1
|
Bohovych I, Menezes da Silva G, Ali SF, Bergmeyer EJ, Germany EM, Mayank A, Wohlschlegel JA, Casler JC, Rahman MA, Nazarko TY, Tarsio M, Shiota T, Lackner LL, Claypool SM, Kane PM, Barrientos A, Khalimonchuk O. Mdm38/LETM1 couples ion homeostasis and proteostatic mechanisms in the inner mitochondrial membrane. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635785. [PMID: 39975406 PMCID: PMC11838341 DOI: 10.1101/2025.01.30.635785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The mitochondrial inner membrane is among the most protein-dense cellular membranes. Its functional integrity is maintained through a concerted action of several conserved mechanisms that are far from clear. Here, using the baker's yeast model, we functionally characterize Mdm38/LETM1, a disease-related protein implicated in mitochondrial translation and ion homeostasis, although the molecular basis of these connections remains elusive. Our findings reveal a novel role for Mdm38 in maintaining protein homeostasis within the inner membrane. Specifically, we demonstrate that Mdm38 is required for mitochondrial iron homeostasis and for signaling iron bioavailability from mitochondria to vacuoles. These processes are linked to the m- AAA quality control protease, whose unrestrained activity disrupts the assembly and stability of respiratory chain complexes in Mdm38-deficient cells. Our study highlights the central role of Mdm38 in mitochondrial biology and reveals how it couples proteostatic mechanisms to ion homeostasis across subcellular compartments.
Collapse
|
2
|
Delanoy G, Lupardus C, Vali SW, Wofford JD, Thorat S, Lindahl PA. Mössbauer and EPR detection of iron trafficking kinetics and possibly labile iron pools in whole Saccharomyces cerevisiae cells. J Biol Chem 2024; 300:107711. [PMID: 39178945 PMCID: PMC11422575 DOI: 10.1016/j.jbc.2024.107711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
The kinetics of iron trafficking in whole respiring Saccharomyces cerevisiae cells were investigated using Mössbauer and EPR spectroscopies. The Mössbauer-active isotope 57Fe was added to cells growing under iron-limited conditions; cells were analyzed at different times post iron addition. Spectroscopic changes suggested that the added 57Fe initially entered the labile iron pool, and then distributed to vacuoles and mitochondria. The first spectroscopic feature observed, ∼ 3 min after adding 57Fe plus a 5 to 15 min processing dead time, was a quadrupole doublet typical of nonheme high-spin FeII. This feature likely arose from labile FeII pools in the cell. At later times (15-150 min), magnetic features due to S = 5/2 FeIII developed; these likely arose from FeIII in vacuoles. Corresponding EPR spectra were dominated by a g = 4.3 signal from the S = 5/2 FeIII ions that increased in intensity over time. Developing at a similar rate was a quadrupole doublet typical of S = 0 [Fe4S4]2+ clusters and low-spin FeII hemes; such centers are mainly in mitochondria, cytosol, and nuclei. Development of these features was simulated using a published mathematical model, and simulations compared qualitatively well with observations. In the five sets of experiments presented, all spectroscopic features developed within the doubling time of the cells, implying that the detected iron trafficking species are physiologically relevant. These spectroscopy-based experiments allow the endogenous labile iron pool within growing cells to be detected without damaging or altering the pool, as definitely occurs using chelator-probe detection and possibly occurs using chromatographic separations.
Collapse
Affiliation(s)
- Grant Delanoy
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Cody Lupardus
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Shaik Waseem Vali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Joshua D Wofford
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Shantanu Thorat
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Paul A Lindahl
- Department of Chemistry, Texas A&M University, College Station, Texas, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
3
|
Cámara E, Mormino M, Siewers V, Nygård Y. Saccharomyces cerevisiae strains performing similarly during fermentation of lignocellulosic hydrolysates show pronounced differences in transcriptional stress responses. Appl Environ Microbiol 2024; 90:e0233023. [PMID: 38587374 PMCID: PMC11107148 DOI: 10.1128/aem.02330-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Improving our understanding of the transcriptional changes of Saccharomyces cerevisiae during fermentation of lignocellulosic hydrolysates is crucial for the creation of more efficient strains to be used in biorefineries. We performed RNA sequencing of a CEN.PK laboratory strain, two industrial strains (KE6-12 and Ethanol Red), and two wild-type isolates of the LBCM collection when cultivated anaerobically in wheat straw hydrolysate. Many of the differently expressed genes identified among the strains have previously been reported to be important for tolerance to lignocellulosic hydrolysates or inhibitors therein. Our study demonstrates that stress responses typically identified during aerobic conditions such as glutathione metabolism, osmotolerance, and detoxification processes also are important for anaerobic processes. Overall, the transcriptomic responses were largely strain dependent, and we focused our study on similarities and differences in the transcriptomes of the LBCM strains. The expression of sugar transporter-encoding genes was higher in LBCM31 compared with LBCM109 that showed high expression of genes involved in iron metabolism and genes promoting the accumulation of sphingolipids, phospholipids, and ergosterol. These results highlight different evolutionary adaptations enabling S. cerevisiae to strive in lignocellulosic hydrolysates and suggest novel gene targets for improving fermentation performance and robustness. IMPORTANCE The need for sustainable alternatives to oil-based production of biochemicals and biofuels is undisputable. Saccharomyces cerevisiae is the most commonly used industrial fermentation workhorse. The fermentation of lignocellulosic hydrolysates, second-generation biomass unsuited for food and feed, is still hampered by lowered productivities as the raw material is inhibitory for the cells. In order to map the genetic responses of different S. cerevisiae strains, we performed RNA sequencing of a CEN.PK laboratory strain, two industrial strains (KE6-12 and Ethanol Red), and two wild-type isolates of the LBCM collection when cultivated anaerobically in wheat straw hydrolysate. While the response to inhibitors of S. cerevisiae has been studied earlier, this has in previous studies been done in aerobic conditions. The transcriptomic analysis highlights different evolutionary adaptations among the different S. cerevisiae strains and suggests novel gene targets for improving fermentation performance and robustness.
Collapse
Affiliation(s)
- Elena Cámara
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Maurizio Mormino
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Yvonne Nygård
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- VTT Technical Research Centre of Finland, Espoo, Finland
| |
Collapse
|
4
|
Aghabi D, Sloan M, Gill G, Hartmann E, Antipova O, Dou Z, Guerra AJ, Carruthers VB, Harding CR. The vacuolar iron transporter mediates iron detoxification in Toxoplasma gondii. Nat Commun 2023; 14:3659. [PMID: 37339985 PMCID: PMC10281983 DOI: 10.1038/s41467-023-39436-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Iron is essential to cells as a cofactor in enzymes of respiration and replication, however without correct storage, iron leads to the formation of dangerous oxygen radicals. In yeast and plants, iron is transported into a membrane-bound vacuole by the vacuolar iron transporter (VIT). This transporter is conserved in the apicomplexan family of obligate intracellular parasites, including in Toxoplasma gondii. Here, we assess the role of VIT and iron storage in T. gondii. By deleting VIT, we find a slight growth defect in vitro, and iron hypersensitivity, confirming its essential role in parasite iron detoxification, which can be rescued by scavenging of oxygen radicals. We show VIT expression is regulated by iron at transcript and protein levels, and by altering VIT localization. In the absence of VIT, T. gondii responds by altering expression of iron metabolism genes and by increasing antioxidant protein catalase activity. We also show that iron detoxification has an important role both in parasite survival within macrophages and in virulence in a mouse model. Together, by demonstrating a critical role for VIT during iron detoxification in T. gondii, we reveal the importance of iron storage in the parasite and provide the first insight into the machinery involved.
Collapse
Affiliation(s)
- Dana Aghabi
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Megan Sloan
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Grace Gill
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Elena Hartmann
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Olga Antipova
- X-Ray Sciences Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Zhicheng Dou
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Alfredo J Guerra
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Cayman Chemical Company, Ann Arbor, MI, USA
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Clare R Harding
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK.
| |
Collapse
|
5
|
Vitamin E protective effects on genomic and cellular damage caused by paediatric preventive supplementation for anaemia: an experimental model. Br J Nutr 2023; 129:468-477. [PMID: 35591764 DOI: 10.1017/s0007114522001556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Iron deficiency is the leading cause of anaemia. In Argentina, the prevalence of anaemia and iron deficiency is very high; for that reason, the Argentine Society of Pediatrics recommends daily ferrous sulphate supplementation as a preventive treatment strategy. Alternatively, weekly ferrous sulphate supplementation has also been shown to be effective for anaemia prevention. Excess iron could be related to oxidative stress, which may in turn cause cytomolecular damage. Both can be prevented with vitamin E supplementation. We evaluated the effect of both daily and weekly ferrous sulphate supplementation combined with two doses of vitamin E on cell viability, oxidative stress and cytomolecular damage in peripheral blood cultured in vitro. The experimental design included the following groups: untreated negative control, two vitamin E controls (8·3 and 16·6 µg/ml), weekly ferrous sulphate supplementation (0·55 mg/ml) with each vitamin E dose, daily ferrous sulphate supplementation (0·14 mg/ml) with each vitamin E dose and a positive control. Daily ferrous sulphate supplementation decreased cell viability and increased the levels of reactive oxygen species, lipid peroxidation and cytomolecular damage (P < 0·5) compared with the weekly supplementation, probably due to the excess iron observed in the former. Vitamin E seemed to reduce ferrous sulphate-induced oxidative stress and genomic damage.
Collapse
|
6
|
Li X, Yang H, Pan J, Liu T, Cao X, Ma H, Wang X, Wang YF, Wang Y, Lu S, Tian J, Gao L, Zheng X. Variation of the toxicity caused by key contaminants in industrial wastewater along the treatment train of Fenton-activated sludge-advanced oxidation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159856. [PMID: 36374753 DOI: 10.1016/j.scitotenv.2022.159856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Industrial wastewater contains a mixture of refractory and hazardous pollutants that have comprehensive toxic effects. We investigated the treatment of a long-chain industrial wastewater treatment train containing Fenton, biological anoxic/oxic (AO), and heterogeneous ozone catalytic oxidation (HOCO) processes, and evaluated their detoxification effect based on the analysis of the genic toxicity of some key contaminants. The results showed that although the effluent met the discharge standard in terms of traditional quality parameters, the long-chain treatment process could not effectively detoxify the industrial wastewater. The analysis results of summer samples showed that the Fenton process increased the total toxicity and genotoxicity of the organics, concerned metals, and non-volatile pollutants, whereas the A/O process increased the toxicity of the organics and non-volatile pollutants, and the HOCO process led to higher toxicity caused by metals and non-volatile pollutants. The outputs of the winter samples indicated that the Fenton process reduced the total toxicity and genotoxicity caused by non-volatile pollutants but increased that of the organics and concerned metals. The effect of the A/O process on the effluent toxicity in winter was the same as that in summer, whereas the HOCO process increased the total toxicity and genotoxicity of the metals in winter samples. Correlation analysis showed that various toxicity stresses were significantly correlated with the variation of these key pollutants in wastewater. Our results could provide a reference for the optimization of industrial wastewater treatment plants (IWTPs) by selecting more suitable treatment procedures to reduce the toxicity of different contaminants.
