1
|
Slade L, Deane CS, Szewczyk NJ, Etheridge T, Whiteman M. Hydrogen sulfide supplementation as a potential treatment for primary mitochondrial diseases. Pharmacol Res 2024; 203:107180. [PMID: 38599468 DOI: 10.1016/j.phrs.2024.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Primary mitochondrial diseases (PMD) are amongst the most common inborn errors of metabolism causing fatal outcomes within the first decade of life. With marked heterogeneity in both inheritance patterns and physiological manifestations, these conditions present distinct challenges for targeted drug therapy, where effective therapeutic countermeasures remain elusive within the clinic. Hydrogen sulfide (H2S)-based therapeutics may offer a new option for patient treatment, having been proposed as a conserved mitochondrial substrate and post-translational regulator across species, displaying therapeutic effects in age-related mitochondrial dysfunction and neurodegenerative models of mitochondrial disease. H2S can stimulate mitochondrial respiration at sites downstream of common PMD-defective subunits, augmenting energy production, mitochondrial function and reducing cell death. Here, we highlight the primary signalling mechanisms of H2S in mitochondria relevant for PMD and outline key cytoprotective proteins/pathways amenable to post-translational restoration via H2S-mediated persulfidation. The mechanisms proposed here, combined with the advent of potent mitochondria-targeted sulfide delivery molecules, could provide a framework for H2S as a countermeasure for PMD disease progression.
Collapse
Affiliation(s)
- Luke Slade
- University of Exeter Medical School, University of Exeter, St. Luke's Campus, Exeter EX1 2LU, UK; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Colleen S Deane
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Nathaniel J Szewczyk
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom; Ohio Musculoskeletal and Neurologic Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, Greece
| | - Timothy Etheridge
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom.
| | - Matthew Whiteman
- University of Exeter Medical School, University of Exeter, St. Luke's Campus, Exeter EX1 2LU, UK.
| |
Collapse
|
2
|
Okoye CN, Koren SA, Wojtovich AP. Mitochondrial complex I ROS production and redox signaling in hypoxia. Redox Biol 2023; 67:102926. [PMID: 37871533 PMCID: PMC10598411 DOI: 10.1016/j.redox.2023.102926] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
Mitochondria are a main source of cellular energy. Oxidative phosphorylation (OXPHOS) is the major process of aerobic respiration. Enzyme complexes of the electron transport chain (ETC) pump protons to generate a protonmotive force (Δp) that drives OXPHOS. Complex I is an electron entry point into the ETC. Complex I oxidizes nicotinamide adenine dinucleotide (NADH) and transfers electrons to ubiquinone in a reaction coupled with proton pumping. Complex I also produces reactive oxygen species (ROS) under various conditions. The enzymatic activities of complex I can be regulated by metabolic conditions and serves as a regulatory node of the ETC. Complex I ROS plays diverse roles in cell metabolism ranging from physiologic to pathologic conditions. Progress in our understanding indicates that ROS release from complex I serves important signaling functions. Increasing evidence suggests that complex I ROS is important in signaling a mismatch in energy production and demand. In this article, we review the role of ROS from complex I in sensing acute hypoxia.
Collapse
Affiliation(s)
- Chidozie N Okoye
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Shon A Koren
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
3
|
Martell E, Kuzmychova H, Kaul E, Senthil H, Chowdhury SR, Morrison LC, Fresnoza A, Zagozewski J, Venugopal C, Anderson CM, Singh SK, Banerji V, Werbowetski-Ogilvie TE, Sharif T. Metabolism-based targeting of MYC via MPC-SOD2 axis-mediated oxidation promotes cellular differentiation in group 3 medulloblastoma. Nat Commun 2023; 14:2502. [PMID: 37130865 PMCID: PMC10154337 DOI: 10.1038/s41467-023-38049-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
Group 3 medulloblastoma (G3 MB) carries the worst prognosis of all MB subgroups. MYC oncoprotein is elevated in G3 MB tumors; however, the mechanisms that support MYC abundance remain unclear. Using metabolic and mechanistic profiling, we pinpoint a role for mitochondrial metabolism in regulating MYC. Complex-I inhibition decreases MYC abundance in G3 MB, attenuates the expression of MYC-downstream targets, induces differentiation, and prolongs male animal survival. Mechanistically, complex-I inhibition increases inactivating acetylation of antioxidant enzyme SOD2 at K68 and K122, triggering the accumulation of mitochondrial reactive oxygen species that promotes MYC oxidation and degradation in a mitochondrial pyruvate carrier (MPC)-dependent manner. MPC inhibition blocks the acetylation of SOD2 and oxidation of MYC, restoring MYC abundance and self-renewal capacity in G3 MB cells following complex-I inhibition. Identification of this MPC-SOD2 signaling axis reveals a role for metabolism in regulating MYC protein abundance that has clinical implications for treating G3 MB.
Collapse
Affiliation(s)
- Emma Martell
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Helgi Kuzmychova
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Esha Kaul
- Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Harshal Senthil
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Ludivine Coudière Morrison
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Agnes Fresnoza
- Central Animal Care Services, University of Manitoba, Winnipeg, MB, Canada
| | - Jamie Zagozewski
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chitra Venugopal
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Chris M Anderson
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sheila K Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Versha Banerji
- CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Tamra E Werbowetski-Ogilvie
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- CancerCare Manitoba, Winnipeg, MB, Canada
| | - Tanveer Sharif
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- CancerCare Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
4
|
Chithra Y, Dey G, Ghose V, Chandramohan V, Gowthami N, Vasudev V, Srinivas Bharath MM. Mitochondrial Complex I Inhibition in Dopaminergic Neurons Causes Altered Protein Profile and Protein Oxidation: Implications for Parkinson's disease. Neurochem Res 2023:10.1007/s11064-023-03907-x. [PMID: 36964824 DOI: 10.1007/s11064-023-03907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/26/2023]
Abstract
Mitochondrial dysfunction and oxidative stress are critical to neurodegeneration in Parkinson's disease (PD). Mitochondrial dysfunction in PD entails inhibition of the mitochondrial complex I (CI) in the dopaminergic neurons of substantia nigra. The events contributing to CI inhibition and downstream pathways are not completely elucidated. We conducted proteomic analysis in a dopaminergic neuronal cell line exposed individually to neurotoxic CI inhibitors: rotenone (Rot), paraquat (Pq) and 1-methyl-4-phenylpyridinium (MPP+). Mass spectrometry (MS) revealed the involvement of biological processes including cell death pathways, structural changes and metabolic processes among others, most of which were common across all models. The proteomic changes induced by Pq were significantly higher than those induced by Rot and MPP+. Altered metabolic processes included downregulated mitochondrial proteins such as CI subunits. MS of CI isolated from the models revealed oxidative post-translational modifications with Tryptophan (Trp) oxidation as the predominant modification. Further, 62 peptides in 22 subunits of CI revealed Trp oxidation with 16 subunits common across toxins. NDUFV1 subunit had the greatest number of oxidized Trp and Rot model displayed the highest number of Trp oxidation events compared to the other models. Molecular dynamics simulation (MDS) of NDUFV1 revealed that oxidized Trp 433 altered the local conformation thereby changing the distance between the Fe-S clusters, Fe-S 301(N1a) to Fe-S 502 (N3) and Fe-S 802 (N4) to Fe-S 801 (N5), potentially affecting the efficiency of electron transfer. The events triggered by the neurotoxins represent CI damage, mitochondrial dysfunction and neurodegeneration in PD.
Collapse
Affiliation(s)
- Yogeshachar Chithra
- Department of Bioscience, P.G. Center, Hemagangotri, University of Mysore, Hassan, Karnataka, 573220, India
| | - Gourav Dey
- Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India
| | - Vivek Ghose
- Manipal Academy of Higher Education, Udupi, Karnataka, 576104, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, Karnataka, 572103, India
| | - Niya Gowthami
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Lakkasandra, Bangalore, 560029, India
| | - V Vasudev
- Department of Bioscience, P.G. Center, Hemagangotri, University of Mysore, Hassan, Karnataka, 573220, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Lakkasandra, Bangalore, 560029, India.
| |
Collapse
|
5
|
Jacobs LJHC, Riemer J. Maintenance of small molecule redox homeostasis in mitochondria. FEBS Lett 2023; 597:205-223. [PMID: 36030088 DOI: 10.1002/1873-3468.14485] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 01/26/2023]
Abstract
Compartmentalisation of eukaryotic cells enables fundamental otherwise often incompatible cellular processes. Establishment and maintenance of distinct compartments in the cell relies not only on proteins, lipids and metabolites but also on small redox molecules. In particular, small redox molecules such as glutathione, NAD(P)H and hydrogen peroxide (H2 O2 ) cooperate with protein partners in dedicated machineries to establish specific subcellular redox compartments with conditions that enable oxidative protein folding and redox signalling. Dysregulated redox homeostasis has been directly linked with a number of diseases including cancer, neurological disorders, cardiovascular diseases, obesity, metabolic diseases and ageing. In this review, we will summarise mechanisms regulating establishment and maintenance of redox homeostasis in the mitochondrial subcompartments of mammalian cells.
Collapse
Affiliation(s)
- Lianne J H C Jacobs
- Institute for Biochemistry and Center of Excellence for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Jan Riemer
- Institute for Biochemistry and Center of Excellence for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| |
Collapse
|
6
|
Monitoring the fluctuations of cysteine activity in living cells using a near-infrared fluorescence probe. Talanta 2022; 261:124119. [DOI: 10.1016/j.talanta.2022.124119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
|
7
|
A reversible mitochondrial complex I thiol switch mediates hypoxic avoidance behavior in C. elegans. Nat Commun 2022; 13:2403. [PMID: 35504873 PMCID: PMC9064984 DOI: 10.1038/s41467-022-30169-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 04/18/2022] [Indexed: 01/28/2023] Open
Abstract
C. elegans react to metabolic distress caused by mismatches in oxygen and energy status via distinct behavioral responses. At the molecular level, these responses are coordinated by under-characterized, redox-sensitive processes, thought to initiate in mitochondria. Complex I of the electron transport chain is a major site of reactive oxygen species (ROS) production and is canonically associated with oxidative damage following hypoxic exposure. Here, we use a combination of optogenetics and CRISPR/Cas9-mediated genome editing to exert spatiotemporal control over ROS production. We demonstrate a photo-locomotory remodeling of avoidance behavior by local ROS production due to the reversible oxidation of a single thiol on the complex I subunit NDUF-2.1. Reversible thiol oxidation at this site is necessary and sufficient for the behavioral response to hypoxia, does not respond to ROS produced at more distal sites, and protects against lethal hypoxic exposure. Molecular modeling suggests that oxidation at this thiol residue alters the ability for NDUF-2.1 to coordinate electron transfer to coenzyme Q by destabilizing the Q-binding pocket, causing decreased complex I activity. Overall, site-specific ROS production regulates behavioral responses and these findings provide a mechanistic target to suppress the detrimental effects of hypoxia.
