1
|
Xu X, Chen W, Zheng J, Liao JY, Yan H, Zhu S. The proximity proteome of pre-40S pre-ribosomal particle components PNO1 and NOB1 using turboID proximity labeling technology. Gene 2025; 955:149411. [PMID: 40157618 DOI: 10.1016/j.gene.2025.149411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/19/2025] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND The ribosome assembly factors PNO1 and NOB1 play crucial roles in the maturation of the 40S ribosomal small subunit. TurboID is an efficient biotin ligase that can biotinylate proteins in proximity to the target protein and is widely used to study complex biological processes within cells. In this study, we employed this technology to investigate the complex proximity network of PNO1 and NOB1 within the cell, further revealing their key roles in ribosome biogenesis. RESULTS Firstly, through immunofluorescence experiments, we observed that PNO1 and NOB1 have different localizations within the cell. Subsequently, by analyzing the proximal proteins labeled by PNO1-TurboID and NOB1-TurboID, we identified 871 proximal proteins for PNO1 and 1044 for NOB1, with 663 overlapping proteins. Functional analysis revealed that these proximal proteins are predominantly enriched in biological processes related to ribosome assembly, rRNA processing, and translation, all of which are closely linked to ribosome biogenesis. Notably, we validated the mass spectrometry-identified proteins through co-IP experiments and found that PNO1 and NOB1 interact with the translation-related proteins EIF4B and EIF4G2. CONCLUSION Our study constructed the protein network environment of ribosome assembly factors PNO1 and NOB1 within the cell and found that their neighboring proteins are primarily involved in key biological processes such as ribosome processing, mRNA translation, and the cell cycle, all of which are critical for ribosome biogenesis. These findings provide a valuable foundation for further understanding the roles of PNO1 and NOB1 in ribosome biogenesis and how they regulate this process.
Collapse
Affiliation(s)
- Xingyuan Xu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenli Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiefu Zheng
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei 516600, China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Haiyan Yan
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei 516600, China.
| | - Shuang Zhu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Kubitscheck U, Siebrasse JP. Pre-ribosomal particles from nucleoli to cytoplasm. Nucleus 2024; 15:2373052. [PMID: 38940456 PMCID: PMC11216097 DOI: 10.1080/19491034.2024.2373052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024] Open
Abstract
The analysis of nucleocytoplasmic transport of proteins and messenger RNA has been the focus of advanced microscopic approaches. Recently, it has been possible to identify and visualize individual pre-ribosomal particles on their way through the nuclear pore complex using both electron and light microscopy. In this review, we focused on the transport of pre-ribosomal particles in the nucleus on their way to and through the pores.
Collapse
Affiliation(s)
- Ulrich Kubitscheck
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Jan Peter Siebrasse
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Chen X, Fansler MM, Janjoš U, Ule J, Mayr C. The FXR1 network acts as a signaling scaffold for actomyosin remodeling. Cell 2024; 187:5048-5063.e25. [PMID: 39106863 PMCID: PMC11380585 DOI: 10.1016/j.cell.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/24/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024]
Abstract
It is currently not known whether mRNAs fulfill structural roles in the cytoplasm. Here, we report the fragile X-related protein 1 (FXR1) network, an mRNA-protein (mRNP) network present throughout the cytoplasm, formed by FXR1-mediated packaging of exceptionally long mRNAs. These mRNAs serve as an underlying condensate scaffold and concentrate FXR1 molecules. The FXR1 network contains multiple protein binding sites and functions as a signaling scaffold for interacting proteins. We show that it is necessary for RhoA signaling-induced actomyosin reorganization to provide spatial proximity between kinases and their substrates. Point mutations in FXR1, found in its homolog FMR1, where they cause fragile X syndrome, disrupt the network. FXR1 network disruption prevents actomyosin remodeling-an essential and ubiquitous process for the regulation of cell shape, migration, and synaptic function. Our findings uncover a structural role for cytoplasmic mRNA and show how the FXR1 RNA-binding protein as part of the FXR1 network acts as an organizer of signaling reactions.