Collapse
Affiliation(s)
- Xiaolin Li
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Heyun Yang
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Jian Pan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tong Liu
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Xin Cao
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Hao Ma
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Xingliang Wang
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Yi-Fan Wang
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Yifan Wang
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Sijia Lu
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Lei Gao
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Xing Zheng
- State Key Laboratory of Eco-Hydraulics in North West Arid Region of China, Xi'an University of Technology, Xi'an 710048, China; Resource Recovery and Low-carbon Environmental Protection Engineering Center in Coal Chemical Industry, Yulin, Shaanxi, China.
| |
Collapse
|
7
|
Lupu M, Tudor D, Filip A. Iron metabolism and cardiovascular disease: Basic to translational purviews and therapeutical approach. Rev Port Cardiol 2022; 41:1037-1046. [PMID: 36228833 DOI: 10.1016/j.repc.2021.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 11/15/2022] Open
Abstract
Iron interactions with the cardiovascular system were proposed about half a century ago, yet a clear-cut understanding of this micronutrient and its intricacies with acute and chronic events is still lacking. In chronic heart failure, patients with decreased iron stores appear to benefit from intravenous administration of metallic formulations, whereas acute diseases (e.g., myocardial infarction, stroke) are barely studied in randomized controlled trials in humans. However, proof-of-concept studies have indicated that the dual redox characteristics of iron could be involved in atherosclerosis, necrosis, and ferroptosis. To this end, we sought to review the currently available body of literature pertaining to these temporal profiles of heart diseases, as well as the pathophysiologic mechanism by which iron enacts, underlining key points related to treatment options.
Collapse
Affiliation(s)
- Mihai Lupu
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Physiology, Cluj-Napoca, Romania.
| | - Diana Tudor
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Physiology, Cluj-Napoca, Romania
| | - Adriana Filip
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Physiology, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Sorribes-Dauden R, Jordá T, Peris D, Martínez-Pastor MT, Puig S. Adaptation of Saccharomyces Species to High-Iron Conditions. Int J Mol Sci 2022; 23:13965. [PMID: 36430442 PMCID: PMC9693265 DOI: 10.3390/ijms232213965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Iron is an indispensable element that participates as an essential cofactor in multiple biological processes. However, when present in excess, iron can engage in redox reactions that generate reactive oxygen species that damage cells at multiple levels. In this report, we characterized the response of budding yeast species from the Saccharomyces genus to elevated environmental iron concentrations. We have observed that S. cerevisiae strains are more resistant to high-iron concentrations than Saccharomyces non-cerevisiae species. Liquid growth assays showed that species evolutionarily closer to S. cerevisiae, such as S. paradoxus, S. jurei, S. mikatae, and S. arboricola, were more resistant to high-iron levels than the more distant species S. eubayanus and S. uvarum. Remarkably, S. kudriavzevii strains were especially iron sensitive. Growth assays in solid media suggested that S. cerevisiae and S. paradoxus were more resistant to the oxidative stress caused by elevated iron concentrations. When comparing iron accumulation and sensitivity, different patterns were observed. As previously described for S. cerevisiae, S. uvarum and particular strains of S. kudriavzevii and S. paradoxus became more sensitive to iron while accumulating more intracellular iron levels. However, no remarkable changes in intracellular iron accumulation were observed for the remainder of species. These results indicate that different mechanisms of response to elevated iron concentrations exist in the different species of the genus Saccharomyces.
Collapse
Affiliation(s)
- Raquel Sorribes-Dauden
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Doctor Moliner 50, 46100 Burjassot, Spain
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, 46980 Paterna, Spain
| | - Tania Jordá
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, 46980 Paterna, Spain
| | - David Peris
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, 46980 Paterna, Spain
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - María Teresa Martínez-Pastor
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Doctor Moliner 50, 46100 Burjassot, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, 46980 Paterna, Spain
| |
Collapse
|
9
|
Mitochondrial contact site and cristae organizing system (MICOS) machinery supports heme biosynthesis by enabling optimal performance of ferrochelatase. Redox Biol 2021; 46:102125. [PMID: 34517185 PMCID: PMC8441213 DOI: 10.1016/j.redox.2021.102125] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 02/04/2023] Open
Abstract
Heme is an essential cofactor required for a plethora of cellular processes in eukaryotes. In metazoans the heme biosynthetic pathway is typically partitioned between the cytosol and mitochondria, with the first and final steps taking place in the mitochondrion. The pathway has been extensively studied and its biosynthetic enzymes structurally characterized to varying extents. Nevertheless, understanding of the regulation of heme synthesis and factors that influence this process in metazoans remains incomplete. Therefore, we investigated the molecular organization as well as the physical and genetic interactions of the terminal pathway enzyme, ferrochelatase (Hem15), in the yeast Saccharomyces cerevisiae. Biochemical and genetic analyses revealed dynamic association of Hem15 with Mic60, a core component of the mitochondrial contact site and cristae organizing system (MICOS). Loss of MICOS negatively impacts Hem15 activity, affects the size of the Hem15 high-mass complex, and results in accumulation of reactive and potentially toxic tetrapyrrole precursors that may cause oxidative damage. Restoring intermembrane connectivity in MICOS-deficient cells mitigates these cytotoxic effects. These data provide new insights into how heme biosynthetic machinery is organized and regulated, linking mitochondrial architecture-organizing factors to heme homeostasis.
Collapse
|
10
|
Dietz JV, Fox JL, Khalimonchuk O. Down the Iron Path: Mitochondrial Iron Homeostasis and Beyond. Cells 2021; 10:cells10092198. [PMID: 34571846 PMCID: PMC8468894 DOI: 10.3390/cells10092198] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cellular iron homeostasis and mitochondrial iron homeostasis are interdependent. Mitochondria must import iron to form iron–sulfur clusters and heme, and to incorporate these cofactors along with iron ions into mitochondrial proteins that support essential functions, including cellular respiration. In turn, mitochondria supply the cell with heme and enable the biogenesis of cytosolic and nuclear proteins containing iron–sulfur clusters. Impairment in cellular or mitochondrial iron homeostasis is deleterious and can result in numerous human diseases. Due to its reactivity, iron is stored and trafficked through the body, intracellularly, and within mitochondria via carefully orchestrated processes. Here, we focus on describing the processes of and components involved in mitochondrial iron trafficking and storage, as well as mitochondrial iron–sulfur cluster biogenesis and heme biosynthesis. Recent findings and the most pressing topics for future research are highlighted.
Collapse
Affiliation(s)
- Jonathan V. Dietz
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
| | - Jennifer L. Fox
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA;
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
- Fred and Pamela Buffett Cancer Center, Omaha, NE 68198, USA
- Correspondence:
| |
Collapse
|
11
|
Sorribes-Dauden R, Martínez-Pastor MT, Puig S. Expression of a Truncated Yeast Ccc1 Vacuolar Transporter Increases the Accumulation of Endogenous Iron. Genes (Basel) 2021; 12:genes12081120. [PMID: 34440294 PMCID: PMC8391176 DOI: 10.3390/genes12081120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023] Open
Abstract
Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox cofactor in multiple metabolic processes. Iron bioavailability is highly restricted due to the low solubility of its oxidized form, frequently leading to iron deficiency anemia. The baker’s yeast Saccharomyces cerevisiae is used as a model organism for iron homeostasis studies, but also as a food supplement and fermentative microorganism in the food industry. Yeast cells use the vacuolar Ccc1 transporter to detoxify and store excess iron in the vacuoles. Here, we modulate CCC1 expression and properties to increase iron extraction from the environment. We show that constitutive expression of full-length CCC1 is toxic, whereas deletion of its cytosolic amino-terminal (Nt) domain (NtΔCCC1) rescues this phenotype. Toxicity is exacerbated in cells lacking AFT1 transcription factor. Further characterization of NtΔCcc1 protein suggests that it is a partially functional protein. Western blot analyses indicate that deletion of Ccc1 Nt domain does not significantly alter GFP-Ccc1 protein stability. A functional full-length GFP-Ccc1 protein localized to particular regions of the vacuolar membrane, whereas GFP-NtΔCcc1 protein was evenly distributed throughout this endogenous membrane. Interestingly, expression of NtΔCCC1 increased the accumulation of endogenous iron in cells cultivated under iron-sufficient conditions, a strategy that could be used to extract iron from media that are not rich in iron.
Collapse
Affiliation(s)
- Raquel Sorribes-Dauden
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Doctor Moliner 50, 46100 Burjassot, Valencia, Spain;
| | - María Teresa Martínez-Pastor
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Doctor Moliner 50, 46100 Burjassot, Valencia, Spain;
- Correspondence: (M.T.M.-P.); (S.P.)
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Agustín Escardino 7, 46980 Paterna, Valencia, Spain
- Correspondence: (M.T.M.-P.); (S.P.)
| |
Collapse
|
12
|
López-Berges MS, Scheven MT, Hortschansky P, Misslinger M, Baldin C, Gsaller F, Werner ER, Krüger T, Kniemeyer O, Weber J, Brakhage AA, Haas H. The bZIP Transcription Factor HapX Is Post-Translationally Regulated to Control Iron Homeostasis in Aspergillus fumigatus. Int J Mol Sci 2021; 22:ijms22147739. [PMID: 34299357 PMCID: PMC8307855 DOI: 10.3390/ijms22147739] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022] Open
Abstract
The airborne fungus Aspergillus fumigatus causes opportunistic infections in humans with high mortality rates in immunocompromised patients. Previous work established that the bZIP transcription factor HapX is essential for virulence via adaptation to iron limitation by repressing iron-consuming pathways and activating iron acquisition mechanisms. Moreover, HapX was shown to be essential for transcriptional activation of vacuolar iron storage and iron-dependent pathways in response to iron availability. Here, we demonstrate that HapX has a very short half-life during iron starvation, which is further decreased in response to iron, while siderophore biosynthetic enzymes are very stable. We identified Fbx22 and SumO as HapX interactors and, in agreement, HapX post-translational modifications including ubiquitination of lysine161, sumoylation of lysine242 and phosphorylation of threonine319. All three modifications were enriched in the immediate adaptation from iron-limiting to iron-replete conditions. Interfering with these post-translational modifications, either by point mutations or by inactivation, of Fbx22 or SumO, altered HapX degradation, heme biosynthesis and iron resistance to different extents. Consistent with the need to precisely regulate HapX protein levels, overexpression of hapX caused significant growth defects under iron sufficiency. Taken together, our results indicate that post-translational regulation of HapX is important to control iron homeostasis in A. fumigatus.
Collapse
Affiliation(s)
- Manuel Sánchez López-Berges
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.M.); (C.B.); (F.G.)