Collapse
|
8
|
Glutathione-dependent redox balance characterizes the distinct metabolic properties of follicular and marginal zone B cells. Nat Commun 2022; 13:1789. [PMID: 35379825 PMCID: PMC8980022 DOI: 10.1038/s41467-022-29426-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
The metabolic principles underlying the differences between follicular and marginal zone B cells (FoB and MZB, respectively) are not well understood. Here we show, by studying mice with B cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that glutathione synthesis affects homeostasis and differentiation of MZB to a larger extent than FoB, while glutathione-dependent redox control contributes to the metabolic dependencies of FoB. Specifically, Gclc ablation in FoB induces metabolic features of wild-type MZB such as increased ATP levels, glucose metabolism, mTOR activation, and protein synthesis. Furthermore, Gclc-deficient FoB have a block in the mitochondrial electron transport chain (ETC) due to diminished complex I and II activity and thereby accumulate the tricarboxylic acid cycle metabolite succinate. Finally, Gclc deficiency hampers FoB activation and antibody responses in vitro and in vivo, and induces susceptibility to viral infections. Our results thus suggest that Gclc is required to ensure the development of MZB, the mitochondrial ETC integrity in FoB, and the efficacy of antiviral humoral immunity. Follicular and marginal zone B (FoB and MZB, respectively) cells have divergent metabolic characteristics. Here the authors show that deficiency of glutamate cysteine ligase (Gclc), the enzyme for glutathione synthesis, differentially impacts FoB and MZB homeostasis, while specifically impeding FoB activation and downstream antiviral immunity.
Collapse
|
9
|
van der Post S, Seymour RW, Mooradian AD, Held JM. Automating Assignment, Quantitation, and Biological Annotation of Redox Proteomics Datasets with ProteoSushi. Methods Mol Biol 2022; 2399:61-84. [PMID: 35604553 DOI: 10.1007/978-1-0716-1831-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Redox proteomics plays an increasingly important role characterizing the cellular redox state and redox signaling networks. As these datasets grow larger and identify more redox regulated sites in proteins, they provide a systems-wide characterization of redox regulation across cellular organelles and regulatory networks. However, these large proteomic datasets require substantial data processing and analysis in order to fully interpret and comprehend the biological impact of oxidative posttranslational modifications. We therefore developed ProteoSushi, a software tool to biologically annotate and quantify redox proteomics and other modification-specific proteomics datasets. ProteoSushi can be applied to differentially alkylated samples to assay overall cysteine oxidation, chemically labeled samples such as those used to profile the cysteine sulfenome, or any oxidative posttranslational modification on any residue.Here we demonstrate how to use ProteoSushi to analyze a large, public cysteine redox proteomics dataset. ProteoSushi assigns each modified peptide to shared proteins and genes, sums or averages signal intensities for each modified site of interest, and annotates each modified site with the most up-to-date biological information available from UniProt. These biological annotations include known functional roles or modifications of the site, the protein domain(s) that the site resides in, the protein's subcellular location and function, and more.
Collapse
Affiliation(s)
- Sjoerd van der Post
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert W Seymour
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Arshag D Mooradian
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason M Held
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
10
|
Sun YH, Han HH, Huang JM, Li J, Zang Y, Wang CY. A long-wavelength fluorescent probe with a large Stokes shift for lysosome-targeted imaging of Cys and GSH. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120055. [PMID: 34153552 DOI: 10.1016/j.saa.2021.120055] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Biothiols including cysteine (Cys) and glutathione (GSH) are biological signaling molecules responsible for cell detoxification, cell metabolism and neutralization of reactive oxygen species. Here, we synthesized a long-wavelength fluorescent probe, DCIMA, for lysosome-targeted imaging of Cys and GSH in living cells. DCIMA is consisted of a dicyanoisophorone core modified with an acrylate group for biothiol detection through the Michael addition reaction and a morpholine group as the lysosome-targeting agent. The presence of the electron-donating morpholine group also enhances the intramolecular charge transfer mechanism of the probe, thereby enabling its long-wavelength fluorescence emission (670 nm) and large Stokes shift (180 nm). In concentration range of 0-30 μM, the probe was determined to react quickly with both Cys and GSH with low detection limits (<5 min, 35.2 nM for GSH and 34.8 nM for Cys) and achieve the sensitive fluorescence imaging of the biothiols located in the lysosomes of living cells.
Collapse
Affiliation(s)
- Yi-Hang Sun
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, PR China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, PR China; National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd., Shanghai 201203, PR China
| | - Jia-Min Huang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, PR China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd., Shanghai 201203, PR China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd., Shanghai 201203, PR China.
| | - Cheng-Yun Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, PR China.
| |
Collapse
|
11
|
Manzanza NDO, Sedlackova L, Kalaria RN. Alpha-Synuclein Post-translational Modifications: Implications for Pathogenesis of Lewy Body Disorders. Front Aging Neurosci 2021; 13:690293. [PMID: 34248606 PMCID: PMC8267936 DOI: 10.3389/fnagi.2021.690293] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Lewy Body Disorders (LBDs) lie within the spectrum of age-related neurodegenerative diseases now frequently categorized as the synucleinopathies. LBDs are considered to be among the second most common form of neurodegenerative dementias after Alzheimer's disease. They are progressive conditions with variable clinical symptoms embodied within specific cognitive and behavioral disorders. There are currently no effective treatments for LBDs. LBDs are histopathologically characterized by the presence of abnormal neuronal inclusions commonly known as Lewy Bodies (LBs) and extracellular Lewy Neurites (LNs). The inclusions predominantly comprise aggregates of alpha-synuclein (aSyn). It has been proposed that post-translational modifications (PTMs) such as aSyn phosphorylation, ubiquitination SUMOylation, Nitration, o-GlcNacylation, and Truncation play important roles in the formation of toxic forms of the protein, which consequently facilitates the formation of these inclusions. This review focuses on the role of different PTMs in aSyn in the pathogenesis of LBDs. We highlight how these PTMs interact with aSyn to promote misfolding and aggregation and interplay with cell membranes leading to the potential functional and pathogenic consequences detected so far, and their involvement in the development of LBDs.
Collapse
Affiliation(s)
- Nelson de Oliveira Manzanza
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lucia Sedlackova
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Raj N. Kalaria
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
12
|
Cross-over Loop Cysteine C152 Acts as an Antioxidant to Maintain the Folding Stability and Deubiquitinase Activity of UCH-L1 Under Oxidative Stress. J Mol Biol 2021; 433:166879. [PMID: 33617897 DOI: 10.1016/j.jmb.2021.166879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/07/2021] [Accepted: 02/12/2021] [Indexed: 11/20/2022]
Abstract
Redox-dependent inactivation of deubiquitinases (DUBs) is a critical factor for attenuating their DUB activity in response to cellular oxidative stress. Ubiquitin C-terminal hydrolase isoform (UCH-L1) is an important DUB that is highly expressed in human neuronal cells and is implicated in a myriad of human diseases such as neurodegenerative diseases and cancer. Increasing evidence suggests an important role of UCH-L1 in redox regulation and the protection of neuronal cells from oxidative stress. In this study, we examined the molecular basis of how UCH-L1 responds to oxidation in a reversible manner. Using H2O2 as a model oxidant, we showed by mass spectrometry that a subset of methionine and cysteine residues, namely (M1, M6, M12, C90, and C152) were more susceptible to oxidation. Spectroscopic analysis showed that oxidation of C90 can lead to profound structural changes in addition to the loss of function. Importantly, we further demonstrated that C152, which is located at the substrate recognition cross-over loop, serves as a reactive oxygen species (ROS) scavenger to protect catalytic C90 from oxidation under moderate oxidative conditions. Hydrogen-deuterium exchange mass spectrometry analysis provided detailed structural mapping of the destabilizing effect of H2O2-mediated oxidation, which resulted in global destabilization far beyond the oxidation sites. These perturbations may be responsible for irreversible aggregation when subject to prolonged oxidative stress.
Collapse
|
13
|
Martínez-Banaclocha M. N-acetyl-cysteine in Schizophrenia: Potential Role on the Sensitive Cysteine Proteome. Curr Med Chem 2021; 27:6424-6439. [PMID: 33115390 DOI: 10.2174/0929867326666191015091346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/11/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND N-acetyl-cysteine (NAC) has shown widespread utility in different psychiatric disorders, including a beneficial role in schizophrenic patients. Although the replenishment of glutathione and the antioxidant activity of NAC have been suggested as the mechanisms that improve such a wide range of disorders, none seems to be sufficiently specific to explain these intriguing effects. A sensitive cysteine proteome is emerging as a functional and structural network of interconnected Sensitive Cysteine-containing Proteins (SCCPs) that together with reactive species and the cysteine/ glutathione cycles can regulate the bioenergetic metabolism, the redox homeostasis and the cellular growth, differentiation and survival, acting through different pathways that are regulated by the same thiol radical in cysteine residues. OBJECTIVE Since this sensitive cysteine network has been implicated in the pathogenesis of Parkinson's and Alzheimer's diseases, I have reviewed if the proteins that play a role in schizophrenia can be classified as SCCPs. RESULTS The results show that the principal proteins playing a role in schizophrenia can be classified as SCCPs, suggesting that the sensitive cysteine proteome (cysteinet) is defective in this type of psychosis. CONCLUSION The present review proposes that there is a deregulation of the sensitive cysteine proteome in schizophrenia as the consequence of a functional imbalance among different SCCPs, which play different functions in neurons and glial cells. In this context, the role of NAC to restore and prevent schizophrenic disorders is discussed.
Collapse
|
14
|
Oxidative Stress in Parkinson's Disease: Potential Benefits of Antioxidant Supplementation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2360872. [PMID: 33101584 PMCID: PMC7576349 DOI: 10.1155/2020/2360872] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) occurs in approximately 1% of the population over 65 years of age and has become increasingly more common with advances in age. The number of individuals older than 60 years has been increasing in modern societies, as well as life expectancy in developing countries; therefore, PD may pose an impact on the economic, social, and health structures of these countries. Oxidative stress is highlighted as an important factor in the genesis of PD, involving several enzymes and signaling molecules in the underlying mechanisms of the disease. This review presents updated data on the involvement of oxidative stress in the disease, as well as the use of antioxidant supplements in its therapy.