Collapse
Affiliation(s)
- Xiuzhen Chen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Mervin M Fansler
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Urška Janjoš
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; Biosciences PhD Program, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Ule
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; UK Dementia Research Institute at King's College London, London SE5 9NU, UK
| | - Christine Mayr
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
4
|
Parker MD, Brunk ES, Getzler AJ, Karbstein K. The kinase Rio1 and a ribosome collision-dependent decay pathway survey the integrity of 18S rRNA cleavage. PLoS Biol 2024; 22:e3001767. [PMID: 39038273 PMCID: PMC11045238 DOI: 10.1371/journal.pbio.3001767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/05/2024] [Indexed: 07/24/2024] Open
Abstract
The 18S rRNA sequence is highly conserved, particularly at its 3'-end, which is formed by the endonuclease Nob1. How Nob1 identifies its target sequence is not known, and in vitro experiments have shown Nob1 to be error-prone. Moreover, the sequence around the 3'-end is degenerate with similar sites nearby. Here, we used yeast genetics, biochemistry, and next-generation sequencing to investigate a role for the ATPase Rio1 in monitoring the accuracy of the 18S rRNA 3'-end. We demonstrate that Nob1 can miscleave its rRNA substrate and that miscleaved rRNA accumulates upon bypassing the Rio1-mediated quality control (QC) step, but not in healthy cells with intact QC mechanisms. Mechanistically, we show that Rio1 binding to miscleaved rRNA is weaker than its binding to accurately processed 18S rRNA. Accordingly, excess Rio1 results in accumulation of miscleaved rRNA. Ribosomes containing miscleaved rRNA can translate, albeit more slowly, thereby inviting collisions with trailing ribosomes. These collisions result in degradation of the defective ribosomes utilizing parts of the machinery for mRNA QC. Altogether, the data support a model in which Rio1 inspects the 3'-end of the nascent 18S rRNA to prevent miscleaved 18S rRNA-containing ribosomes from erroneously engaging in translation, where they induce ribosome collisions. The data also demonstrate how ribosome collisions purify cells of altered ribosomes with different functionalities, with important implications for the concept of ribosome heterogeneity.
Collapse
Affiliation(s)
- Melissa D. Parker
- The Skaggs Graduate School of Chemical and Biological Sciences, The
Scripps Research Institute, La Jolla, California, United States of
America
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and
Technology, Jupiter, Florida, United States of America
| | - Elise S. Brunk
- The Skaggs Graduate School of Chemical and Biological Sciences, The
Scripps Research Institute, La Jolla, California, United States of
America
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and
Technology, Jupiter, Florida, United States of America
| | - Adam J. Getzler
- The Skaggs Graduate School of Chemical and Biological Sciences, The
Scripps Research Institute, La Jolla, California, United States of
America
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and
Technology, Jupiter, Florida, United States of America
| | - Katrin Karbstein
- The Skaggs Graduate School of Chemical and Biological Sciences, The
Scripps Research Institute, La Jolla, California, United States of
America
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and
Technology, Jupiter, Florida, United States of America
| |
Collapse
|
5
|
Ragunath M, Shen A, Wei L, Peng J, Thiruvengadam M. Ribosome Biogenesis and Cancer: Insights into NOB1 and PNO1 Mechanisms. Curr Pharm Des 2024; 30:2911-2921. [PMID: 39143880 DOI: 10.2174/0113816128301870240730071910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 08/16/2024]
Abstract
Post-transcriptional modifications (PTMs) are pivotal in the regulation of gene expression, and pseudouridylation is emerging as a critical player. This modification, facilitated by enzymes such as NOB1 (PNO1), is integral to ribosome biogenesis. PNO1, in collaboration with the NIN1/RPN12 binding protein 1 homolog (NOB1), is vital for the maturation of ribosomes, transitioning 20S pre-rRNA into functional 18S rRNA. Recent studies have highlighted PNO1's potential involvement in cancer progression; however, its underlying mechanisms remain unclear. Relentless growth characterizing cancer underscores the burgeoning significance of epitranscriptomic modifications, including pseudouridylation, in oncogenesis. Given PNO1's emerging role, it is imperative to delineate its contribution to cancer development to identify novel therapeutic interventions. This review summarizes the current literature regarding the role of PNO1 in cancer progression and its molecular underpinnings in oncogenesis. Overexpression of PNO1 was associated with unfavorable prognosis and increased tumor malignancy. At the molecular level, PNO1 facilitates cancer progression by modulating mRNA stability, alternative splicing, and translation efficiency. Its role in pseudouridylation of oncogenic and tumor-suppressor transcripts further underscores its significance in cancer biology. Although disruption of ribosome biogenesis is known to precipitate oncogenesis, the precise mechanisms by which these alterations contribute to cancer remain unclear. This review elucidates the intricate process of ribosomal small subunit maturation, highlighting the roles of crucial ribosomal proteins (RPs) and RNA-binding proteins (RBPs) as well as the positioning and function of NOB1 and PNO1 within the 40S subunit. The involvement of these components in the maturation of the small subunit (SSU) and their significance in the context of cancer therapeutics has been thoroughly explored. PNO1's burgeoning significance in oncology makes it a potential target for cancer therapies. Strategies aimed at modulating PNO1-mediated pseudouridylation may provide new avenues for cancer treatment. However, further research is essential to unravel the complete spectrum of PNO1 mechanisms in cancer and harness this knowledge for the development of targeted and more efficacious anticancer therapies.