- Correspondence: (M.S.L.-B.); (A.A.B.); (H.H.)
| | - Mareike Thea Scheven
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany; (M.T.S.); (P.H.); (T.K.); (O.K.); (J.W.)
- Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany; (M.T.S.); (P.H.); (T.K.); (O.K.); (J.W.)
| | - Matthias Misslinger
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.M.); (C.B.); (F.G.)
| | - Clara Baldin
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.M.); (C.B.); (F.G.)
| | - Fabio Gsaller
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.M.); (C.B.); (F.G.)
| | - Ernst R. Werner
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, 6020 Innsbruck, Austria;
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany; (M.T.S.); (P.H.); (T.K.); (O.K.); (J.W.)
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany; (M.T.S.); (P.H.); (T.K.); (O.K.); (J.W.)
| | - Jakob Weber
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany; (M.T.S.); (P.H.); (T.K.); (O.K.); (J.W.)
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany; (M.T.S.); (P.H.); (T.K.); (O.K.); (J.W.)
- Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany
- Correspondence: (M.S.L.-B.); (A.A.B.); (H.H.)
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.M.); (C.B.); (F.G.)
- Correspondence: (M.S.L.-B.); (A.A.B.); (H.H.)
| |
Collapse
|
13
|
Kim LJ, Tsuyuki KM, Hu F, Park EY, Zhang J, Iraheta JG, Chia JC, Huang R, Tucker AE, Clyne M, Castellano C, Kim A, Chung DD, DaVeiga CT, Parsons EM, Vatamaniuk OK, Jeong J. Ferroportin 3 is a dual-targeted mitochondrial/chloroplast iron exporter necessary for iron homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:215-236. [PMID: 33884692 PMCID: PMC8316378 DOI: 10.1111/tpj.15286] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/10/2021] [Indexed: 05/26/2023]
Abstract
Mitochondria and chloroplasts are organelles with high iron demand that are particularly susceptible to iron-induced oxidative stress. Despite the necessity of strict iron regulation in these organelles, much remains unknown about mitochondrial and chloroplast iron transport in plants. Here, we propose that Arabidopsis ferroportin 3 (FPN3) is an iron exporter that is dual-targeted to mitochondria and chloroplasts. FPN3 is expressed in shoots, regardless of iron conditions, but its transcripts accumulate under iron deficiency in roots. fpn3 mutants cannot grow as well as the wild type under iron-deficient conditions and their shoot iron levels are lower compared with the wild type. Analyses of iron homeostasis gene expression in fpn3 mutants and inductively coupled plasma mass spectrometry (ICP-MS) measurements show that iron levels in the mitochondria and chloroplasts are increased relative to the wild type, consistent with the proposed role of FPN3 as a mitochondrial/plastid iron exporter. In iron-deficient fpn3 mutants, abnormal mitochondrial ultrastructure was observed, whereas chloroplast ultrastructure was not affected, implying that FPN3 plays a critical role in the mitochondria. Overall, our study suggests that FPN3 is essential for optimal iron homeostasis.
Collapse
Affiliation(s)
- Leah J. Kim
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | - Fengling Hu
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Emily Y. Park
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Jingwen Zhang
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | - Ju-Chen Chia
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Rong Huang
- Cornell High Energy Synchrotron Source, Ithaca, New York 14853
| | - Avery E. Tucker
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Madeline Clyne
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Claire Castellano
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Angie Kim
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Daniel D. Chung
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | | | - Olena K. Vatamaniuk
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Jeeyon Jeong
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| |
Collapse
|
14
|
Robinson JR, Isikhuemhen OS, Anike FN. Fungal-Metal Interactions: A Review of Toxicity and Homeostasis. J Fungi (Basel) 2021; 7:225. [PMID: 33803838 PMCID: PMC8003315 DOI: 10.3390/jof7030225] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Metal nanoparticles used as antifungals have increased the occurrence of fungal-metal interactions. However, there is a lack of knowledge about how these interactions cause genomic and physiological changes, which can produce fungal superbugs. Despite interest in these interactions, there is limited understanding of resistance mechanisms in most fungi studied until now. We highlight the current knowledge of fungal homeostasis of zinc, copper, iron, manganese, and silver to comprehensively examine associated mechanisms of resistance. Such mechanisms have been widely studied in Saccharomyces cerevisiae, but limited reports exist in filamentous fungi, though they are frequently the subject of nanoparticle biosynthesis and targets of antifungal metals. In most cases, microarray analyses uncovered resistance mechanisms as a response to metal exposure. In yeast, metal resistance is mainly due to the down-regulation of metal ion importers, utilization of metallothionein and metallothionein-like structures, and ion sequestration to the vacuole. In contrast, metal resistance in filamentous fungi heavily relies upon cellular ion export. However, there are instances of resistance that utilized vacuole sequestration, ion metallothionein, and chelator binding, deleting a metal ion importer, and ion storage in hyphal cell walls. In general, resistance to zinc, copper, iron, and manganese is extensively reported in yeast and partially known in filamentous fungi; and silver resistance lacks comprehensive understanding in both.
Collapse
Affiliation(s)
| | - Omoanghe S. Isikhuemhen
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA; (J.R.R.); (F.N.A.)
| | | |
Collapse
|
15
|
Frankovsky J, Vozáriková V, Nosek J, Tomáška Ľ. Mitochondrial protein phosphorylation in yeast revisited. Mitochondrion 2021; 57:148-162. [PMID: 33412333 DOI: 10.1016/j.mito.2020.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Protein phosphorylation is one of the best-known post-translational modifications occurring in all domains of life. In eukaryotes, protein phosphorylation affects all cellular compartments including mitochondria. High-throughput techniques of mass spectrometry combined with cell fractionation and biochemical methods yielded thousands of phospho-sites on hundreds of mitochondrial proteins. We have compiled the information on mitochondrial protein kinases and phosphatases and their substrates in Saccharomyces cerevisiae and provide the current state-of-the-art overview of mitochondrial protein phosphorylation in this model eukaryote. Using several examples, we describe emerging features of the yeast mitochondrial phosphoproteome and present challenges lying ahead in this exciting field.
Collapse
Affiliation(s)
- Jan Frankovsky
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Veronika Vozáriková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.
| |
Collapse
|
16
|
Escudero V, Abreu I, Tejada-Jiménez M, Rosa-Núñez E, Quintana J, Prieto RI, Larue C, Wen J, Villanova J, Mysore KS, Argüello JM, Castillo-Michel H, Imperial J, González-Guerrero M. Medicago truncatula Ferroportin2 mediates iron import into nodule symbiosomes. THE NEW PHYTOLOGIST 2020; 228:194-209. [PMID: 32367515 DOI: 10.1111/nph.16642] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Iron is an essential cofactor for symbiotic nitrogen fixation, required by many of the enzymes involved, including signal transduction proteins, O2 homeostasis systems, and nitrogenase itself. Consequently, host plants have developed a transport network to deliver essential iron to nitrogen-fixing nodule cells. Ferroportin family members in model legume Medicago truncatula were identified and their expression was determined. Yeast complementation assays, immunolocalization, characterization of a tnt1 insertional mutant line, and synchrotron-based X-ray fluorescence assays were carried out in the nodule-specific M. truncatula ferroportin Medicago truncatula nodule-specific gene Ferroportin2 (MtFPN2) is an iron-efflux protein. MtFPN2 is located in intracellular membranes in the nodule vasculature and in inner nodule tissues, as well as in the symbiosome membranes in the interzone and early-fixation zone of the nodules. Loss-of-function of MtFPN2 alters iron distribution and speciation in nodules, reducing nitrogenase activity and biomass production. Using promoters with different tissular activity to drive MtFPN2 expression in MtFPN2 mutants, we determined that expression in the inner nodule tissues is sufficient to restore the phenotype, while confining MtFPN2 expression to the vasculature did not improve the mutant phenotype. These data indicate that MtFPN2 plays a primary role in iron delivery to nitrogen-fixing bacteroids in M. truncatula nodules.
Collapse
Affiliation(s)
- Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Manuel Tejada-Jiménez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Elena Rosa-Núñez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Julia Quintana
- Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Rosa Isabel Prieto
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Camille Larue
- EcoLab, CNRS, Université de Toulouse, Toulouse, 31326, France
| | - Jiangqi Wen
- Noble Research Institute, Ardmore, OK, 73401, USA
| | - Julie Villanova
- ID16 Beamline. European Synchrotron Radiation Facility, Grenoble, 38043, France
| | | | | | | | - Juan Imperial
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, 28006, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| |
Collapse
|
17
|
Li L, Bertram S, Kaplan J, Jia X, Ward DM. The mitochondrial iron exporter genes MMT1 and MMT2 in yeast are transcriptionally regulated by Aft1 and Yap1. J Biol Chem 2020; 295:1716-1726. [PMID: 31896574 PMCID: PMC7008362 DOI: 10.1074/jbc.ra119.011154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
Budding yeast (Saccharomyces cerevisiae) responds to low cytosolic iron by up-regulating the expression of iron import genes; iron import can reflect iron transport into the cytosol or mitochondria. Mmt1 and Mmt2 are nuclearly encoded mitochondrial proteins that export iron from the mitochondria into the cytosol. Here we report that MMT1 and MMT2 expression is transcriptionally regulated by two pathways: the low-iron-sensing transcription factor Aft1 and the oxidant-sensing transcription factor Yap1. We determined that MMT1 and MMT2 expression is increased under low-iron conditions and decreased when mitochondrial iron import is increased through overexpression of the high-affinity mitochondrial iron importer Mrs3. Moreover, loss of iron-sulfur cluster synthesis induced expression of MMT1 and MMT2 We show that exposure to the oxidant H2O2 induced MMT1 expression but not MMT2 expression and identified the transcription factor Yap1 as being involved in oxidant-mediated MMT1 expression. We defined Aft1- and Yap1-dependent transcriptional sites in the MMT1 promoter that are necessary for low-iron- or oxidant-mediated MMT1 expression. We also found that the MMT2 promoter contains domains that are important for regulating its expression under low-iron conditions, including an upstream region that appears to partially repress expression under low-iron conditions. Our findings reveal that MMT1 and MMT2 are induced under low-iron conditions and that the low-iron regulator Aft1 is required for this induction. We further uncover an Aft1-binding site in the MMT1 promoter sufficient for inducing MMT1 transcription and identify an MMT2 promoter region required for low iron induction.