Collapse
|
15
|
Daniel T, Faruq HM, Laura Magdalena J, Manuela G, Christopher Horst L. Role of GSH and Iron-Sulfur Glutaredoxins in Iron Metabolism-Review. Molecules 2020; 25:E3860. [PMID: 32854270 PMCID: PMC7503856 DOI: 10.3390/molecules25173860] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 12/26/2022] Open
Abstract
Glutathione (GSH) was initially identified and characterized for its redox properties and later for its contributions to detoxification reactions. Over the past decade, however, the essential contributions of glutathione to cellular iron metabolism have come more and more into focus. GSH is indispensable in mitochondrial iron-sulfur (FeS) cluster biosynthesis, primarily by co-ligating FeS clusters as a cofactor of the CGFS-type (class II) glutaredoxins (Grxs). GSH is required for the export of the yet to be defined FeS precursor from the mitochondria to the cytosol. In the cytosol, it is an essential cofactor, again of the multi-domain CGFS-type Grxs, master players in cellular iron and FeS trafficking. In this review, we summarize the recent advances and progress in this field. The most urgent open questions are discussed, such as the role of GSH in the export of FeS precursors from mitochondria, the physiological roles of the CGFS-type Grx interactions with BolA-like proteins and the cluster transfer between Grxs and recipient proteins.
Collapse
Affiliation(s)
- Trnka Daniel
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Hossain Md Faruq
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Jordt Laura Magdalena
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Gellert Manuela
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Lillig Christopher Horst
- Christopher Horst Lillig, Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| |
Collapse
|
16
|
Idebenone Has Distinct Effects on Mitochondrial Respiration in Cortical Astrocytes Compared to Cortical Neurons Due to Differential NQO1 Activity. J Neurosci 2020; 40:4609-4619. [PMID: 32350039 DOI: 10.1523/jneurosci.1632-17.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 04/18/2020] [Accepted: 04/26/2020] [Indexed: 12/21/2022] Open
Abstract
Idebenone is a synthetic quinone that on reduction in cells can bypass mitochondrial Complex I defects by donating electrons to Complex III. The drug is used clinically to treat the Complex I disease Leber's hereditary optic neuropathy (LHON), but has been less successful in clinical trials for other neurodegenerative diseases. NAD(P)H:quinone oxidoreductase 1 (NQO1) appears to be the main intracellular enzyme catalyzing idebenone reduction. However, NQO1 is not universally expressed by cells of the brain. Using primary rat cortical cells pooled from both sexes, we tested the hypotheses that the level of endogenous NQO1 activity limits the ability of neurons, but not astrocytes, to use idebenone as an electron donor to support mitochondrial respiration. We then tested the prediction that NQO1 induction by pharmacological activation of the transcription factor nuclear erythroid 2-related factor 2 (Nrf2) enables idebenone to bypass Complex I in cells with poor NQO1 expression. We found that idebenone stimulated respiration by astrocytes but reduced the respiratory capacity of neurons. Importantly, idebenone supported mitochondrial oxygen consumption in the presence of a Complex I inhibitor in astrocytes but not neurons, and this ability was reversed by inhibiting NQO1. Conversely, recombinant NQO1 delivery to neurons prevented respiratory impairment and conferred Complex I bypass activity. Nrf2 activators failed to increase NQO1 in neurons, but carnosic acid induced NQO1 in COS-7 cells that expressed little endogenous enzyme. Carnosic acid-idebenone combination treatment promoted NQO1-dependent Complex I bypass activity in these cells. Thus, combination drug strategies targeting NQO1 may promote the repurposing of idebenone for additional disorders.SIGNIFICANCE STATEMENT Idebenone is used clinically to treat loss of visual acuity in Leber's hereditary optic neuropathy. Clinical trials for several additional diseases have failed. This study demonstrates a fundamental difference in the way idebenone affects mitochondrial respiration in cortical neurons compared with cortical astrocytes. Cortical neurons are unable to use idebenone as a direct mitochondrial electron donor due to NQO1 deficiency. Our results suggest that idebenone behaves as an NQO1-dependent prodrug, raising the possibility that lack of neuronal NQO1 activity has contributed to the limited efficacy of idebenone in neurodegenerative disease treatment. Combination therapy with drugs able to safely induce NQO1 in neurons, as well as other brain cell types, may be able to unlock the neuroprotective therapeutic potential of idebenone or related quinones.
Collapse
|
17
|
Held JM. Redox Systems Biology: Harnessing the Sentinels of the Cysteine Redoxome. Antioxid Redox Signal 2020; 32:659-676. [PMID: 31368359 PMCID: PMC7047077 DOI: 10.1089/ars.2019.7725] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022]
Abstract
Significance: Cellular redox processes are highly interconnected, yet not in equilibrium, and governed by a wide range of biochemical parameters. Technological advances continue refining how specific redox processes are regulated, but broad understanding of the dynamic interconnectivity between cellular redox modules remains limited. Systems biology investigates multiple components in complex environments and can provide integrative insights into the multifaceted cellular redox state. This review describes the state of the art in redox systems biology as well as provides an updated perspective and practical guide for harnessing thousands of cysteine sensors in the redoxome for multiparameter characterization of cellular redox networks. Recent Advances: Redox systems biology has been applied to genome-scale models and large public datasets, challenged common conceptions, and provided new insights that complement reductionist approaches. Advances in public knowledge and user-friendly tools for proteome-wide annotation of cysteine sentinels can now leverage cysteine redox proteomics datasets to provide spatial, functional, and protein structural information. Critical Issues: Careful consideration of available analytical approaches is needed to broadly characterize the systems-level properties of redox signaling networks and be experimentally feasible. The cysteine redoxome is an informative focal point since it integrates many aspects of redox biology. The mechanisms and redox modules governing cysteine redox regulation, cysteine oxidation assays, proteome-wide annotation of the biophysical and biochemical properties of individual cysteines, and their clinical application are discussed. Future Directions: Investigating the cysteine redoxome at a systems level will uncover new insights into the mechanisms of selectivity and context dependence of redox signaling networks.
Collapse
Affiliation(s)
- Jason M. Held
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| |
Collapse
|
18
|
Behring JB, van der Post S, Mooradian AD, Egan MJ, Zimmerman MI, Clements JL, Bowman GR, Held JM. Spatial and temporal alterations in protein structure by EGF regulate cryptic cysteine oxidation. Sci Signal 2020; 13:eaay7315. [PMID: 31964804 PMCID: PMC7263378 DOI: 10.1126/scisignal.aay7315] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stimulation of plasma membrane receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR), locally increases the abundance of reactive oxygen species (ROS). These ROS then oxidize cysteine residues in proteins to potentiate downstream signaling. Spatial confinement of ROS is an important regulatory mechanism of redox signaling that enables the stimulation of different RTKs to oxidize distinct sets of downstream proteins. To uncover additional mechanisms that specify cysteines that are redox regulated by EGF stimulation, we performed time-resolved quantification of the EGF-dependent oxidation of 4200 cysteine sites in A431 cells. Fifty-one percent of cysteines were statistically significantly oxidized by EGF stimulation. Furthermore, EGF induced three distinct spatiotemporal patterns of cysteine oxidation in functionally organized protein networks, consistent with the spatial confinement model. Unexpectedly, protein crystal structure analysis and molecular dynamics simulations indicated widespread redox regulation of cryptic cysteine residues that are solvent exposed only upon changes in protein conformation. Phosphorylation and increased flux of nucleotide substrates served as two distinct modes by which EGF specified the cryptic cysteine residues that became solvent exposed and redox regulated. Because proteins that are structurally regulated by different RTKs or cellular perturbations are largely unique, these findings suggest that solvent exposure and redox regulation of cryptic cysteine residues contextually delineate redox signaling networks.
Collapse
Affiliation(s)
- Jessica B Behring
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Sjoerd van der Post
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Arshag D Mooradian
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Matthew J Egan
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Maxwell I Zimmerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jenna L Clements
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jason M Held
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
19
|
Bogetofte H, Jensen P, Okarmus J, Schmidt SI, Agger M, Ryding M, Nørregaard P, Fenger C, Zeng X, Graakjær J, Ryan BJ, Wade-Martins R, Larsen MR, Meyer M. Perturbations in RhoA signalling cause altered migration and impaired neuritogenesis in human iPSC-derived neural cells with PARK2 mutation. Neurobiol Dis 2019; 132:104581. [DOI: 10.1016/j.nbd.2019.104581] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/30/2019] [Accepted: 08/20/2019] [Indexed: 01/11/2023] Open
|
20
|
Yip Y, Yan Z, Law G, Wong W. Reaction‐Based Europium Complex for Specific Detection of Cysteine Over Homocysteine and Glutathione with Variable‐Temperature Kinetic Studies. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuk‐Wang Yip
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen PR China
- State Key Laboratory of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| | - Zhiyuan Yan
- State Key Laboratory of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| | - Ga‐Lai Law
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen PR China
- State Key Laboratory of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| | - Wing‐Tak Wong
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen PR China
- State Key Laboratory of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| |
Collapse
|
21
|
Liu D, Lv Y, Chen M, Cheng D, Song Z, Yuan L, Zhang X. A long wavelength emission two-photon fluorescent probe for highly selective detection of cysteine in living cells and an inflamed mouse model. J Mater Chem B 2019. [DOI: 10.1039/c9tb00652d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As a semi-essential proteinogenic amino acid and biothiol, cysteine (Cys) is highly important in many basic cellular processes.
Collapse
Affiliation(s)
- Dongjie Liu
- College of Materials Science and Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Yun Lv
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Mei Chen
- College of Materials Science and Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Dan Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Zhiling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Xiaobing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| |
Collapse
|
22
|
Fan L, Zhang W, Wang X, Dong W, Tong Y, Dong C, Shuang S. A two-photon ratiometric fluorescent probe for highly selective sensing of mitochondrial cysteine in live cells. Analyst 2018; 144:439-447. [PMID: 30420979 DOI: 10.1039/c8an01908h] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We report herein a two-photon ratiometric fluorescent probe (DNEPI) for mitochondrial cysteine (Cys) detection on the basis of a merocyanine (compound 1) as the two-photon fluorophore and a 2,4-dinitrobenzensulfonyl (DNBS) unit as the biothiol reaction site. Upon reaction with Cys in DMSO/PBS (1/1, v/v), DNEPI showed a distinct ratiometric fluorescence emission characteristic (F583 nm/F485 nm) linearly proportional to Cys concentrations over the range of 2-10 μM, which was attribute to the enhanced intramolecular charge transfer (ICT) effect by cleavage of the sulfonic acid ester bond of DNEPI to release compound 1. More importantly, the probe could detect Cys with a fast response time (within 2 min) and the detection limit was quantitatively calculated as 0.29 μM. Furthermore, DNEPI not only exhibited high selectivity toward Cys over other similar biothiols, including homocysteine (Hcy) and glutathione (GSH), but also displayed significant mitochondrial-targeting ability, which were favorable for mitochondrial Cys-selective imaging. Subsequently, application of DNEPI to Cys imaging in live cells was successfully achieved by two-photon fluorescence microscopy, suggesting that the probe proposed here could be used to monitor mitochondrial Cys concentration changes in live cells with negligible interference from other biological thiols.