Collapse
Affiliation(s)
- Muthu Ragunath
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Aling Shen
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Lin Wei
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
6
|
Zhou H, Yuan W, Lei W, Zhou T, Qin P, Zhang B, Hu M. Domain definition and preliminary functional exploration of the endonuclease NOBP-1 in Strongyloides stercoralis. Parasit Vectors 2023; 16:399. [PMID: 37924155 PMCID: PMC10623843 DOI: 10.1186/s13071-023-05940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/22/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Ribosome biogenesis is the process of assembling ribosome complexes that regulate cell proliferation and differentiation with potential regulatory effects on development. Many factors regulate ribosome biological processes. Nin one binding protein (Nob1) has received widespread attention as key genes regulating ribosome biogenesis-the 3' end of the 20S rRNA is cleaved by Nob1 at cleavage site D to form 18S rRNA, generating translationally capable 40S subunit. As a ribosome biogenesis factor, Nob1 may regulate the development of organisms, but almost nothing is known about the function of Nob1 for any parasitic nematode. We explored the functional role of NOBP-1 (the homologous gene of Nob1) encoding gene from a parasitic nematode-Strongyloides stercoralis. METHODS The full-length cDNA, gDNA and promoter region of Ss-nobp-1 was identified using protein BLAST in WormBase ParaSite according to the Caenorhabditis elegans NOBP-1 sequence to analyze the gene structure. RNA sequencing (RNA-seq) data in wormbase were retrieved and analyzed to assess the transcript abundance of Ss-nobp-1 in seven developmental stages of S. stercoralis. The standard method for gonadal microinjection of constructs was carried out to determine the anatomic expression patterns of Ss-nobp-1. The interaction between Ss-NOBP-1 and partner of NOBP-1 (Ss-PNO-1) was assessed by yeast two-hybridization and bimolecular fluorescence complementarity (BiFC) experiments. RESULTS The NOBP-1 encoding gene Ss-nopb-1 from the zoonotic parasite S. stercoralis has been isolated and characterized. The genomic DNA representing Ss-nobp-1 includes a 1599-bp coding region and encodes a protein comprising 403 amino acids (aa), which contains conserved PIN domain and zinc ribbon domain. RNA-seq analysis revealed that Ss-nobp-1 transcripts are present throughout the seven developmental stages in S. stercoralis and have higher transcription levels in iL3, L3 and P Female. Ss-nobp-1 is expressed mainly in the intestine of transgenic S. stercoralis larvae, and there is a direct interaction between Ss-NOBP-1 and Ss-PNO-1. CONCLUSIONS Collectively, Ss-NOBP-1 has a potential role in embryo formation and the infective process, and findings from this study provide a sound foundation for investigating its function during the development of parasitic nematode.
Collapse
Affiliation(s)
- Huan Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China.
| | - Wang Yuan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Weiqiang Lei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Animal Science and Technology, Jinling Institute of Technology, Nanjing, 210038, China
| | - Taoxun Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Peixi Qin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Biying Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
7
|
Verma G, Bowen A, Gheibi S, Hamilton A, Muthukumar S, Cataldo LR, Asplund O, Esguerra J, Karagiannopoulos A, Lyons C, Cowan E, Bellodi C, Prasad R, Fex M, Mulder H. Ribosomal biogenesis regulator DIMT1 controls β-cell protein synthesis, mitochondrial function, and insulin secretion. J Biol Chem 2022; 298:101692. [PMID: 35148993 PMCID: PMC8913306 DOI: 10.1016/j.jbc.2022.101692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/24/2023] Open
Abstract
We previously reported that loss of mitochondrial transcription factor B1 (TFB1M) leads to mitochondrial dysfunction and is involved in the pathogenesis of type 2 diabetes (T2D). Whether defects in ribosomal processing impact mitochondrial function and could play a pathogenetic role in β-cells and T2D is not known. To this end, we explored expression and the functional role of dimethyladenosine transferase 1 homolog (DIMT1), a homolog of TFB1M and a ribosomal RNA (rRNA) methyltransferase implicated in the control of rRNA. Expression of DIMT1 was increased in human islets from T2D donors and correlated positively with expression of insulin mRNA, but negatively with insulin secretion. We show that silencing of DIMT1 in insulin-secreting cells impacted mitochondrial function, leading to lower expression of mitochondrial OXPHOS proteins, reduced oxygen consumption rate, dissipated mitochondrial membrane potential, and a slower rate of ATP production. In addition, the rate of protein synthesis was retarded upon DIMT1 deficiency. Consequently, we found that DIMT1 deficiency led to perturbed insulin secretion in rodent cell lines and islets, as well as in a human β-cell line. We observed defects in rRNA processing and reduced interactions between NIN1 (RPN12) binding protein 1 homolog (NOB-1) and pescadillo ribosomal biogenesis factor 1 (PES-1), critical ribosomal subunit RNA proteins, the dysfunction of which may play a part in disturbing protein synthesis in β-cells. In conclusion, DIMT1 deficiency perturbs protein synthesis, resulting in mitochondrial dysfunction and disrupted insulin secretion, both potential pathogenetic processes in T2D.
