muscle diseases such as Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Sarah Oddoux
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Randazzo D, Giacomello E, Lorenzini S, Rossi D, Pierantozzi E, Blaauw B, Reggiani C, Lange S, Peter AK, Chen J, Sorrentino V. Obscurin is required for ankyrinB-dependent dystrophin localization and sarcolemma integrity. ACTA ACUST UNITED AC 2013; 200:523-36. [PMID: 23420875 PMCID: PMC3575540 DOI: 10.1083/jcb.201205118] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Obscurin contributes to the organization of subsarcolemma microtubules, localization of dystrophin at costameres, and maintenance of sarcolemmal integrity in skeletal muscle fibers. Obscurin is a large myofibrillar protein that contains several interacting modules, one of which mediates binding to muscle-specific ankyrins. Interaction between obscurin and the muscle-specific ankyrin sAnk1.5 regulates the organization of the sarcoplasmic reticulum in striated muscles. Additional muscle-specific ankyrin isoforms, ankB and ankG, are localized at the subsarcolemma level, at which they contribute to the organization of dystrophin and β-dystroglycan at costameres. In this paper, we report that in mice deficient for obscurin, ankB was displaced from its localization at the M band, whereas localization of ankG at the Z disk was not affected. In obscurin KO mice, localization at costameres of dystrophin, but not of β-dystroglycan, was altered, and the subsarcolemma microtubule cytoskeleton was disrupted. In addition, these mutant mice displayed marked sarcolemmal fragility and reduced muscle exercise tolerance. Altogether, the results support a model in which obscurin, by targeting ankB at the M band, contributes to the organization of subsarcolemma microtubules, localization of dystrophin at costameres, and maintenance of sarcolemmal integrity.
Collapse
Affiliation(s)
- Davide Randazzo
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bennett V, Lorenzo DN. Spectrin- and Ankyrin-Based Membrane Domains and the Evolution of Vertebrates. CURRENT TOPICS IN MEMBRANES 2013; 72:1-37. [DOI: 10.1016/b978-0-12-417027-8.00001-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Gottlieb PA, Bae C, Sachs F. Gating the mechanical channel Piezo1: a comparison between whole-cell and patch recording. Channels (Austin) 2012; 6:282-9. [PMID: 22790451 PMCID: PMC3508907 DOI: 10.4161/chan.21064] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Piezo1 is a eukaryotic cation-selective mechanosensitive ion channel. To understand channel function in vivo, we first need to analyze and compare the response in the whole cell and the patch. In patches, Piezo1 inactivates and the current is fit well by a 3-state model with a single pressure-dependent rate. However, repeated stimulation led to an irreversible loss of inactivation. Remarkably, the loss of inactivation did not occur on a channel-by-channel basis but on all channels at the same time. Thus, the channels are in common mechanical domain. Divalent ions decreased the unitary conductance from ~68 pS to ~37 pS, irrespective of the cation species. Mg and Ca did not affect inactivation rates, but Zn caused a 3-fold slowing. CytochalasinD (cytoD) does not alter inactivation rates or the transition to the non-inactivating mode but does reduce the steady-state response. Whole-cell currents were similar to patch currents but also had significant differences. In contrast to the patch, cytoD inhibited the current suggesting that the activating forces were transmitted through the actin cytoskeleton. Hypotonic swelling that prestressed the cytoskeleton and the bilayer greatly increased the sensitivity of both control and cytoD cells so there are two pathways to transmit force to the channels. In contrast to patch, removing divalent ions decreased the whole-cell current. The difference between whole cell and patch properties provide new insights into our understanding of the Piezo1 gating mechanisms and cautions against generalization to in situ behavior.
Collapse
Affiliation(s)
- Philip A Gottlieb
- Center for Single Molecule Biophysics, Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA.
| | | | | |
Collapse
|
41
|
Structure of the ZU5-ZU5-UPA-DD tandem of ankyrin-B reveals interaction surfaces necessary for ankyrin function. Proc Natl Acad Sci U S A 2012; 109:4822-7. [PMID: 22411828 DOI: 10.1073/pnas.1200613109] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ankyrin-R/B/G (encoded by ANK1/2/3, respectively) are a family of very large scaffold proteins capable of anchoring numerous receptors and ion channels to specific, spectrin-containing membrane micro-domains. Hereditary mutations of ankyrins are known to be associated with diseases including spherocytosis, cardiac arrhythmia, and bipolar disorder in humans, although the underlying molecular bases are poorly understood. The middle spectrin-binding domain of ankyrins contains highly conserved ZU5-ZU5-UPA-DD domains arranged into the ZZUD tandem. Curiously, most of the disease-causing mutations in the tandem have no apparent impact on the spectrin binding of ankyrins. The high resolution structure of the ankyrin-B ZZUD tandem determined here reveals that the ZU5-ZU5-UPA domains form a tightly packed structural supramodule, whereas DD is freely accessible. Although the formation of the ZZU supramodule does not influence the spectrin binding of ankyrins, mutations altering the interdomain interfaces of ZZU impair the functions of ankyrin-B&G. Our structural analysis further indicates that the ZZU supramodule of ankyrins has two additional surfaces that may bind to targets other than spectrin. Finally, the structure of the ankyrin ZZUD provides mechanistic explanations to many disease-causing mutations identified in ankyrin-B&R.
Collapse
|
42
|
Tjota M, Lee SK, Wu J, Williams JA, Khanna MR, Thomas GH. Annexin B9 binds to β(H)-spectrin and is required for multivesicular body function in Drosophila. J Cell Sci 2012; 124:2914-26. [PMID: 21878499 DOI: 10.1242/jcs.078667] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the cytoskeleton in protein trafficking is still being defined. Here, we describe a relationship between the small Ca(2+)-dependent membrane-binding protein Annexin B9 (AnxB9), apical β(Heavy)-spectrin (β(H)) and the multivesicular body (MVB) in Drosophila. AnxB9 binds to a subset of β(H) spliceoforms, and loss of AnxB9 results in an increase in basolateral β(H) and its appearance on cytoplasmic vesicles that overlap with the MVB markers Hrs, Vps16 and EPS15. Similar colocalizations are seen when β(H)-positive endosomes are generated either by upregulation of β(H) in pak mutants or through the expression of the dominant-negative version of β(H). In common with other mutations disrupting the MVB, we also show that there is an accumulation of ubiquitylated proteins and elevated EGFR signaling in the absence of AnxB9 or β(H). Loss of AnxB9 or β(H) function also causes the redistribution of the DE-Cadherin (encoded by shotgun) to endosomal vesicles, suggesting a rationale for the previously documented destabilization of the zonula adherens in karst (which encodes β(H)) mutants. Reduction of AnxB9 results in degradation of the apical-lateral boundary and the appearance of the basolateral proteins Coracle and Dlg on internal vesicles adjacent to β(H). These results indicate that AnxB9 and β(H) are intimately involved in endosomal trafficking to the MVB and play a role in maintaining high-fidelity segregation of the apical and lateral domains.
Collapse
Affiliation(s)
- Monika Tjota
- Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|