Collapse
Affiliation(s)
- Liangtao Li
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Sophie Bertram
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Jerry Kaplan
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Xuan Jia
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Diane M Ward
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah 84132.
| |
Collapse
|
18
|
Evolutionary Engineering of an Iron-Resistant Saccharomyces cerevisiae Mutant and Its Physiological and Molecular Characterization. Microorganisms 2019; 8:microorganisms8010043. [PMID: 31878309 PMCID: PMC7023378 DOI: 10.3390/microorganisms8010043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/31/2022] Open
Abstract
Iron plays an essential role in all organisms and is involved in the structure of many biomolecules. It also regulates the Fenton reaction where highly reactive hydroxyl radicals occur. Iron is also important for microbial biodiversity, health and nutrition. Excessive iron levels can cause oxidative damage in cells. Saccharomyces cerevisiae evolved mechanisms to regulate its iron levels. To study the iron stress resistance in S. cerevisiae, evolutionary engineering was employed. The evolved iron stress-resistant mutant “M8FE” was analysed physiologically, transcriptomically and by whole genome re-sequencing. M8FE showed cross-resistance to other transition metals: cobalt, chromium and nickel and seemed to cope with the iron stress by both avoidance and sequestration strategies. PHO84, encoding the high-affinity phosphate transporter, was the most down-regulated gene in the mutant, and may be crucial in iron-resistance. M8FE had upregulated many oxidative stress response, reserve carbohydrate metabolism and mitophagy genes, while ribosome biogenesis genes were downregulated. As a possible result of the induced oxidative stress response genes, lower intracellular oxidation levels were observed. M8FE also had high trehalose and glycerol production levels. Genome re-sequencing analyses revealed several mutations associated with diverse cellular and metabolic processes, like cell division, phosphate-mediated signalling, cell wall integrity and multidrug transporters.
Collapse
|
19
|
GSNOR provides plant tolerance to iron toxicity via preventing iron-dependent nitrosative and oxidative cytotoxicity. Nat Commun 2019; 10:3896. [PMID: 31467270 PMCID: PMC6715714 DOI: 10.1038/s41467-019-11892-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/07/2019] [Indexed: 01/10/2023] Open
Abstract
Iron (Fe) is essential for life, but in excess can cause oxidative cytotoxicity through the generation of Fe-catalyzed reactive oxygen species. It is yet unknown which genes and mechanisms can provide Fe-toxicity tolerance. Here, we identify S-nitrosoglutathione-reductase (GSNOR) variants underlying a major quantitative locus for root tolerance to Fe-toxicity in Arabidopsis using genome-wide association studies and allelic complementation. These variants act largely through transcript level regulation. We further show that the elevated nitric oxide is essential for Fe-dependent redox toxicity. GSNOR maintains root meristem activity and prevents cell death via inhibiting Fe-dependent nitrosative and oxidative cytotoxicity. GSNOR is also required for root tolerance to Fe-toxicity throughout higher plants such as legumes and monocots, which exposes an opportunity to address crop production under high-Fe conditions using natural GSNOR variants. Overall, this study shows that genetic or chemical modulation of the nitric oxide pathway can broadly modify Fe-toxicity tolerance. How plants deal with iron toxicity is still unclear. Here, the authors reveal that S-nitrosoglutathione-reductase (GSNOR) provides tolerance to iron toxicity by preventing iron-dependent nitrosative and oxidative cytotoxicity in Arabidopsis, legumes, and rice.
Collapse
|
20
|
Rodrigues-Pousada C, Devaux F, Caetano SM, Pimentel C, da Silva S, Cordeiro AC, Amaral C. Yeast AP-1 like transcription factors (Yap) and stress response: a current overview. MICROBIAL CELL 2019; 6:267-285. [PMID: 31172012 PMCID: PMC6545440 DOI: 10.15698/mic2019.06.679] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Yeast adaptation to stress has been extensively studied. It involves large reprogramming of genome expression operated by many, more or less specific, transcription factors. Here, we review our current knowledge on the function of the eight Yap transcription factors (Yap1 to Yap8) in Saccharomyces cerevisiae, which were shown to be involved in various stress responses. More precisely, Yap1 is activated under oxidative stress, Yap2/Cad1 under cadmium, Yap4/Cin5 and Yap6 under osmotic shock, Yap5 under iron overload and Yap8/Arr1 by arsenic compounds. Yap3 and Yap7 seem to be involved in hydroquinone and nitrosative stresses, respectively. The data presented in this article illustrate how much knowledge on the function of these Yap transcription factors is advanced. The evolution of the Yap family and its roles in various pathogenic and non-pathogenic fungal species is discussed in the last section.
Collapse
Affiliation(s)
- Claudina Rodrigues-Pousada
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Soraia M Caetano
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Catarina Pimentel
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Sofia da Silva
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Ana Carolina Cordeiro
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Catarina Amaral
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| |
Collapse
|
21
|
Devaux F, Thiébaut A. The regulation of iron homeostasis in the fungal human pathogen Candida glabrata. MICROBIOLOGY-SGM 2019; 165:1041-1060. [PMID: 31050635 DOI: 10.1099/mic.0.000807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron is an essential element to most microorganisms, yet an excess of iron is toxic. Hence, living cells have to maintain a tight balance between iron uptake and iron consumption and storage. The control of intracellular iron concentrations is particularly challenging for pathogens because mammalian organisms have evolved sophisticated high-affinity systems to sequester iron from microbes and because iron availability fluctuates among the different host niches. In this review, we present the current understanding of iron homeostasis and its regulation in the fungal pathogen Candida glabrata. This yeast is an emerging pathogen which has become the second leading cause of candidemia, a life-threatening invasive mycosis. C. glabrata is relatively poorly studied compared to the closely related model yeast Saccharomyces cerevisiae or to the pathogenic yeast Candida albicans. Still, several research groups have started to identify the actors of C. glabrata iron homeostasis and its transcriptional and post-transcriptional regulation. These studies have revealed interesting particularities of C. glabrata and have shed new light on the evolution of fungal iron homeostasis.
Collapse
Affiliation(s)
- Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Antonin Thiébaut
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| |
Collapse
|
22
|
Knight SAB, Yoon H, Pandey AK, Pain J, Pain D, Dancis A. Splitting the functions of Rim2, a mitochondrial iron/pyrimidine carrier. Mitochondrion 2019; 47:256-265. [PMID: 30660752 DOI: 10.1016/j.mito.2018.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/29/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
Rim2 is an unusual mitochondrial carrier protein capable of transporting both iron and pyrimidine nucleotides. Here we characterize two point mutations generated in the predicted substrate-binding site, finding that they yield disparate effects on iron and pyrimidine transport. The Rim2 (E248A) mutant was deficient in mitochondrial iron transport activity. By contrast, the Rim2 (K299A) mutant specifically abrogated pyrimidine nucleotide transport and exchange, while leaving iron transport activity largely unaffected. Strikingly, E248A preserved TTP/TTP homoexchange but interfered with TTP/TMP heteroexchange, perhaps because proton coupling was dependent on the E248 acidic residue. Rim2-dependent iron transport was unaffected by pyrimidine nucleotides. Rim2-dependent pyrimidine transport was competed by Zn2+ but not by Fe2+, Fe3+ or Cu2+. The iron and pyrimidine nucleotide transport processes displayed different salt requirements; pyrimidine transport was dependent on the salt content of the buffer whereas iron transport was salt independent. In mitochondria containing Rim2 (E248A), iron proteins were decreased, including aconitase (Fe-S), pyruvate dehydrogenase (lipoic acid containing) and cytochrome c (heme protein). Additionally, the rate of Fe-S cluster synthesis in isolated and intact mitochondria was decreased compared with the K299A mutant, consistent with the impairment of iron-dependent functions in that mutant. In summary, mitochondrial iron transport and pyrimidine transport by Rim2 occur separately and independently. Rim2 could be a bifunctional carrier protein.
Collapse
Affiliation(s)
- Simon A B Knight
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heeyong Yoon
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ashutosh K Pandey
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Jayashree Pain
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Debkumar Pain
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Andrew Dancis
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Wang Y, Deng C, Tian L, Xiong D, Tian C, Klosterman SJ. The Transcription Factor VdHapX Controls Iron Homeostasis and Is Crucial for Virulence in the Vascular Pathogen Verticillium dahliae. mSphere 2018; 3:e00400-18. [PMID: 30185514 PMCID: PMC6126142 DOI: 10.1128/msphere.00400-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/14/2018] [Indexed: 11/20/2022] Open
Abstract
Iron homeostasis is essential for full virulence and viability in many pathogenic fungi. Here, we showed that the bZip transcription factor VdHapX functions as a key regulator of iron homeostasis for adaptation to iron-depleted and iron-excess conditions and is required for full virulence in the vascular wilt fungus, Verticillium dahliae Deletion of VdHapX impaired mycelial growth and conidiation under both iron starvation and iron sufficiency. Furthermore, disruption of VdHapX led to decreased formation of the long-lived survival structures of V. dahliae, known as microsclerotia. Expression of genes involved in iron utilization pathways and siderophore biosynthesis was misregulated in the ΔVdHapX strain under the iron-depleted condition. Additionally, the ΔVdHapX strain exhibited increased sensitivity to high iron concentrations and H2O2, indicating that VdHapX also contributes to iron or H2O2 detoxification. The ΔVdHapX strain showed a strong reduction in virulence on smoke tree seedlings (Cotinus coggygria) and was delayed in its ability to penetrate plant epidermal tissue.IMPORTANCE This study demonstrated that VdHapX is a conserved protein that mediates adaptation to iron starvation and excesses, affects microsclerotium formation, and is crucial for virulence of V. dahliae.
Collapse
Affiliation(s)
- Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chenglin Deng
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Longyan Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Dianguang Xiong
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Steven J Klosterman
- Agricultural Research Service, United States Department of Agriculture, Salinas, California, USA
| |
Collapse
|
24
|
Martins TS, Costa V, Pereira C. Signaling pathways governing iron homeostasis in budding yeast. Mol Microbiol 2018; 109:422-432. [DOI: 10.1111/mmi.14009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Telma S. Martins
- I3S-Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC-Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
| | - Vítor Costa
- I3S-Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC-Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
- Departamento de Biologia Molecular; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto; Porto Portugal
| | - Clara Pereira
- I3S-Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC-Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
- Departamento de Biologia Molecular; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto; Porto Portugal
| |
Collapse
|
25
|
Fang S, Yu X, Ding H, Han J, Feng J. Effects of intracellular iron overload on cell death and identification of potent cell death inhibitors. Biochem Biophys Res Commun 2018; 503:297-303. [PMID: 29890135 DOI: 10.1016/j.bbrc.2018.06.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023]
Abstract
Iron overload causes many diseases, while the underlying etiologies of these diseases are unclear. Cell death processes including apoptosis, necroptosis, cyclophilin D-(CypD)-dependent necrosis and a recently described additional form of regulated cell death called ferroptosis, are dependent on iron or iron-dependent reactive oxygen species (ROS). However, whether the accumulation of intracellular iron itself induces ferroptosis or other forms of cell death is largely elusive. In present study, we study the role of intracellular iron overload itself-induced cell death mechanisms by using ferric ammonium citrate (FAC) and a membrane-permeable Ferric 8-hydroxyquinoline complex (Fe-8HQ) respectively. We show that FAC-induced intracellular iron overload causes ferroptosis. We also identify 3-phosphoinositide-dependent kinase 1 (PDK1) inhibitor GSK2334470 as a potent ferroptosis inhibitor. Whereas, Fe-8HQ-induced intracellular iron overload causes unregulated necrosis, but partially activates PARP-1 dependent parthanatos. Interestingly, we identify many phenolic compounds as potent inhibitors of Fe-8HQ-induced cell death. In conclusion, intracellular iron overload-induced cell death form might be dependent on the intracellular iron accumulation rate, newly identified cell death inhibitors in our study that target ferroptosis and unregulated oxidative cell death represent potential therapeutic strategies against iron overload related diseases.