Collapse
Affiliation(s)
- Li Fan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China.
| | - Wenjia Zhang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China.
| | - Xiaodong Wang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China.
| | - Wenjuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China.
| | - Yaoli Tong
- Translational medicine research center, Shanxi Medical University, Taiyuan, 030006, P. R. China
| | - Chuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China.
| | - Shaomin Shuang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China.
| |
Collapse
|
23
|
Valberg SJ, Perumbakkam S, McKenzie EC, Finno CJ. Proteome and transcriptome profiling of equine myofibrillar myopathy identifies diminished peroxiredoxin 6 and altered cysteine metabolic pathways. Physiol Genomics 2018; 50:1036-1050. [PMID: 30289745 PMCID: PMC6337024 DOI: 10.1152/physiolgenomics.00044.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Equine myofibrillar myopathy (MFM) causes exertional muscle pain and is characterized by myofibrillar disarray and ectopic desmin aggregates of unknown origin. To investigate the pathophysiology of MFM, we compared resting and 3 h postexercise transcriptomes of gluteal muscle and the resting skeletal muscle proteome of MFM and control Arabian horses with RNA sequencing and isobaric tags for relative and absolute quantitation analyses. Three hours after exercise, 191 genes were identified as differentially expressed (DE) in MFM vs. control muscle with >1 log2 fold change (FC) in genes involved in sulfur compound/cysteine metabolism such as cystathionine-beta-synthase ( CBS, ↓4.51), a cysteine and neutral amino acid membrane transporter ( SLC7A10, ↓1.80 MFM), and a cationic transporter (SLC24A1, ↓1.11 MFM). In MFM vs. control at rest, 284 genes were DE with >1 log2 FC in pathways for structure morphogenesis, fiber organization, tissue development, and cell differentiation including > 1 log2 FC in cardiac alpha actin ( ACTC1 ↑2.5 MFM), cytoskeletal desmoplakin ( DSP ↑2.4 MFM), and basement membrane usherin ( USH2A ↓2.9 MFM). Proteome analysis revealed significantly lower antioxidant peroxiredoxin 6 content (PRDX6, ↓4.14 log2 FC MFM), higher fatty acid transport enzyme carnitine palmitoyl transferase (CPT1B, ↑3.49 MFM), and lower sarcomere protein tropomyosin (TPM2, ↓3.24 MFM) in MFM vs. control muscle at rest. We propose that in MFM horses, altered cysteine metabolism and a deficiency of cysteine-containing antioxidants combined with a high capacity to oxidize fatty acids and generate ROS during aerobic exercise causes chronic oxidation and aggregation of key proteins such as desmin.
Collapse
Affiliation(s)
- Stephanie J Valberg
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan.,Department of Population Sciences, University of Minnesota , St. Paul, Minnesota
| | - Sudeep Perumbakkam
- Department of Large Animal Clinical Sciences, Michigan State University , East Lansing, Michigan
| | - Erica C McKenzie
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University , Corvallis, Oregon
| | - Carrie J Finno
- Department of Population Health and Reproduction, University of California Davis , Davis, California
| |
Collapse
|
24
|
Kramer PA, Duan J, Gaffrey MJ, Shukla AK, Wang L, Bammler TK, Qian WJ, Marcinek DJ. Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle. Redox Biol 2018; 17:367-376. [PMID: 29857311 PMCID: PMC6007084 DOI: 10.1016/j.redox.2018.05.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 02/08/2023] Open
Abstract
Protein S-glutathionylation is an important reversible post-translational modification implicated in redox signaling. Oxidative modifications to protein thiols can alter the activity of metabolic enzymes, transcription factors, kinases, phosphatases, and the function of contractile proteins. However, the extent to which muscle contraction induces oxidative modifications in redox sensitive thiols is not known. The purpose of this study was to determine the targets of S-glutathionylation redox signaling following fatiguing contractions. Anesthetized adult male CB6F1 (BALB/cBy × C57BL/6) mice were subjected to acute fatiguing contractions for 15 min using in vivo stimulations. The right (stimulated) and left (unstimulated) gastrocnemius muscleswere collected 60 min after the last stimulation and processed for redox proteomics assay of S-glutathionylation. Using selective reduction with a glutaredoxin enzyme cocktail and resin-assisted enrichment technique, we quantified the levels of site-specific protein S-glutathionylation at rest and following fatiguing contractions. Redox proteomics revealed over 2200 sites of S-glutathionylation modifications, of which 1290 were significantly increased after fatiguing contractions. Muscle contraction leads to the greatest increase in S-glutathionylation in the mitochondria (1.03%) and the smallest increase in the nucleus (0.47%). Regulatory cysteines were significantly S-glutathionylated on mitochondrial complex I and II, GAPDH, MDH1, ACO2, and mitochondrial complex V among others. Similarly, S-glutathionylation of RYR1, SERCA1, titin, and troponin I2 are known to regulate muscle contractility and were significantly S-glutathionylated after just 15 min of fatiguing contractions. The largest fold changes (> 1.6) in the S-glutathionylated proteome after fatigue occurred on signaling proteins such as 14-3-3 protein gamma and MAP2K4, as well as proteins like SERCA1, and NDUV2 of mitochondrial complex I, at previously unknown glutathionylation sites. These findings highlight the important role of redox control over muscle physiology, metabolism, and the exercise adaptive response. This study lays the groundwork for future investigation into the altered exercise adaptation associated with chronic conditions, such as sarcopenia. A single bout of fatiguing contractions increase muscle protein S-glutathionylation. Mitochondrial proteins are sensitive to oxidative modifications following fatigue. The glutathionylated proteome includes cysteines of known functional importance.
Collapse
Affiliation(s)
- Philip A Kramer
- Department of Radiology, University of Washington, Seattle, WA 98105, United States
| | - Jicheng Duan
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Matthew J Gaffrey
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Anil K Shukla
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Lu Wang
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98105, United States
| | - Theo K Bammler
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98105, United States
| | - Wei-Jun Qian
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States.
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA 98105, United States.
| |
Collapse
|
25
|
Srinivas Bharath MM. Post-Translational Oxidative Modifications of Mitochondrial Complex I (NADH: Ubiquinone Oxidoreductase): Implications for Pathogenesis and Therapeutics in Human Diseases. J Alzheimers Dis 2018; 60:S69-S86. [PMID: 28582861 DOI: 10.3233/jad-170117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial complex I (NADH: ubiquinone oxidoreductase; CI) is central to the electron transport chain (ETC), oxidative phosphorylation, and ATP production in eukaryotes. CI is a multi-subunit complex with a complicated yet organized structure that optimally connects electron transfer with proton translocation and forms higher-order supercomplexes with other ETC complexes. Efforts to understand the molecular genetics, expression profile of subunits, and structure-function relationship of CI have increased over the years due to the direct role of the complex in human diseases. Although mutations in the nuclear and mitochondrial genes of CI and altered expression of subunits could potentially lower CI activity leading to mitochondrial dysfunction in many diseases, oxidative post-translational modifications (PTMs) have emerged as an important mechanism contributing to altered CI activity. These mainly include reversible and irreversible cysteine modifications, tyrosine nitration, carbonylation, and tryptophan oxidation that are generated following exposure to reactive oxygen species/reactive nitrogen species. Interestingly, oxidative PTMs could contribute either to CI damage, mitochondrial dysfunction, and ensuing cell death or a response mechanism with potential cytoprotective effects. This has also emerged as a promising field for structural biologists since analysis of PTMs could assist in understanding the structure-function relationship of the complex and correlate electron transfer mechanism with energy production. However, analysis of PTMs of CI and their contribution to CI function are incomplete in many physiological and pathological conditions. This review aims to highlight the role of oxidative PTMs in modulating CI activity with implications toward pathobiology of CNS diseases and novel therapeutics.
Collapse
Affiliation(s)
- M M Srinivas Bharath
- Department of Neurochemistry and Neurotoxicology Laboratory at the Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
26
|
Khalifa ARM, Abdel-Rahman EA, Mahmoud AM, Ali MH, Noureldin M, Saber SH, Mohsen M, Ali SS. Sex-specific differences in mitochondria biogenesis, morphology, respiratory function, and ROS homeostasis in young mouse heart and brain. Physiol Rep 2017; 5:5/6/e13125. [PMID: 28325789 PMCID: PMC5371549 DOI: 10.14814/phy2.13125] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 02/07/2023] Open
Abstract
Sex-specific differences in mitochondrial function and free radical homeostasis are reported in the context of aging but not well-established in pathogeneses occurring early in life. Here, we examine if sex disparity in mitochondria function, morphology, and redox status starts early and hence can be implicated in sexual dimorphism in cardiac as well as neurological disorders prevalent at young age. Although mitochondrial activity in the heart did not significantly vary between sexes, female brain exhibited enhanced respiration and higher reserve capacity. This was associated with lower H2O2 production in female cardiac and brain tissues. Using transmission electron microscopy, we found that the number of female cardiac mitochondria is moderately greater (117 ± 3%, P = 0.049, N = 4) than male's, which increased significantly for cortical mitochondria (134 ± 4%, P = 0.001, N = 4). However, male's cardiac mitochondria exhibited fragmented, circular, and smaller mitochondria relative to female's mitochondria, while no morphologic sex-dependent differences were observed in cortical mitochondria. No sex differences were detected in Nox2 and Nox4 proteins or O2-consuming/H2O2-producing activities in brain homogenate or synaptosomes. However, a strong trend of increased EPR-detected NOX superoxide in male synaptosomes hinted at higher superoxide dismutase activity in female brains, which was confirmed by two independent protocols. We also provide direct evidence that respiring mitochondria generally produce an order-of-magnitude lower reactive oxygen species (ROS) proportions than currently estimated. Our results indicate that sex differences in mitochondrial biogenesis, bioenergetics, and morphology may start at young age and that sex-dependent SOD capacity may be responsible for differences in ROS homeostasis in heart and brain.