Collapse
Affiliation(s)
- Gaurav Verma
- Lund University Diabetes Centre, Lunds Universitet, Malmö, Sweden
| | - Alexander Bowen
- Lund University Diabetes Centre, Lunds Universitet, Malmö, Sweden
| | - Sevda Gheibi
- Lund University Diabetes Centre, Lunds Universitet, Malmö, Sweden
| | | | - Sowndarya Muthukumar
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Olof Asplund
- Unit of Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Jonathan Esguerra
- Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Malmö, Sweden
| | | | - Claire Lyons
- Lund University Diabetes Centre, Lunds Universitet, Malmö, Sweden
| | - Elaine Cowan
- Lund University Diabetes Centre, Lunds Universitet, Malmö, Sweden
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Rashmi Prasad
- Unit of Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Malin Fex
- Lund University Diabetes Centre, Lunds Universitet, Malmö, Sweden
| | - Hindrik Mulder
- Lund University Diabetes Centre, Lunds Universitet, Malmö, Sweden.
| |
Collapse
|
8
|
Jüttner M, Ferreira-Cerca S. A Comparative Perspective on Ribosome Biogenesis: Unity and Diversity Across the Tree of Life. Methods Mol Biol 2022; 2533:3-22. [PMID: 35796979 PMCID: PMC9761495 DOI: 10.1007/978-1-0716-2501-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Ribosomes are universally conserved ribonucleoprotein complexes involved in the decoding of the genetic information contained in messenger RNAs into proteins. Accordingly, ribosome biogenesis is a fundamental cellular process required for functional ribosome homeostasis and to preserve satisfactory gene expression capability.Although the ribosome is universally conserved, its biogenesis shows an intriguing degree of variability across the tree of life . These differences also raise yet unresolved questions. Among them are (a) what are, if existing, the remaining ancestral common principles of ribosome biogenesis ; (b) what are the molecular impacts of the evolution history and how did they contribute to (re)shape the ribosome biogenesis pathway across the tree of life ; (c) what is the extent of functional divergence and/or convergence (functional mimicry), and in the latter case (if existing) what is the molecular basis; (d) considering the universal ribosome conservation, what is the capability of functional plasticity and cellular adaptation of the ribosome biogenesis pathway?In this review, we provide a brief overview of ribosome biogenesis across the tree of life and try to illustrate some potential and/or emerging answers to these unresolved questions.
Collapse
Affiliation(s)
- Michael Jüttner
- Biochemistry III-Regensburg Center for Biochemistry-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Sébastien Ferreira-Cerca
- Biochemistry III-Regensburg Center for Biochemistry-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
9
|
Rai J, Parker MD, Huang H, Choy S, Ghalei H, Johnson MC, Karbstein K, Stroupe ME. An open interface in the pre-80S ribosome coordinated by ribosome assembly factors Tsr1 and Dim1 enables temporal regulation of Fap7. RNA (NEW YORK, N.Y.) 2021; 27:221-233. [PMID: 33219089 PMCID: PMC7812869 DOI: 10.1261/rna.077610.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
During their maturation, nascent 40S subunits enter a translation-like quality control cycle, where they are joined by mature 60S subunits to form 80S-like ribosomes. While these assembly intermediates are essential for maturation and quality control, how they form, and how their structure promotes quality control, remains unknown. To address these questions, we determined the structure of an 80S-like ribosome assembly intermediate to an overall resolution of 3.4 Å. The structure, validated by biochemical data, resolves a large body of previously paradoxical data and illustrates how assembly and translation factors cooperate to promote the formation of an interface that lacks many mature subunit contacts but is stabilized by the universally conserved methyltransferase Dim1. We also show how Tsr1 enables this interface by blocking the canonical binding of eIF5B to 40S subunits, while maintaining its binding to 60S. The structure also shows how this interface leads to unfolding of the platform, which allows for temporal regulation of the ATPase Fap7, thus linking 40S maturation to quality control during ribosome assembly.