Collapse
Affiliation(s)
- Shenglin Fang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaonan Yu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Haoxuan Ding
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jianan Han
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jie Feng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
26
|
Ward DM, Chen OS, Li L, Kaplan J, Bhuiyan SA, Natarajan SK, Bard M, Cox JE. Altered sterol metabolism in budding yeast affects mitochondrial iron-sulfur (Fe-S) cluster synthesis. J Biol Chem 2018; 293:10782-10795. [PMID: 29773647 DOI: 10.1074/jbc.ra118.001781] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/11/2018] [Indexed: 01/05/2023] Open
Abstract
Ergosterol synthesis is essential for cellular growth and viability of the budding yeast Saccharomyces cerevisiae, and intracellular sterol distribution and homeostasis are therefore highly regulated in this species. Erg25 is an iron-containing C4-methyl sterol oxidase that contributes to the conversion of 4,4-dimethylzymosterol to zymosterol, a precursor of ergosterol. The ERG29 gene encodes an endoplasmic reticulum (ER)-associated protein, and here we identified a role for Erg29 in the methyl sterol oxidase step of ergosterol synthesis. ERG29 deletion resulted in lethality in respiring cells, but respiration-incompetent (Rho- or Rho0) cells survived, suggesting that Erg29 loss leads to accumulation of oxidized sterol metabolites that affect cell viability. Down-regulation of ERG29 expression in Δerg29 cells indeed led to accumulation of methyl sterol metabolites, resulting in increased mitochondrial oxidants and a decreased ability of mitochondria to synthesize iron-sulfur (Fe-S) clusters due to reduced levels of Yfh1, the mammalian frataxin homolog, which is involved in mitochondrial iron metabolism. Using a high-copy genomic library, we identified suppressor genes that permitted growth of Δerg29 cells on respiratory substrates, and these included genes encoding the mitochondrial proteins Yfh1, Mmt1, Mmt2, and Pet20, which reversed all phenotypes associated with loss of ERG29 Of note, loss of Erg25 also resulted in accumulation of methyl sterol metabolites and also increased mitochondrial oxidants and degradation of Yfh1. We propose that accumulation of toxic intermediates of the methyl sterol oxidase reaction increases mitochondrial oxidants, which affect Yfh1 protein stability. These results indicate an interaction between sterols generated by ER proteins and mitochondrial iron metabolism.
Collapse
Affiliation(s)
- Diane M Ward
- From the Department of Pathology, Division of Microbiology and Immunology, and
| | - Opal S Chen
- the DNA Sequencing Core, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Liangtao Li
- From the Department of Pathology, Division of Microbiology and Immunology, and
| | - Jerry Kaplan
- From the Department of Pathology, Division of Microbiology and Immunology, and
| | - Shah Alam Bhuiyan
- the Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, and
| | - Selvamuthu K Natarajan
- the Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, and
| | - Martin Bard
- the Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, and
| | - James E Cox
- the Department of Biochemistry and.,Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, Utah 84112
| |
Collapse
|
27
|
Rocha AG, Knight SAB, Pandey A, Yoon H, Pain J, Pain D, Dancis A. Cysteine desulfurase is regulated by phosphorylation of Nfs1 in yeast mitochondria. Mitochondrion 2018; 40:29-41. [PMID: 28941588 PMCID: PMC5858965 DOI: 10.1016/j.mito.2017.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/30/2017] [Accepted: 09/13/2017] [Indexed: 01/13/2023]
Abstract
The cysteine desulfurase Nfs1/Isd11 uses the amino acid cysteine as the substrate and its activity is absolutely required for contributing persulfide sulfur to the essential process of iron-sulfur (Fe-S) cluster assembly in mitochondria. Here we describe a novel regulatory process involving phosphorylation of Nfs1 in mitochondria. Phosphorylation enhanced cysteine desulfurase activity, while dephosphorylation decreased its activity. Nfs1 phosphopeptides were identified, and the corresponding phosphosite mutants showed impaired persulfide formation. Nfs1 pull down from mitochondria recovered an associated kinase activity, and Yck2, a kinase present in the pull down, was able to phosphorylate Nfs1 in vitro and stimulate cysteine desulfurase activity. Yck2 exhibited an eclipsed distribution in the mitochondrial matrix, although other cellular localizations have been previously described. Mitochondria lacking the Yck2 protein kinase (∆yck2) showed less phosphorylating activity for Nfs1. Compared with wild-type mitochondria, ∆yck2 mitochondria revealed slower persulfide formation on Nfs1 consistent with a role of Yck2 in regulating mitochondrial cysteine desulfurase activity. We propose that Nfs1 phosphorylation may provide a means of rapid adaptation to increased metabolic demand for sulfur and Fe-S clusters within mitochondria.
Collapse
Affiliation(s)
- Agostinho G Rocha
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Simon A B Knight
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alok Pandey
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Heeyong Yoon
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jayashree Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Debkumar Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Andrew Dancis
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
28
|
Moore MJ, Wofford JD, Dancis A, Lindahl PA. Recovery of mrs3Δmrs4Δ Saccharomyces cerevisiae Cells under Iron-Sufficient Conditions and the Role of Fe 580. Biochemistry 2018; 57:672-683. [PMID: 29228768 PMCID: PMC6468996 DOI: 10.1021/acs.biochem.7b01034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mrs3 and Mrs4 are mitochondrial inner membrane proteins that deliver an unidentified cytosolic iron species into the matrix for use in iron-sulfur cluster (ISC) and heme biosynthesis. The Mrs3/4 double-deletion strain (ΔΔ) grew slowly in iron-deficient glycerol/ethanol medium but recovered to wild-type (WT) rates in iron-sufficient medium. ΔΔ cells grown under both iron-deficient and iron-sufficient respiring conditions acquired large amounts of iron relative to WT cells, indicating iron homeostatic dysregulation regardless of nutrient iron status. Biophysical spectroscopy (including Mössbauer, electron paramagnetic resonance, and electronic absorption) and bioanalytical methods (liquid chromatography with online inductively coupled plasma mass spectrometry detection) were used to characterize these phenotypes. Anaerobically isolated mitochondria contained a labile iron pool composed of a nonheme high-spin FeII complex with primarily O and N donor ligands, called Fe580. Fe580 likely serves as feedstock for ISC and heme biosynthesis. Mitochondria from respiring ΔΔ cells grown under iron-deficient conditions were devoid of Fe580, ISCs, and hemes; most iron was present as FeIII nanoparticles. O2 likely penetrates the matrix of slow-growing poorly respiring iron-deficient ΔΔ cells and reacts with Fe580 to form nanoparticles, thereby inhibiting ISC and heme biosynthesis. Mitochondria from iron-sufficient ΔΔ cells contained ISCs, hemes, and Fe580 at concentrations comparable to those of WT mitochondria. The matrix of these mutant cells was probably sufficiently anaerobic to protect Fe580 from degradation by O2. An ∼1100 Da manganese complex, an ∼1200 Da zinc complex, and an ∼5000 Da copper species were also present in ΔΔ and WT mitochondrial flow-through solutions. No lower-mass copper complex was evident.
Collapse
Affiliation(s)
- Michael J. Moore
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Joshua D. Wofford
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Andrew Dancis
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Paul A. Lindahl
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
29
|
Li L, Ward DM. Iron toxicity in yeast: transcriptional regulation of the vacuolar iron importer Ccc1. Curr Genet 2017; 64:413-416. [PMID: 29043483 DOI: 10.1007/s00294-017-0767-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 11/27/2022]
Abstract
All eukaryotes require the transition metal, iron, a redox active element that is an essential cofactor in many metabolic pathways, as well as an oxygen carrier. Iron can also react to generate oxygen radicals such as hydroxyl radicals and superoxide anions, which are highly toxic to cells. Therefore, organisms have developed intricate mechanisms to acquire iron as well as to protect themselves from the toxic effects of excess iron. In fungi and plants, iron is stored in the vacuole as a protective mechanism against iron toxicity. Iron storage in the vacuole is mediated predominantly by the vacuolar metal importer Ccc1 in yeast and the homologous transporter VIT1 in plants. Transcription of yeast CCC1 expression is tightly controlled primarily by the transcription factor Yap5, which sits on the CCC1 promoter and activates transcription through the binding of Fe-S clusters. A second mechanism that regulates CCC1 transcription is through the Snf1 signaling pathway involved in low-glucose sensing. Snf1 activates stress transcription factors Msn2 and Msn4 to mediate CCC1 transcription. Transcriptional regulation by Yap5 and Snf1 are completely independent and provide for a graded response in Ccc1 expression. The identification of multiple independent transcriptional pathways that regulate the levels of Ccc1 under high iron conditions accentuates the importance of protecting cells from the toxic effects of high iron.
Collapse
Affiliation(s)
- Liangtao Li
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, 84132-2501, USA
| | - Diane M Ward
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, 84132-2501, USA.
| |
Collapse
|
30
|
Li L, Kaplan J, Ward DM. The glucose sensor Snf1 and the transcription factors Msn2 and Msn4 regulate transcription of the vacuolar iron importer gene CCC1 and iron resistance in yeast. J Biol Chem 2017; 292:15577-15586. [PMID: 28760824 DOI: 10.1074/jbc.m117.802504] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/21/2017] [Indexed: 12/30/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae stores iron in the vacuole, which is a major resistance mechanism against iron toxicity. One key protein involved in vacuolar iron storage is the iron importer Ccc1, which facilitates iron entry into the vacuole. Transcription of the CCC1 gene is largely regulated by the binding of iron-sulfur clusters to the activator domain of the transcriptional activator Yap5. Additional evidence, however, suggests that Yap5-independent transcriptional activation of CCC1 also contributes to iron resistance. Here, we demonstrate that components of the signaling pathway involving the low-glucose sensor Snf1 regulate CCC1 transcription and iron resistance. We found that SNF1 deletion acts synergistically with YAP5 deletion to regulate CCC1 transcription and iron resistance. A kinase-dead mutation of Snf1 lowered iron resistance as did deletion of SNF4, which encodes a partner protein of Snf1. Deletion of all three alternative partners of Snf1 encoded by SIT1, SIT2, and GAL83 decreased both CCC1 transcription and iron resistance. The Snf1 complex is known to activate the general stress transcription factors Msn2 and Msn4. We show that Msn2 and Msn4 contribute to Snf1-mediated CCC1 transcription. Of note, SNF1 deletion in combination with MSN2 and MSN4 deletion resulted in additive effects on CCC1 transcription, suggesting that other activators contribute to the regulation of CCC1 transcription. In conclusion, we show that yeast have developed multiple transcriptional mechanisms to regulate Ccc1 expression and to protect against high cytosolic iron toxicity.