Collapse
Affiliation(s)
- Abdel Rahman M Khalifa
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Engy A Abdel-Rahman
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Ali M Mahmoud
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed H Ali
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Maha Noureldin
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Saber H Saber
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Mahmoud Mohsen
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Sameh S Ali
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
27
|
Pryde KR, Taanman JW, Schapira AH. A LON-ClpP Proteolytic Axis Degrades Complex I to Extinguish ROS Production in Depolarized Mitochondria. Cell Rep 2017; 17:2522-2531. [PMID: 27926857 PMCID: PMC5177631 DOI: 10.1016/j.celrep.2016.11.027] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/28/2016] [Accepted: 11/03/2016] [Indexed: 10/27/2022] Open
Abstract
Mitochondrial dysfunction is implicated in numerous neurodegenerative disorders and in Parkinson's disease (PD) in particular. PINK1 and Parkin gene mutations are causes of autosomal recessive PD, and these respective proteins function cooperatively to degrade depolarized mitochondria (mitophagy). It is widely assumed that impaired mitophagy causes PD, as toxic reactive oxygen species (ROS)-producing mitochondria accumulate and progressively drive neurodegeneration. Instead, we report that a LON-ClpP proteolytic quality control axis extinguishes ROS in depolarized mitochondria by degrading the complex I ROS-generating domain. Complex I deficiency has also been identified in PD brain, and our study provides a compelling non-genetic mechanistic rationale to explain this observation: intact complex I depletes if mitochondrial bioenergetic capacity is robustly attenuated.
Collapse
Affiliation(s)
- Kenneth Robert Pryde
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London WC1E 6BT, UK.
| | - Jan Willem Taanman
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London WC1E 6BT, UK
| | - Anthony Henry Schapira
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London WC1E 6BT, UK
| |
Collapse
|
28
|
Duan J, Gaffrey MJ, Qian WJ. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines. MOLECULAR BIOSYSTEMS 2017; 13:816-829. [PMID: 28357434 PMCID: PMC5493446 DOI: 10.1039/c6mb00861e] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein thiols play a crucial role in redox signaling, in the regulation of enzymatic activity and protein function, and in maintaining redox homeostasis in living systems. The unique chemical reactivity of the thiol group makes protein cysteines susceptible to reactions with reactive oxygen and nitrogen species that form various reversible and irreversible post-translational modifications (PTMs). The reversible PTMs in particular are major components of redox signaling and are involved in the regulation of various cellular processes under physiological and pathological conditions. The biological significance of these redox PTMs in both healthy and disease states has been increasingly recognized. Herein, we review recent advances in quantitative proteomic approaches for investigating redox PTMs in complex biological systems, including general considerations of sample processing, chemical or affinity enrichment strategies, and quantitative approaches. We also highlight a number of redox proteomic approaches that enable effective profiling of redox PTMs for specific biological applications. Although technical limitations remain, redox proteomics is paving the way to a better understanding of redox signaling and regulation in both healthy and disease states.
Collapse
Affiliation(s)
- Jicheng Duan
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | |
Collapse
|
29
|
Ishii T, Takanashi Y, Sugita K, Miyazawa M, Yanagihara R, Yasuda K, Onouchi H, Kawabe N, Nakata M, Yamamoto Y, Hartman PS, Ishii N. Endogenous reactive oxygen species cause astrocyte defects and neuronal dysfunctions in the hippocampus: a new model for aging brain. Aging Cell 2017; 16:39-51. [PMID: 27623715 PMCID: PMC5242301 DOI: 10.1111/acel.12523] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2016] [Indexed: 11/28/2022] Open
Abstract
The etiology of astrocyte dysfunction is not well understood even though neuronal defects have been extensively studied in a variety of neuronal degenerative diseases. Astrocyte defects could be triggered by the oxidative stress that occurs during physiological aging. Here, we provide evidence that intracellular or mitochondrial reactive oxygen species (ROS) at physiological levels can cause hippocampal (neuronal) dysfunctions. Specifically, we demonstrate that astrocyte defects occur in the hippocampal area of middle‐aged Tet‐mev‐1 mice with the SDHCV69E mutation. These mice are characterized by chronic oxidative stress. Even though both young adult and middle‐aged Tet‐mev‐1 mice overproduced MitoSOX Red‐detectable mitochondrial ROS compared to age‐matched wild‐type C57BL/6J mice, only young adult Tet‐mev‐1 mice upregulated manganese and copper/zinc superoxide dismutase (Mn‐ and Cu/Zn‐SODs) activities to eliminate the MitoSOX Red‐detectable mitochondrial ROS. In contrast, middle‐aged Tet‐mev‐1 mice accumulated both MitoSOX Red‐detectable mitochondrial ROS and CM‐H2DCFDA‐detectable intracellular ROS. These ROS levels appeared to be in the physiological range as shown by normal thiol and glutathione disulfide/glutathione concentrations in both young adult and middle‐aged Tet‐mev‐1 mice relative to age‐matched wild‐type C57BL/6J mice. Furthermore, only middle‐aged Tet‐mev‐1 mice showed JNK/SAPK activation and Ca2+ overload, particularly in astrocytes. This led to decreasing levels of glial fibrillary acidic protein and S100β in the hippocampal area. Significantly, there were no pathological features such as apoptosis, amyloidosis, and lactic acidosis in neurons and astrocytes. Our findings suggest that the age‐dependent physiologically relevant chronic oxidative stress caused astrocyte defects in mice with impaired mitochondrial electron transport chain functionality.
Collapse
Affiliation(s)
- Takamasa Ishii
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
- Institute of Medical Sciences; Tokai University; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Yumi Takanashi
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Koichi Sugita
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
- School of Bioscience and Biotechnology; Tokyo University of Technology; 1404-1 Katakuramachi Hachioji Tokyo 192-0982 Japan
| | - Masaki Miyazawa
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Rintaro Yanagihara
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Kayo Yasuda
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
- Support Center for Medical Research and Education; Tokai University; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Hiromi Onouchi
- Department of Ophthalmology; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Noboru Kawabe
- Support Center for Medical Research and Education; Tokai University; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Munehiro Nakata
- Department of Applied Biochemistry; Tokai University School of Engineering; 4-1-1 Kitakaname Hiratsuka Kanagawa 259-1292 Japan
| | - Yorihiro Yamamoto
- School of Bioscience and Biotechnology; Tokyo University of Technology; 1404-1 Katakuramachi Hachioji Tokyo 192-0982 Japan
| | - Phil S. Hartman
- Department of Biology; Texas Christian University; Fort Worth TX 76129 USA
| | - Naoaki Ishii
- Department of Molecular Life Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| |
Collapse
|
30
|
Gu L, Robinson RAS. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases. Proteomics Clin Appl 2016; 10:1159-1177. [PMID: 27666938 DOI: 10.1002/prca.201600015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/13/2016] [Accepted: 09/23/2016] [Indexed: 01/11/2023]
Abstract
Cysteine is a highly reactive amino acid and is subject to a variety of reversible post-translational modifications (PTMs), including nitrosylation, glutathionylation, palmitoylation, as well as formation of sulfenic acid and disulfides. These modifications are not only involved in normal biological activities, such as enzymatic catalysis, redox signaling, and cellular homeostasis, but can also be the result of oxidative damage. Especially in aging and neurodegenerative diseases, oxidative stress leads to aberrant cysteine oxidations that affect protein structure and function leading to neurodegeneration as well as other detrimental effects. Methods that can identify cysteine modifications by type, including the site of modification, as well as the relative stoichiometry of the modification can be very helpful for understanding the role of the thiol proteome and redox homeostasis in the context of disease. Cysteine reversible modifications however, are challenging to investigate as they are low abundant, diverse, and labile especially under endogenous conditions. Thanks to the development of redox proteomic approaches, large-scale quantification of cysteine reversible modifications is possible. These approaches cover a range of strategies to enrich, identify, and quantify cysteine reversible modifications from biological samples. This review will focus on nongel-based redox proteomics workflows that give quantitative information about cysteine PTMs and highlight how these strategies have been useful for investigating the redox thiol proteome in aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Liqing Gu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Renã A S Robinson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
31
|
Sahebekhtiari N, Nielsen CB, Johannsen M, Palmfeldt J. Untargeted Metabolomics Analysis Reveals a Link between ETHE1-Mediated Disruptive Redox State and Altered Metabolic Regulation. J Proteome Res 2016; 15:1630-8. [DOI: 10.1021/acs.jproteome.6b00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Navid Sahebekhtiari
- Research
Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Camilla Bak Nielsen
- Section
for Forensic Chemistry, Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Mogens Johannsen
- Section
for Forensic Chemistry, Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Johan Palmfeldt
- Research
Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| |
Collapse
|
32
|
Guarás A, Perales-Clemente E, Calvo E, Acín-Pérez R, Loureiro-Lopez M, Pujol C, Martínez-Carrascoso I, Nuñez E, García-Marqués F, Rodríguez-Hernández MA, Cortés A, Diaz F, Pérez-Martos A, Moraes CT, Fernández-Silva P, Trifunovic A, Navas P, Vazquez J, Enríquez JA. The CoQH2/CoQ Ratio Serves as a Sensor of Respiratory Chain Efficiency. Cell Rep 2016; 15:197-209. [PMID: 27052170 DOI: 10.1016/j.celrep.2016.03.009] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/03/2016] [Accepted: 02/27/2016] [Indexed: 02/01/2023] Open
Abstract
Electrons feed into the mitochondrial electron transport chain (mETC) from NAD- or FAD-dependent enzymes. A shift from glucose to fatty acids increases electron flux through FAD, which can saturate the oxidation capacity of the dedicated coenzyme Q (CoQ) pool and result in the generation of reactive oxygen species. To prevent this, the mETC superstructure can be reconfigured through the degradation of respiratory complex I, liberating associated complex III to increase electron flux via FAD at the expense of NAD. Here, we demonstrate that this adaptation is driven by the ratio of reduced to oxidized CoQ. Saturation of CoQ oxidation capacity induces reverse electron transport from reduced CoQ to complex I, and the resulting local generation of superoxide oxidizes specific complex I proteins, triggering their degradation and the disintegration of the complex. Thus, CoQ redox status acts as a metabolic sensor that fine-tunes mETC configuration in order to match the prevailing substrate profile.
Collapse
Affiliation(s)
- Adela Guarás
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Ester Perales-Clemente
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Enrique Calvo
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Rebeca Acín-Pérez
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Marta Loureiro-Lopez
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Claire Pujol
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Isabel Martínez-Carrascoso
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Estefanía Nuñez
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Fernando García-Marqués
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - María Angeles Rodríguez-Hernández
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Sevilla 41013, Spain
| | - Ana Cortés
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Sevilla 41013, Spain
| | - Francisca Diaz
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Acisclo Pérez-Martos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Carlos T Moraes
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Cell Biology and Anatomy, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Patricio Fernández-Silva
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, Sevilla 41013, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Sevilla 41013, Spain
| | - Jesús Vazquez
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Jose A Enríquez
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza 50009, Spain.
| |
Collapse
|
33
|
Han C, Yang H, Chen M, Su Q, Feng W, Li F. Mitochondria-Targeted Near-Infrared Fluorescent Off-On Probe for Selective Detection of Cysteine in Living Cells and in Vivo. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27968-75. [PMID: 26618279 DOI: 10.1021/acsami.5b10607] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cysteine (Cys) plays crucial roles in biological systems and in mitochondrial processes. Highly selective probes for specific detection of mitochondrial Cys over other biological thiols are rare. Herein, we designed and synthesized a mitochondria-targetable near-infrared (NIR) fluorescent off-on probe, NFL1, based on a fluorescein derivative for Cys detection. Probe NFL1 has a lipophilic cation unit as the mitochondria biomarker and an acrylate group as the Cys-recognition unit as well as a fluorescence quencher. The probe itself is nonfluorescent due to the photoinduced electron transfer process. Upon addition of Cys, marked enhancement in the NIR emission (735 nm) can be monitored due to cleavage of the acrylate moiety. This probe had great sensitivity and selectivity for the rapid detection of Cys over homocysteine (Hcy) and glutathione (GSH) with an ultralow detection limit of 14.5 nM. More importantly, the probe successfully targeted mitochondria, detected endogenous Cys, and assessed mitochondrial oxidative stress in living cells. Probe NFL1 was also capable of detecting and imaging Cys in living nude mice, indicating its significant potential in biological applications.
Collapse
Affiliation(s)
- Chunmiao Han
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institutes of Biomedical Sciences & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University , 220 Handan Road, Shanghai 200433, P.R. China
| | - Huiran Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institutes of Biomedical Sciences & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University , 220 Handan Road, Shanghai 200433, P.R. China
| | - Min Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institutes of Biomedical Sciences & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University , 220 Handan Road, Shanghai 200433, P.R. China
| | - Qianqian Su
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institutes of Biomedical Sciences & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University , 220 Handan Road, Shanghai 200433, P.R. China
| | - Wei Feng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institutes of Biomedical Sciences & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University , 220 Handan Road, Shanghai 200433, P.R. China
| | - Fuyou Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institutes of Biomedical Sciences & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University , 220 Handan Road, Shanghai 200433, P.R. China
| |
Collapse
|
34
|
Kramer PA, Duan J, Qian WJ, Marcinek DJ. The Measurement of Reversible Redox Dependent Post-translational Modifications and Their Regulation of Mitochondrial and Skeletal Muscle Function. Front Physiol 2015; 6:347. [PMID: 26635632 PMCID: PMC4658434 DOI: 10.3389/fphys.2015.00347] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/09/2015] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial oxidative stress is a common feature of skeletal myopathies across multiple conditions; however, the mechanism by which it contributes to skeletal muscle dysfunction remains controversial. Oxidative damage to proteins, lipids, and DNA has received the most attention, yet an important role for reversible redox post-translational modifications (PTMs) in pathophysiology is emerging. The possibility that these PTMs can exert dynamic control of muscle function implicates them as a mechanism contributing to skeletal muscle dysfunction in chronic disease. Herein, we discuss the significance of thiol-based redox dependent modifications to mitochondrial, myofibrillar, and excitation-contraction (EC) coupling proteins with an emphasis on how these changes could alter skeletal muscle performance under chronically stressed conditions. A major barrier to a better mechanistic understanding of the role of reversible redox PTMs in muscle function is the technical challenges associated with accurately measuring the changes of site-specific redox PTMs. Here we will critically review current approaches with an emphasis on sample preparation artifacts, quantitation, and specificity. Despite these challenges, the ability to accurately quantify reversible redox PTMs is critical to understanding the mechanisms by which mitochondrial oxidative stress contributes to skeletal muscle dysfunction in chronic diseases.
Collapse
Affiliation(s)
- Philip A Kramer
- Department of Radiology, University of Washington Seattle, WA, USA
| | - Jicheng Duan
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - David J Marcinek
- Department of Radiology, University of Washington Seattle, WA, USA ; Department of Bioengineering, University of Washington Seattle, WA, USA
| |
Collapse
|
35
|
Antioxidant treatment normalizes mitochondrial energetics and myocardial insulin sensitivity independently of changes in systemic metabolic homeostasis in a mouse model of the metabolic syndrome. J Mol Cell Cardiol 2015; 85:104-16. [PMID: 26004364 DOI: 10.1016/j.yjmcc.2015.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 04/22/2015] [Accepted: 05/14/2015] [Indexed: 01/07/2023]
Abstract
Cardiac dysfunction in obesity is associated with mitochondrial dysfunction, oxidative stress and altered insulin sensitivity. Whether oxidative stress directly contributes to myocardial insulin resistance remains to be determined. This study tested the hypothesis that ROS scavenging will improve mitochondrial function and insulin sensitivity in the hearts of rodent models with varying degrees of insulin resistance and hyperglycemia. The catalytic antioxidant MnTBAP was administered to the uncoupling protein-diphtheria toxin A (UCP-DTA) mouse model of insulin resistance (IR) and obesity, at early and late time points in the evolution of IR, and to db/db mice with severe obesity and type-two diabetes. Mitochondrial function was measured in saponin-permeabilized cardiac fibers. Aconitase activity and hydrogen peroxide emission were measured in isolated mitochondria. Insulin-stimulated glucose oxidation, glycolysis and fatty acid oxidation rates were measured in isolated working hearts, and 2-deoxyglucose uptake was measured in isolated cardiomyocytes. Four weeks of MnTBAP attenuated glucose intolerance in 13-week-old UCP-DTA mice but was without effect in 24-week-old UCP-DTA mice and in db/db mice. Despite the absence of improvement in the systemic metabolic milieu, MnTBAP reversed cardiac mitochondrial oxidative stress and improved mitochondrial bioenergetics by increasing ATP generation and reducing mitochondrial uncoupling in all models. MnTBAP also improved myocardial insulin mediated glucose metabolism in 13 and 24-week-old UCP-DTA mice. Pharmacological ROS scavenging improves myocardial energy metabolism and insulin responsiveness in obesity and type 2 diabetes via direct effects that might be independent of changes in systemic metabolism.
Collapse
|
36
|
Sanchez-Alavez M, Bortell N, Galmozzi A, Conti B, Marcondes MCG. Reactive oxygen species scavenger N-acetyl cysteine reduces methamphetamine-induced hyperthermia without affecting motor activity in mice. Temperature (Austin) 2014; 1:227-241. [PMID: 26346736 PMCID: PMC4557806 DOI: 10.4161/23328940.2014.984556] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hyperthermia is a potentially lethal side effect of Methamphetamine (Meth) abuse, which involves the participation of peripheral thermogenic sites such as the Brown Adipose Tissue (BAT). In a previous study we found that the anti-oxidant N-acetyl cysteine (NAC) can prevent the high increase in temperature in a mouse model of Meth-hyperthermia. Here, we have further explored the ability of NAC to modulate Meth-induced hyperthermia in correlation with changes in BAT. We found that NAC treatment in controls causes hypothermia, and, when administered prior or upon the onset of Meth-induced hyperthermia, can ameliorate the temperature increase and preserve mitochondrial numbers and integrity, without affecting locomotor activity. This was different from Dantrolene, which decreased motor activity without affecting temperature. The effects of NAC were seen in spite of its inability to recover the decrease of mitochondrial superoxide induced in BAT by Meth. In addition, NAC did not prevent the Meth-induced decrease of BAT glutathione. Treatment with S-adenosyl-L-methionine, which improves glutathione activity, had an effect in ameliorating Meth-induced hyperthermia, but also modulated motor activity. This suggests a role for the remaining glutathione for controlling temperature. However, the mechanism by which NAC operates is independent of glutathione levels in BAT and specific to temperature. Our results show that, in spite of the absence of a clear mechanism of action, NAC is a pharmacological tool to examine the dissociation between Meth-induced hyperthermia and motor activity, and a drug of potential utility in treating the hyperthermia associated with Meth-abuse.
Collapse
Affiliation(s)
- Manuel Sanchez-Alavez
- Department of Cellular and Molecular Neurosciences; The Scripps Research Institute; La Jolla, CA USA
| | - Nikki Bortell
- Department of Cellular and Molecular Neurosciences; The Scripps Research Institute; La Jolla, CA USA
| | - Andrea Galmozzi
- Department of Chemical Physiology; The Scripps Research Institute; La Jolla, CA USA
| | - Bruno Conti
- Department of Cellular and Molecular Neurosciences; The Scripps Research Institute; La Jolla, CA USA ; Department of Chemical Physiology; The Scripps Research Institute; La Jolla, CA USA
| | - Maria Cecilia G Marcondes
- Department of Cellular and Molecular Neurosciences; The Scripps Research Institute; La Jolla, CA USA
| |
Collapse
|
37
|
Pagano G, Aiello Talamanca A, Castello G, Cordero MD, d'Ischia M, Gadaleta MN, Pallardó FV, Petrović S, Tiano L, Zatterale A. Oxidative stress and mitochondrial dysfunction across broad-ranging pathologies: toward mitochondria-targeted clinical strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:541230. [PMID: 24876913 PMCID: PMC4024404 DOI: 10.1155/2014/541230] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/24/2014] [Indexed: 02/07/2023]
Abstract
Beyond the disorders recognized as mitochondrial diseases, abnormalities in function and/or ultrastructure of mitochondria have been reported in several unrelated pathologies. These encompass ageing, malformations, and a number of genetic or acquired diseases, as diabetes and cardiologic, haematologic, organ-specific (e.g., eye or liver), neurologic and psychiatric, autoimmune, and dermatologic disorders. The mechanistic grounds for mitochondrial dysfunction (MDF) along with the occurrence of oxidative stress (OS) have been investigated within the pathogenesis of individual disorders or in groups of interrelated disorders. We attempt to review broad-ranging pathologies that involve mitochondrial-specific deficiencies or rely on cytosol-derived prooxidant states or on autoimmune-induced mitochondrial damage. The established knowledge in these subjects warrants studies aimed at elucidating several open questions that are highlighted in the present review. The relevance of OS and MDF in different pathologies may establish the grounds for chemoprevention trials aimed at compensating OS/MDF by means of antioxidants and mitochondrial nutrients.