Collapse
Affiliation(s)
- Liangtao Li
- From the Department of Pathology, Division of Microbiology and Immunology, School of Medicine, University of Utah, Salt Lake City, Utah 84132-2501
| | - Jerry Kaplan
- From the Department of Pathology, Division of Microbiology and Immunology, School of Medicine, University of Utah, Salt Lake City, Utah 84132-2501
| | - Diane M Ward
- From the Department of Pathology, Division of Microbiology and Immunology, School of Medicine, University of Utah, Salt Lake City, Utah 84132-2501
| |
Collapse
|
31
|
Onaga G, Dramé KN, Ismail AM. Understanding the regulation of iron nutrition: can it contribute to improving iron toxicity tolerance in rice? FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:709-726. [PMID: 32480498 DOI: 10.1071/fp15305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/09/2016] [Indexed: 05/24/2023]
Abstract
Iron nutrition in plants is highly regulated in order to supply amounts sufficient for optimal growth while preventing deleterious effects. In response to iron deficiency, plants induce either reduction-based or chelation-based mechanisms to enhance iron uptake from the soil. Major physiological traits and genes involved in these mechanisms have been fairly well described in model plants like Arabidopsis thaliana (L. Heynh.) and rice (Oryza sativa L.). However, for rice, iron toxicity presents a major challenge worldwide and causes yield reductions because rice is widely cultivated in flooded soils. Nonetheless, rice employs different mechanisms of adaptation to iron-toxicity, which range from avoidance to tissue tolerance. The physiological and molecular bases of such mechanisms have not been fully investigated and their use in breeding for iron-toxicity tolerance remains limited. Efforts to precisely characterise iron-toxicity control mechanisms may help speed-up the development of tolerant rice varieties. Considering how far the understanding of iron dynamics in the soil and plants has progressed, we consider it valuable to exploit such knowledge to improve rice tolerance to iron toxicity. Here we present the mechanisms that regulate iron uptake from the rhizosphere to the plant tissues together with the possible regulators involved. In addition, a genetic model for iron-toxicity tolerance in rice, which hypothesises possible modulation of key genes involved in iron nutrition and regulation is presented. The possibility of incorporating such relevant regulators in breeding is also discussed.
Collapse
Affiliation(s)
- Geoffrey Onaga
- International Rice Research Institute (IRRI)-East and Southern Africa Office, B.P. 5132, Bujumbura, Burundi
| | | | - Abdelbagi M Ismail
- Crop and Environmental Sciences Division, International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
32
|
de Llanos R, Martínez-Garay CA, Fita-Torró J, Romero AM, Martínez-Pastor MT, Puig S. Soybean Ferritin Expression in Saccharomyces cerevisiae Modulates Iron Accumulation and Resistance to Elevated Iron Concentrations. Appl Environ Microbiol 2016; 82:3052-3060. [PMID: 26969708 PMCID: PMC4959083 DOI: 10.1128/aem.00305-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/08/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Fungi, including the yeast Saccharomyces cerevisiae, lack ferritin and use vacuoles as iron storage organelles. This work explored how plant ferritin expression influenced baker's yeast iron metabolism. Soybean seed ferritin H1 (SFerH1) and SFerH2 genes were cloned and expressed in yeast cells. Both soybean ferritins assembled as multimeric complexes, which bound yeast intracellular iron in vivo and, consequently, induced the activation of the genes expressed during iron scarcity. Soybean ferritin protected yeast cells that lacked the Ccc1 vacuolar iron detoxification transporter from toxic iron levels by reducing cellular oxidation, thus allowing growth at high iron concentrations. Interestingly, when simultaneously expressed in ccc1Δ cells, SFerH1 and SFerH2 assembled as heteropolymers, which further increased iron resistance and reduced the oxidative stress produced by excess iron compared to ferritin homopolymer complexes. Finally, soybean ferritin expression led to increased iron accumulation in both wild-type and ccc1Δ yeast cells at certain environmental iron concentrations. IMPORTANCE Iron deficiency is a worldwide nutritional disorder to which women and children are especially vulnerable. A common strategy to combat iron deficiency consists of dietary supplementation with inorganic iron salts, whose bioavailability is very low. Iron-enriched yeasts and cereals are alternative strategies to diminish iron deficiency. Animals and plants possess large ferritin complexes that accumulate, detoxify, or buffer excess cellular iron. However, the yeast Saccharomyces cerevisiae lacks ferritin and uses vacuoles as iron storage organelles. Here, we explored how soybean ferritin expression influenced yeast iron metabolism, confirming that yeasts that express soybean seed ferritin could be explored as a novel strategy to increase dietary iron absorption.
Collapse
Affiliation(s)
- Rosa de Llanos
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain
| | - Carlos Andrés Martínez-Garay
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain
| | - Josep Fita-Torró
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain
| | - Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain
| | | | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain
| |
Collapse
|
33
|
Long N, Xu X, Qian H, Zhang S, Lu L. A Putative Mitochondrial Iron Transporter MrsA in Aspergillus fumigatus Plays Important Roles in Azole-, Oxidative Stress Responses and Virulence. Front Microbiol 2016; 7:716. [PMID: 27433157 PMCID: PMC4922219 DOI: 10.3389/fmicb.2016.00716] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/29/2016] [Indexed: 11/25/2022] Open
Abstract
Iron is an essential nutrient and enzyme co-factor required for a wide range of cellular processes, especially for the function of mitochondria. For the opportunistic fungal pathogen Aspergillus fumigatus, the ability to obtain iron is required for growth and virulence during the infection process. However, knowledge of how mitochondria are involved in iron regulation is still limited. Here, we show that a mitochondrial iron transporter, MrsA, a homolog of yeast Mrs4p, is critical for adaptation to iron-limited or iron-excess conditions in A. fumigatus. Deletion of mrsA leads to disruption of iron homeostasis with a decreased sreA expression, resulted in activated reductive iron assimilation (RIA) and siderophore-mediated iron acquisition (SIA). Furthermore, deletion of mrsA induces hypersusceptibility to azole and oxidative stresses. An assay for cellular ROS content in ΔmrsA combined with rescue from the mrsA-defective phenotype by the antioxidant reagent L-ascorbic acid indicates that the increased sensitivity of ΔmrsA to the azole itraconazole and to oxidative stress is mainly the result of abnormal ROS accumulation. Moreover, site-directed mutation experiments verified that three conserved histidine residues related to iron transport in MrsA are required for responses to oxidative and azole stresses. Importantly, ΔmrsA causes significant attenuation of virulence in an immunocompromised murine model of aspergillosis. Collectively, our results show that the putative mitochondrial iron transporter MrsA plays important roles in azole- and oxidative-stress responses and virulence by regulating the balance of cellular iron in A. fumigatus.
Collapse
Affiliation(s)
- Nanbiao Long
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University Nanjing, China
| | - Xiaoling Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University Nanjing, China
| | - Hui Qian
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University Nanjing, China
| | - Shizhu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University Nanjing, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University Nanjing, China
| |
Collapse
|
34
|
Taymaz-Nikerel H, Cankorur-Cetinkaya A, Kirdar B. Genome-Wide Transcriptional Response of Saccharomyces cerevisiae to Stress-Induced Perturbations. Front Bioeng Biotechnol 2016; 4:17. [PMID: 26925399 PMCID: PMC4757645 DOI: 10.3389/fbioe.2016.00017] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/04/2016] [Indexed: 12/22/2022] Open
Abstract
Cells respond to environmental and/or genetic perturbations in order to survive and proliferate. Characterization of the changes after various stimuli at different -omics levels is crucial to comprehend the adaptation of cells to the changing conditions. Genome-wide quantification and analysis of transcript levels, the genes affected by perturbations, extends our understanding of cellular metabolism by pointing out the mechanisms that play role in sensing the stress caused by those perturbations and related signaling pathways, and in this way guides us to achieve endeavors, such as rational engineering of cells or interpretation of disease mechanisms. Saccharomyces cerevisiae as a model system has been studied in response to different perturbations and corresponding transcriptional profiles were followed either statically or/and dynamically, short and long term. This review focuses on response of yeast cells to diverse stress inducing perturbations, including nutritional changes, ionic stress, salt stress, oxidative stress, osmotic shock, and to genetic interventions such as deletion and overexpression of genes. It is aimed to conclude on common regulatory phenomena that allow yeast to organize its transcriptomic response after any perturbation under different external conditions.
Collapse
Affiliation(s)
| | | | - Betul Kirdar
- Department of Chemical Engineering, Bogazici University , Istanbul , Turkey
| |
Collapse
|
35
|
Responses of Saccharomyces cerevisiae Strains from Different Origins to Elevated Iron Concentrations. Appl Environ Microbiol 2016; 82:1906-1916. [PMID: 26773083 DOI: 10.1128/aem.03464-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/08/2016] [Indexed: 01/10/2023] Open
Abstract
Iron is an essential micronutrient for all eukaryotic organisms. However, the low solubility of ferric iron has tremendously increased the prevalence of iron deficiency anemia, especially in women and children, with dramatic consequences. Baker's yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, a fermentative microorganism, and a feed supplement. In this report, we explore the genetic diversity of 123 wild and domestic strains of S. cerevisiae isolated from different geographical origins and sources to characterize how yeast cells respond to elevated iron concentrations in the environment. By using two different forms of iron, we selected and characterized both iron-sensitive and iron-resistant yeast strains. We observed that when the iron concentration in the medium increases, iron-sensitive strains accumulate iron more rapidly than iron-resistant isolates. We observed that, consistent with excess iron leading to oxidative stress, the redox state of iron-sensitive strains was more oxidized than that of iron-resistant strains. Growth assays in the presence of different oxidative reagents ruled out that this phenotype was due to alterations in the general oxidative stress protection machinery. It was noteworthy that iron-resistant strains were more sensitive to iron deficiency conditions than iron-sensitive strains, which suggests that adaptation to either high or low iron is detrimental for the opposite condition. An initial gene expression analysis suggested that alterations in iron homeostasis genes could contribute to the different responses of distant iron-sensitive and iron-resistant yeast strains to elevated environmental iron levels.
Collapse
|
36
|
Toledano MB, Huang B. Microbial 2-Cys Peroxiredoxins: Insights into Their Complex Physiological Roles. Mol Cells 2016; 39:31-9. [PMID: 26813659 PMCID: PMC4749871 DOI: 10.14348/molcells.2016.2326] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 11/27/2022] Open
Abstract
The peroxiredoxins (Prxs) constitute a very large and highly conserved family of thiol-based peroxidases that has been discovered only very recently. We consider here these enzymes through the angle of their discovery, and of some features of their molecular and physiological functions, focusing on complex phenotypes of the gene mutations of the 2-Cys Prxs subtype in yeast. As scavengers of the low levels of H2O2 and as H2O2 receptors and transducers, 2-Cys Prxs have been highly instrumental to understand the biological impact of H2O2, and in particular its signaling function. 2-Cys Prxs can also become potent chaperone holdases, and unveiling the in vivo relevance of this function, which is still not established, should further increase our knowledge of the biological impact and toxicity of H2O2. The diverse molecular functions of 2-Cys Prx explain the often-hard task of relating them to peroxiredoxin genes phenotypes, which underscores the pleiotropic physiological role of these enzymes and complex biologic impact of H2O2.