Collapse
Affiliation(s)
- Giovanni Pagano
- Cancer Research Centre at Mercogliano (CROM), Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131 Naples, Italy
| | - Annarita Aiello Talamanca
- Cancer Research Centre at Mercogliano (CROM), Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131 Naples, Italy
| | - Giuseppe Castello
- Cancer Research Centre at Mercogliano (CROM), Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131 Naples, Italy
| | - Mario D. Cordero
- Research Laboratory, Dental School, Sevilla University, 41009 Sevilla, Spain
| | - Marco d'Ischia
- Department of Chemical Sciences, Federico II University, 80126 Naples, Italy
| | - Maria Nicola Gadaleta
- National Research Council, Institute of Biomembranes and Bioenergetics, 70126 Bari, Italy
| | | | - Sandra Petrović
- “Vinca” Institute of Nuclear Sciences, University of Belgrade, 11070 Belgrade, Serbia
| | - Luca Tiano
- Department of Clinical and Dental Sciences, Polytechnical University of Marche, 60100 Ancona, Italy
| | | |
Collapse
|
38
|
Urrutia PJ, Mena NP, Núñez MT. The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol 2014; 5:38. [PMID: 24653700 PMCID: PMC3948003 DOI: 10.3389/fphar.2014.00038] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/19/2014] [Indexed: 12/21/2022] Open
Abstract
A growing set of observations points to mitochondrial dysfunction, iron accumulation, oxidative damage and chronic inflammation as common pathognomonic signs of a number of neurodegenerative diseases that includes Alzheimer’s disease, Huntington disease, amyotrophic lateral sclerosis, Friedrich’s ataxia and Parkinson’s disease. Particularly relevant for neurodegenerative processes is the relationship between mitochondria and iron. The mitochondrion upholds the synthesis of iron–sulfur clusters and heme, the most abundant iron-containing prosthetic groups in a large variety of proteins, so a fraction of incoming iron must go through this organelle before reaching its final destination. In turn, the mitochondrial respiratory chain is the source of reactive oxygen species (ROS) derived from leaks in the electron transport chain. The co-existence of both iron and ROS in the secluded space of the mitochondrion makes this organelle particularly prone to hydroxyl radical-mediated damage. In addition, a connection between the loss of iron homeostasis and inflammation is starting to emerge; thus, inflammatory cytokines like TNF-alpha and IL-6 induce the synthesis of the divalent metal transporter 1 and promote iron accumulation in neurons and microglia. Here, we review the recent literature on mitochondrial iron homeostasis and the role of inflammation on mitochondria dysfunction and iron accumulation on the neurodegenerative process that lead to cell death in Parkinson’s disease. We also put forward the hypothesis that mitochondrial dysfunction, iron accumulation and inflammation are part of a synergistic self-feeding cycle that ends in apoptotic cell death, once the antioxidant cellular defense systems are finally overwhelmed.
Collapse
Affiliation(s)
- Pamela J Urrutia
- Department of Biology and Research Ring on Oxidative Stress in the Nervous System, Faculty of Sciences, University of Chile Santiago, Chile
| | - Natalia P Mena
- Department of Biology and Research Ring on Oxidative Stress in the Nervous System, Faculty of Sciences, University of Chile Santiago, Chile
| | - Marco T Núñez
- Department of Biology and Research Ring on Oxidative Stress in the Nervous System, Faculty of Sciences, University of Chile Santiago, Chile
| |
Collapse
|
39
|
HIBCH mutations can cause Leigh-like disease with combined deficiency of multiple mitochondrial respiratory chain enzymes and pyruvate dehydrogenase. Orphanet J Rare Dis 2013; 8:188. [PMID: 24299452 PMCID: PMC4222069 DOI: 10.1186/1750-1172-8-188] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 11/09/2013] [Indexed: 12/21/2022] Open
Abstract
Background Deficiency of 3-hydroxy-isobutyryl-CoA hydrolase (HIBCH) caused by HIBCH mutations is a rare cerebral organic aciduria caused by disturbance of valine catabolism. Multiple mitochondrial respiratory chain (RC) enzyme deficiencies can arise from a number of mechanisms, including defective maintenance or expression of mitochondrial DNA. Impaired biosynthesis of iron-sulphur clusters and lipoic acid can lead to pyruvate dehydrogenase complex (PDHc) deficiency in addition to multiple RC deficiencies, known as the multiple mitochondrial dysfunctions syndrome. Methods Two brothers born to distantly related Pakistani parents presenting in early infancy with a progressive neurodegenerative disorder, associated with basal ganglia changes on brain magnetic resonance imaging, were investigated for suspected Leigh-like mitochondrial disease. The index case had deficiencies of multiple RC enzymes and PDHc in skeletal muscle and fibroblasts respectively, but these were normal in his younger brother. The observation of persistently elevated hydroxy-C4-carnitine levels in the younger brother led to suspicion of HIBCH deficiency, which was investigated by biochemical assay in cultured skin fibroblasts and molecular genetic analysis. Results Specific spectrophotometric enzyme assay revealed HIBCH activity to be below detectable limits in cultured skin fibroblasts from both brothers. Direct Sanger sequence analysis demonstrated a novel homozygous pathogenic missense mutation c.950G <A; p.Gly317Glu in the HIBCH gene, which segregated with infantile-onset neurodegeneration within the family. Conclusions HIBCH deficiency, a disorder of valine catabolism, is a novel cause of the multiple mitochondrial dysfunctions syndrome, and should be considered in the differential diagnosis of patients presenting with multiple RC deficiencies and/or pyruvate dehydrogenase deficiency.
Collapse
|
40
|
Craft GE, Chen A, Nairn AC. Recent advances in quantitative neuroproteomics. Methods 2013; 61:186-218. [PMID: 23623823 PMCID: PMC3891841 DOI: 10.1016/j.ymeth.2013.04.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 03/29/2013] [Accepted: 04/13/2013] [Indexed: 01/07/2023] Open
Abstract
The field of proteomics is undergoing rapid development in a number of different areas including improvements in mass spectrometric platforms, peptide identification algorithms and bioinformatics. In particular, new and/or improved approaches have established robust methods that not only allow for in-depth and accurate peptide and protein identification and modification, but also allow for sensitive measurement of relative or absolute quantitation. These methods are beginning to be applied to the area of neuroproteomics, but the central nervous system poses many specific challenges in terms of quantitative proteomics, given the large number of different neuronal cell types that are intermixed and that exhibit distinct patterns of gene and protein expression. This review highlights the recent advances that have been made in quantitative neuroproteomics, with a focus on work published over the last five years that applies emerging methods to normal brain function as well as to various neuropsychiatric disorders including schizophrenia and drug addiction as well as of neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. While older methods such as two-dimensional polyacrylamide electrophoresis continued to be used, a variety of more in-depth MS-based approaches including both label (ICAT, iTRAQ, TMT, SILAC, SILAM), label-free (label-free, MRM, SWATH) and absolute quantification methods, are rapidly being applied to neurobiological investigations of normal and diseased brain tissue as well as of cerebrospinal fluid (CSF). While the biological implications of many of these studies remain to be clearly established, that there is a clear need for standardization of experimental design and data analysis, and that the analysis of protein changes in specific neuronal cell types in the central nervous system remains a serious challenge, it appears that the quality and depth of the more recent quantitative proteomics studies is beginning to shed light on a number of aspects of neuroscience that relates to normal brain function as well as of the changes in protein expression and regulation that occurs in neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- George E Craft
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
| | - Anshu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06508
- Yale/NIDA Neuroproteomics Center, Yale University School of Medicine, New Haven, CT, 06508
| |
Collapse
|
41
|
Collins Y, Chouchani ET, James AM, Menger KE, Cochemé HM, Murphy MP. Mitochondrial redox signalling at a glance. J Cell Sci 2013; 125:801-6. [PMID: 22448036 DOI: 10.1242/jcs.098475] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yvonne Collins
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | | | | | | | | | |
Collapse
|
42
|
Funke C, Schneider SA, Berg D, Kell DB. Genetics and iron in the systems biology of Parkinson’s disease and some related disorders. Neurochem Int 2013; 62:637-52. [DOI: 10.1016/j.neuint.2012.11.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/19/2012] [Accepted: 11/28/2012] [Indexed: 12/21/2022]
|
43
|
Yürekli VA, Gürler S, Nazıroğlu M, Uğuz AC, Koyuncuoğlu HR. Zonisamide attenuates MPP+-induced oxidative toxicity through modulation of Ca2+ signaling and caspase-3 activity in neuronal PC12 cells. Cell Mol Neurobiol 2013; 33:205-12. [PMID: 23229024 PMCID: PMC11497980 DOI: 10.1007/s10571-012-9886-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 09/10/2012] [Indexed: 12/18/2022]
Abstract
Parkinson's disease is an incurable progressive neurological condition caused by a degeneration of dopamine-producing cells characterized by motor and non-motor symptoms. The major mechanisms of the antiepileptic actions of ZNS are inhibition of voltage-gated Na(+) channel, T-type voltage-sensitive Ca(2+) channel, Ca(2+)-induced Ca(2+) releasing system, and neuronal depolarization-induced glutamate release; and enhancement of release of inhibitory neurotransmitters; however, the detailed mechanism of antiparkinsonian effects of ZNS remains to be clarified. We aimed to investigate to the effect of ZNS on the oxidative stress, cell viability, Ca(2+) signaling, and caspase activity that induced by the MPP(+) model of Parkinson's in neuronal PC12 cells. Neuronal PC12 cells were divided into four groups namely, control, ZNS, MPP(+), and ZNS+MPP(+) groups. The dose and duration of ZNS and MPP(+) were determined according to cell viability (MTT) analysis which used to assess the cell viability. The cells in ZNS, MPP(+), and ZNS+MPP(+) groups were incubated for 5 h with 100 μM ZNS, 10 h with 100 μM MPP(+), and 10 h with ZNS and MPP(+), respectively. Lipid peroxidation and cytosolic free Ca(2+) concentrations were higher in the MPP(+) group than in control although their levels were lower in ZNS and the ZNS+MPP(+) groups than in control. Reduced glutathione and glutathione peroxidase values were lower in the MPP(+) group although they were higher in the ZNS and the ZNS+MPP(+) groups than in control. Caspase-3 activity was lower in the ZNS group than in the MPP(+) group. In conclusion, ZNS induced modulator effects on the oxidative stress, intracellular Ca(2+), and the caspase-3 values in an experimental model of Parkinson disease.
Collapse
Affiliation(s)
- Vedat Ali Yürekli
- Department of Neurology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
- Neuroscience Research Center, Süleyman Demirel University, Isparta, Turkey
| | - Semih Gürler
- Department of Neurology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Süleyman Demirel University, Isparta, Turkey
- Department of Biophysics, Faculty of Medicine, Süleyman Demirel University, Isparta, 32260 Turkey
| | - Abdülhadi Cihangir Uğuz
- Neuroscience Research Center, Süleyman Demirel University, Isparta, Turkey
- Department of Biophysics, Faculty of Medicine, Süleyman Demirel University, Isparta, 32260 Turkey
| | | |
Collapse
|
44
|
Garcia-Garcia A, Zavala-Flores L, Rodriguez-Rocha H, Franco R. Thiol-redox signaling, dopaminergic cell death, and Parkinson's disease. Antioxid Redox Signal 2012; 17:1764-84. [PMID: 22369136 PMCID: PMC3474187 DOI: 10.1089/ars.2011.4501] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons of the substantia nigra pars compacta, which has been widely associated with oxidative stress. However, the mechanisms by which redox signaling regulates cell death progression remain elusive. RECENT ADVANCES Early studies demonstrated that depletion of glutathione (GSH), the most abundant low-molecular-weight thiol and major antioxidant defense in cells, is one of the earliest biochemical events associated with PD, prompting researchers to determine the role of oxidative stress in dopaminergic cell death. Since then, the concept of oxidative stress has evolved into redox signaling, and its complexity is highlighted by the discovery of a variety of thiol-based redox-dependent processes regulating not only oxidative damage, but also the activation of a myriad of signaling/enzymatic mechanisms. CRITICAL ISSUES GSH and GSH-based antioxidant systems are important regulators of neurodegeneration associated with PD. In addition, thiol-based redox systems, such as peroxiredoxins, thioredoxins, metallothioneins, methionine sulfoxide reductases, transcription factors, as well as oxidative modifications in protein thiols (cysteines), including cysteine hydroxylation, glutathionylation, and nitrosylation, have been demonstrated to regulate dopaminergic cell loss. FUTURE DIRECTIONS In this review, we summarize major advances in the understanding of the role of thiol-redox signaling in dopaminergic cell death in experimental PD. Future research is still required to clearly understand how integrated thiol-redox signaling regulates the activation of the cell death machinery, and the knowledge generated should open new avenues for the design of novel therapeutic approaches against PD.
Collapse
Affiliation(s)
- Aracely Garcia-Garcia
- Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) sustains organelle function and plays a central role in cellular energy metabolism. The OXPHOS system consists of 5 multisubunit complexes (CI-CV) that are built up of 92 different structural proteins encoded by the nuclear (nDNA) and mitochondrial DNA (mtDNA). Biogenesis of a functional OXPHOS system further requires the assistance of nDNA-encoded OXPHOS assembly factors, of which 35 are currently identified. In humans, mutations in both structural and assembly genes and in genes involved in mtDNA maintenance, replication, transcription, and translation induce 'primary' OXPHOS disorders that are associated with neurodegenerative diseases including Leigh syndrome (LS), which is probably the most classical OXPHOS disease during early childhood. Here, we present the current insights regarding function, biogenesis, regulation, and supramolecular architecture of the OXPHOS system, as well as its genetic origin. Next, we provide an inventory of OXPHOS structural and assembly genes which, when mutated, induce human neurodegenerative disorders. Finally, we discuss the consequences of mutations in OXPHOS structural and assembly genes at the single cell level and how this information has advanced our understanding of the role of OXPHOS dysfunction in neurodegeneration.
Collapse
|
46
|
Abstract
Although the prevalence of neurodegenerative diseases is increasing as a consequence of the growing aging population, the exact pathophysiological mechanisms leading to these diseases remains obscure. Multiple sclerosis (MS), an autoimmune disease of the central nervous system and the most frequent cause of disability among young people after traumatic brain injury, is characterized by inflammatory/demyelinating and neurodegenerative processes that occurr earlier in life. The ability to make an early diagnosis of MS with the support of conventional MRI techniques, provides the opportunity to study neurodegeneration and the underlying pathophysiological processes in earlier stages than in classical neurodegenerative diseases. This review summarizes mechanisms of neurodegeneration common to MS and to Alzheimer disease, Parkinson disease, and amiotrophic lateral sclerosis, and provides a brief overview of the neuroimaging studies employing MRI and PET techniques to investigate and monitor neurodegeneration in both MS and classical neurodegenerative diseases.
Collapse
Affiliation(s)
- Matilde Inglese
- Department of Neurology, Radiology and Neuroscience, Mount Sinai School of Medicine, New York, NY, USA.
| | | |
Collapse
|
47
|
Mongin AA, Dohare P, Jourd'heuil D. Selective vulnerability of synaptic signaling and metabolism to nitrosative stress. Antioxid Redox Signal 2012; 17:992-1012. [PMID: 22339371 PMCID: PMC3411350 DOI: 10.1089/ars.2012.4559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Nitric oxide (NO) plays diverse physiological roles in the central nervous system, where it modulates neuronal communication, regulates blood flow, and contributes to the innate immune responses. In a number of brain pathologies, the excessive production of NO also leads to the formation of reactive and toxic intermediates generically termed reactive nitrogen species (RNS). RNS cause irreversible or poorly reversible damage to brain cells. RECENT ADVANCES Recent work in the field focused on the ability of NO and RNS to yield protein modifications, including the S-nitrosation of cysteine residues, which, in many instances, impact cellular functions and viability. CRITICAL ISSUES The vast majority of neuropathological studies focus on the loss of cell viability, but nitrosative stress may also strongly impair the functions of neuronal processes: axonal projections and dendritic trees. The functional integrity of axons and dendrites critically depends on local metabolism and effective delivery of metabolic enzymes and organelles. Here, we summarize the existing literature describing the effects of nitrosative stress on the major pathways of energetic metabolism: glycolysis, tricarboxylic acid cycle, and mitochondrial respiration, with the emphasis on modifications of protein thiols. FUTURE DIRECTIONS We propose that axons and dendrites are highly vulnerable to nitrosative stress because of their low glycolytic capacity and high dependence on timely delivery of metabolic enzymes and organelles from the cell body. Thus, supplementation with the end products of glycolysis, pyruvate or lactate, may help preserve metabolism in distal neuronal processes and protect or restore synaptic function in the ailing brain.
Collapse
Affiliation(s)
- Alexander A Mongin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, New York 12208, USA.
| | | | | |
Collapse
|
48
|
Morán M, Moreno-Lastres D, Marín-Buera L, Arenas J, Martín MA, Ugalde C. Mitochondrial respiratory chain dysfunction: implications in neurodegeneration. Free Radic Biol Med 2012; 53:595-609. [PMID: 22595027 DOI: 10.1016/j.freeradbiomed.2012.05.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 04/18/2012] [Accepted: 05/03/2012] [Indexed: 02/08/2023]
Abstract
For decades mitochondria have been considered static round-shaped organelles in charge of energy production. In contrast, they are highly dynamic cellular components that undergo continuous cycles of fusion and fission influenced, for instance, by oxidative stress, cellular energy requirements, or the cell cycle state. New important functions beyond energy production have been attributed to mitochondria, such as the regulation of cell survival, because of their role in the modulation of apoptosis, autophagy, and aging. Primary mitochondrial diseases due to mutations in genes involved in these new mitochondrial functions and the implication of mitochondrial dysfunction in multifactorial human pathologies such as cancer, Alzheimer and Parkinson diseases, or diabetes has been demonstrated. Therefore, mitochondria are set at a central point of the equilibrium between health and disease, and a better understanding of mitochondrial functions will open new fields for exploring the roles of these mitochondrial pathways in human pathologies. This review dissects the relationships between activity and assembly defects of the mitochondrial respiratory chain, oxidative damage, and alterations in mitochondrial dynamics, with special focus on their implications for neurodegeneration.
Collapse
Affiliation(s)
- María Morán
- Laboratorio de Enfermedades Raras: Mitocondriales y Neuromusculares, Instituto de Investigación Hospital Universitario 12 de Octubre (i+12), Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
49
|
Circu ML, Aw TY. Glutathione and modulation of cell apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1767-77. [PMID: 22732297 DOI: 10.1016/j.bbamcr.2012.06.019] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/24/2012] [Accepted: 06/13/2012] [Indexed: 01/01/2023]
Abstract
Apoptosis is a highly organized form of cell death that is important for tissue homeostasis, organ development and senescence. To date, the extrinsic (death receptor mediated) and intrinsic (mitochondria derived) apoptotic pathways have been characterized in mammalian cells. Reduced glutathione, is the most prevalent cellular thiol that plays an essential role in preserving a reduced intracellular environment. glutathione protection of cellular macromolecules like deoxyribose nucleic acid proteins and lipids against oxidizing, environmental and cytotoxic agents, underscores its central anti-apoptotic function. Reactive oxygen and nitrogen species can oxidize cellular glutathione or induce its extracellular export leading to the loss of intracellular redox homeostasis and activation of the apoptotic signaling cascade. Recent evidence uncovered a novel role for glutathione involvement in apoptotic signaling pathways wherein post-translational S-glutathiolation of protein redox active cysteines is implicated in the potentiation of apoptosis. In the present review we focus on the key aspects of glutathione redox mechanisms associated with apoptotic signaling that includes: (a) changes in cellular glutathione redox homeostasis through glutathione oxidation or GSH transport in relation to the initiation or propagation of the apoptotic cascade, and (b) evidence for S-glutathiolation in protein modulation and apoptotic initiation.
Collapse
Affiliation(s)
- Magdalena L Circu
- Department of Molecular & Cellular Physiology, Louisiana University Health Sciences Center, Shreveport, LA 71130, USA
| | | |
Collapse
|
50
|
Held JM, Gibson BW. Regulatory control or oxidative damage? Proteomic approaches to interrogate the role of cysteine oxidation status in biological processes. Mol Cell Proteomics 2011; 11:R111.013037. [PMID: 22159599 DOI: 10.1074/mcp.r111.013037] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidation is a double-edged sword for cellular processes and its role in normal physiology, cancer and aging remains only partially understood. Although oxidative stress may disrupt biological function, oxidation-reduction (redox) reactions in a cell are often tightly regulated and play essential physiological roles. Cysteines lie at the interface between these extremes since the chemical properties that make specific thiols exquisitely redox-sensitive also predispose them to oxidative damage by reactive oxygen or nitrogen species during stress. Thus, these modifications can be either under reversible redox regulatory control or, alternatively, a result of reversible or irreversible oxidative damage. In either case, it has become increasingly important to assess the redox status of protein thiols since these modifications often impact such processes as catalytic activity, conformational alterations, or metal binding. To better understand the redox changes that accompany protein cysteine residues in complex biological systems, new experimental approaches have been developed to identify and characterize specific thiol modifications and/or changes in their overall redox status. In this review, we describe the recent technologies in redox proteomics that have pushed the boundaries for detecting and quantifying redox cysteine modifications in a cellular context. While there is no one-size-fits-all analytical solution, we highlight the rationale, strengths, and limitations of each technology in order to effectively apply them to specific biological questions. Several technological limitations still remain unsolved, however these approaches and future developments play an important role toward understanding the interplay between oxidative stress and redox signaling in health and disease.
Collapse
Affiliation(s)
- Jason M Held
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | |
Collapse
|