Collapse
Affiliation(s)
- Michel B. Toledano
- CEA, DSV, IBITECS, SBIGEM, Laboratoire Stress Oxydant et Cancer (LSOC), CEA-Saclay, 91191 Gif-sur-Yvette,
France
| | - Bo Huang
- CEA, DSV, IBITECS, SBIGEM, Laboratoire Stress Oxydant et Cancer (LSOC), CEA-Saclay, 91191 Gif-sur-Yvette,
France
| |
Collapse
|
37
|
Compartmentalization of iron between mitochondria and the cytosol and its regulation. Eur J Cell Biol 2015; 94:292-308. [DOI: 10.1016/j.ejcb.2015.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
38
|
Srivastava VK, Suneetha KJ, Kaur R. The mitogen-activated protein kinase CgHog1 is required for iron homeostasis, adherence and virulence in Candida glabrata. FEBS J 2015; 282:2142-66. [PMID: 25772226 DOI: 10.1111/febs.13264] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 03/03/2015] [Accepted: 03/10/2015] [Indexed: 01/01/2023]
Abstract
Candida glabrata has emerged as a major fungal pathogen over the last two decades, although our understanding of its survival strategies inside the mammalian host remains rudimentary. An important requirement for survival in vivo is the ability to acquire critical nutrients such as iron from host niches of varied iron content. In the present study, we demonstrate for the first time that C. glabrata cells respond to high external iron levels via activation of two stress-responsive mitogen-activated protein kinases, CgHog1 and CgSlt2, and lack of either kinase results in sensitivity to the high-iron medium. Furthermore, we show that CgHOG1 deletion led to perturbed iron homeostasis (elevated intracellular iron content and high mitochondrial aconitase activity), reduced survival in macrophages and attenuated virulence in the murine model of disseminated candidiasis. Consistently, several genes implicated in iron acquisition and storage displayed deregulated expression in the Cghog1∆ mutant. Genome-wide transcriptional profiling analysis revealed upregulation of genes implicated in DNA repair, RNA processing and autophagy, and downregulation of genes related to cellular respiration and organonitrogen compound metabolism under iron-limiting conditions. In contrast, genes involved in the respiratory electron transport chain were induced under iron-replete conditions. Gene expression microarrays also identified a set of iron-responsive regulon in C. glabrata. Lastly, we present evidence for the iron-regulated expression of the major adhesin-encoding EPA1 gene, decreased histone deacetylase activity in a high-iron environment and increased adherence of iron-surplus-medium-grown C. glabrata cells to epithelial cells. Together, our findings yield novel insights into iron abundance-based regulation of transcriptional and mitogen-activated protein kinase signaling pathways in C. glabrata.
Collapse
Affiliation(s)
- Vivek K Srivastava
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India.,Graduate Studies, Manipal University, India
| | - Korivi J Suneetha
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
39
|
Gsaller F, Hortschansky P, Beattie SR, Klammer V, Tuppatsch K, Lechner BE, Rietzschel N, Werner ER, Vogan AA, Chung D, Mühlenhoff U, Kato M, Cramer RA, Brakhage AA, Haas H. The Janus transcription factor HapX controls fungal adaptation to both iron starvation and iron excess. EMBO J 2014; 33:2261-76. [PMID: 25092765 PMCID: PMC4232046 DOI: 10.15252/embj.201489468] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Balance of physiological levels of iron is essential for every organism. In Aspergillus fumigatus and other fungal pathogens, the transcription factor HapX mediates adaptation to iron limitation and consequently virulence by repressing iron consumption and activating iron uptake. Here, we demonstrate that HapX is also essential for iron resistance via activating vacuolar iron storage. We identified HapX protein domains that are essential for HapX functions during either iron starvation or high-iron conditions. The evolutionary conservation of these domains indicates their wide-spread role in iron sensing. We further demonstrate that a HapX homodimer and the CCAAT-binding complex (CBC) cooperatively bind an evolutionary conserved DNA motif in a target promoter. The latter reveals the mode of discrimination between general CBC and specific HapX/CBC target genes. Collectively, our study uncovers a novel regulatory mechanism mediating both iron resistance and adaptation to iron starvation by the same transcription factor complex with activating and repressing functions depending on ambient iron availability.
Collapse
Affiliation(s)
- Fabio Gsaller
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Sarah R Beattie
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Veronika Klammer
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Katja Tuppatsch
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany Friedrich Schiller University, Jena, Germany
| | - Beatrix E Lechner
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Nicole Rietzschel
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Marburg, Germany
| | - Ernst R Werner
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Aaron A Vogan
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Dawoon Chung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Marburg, Germany
| | - Masashi Kato
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany Friedrich Schiller University, Jena, Germany
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
40
|
Soudham VP, Brandberg T, Mikkola JP, Larsson C. Detoxification of acid pretreated spruce hydrolysates with ferrous sulfate and hydrogen peroxide improves enzymatic hydrolysis and fermentation. BIORESOURCE TECHNOLOGY 2014; 166:559-65. [PMID: 24953967 DOI: 10.1016/j.biortech.2014.05.096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/23/2014] [Accepted: 05/25/2014] [Indexed: 05/08/2023]
Abstract
The aim of the present work was to investigate whether a detoxification method already in use during waste water treatment could be functional also for ethanol production based on lignocellulosic substrates. Chemical conditioning of spruce hydrolysate with hydrogen peroxide (H₂O₂) and ferrous sulfate (FeSO₄) was shown to be an efficient strategy to remove significant amounts of inhibitory compounds and, simultaneously, to enhance the enzymatic hydrolysis and fermentability of the substrates. Without treatment, the hydrolysates were hardly fermentable with maximum ethanol concentration below 0.4 g/l. In contrast, treatment by 2.5 mM FeSO₄ and 150 mM H₂O₂ yielded a maximum ethanol concentration of 8.3 g/l.
Collapse
Affiliation(s)
- Venkata Prabhakar Soudham
- Technical Chemistry, Department of Chemistry, Chemical-Biological Centre, Umeå University, SE-901 87 Umeå, Sweden; Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - Tomas Brandberg
- School of Engineering, University of Borås, SE-501 90 Borås, Sweden
| | - Jyri-Pekka Mikkola
- Technical Chemistry, Department of Chemistry, Chemical-Biological Centre, Umeå University, SE-901 87 Umeå, Sweden; Industrial Chemistry and Reaction Engineering, Process Chemistry Centre, Department of Chemical Engineering, Åbo Akademi University, FI-20500 Åbo-Turku, Finland
| | - Christer Larsson
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden.
| |
Collapse
|
41
|
Li L, Miao R, Jia X, Ward DM, Kaplan J. Expression of the yeast cation diffusion facilitators Mmt1 and Mmt2 affects mitochondrial and cellular iron homeostasis: evidence for mitochondrial iron export. J Biol Chem 2014; 289:17132-41. [PMID: 24798331 DOI: 10.1074/jbc.m114.574723] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mmt1 and Mmt2 are highly homologous yeast members of the cation diffusion facilitator transporter family localized to mitochondria. Overexpression of MMT1/2 led to changes in cellular metal homeostasis (increased iron sensitivity, decreased cobalt sensitivity, increased sensitivity to copper), oxidant generation, and increased sensitivity to H2O2. The phenotypes due to overexpression of MMT1&2 were similar to that seen in cells with deletions in MRS3 and MRS4, genes that encode the mitochondrial iron importers. Overexpression of MMT1&2 resulted in induction of the low iron transcriptional response, similar to that seen in Δmrs3Δmr4 cells. This low iron transcriptional response was suppressed by deletion of CCC1, the gene that encodes the vacuolar iron importer. Measurement of the activity of the iron-dependent gentisate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans expressed in yeast cytosol, showed that changes in Mmt1/2 levels affected cytosol iron concentration even in the absence of Ccc1. Overexpression of MMT1 resulted in increased cytosolic iron whereas deletion of MMT1/MMT2 led to decreased cytosolic iron. These results support the hypothesis that Mmt1/2 function as mitochondrial iron exporters.
Collapse
Affiliation(s)
- Liangtao Li
- From the Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah 84132
| | - Ren Miao
- From the Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah 84132
| | - Xuan Jia
- From the Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah 84132
| | - Diane M Ward
- From the Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah 84132
| | - Jerry Kaplan
- From the Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah 84132
| |
Collapse
|
42
|
Da-Rè C, Franzolin E, Biscontin A, Piazzesi A, Pacchioni B, Gagliani MC, Mazzotta G, Tacchetti C, Zordan MA, Zeviani M, Bernardi P, Bianchi V, De Pittà C, Costa R. Functional characterization of drim2, the Drosophila melanogaster homolog of the yeast mitochondrial deoxynucleotide transporter. J Biol Chem 2014; 289:7448-59. [PMID: 24469456 PMCID: PMC3953259 DOI: 10.1074/jbc.m113.543926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/22/2014] [Indexed: 12/03/2022] Open
Abstract
The CG18317 gene (drim2) is the Drosophila melanogaster homolog of the Saccharomyces cerevisiae Rim2 gene, which encodes a pyrimidine (deoxy)nucleotide carrier. Here, we tested if the drim2 gene also encodes for a deoxynucleotide transporter in the fruit fly. The protein was localized to mitochondria. Drosophila S2R(+) cells, silenced for drim2 expression, contained markedly reduced pools of both purine and pyrimidine dNTPs in mitochondria, whereas cytosolic pools were unaffected. In vivo drim2 homozygous knock-out was lethal at the larval stage, preceded by the following: (i) impaired locomotor behavior; (ii) decreased rates of oxygen consumption, and (iii) depletion of mtDNA. We conclude that the Drosophila mitochondrial carrier dRIM2 transports all DNA precursors and is essential to maintain mitochondrial function.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Cristina Gagliani
- the MicroScoBio Research Center, Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | | | - Carlo Tacchetti
- the MicroScoBio Research Center, Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
- the Experimental Imaging Center, San Raffaele Scientific Institute, 20132 Milano, Italy
| | | | - Massimo Zeviani
- the MRC Mitocondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Paolo Bernardi
- the Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy, and
| | | | | | | |
Collapse
|
43
|
The role of iron and reactive oxygen species in cell death. Nat Chem Biol 2014; 10:9-17. [PMID: 24346035 DOI: 10.1038/nchembio.1416] [Citation(s) in RCA: 1668] [Impact Index Per Article: 151.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023]
Abstract
The transition metal iron is essential for life, yet potentially toxic iron-catalyzed reactive oxygen species (ROS) are unavoidable in an oxygen-rich environment. Iron and ROS are increasingly recognized as important initiators and mediators of cell death in a variety of organisms and pathological situations. Here, we review recent discoveries regarding the mechanism by which iron and ROS participate in cell death. We describe the different roles of iron in triggering cell death, targets of iron-dependent ROS that mediate cell death and a new form of iron-dependent cell death termed ferroptosis. Recent advances in understanding the role of iron and ROS in cell death offer unexpected surprises and suggest new therapeutic avenues to treat cancer, organ damage and degenerative disease.
Collapse
|
44
|
Abstract
Comparative genomic studies have reported widespread variation in levels of gene expression within and between species. Using these data to infer organism-level trait divergence has proven to be a key challenge in the field. We have used a wild Malaysian population of S. cerevisiae as a test bed in the search to predict and validate trait differences based on observations of regulatory variation. Malaysian yeast, when cultured in standard medium, activated regulatory programs that protect cells from the toxic effects of high iron. Malaysian yeast also showed a hyperactive regulatory response during culture in the presence of excess iron and had a unique growth defect in conditions of high iron. Molecular validation experiments pinpointed the iron metabolism factors AFT1, CCC1, and YAP5 as contributors to these molecular and cellular phenotypes; in genome-scale sequence analyses, a suite of iron toxicity response genes showed evidence for rapid protein evolution in Malaysian yeast. Our findings support a model in which iron metabolism has diverged in Malaysian yeast as a consequence of a change in selective pressure, with Malaysian alleles shifting the dynamic range of iron response to low-iron concentrations and weakening resistance to extreme iron toxicity. By dissecting the iron scarcity specialist behavior of Malaysian yeast, our work highlights the power of expression divergence as a signpost for biologically and evolutionarily relevant variation at the organismal level. Interpreting the phenotypic relevance of gene expression variation is one of the primary challenges of modern genomics.
Collapse
|
45
|
Abstract
Mitochondrial iron uptake is of key importance both for organelle function and cellular iron homoeostasis. The mitochondrial carrier family members Mrs3 and Mrs4 (homologues of vertebrate mitoferrin) function in organellar iron supply, yet other low efficiency transporters may exist. In Saccharomyces cerevisiae, overexpression of RIM2 (MRS12) encoding a mitochondrial pyrimidine nucleotide transporter can overcome the iron-related phenotypes of strains lacking both MRS3 and MRS4. In the present study we show by in vitro transport studies that Rim2 mediates the transport of iron and other divalent metal ions across the mitochondrial inner membrane in a pyrimidine nucleotide-dependent fashion. Mutations in the proposed substrate-binding site of Rim2 prevent both pyrimidine nucleotide and divalent ion transport. These results document that Rim2 catalyses the co-import of pyrimidine nucleotides and divalent metal ions including ferrous iron. The deletion of RIM2 alone has no significant effect on mitochondrial iron supply, Fe-S protein maturation and haem synthesis. However, RIM2 deletion in mrs3/4Δ cells aggravates their Fe-S protein maturation defect. We conclude that under normal physiological conditions Rim2 does not play a significant role in mitochondrial iron acquisition, yet, in the absence of the main iron transporters Mrs3 and Mrs4, this carrier can supply the mitochondrial matrix with iron in a pyrimidine-nucleotide-dependent fashion.
Collapse
|
46
|
Post-transcriptional regulation of iron homeostasis in Saccharomyces cerevisiae. Int J Mol Sci 2013; 14:15785-809. [PMID: 23903042 PMCID: PMC3759886 DOI: 10.3390/ijms140815785] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 12/19/2022] Open
Abstract
Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox cofactor in a wide variety of biological processes. Recent studies in Saccharomyces cerevisiae have shown that in response to iron deficiency, an RNA-binding protein denoted Cth2 coordinates a global metabolic rearrangement that aims to optimize iron utilization. The Cth2 protein contains two Cx8Cx5Cx3H tandem zinc fingers (TZFs) that specifically bind to adenosine/uridine-rich elements within the 3′ untranslated region of many mRNAs to promote their degradation. The Cth2 protein shuttles between the nucleus and the cytoplasm. Once inside the nucleus, Cth2 binds target mRNAs and stimulates alternative 3′ end processing. A Cth2/mRNA-containing complex is required for export to the cytoplasm, where the mRNA is degraded by the 5′ to 3′ degradation pathway. This post-transcriptional regulatory mechanism limits iron utilization in nonessential pathways and activates essential iron-dependent enzymes such as ribonucleotide reductase, which is required for DNA synthesis and repair. Recent findings indicate that the TZF-containing tristetraprolin protein also functions in modulating human iron homeostasis. Elevated iron concentrations can also be detrimental for cells. The Rnt1 RNase III exonuclease protects cells from excess iron by promoting the degradation of a subset of the Fe acquisition system when iron levels rise.
Collapse
|
47
|
Moretti-Almeida G, Netto LES, Monteiro G. The essential gene YMR134W from Saccharomyces cerevisiae is important for appropriate mitochondrial iron utilization and the ergosterol biosynthetic pathway. FEBS Lett 2013; 587:3008-13. [PMID: 23892078 DOI: 10.1016/j.febslet.2013.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/04/2013] [Accepted: 07/09/2013] [Indexed: 11/28/2022]
Abstract
A thermosensitive strain (YMR134W(ts)) of the essential gene YMR134W presented up to 40% less ergosterol, threefold lower oxygen consumption and impaired growth on respiratory conditions. The iron content in the mitochondrial fraction of YMR134W(ts) cells was considerably low, despite these cells uptake and accumulate more iron from the culture media than wild-type cells. YMR134W(ts) cells were also more susceptible to oxidative stress. The results suggest that Ymr134wp is essential to aerobic growth due to its function in ergosterol biosynthesis, playing a role in maintaining mitochondrial and plasma membrane integrity and consequently impacting the iron homeostasis, respiratory metabolism and antioxidant response.
Collapse
Affiliation(s)
- Gabriel Moretti-Almeida
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - USP, Brazil.
| | | | | |
Collapse
|
48
|
Vest KE, Leary SC, Winge DR, Cobine PA. Copper import into the mitochondrial matrix in Saccharomyces cerevisiae is mediated by Pic2, a mitochondrial carrier family protein. J Biol Chem 2013; 288:23884-92. [PMID: 23846699 DOI: 10.1074/jbc.m113.470674] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Saccharomyces cerevisiae must import copper into the mitochondrial matrix for eventual assembly of cytochrome c oxidase. This copper is bound to an anionic fluorescent molecule known as the copper ligand (CuL). Here, we identify for the first time a mitochondrial carrier family protein capable of importing copper into the matrix. In vitro transport of the CuL into the mitochondrial matrix was saturable and temperature-dependent. Strains with a deletion of PIC2 grew poorly on copper-deficient non-fermentable medium supplemented with silver and under respiratory conditions when challenged with a matrix-targeted copper competitor. Mitochondria from pic2Δ cells had lower total mitochondrial copper and exhibited a decreased capacity for copper uptake. Heterologous expression of Pic2 in Lactococcus lactis significantly enhanced CuL transport into these cells. Therefore, we propose a novel role for Pic2 in copper import into mitochondria.
Collapse
Affiliation(s)
- Katherine E Vest
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | | | | | | |
Collapse
|
49
|
Abstract
This chapter is focused on the iron metallome in eukaryotes at the cellular and subcellular level, including properties, utilization in metalloproteins, trafficking, storage, and regulation of these processes. Studies in the model eukaryote Saccharomyces cerevisiae and mammalian cells will be highlighted. The discussion of iron properties will center on the speciation and localization of intracellular iron as well as the cellular and molecular mechanisms for coping with both low iron bioavailability and iron toxicity. The section on iron metalloproteins will emphasize heme, iron-sulfur cluster, and non-heme iron centers, particularly their cellular roles and mechanisms of assembly. The section on iron uptake, trafficking, and storage will compare methods used by yeast and mammalian cells to import iron, how this iron is brought into various organelles, and types of iron storage proteins. Regulation of these processes will be compared between yeast and mammalian cells at the transcriptional, post-transcriptional, and post-translational levels.
Collapse
Affiliation(s)
- Adrienne C. Dlouhy
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Caryn E. Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
50
|
Yamada K, Nagano AJ, Nishina M, Hara-Nishimura I, Nishimura M. Identification of two novel endoplasmic reticulum body-specific integral membrane proteins. PLANT PHYSIOLOGY 2013; 161:108-20. [PMID: 23166355 PMCID: PMC3532245 DOI: 10.1104/pp.112.207654] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/15/2012] [Indexed: 05/05/2023]
Abstract
The endoplasmic reticulum (ER) body, a large compartment specific to the Brassicales, accumulates β-glucosidase and possibly plays a role in the defense against pathogens and herbivores. Although the ER body is a subdomain of the ER, it is unclear whether any ER body-specific membrane protein exists. In this study, we identified two integral membrane proteins of the ER body in Arabidopsis (Arabidopsis thaliana) and termed them MEMBRANE PROTEIN OF ENDOPLASMIC RETICULUM BODY1 (MEB1) and MEB2. In Arabidopsis, a basic helix-loop-helix transcription factor, NAI1, and an ER body component, NAI2, regulate ER body formation. The expression profiles of MEB1 and MEB2 are similar to those of NAI1, NAI2, and ER body β-glucosidase PYK10 in Arabidopsis. The expression of MEB1 and MEB2 was reduced in the nai1 mutant, indicating that NAI1 regulates the expression of MEB1 and MEB2 genes. MEB1 and MEB2 proteins localize to the ER body membrane but not to the ER network, suggesting that these proteins are specifically recruited to the ER body membrane. MEB1 and MEB2 physically interacted with ER body component NAI2, and they were diffused throughout the ER network in the nai2 mutant, which has no ER body. Heterologous expression of MEB1 and MEB2 in yeast (Saccharomyces cerevisiae) suppresses iron and manganese toxicity, suggesting that MEB1 and MEB2 are metal transporters. These results indicate that the membrane of ER bodies has specific membrane proteins and suggest that the ER body is involved in defense against metal stress as well as pathogens and herbivores.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444–8585, Aichi, Japan (K.Y., Mo.N., Mi.N.); School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444–8585, Aichi, Japan (K.Y., Mi.N.); and Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Kyoto, Japan (A.J.N., I.H.-N.)
| | | | - Momoko Nishina
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444–8585, Aichi, Japan (K.Y., Mo.N., Mi.N.); School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444–8585, Aichi, Japan (K.Y., Mi.N.); and Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Kyoto, Japan (A.J.N., I.H.-N.)
| | - Ikuko Hara-Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444–8585, Aichi, Japan (K.Y., Mo.N., Mi.N.); School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444–8585, Aichi, Japan (K.Y., Mi.N.); and Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Kyoto, Japan (A.J.N., I.H.-N.)
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444–8585, Aichi, Japan (K.Y., Mo.N., Mi.N.); School of Life Science, Graduate University for Advanced Studies (Sokendai), Okazaki 444–8585, Aichi, Japan (K.Y., Mi.N.); and Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Kyoto, Japan (A.J.N., I.H.-N.)
| |
Collapse
|