Collapse
MESH Headings
- Adenylate Kinase/chemistry
- Adenylate Kinase/genetics
- Adenylate Kinase/metabolism
- Binding Sites
- Gene Expression Regulation, Fungal
- Methyltransferases/chemistry
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Models, Molecular
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nucleoside-Triphosphatase/chemistry
- Nucleoside-Triphosphatase/genetics
- Nucleoside-Triphosphatase/metabolism
- Organelle Biogenesis
- Protein Binding
- Protein Biosynthesis
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Large, Eukaryotic/ultrastructure
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/ultrastructure
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Jay Rai
- Department of Biological Science and the Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | - Melissa D Parker
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Haina Huang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Stefan Choy
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Homa Ghalei
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Matthew C Johnson
- Department of Biological Science and the Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | - Katrin Karbstein
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
- HHMI Faculty Scholar, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - M Elizabeth Stroupe
- Department of Biological Science and the Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
10
|
Ke W, Lu Z, Zhao X. NOB1: A Potential Biomarker or Target in Cancer. Curr Drug Targets 2020; 20:1081-1089. [PMID: 30854959 DOI: 10.2174/1389450120666190308145346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/06/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
Human NIN1/RPN12 binding protein 1 homolog (NOB1), an RNA binding protein, is expressed ubiquitously in normal tissues such as the lung, liver, and spleen. Its core physiological function is to regulate protease activities and participate in maintaining RNA metabolism and stability. NOB1 is overexpressed in a variety of cancers, including pancreatic cancer, non-small cell lung cancer, ovarian cancer, prostate carcinoma, osteosarcoma, papillary thyroid carcinoma, colorectal cancer, and glioma. Although existing data indicate that NOB1 overexpression is associated with cancer growth, invasion, and poor prognosis, the molecular mechanisms behind these effects and its exact roles remain unclear. Several studies have confirmed that NOB1 is clinically relevant in different cancers, and further research at the molecular level will help evaluate the role of NOB1 in tumors. NOB1 has become an attractive target in anticancer therapy because it is overexpressed in many cancers and mediates different stages of tumor development. Elucidating the role of NOB1 in different signaling pathways as a potential cancer treatment will provide new ideas for existing cancer treatment methods. This review summarizes the research progress made into NOB1 in cancer in the past decade; this information provides valuable clues and theoretical guidance for future anticancer therapy by targeting NOB1.
Collapse
Affiliation(s)
- Weiwei Ke
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| |
Collapse
|
11
|
Martín-Villanueva S, Fernández-Fernández J, Rodríguez-Galán O, Fernández-Boraita J, Villalobo E, de La Cruz J. Role of the 40S beak ribosomal protein eS12 in ribosome biogenesis and function in Saccharomyces cerevisiae. RNA Biol 2020; 17:1261-1276. [PMID: 32408794 DOI: 10.1080/15476286.2020.1767951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
In eukaryotes, the beak structure of 40S subunits is formed by the protrusion of the 18S rRNA helix 33 and three ribosomal proteins: eS10, eS12 and eS31. The exact role of these proteins in ribosome biogenesis is not well understood. While eS10 is an essential protein encoded by two paralogous genes in Saccharomyces cerevisiae, eS12 and eS31 are not essential proteins encoded by the single-copy genes RPS12 and UBI3, respectively. Here, we have analysed the contribution of yeast eS12 to ribosome biogenesis and compared it with that of eS31. Polysome analysis reveals that deletion of either RPS12 or UBI3 results in equivalent 40S deficits. Analysis of pre-rRNA processing indicates that eS12, akin to eS31, is required for efficient processing of 20S pre-rRNA to mature 18S rRNA. Moreover, we show that the 20S pre-rRNA accumulates within cytoplasmic pre-40S particles, as deduced from FISH experiments and the lack of nuclear retention of 40S subunit reporter proteins, in rps12∆ and ubi3∆ cells. However, these particles containing 20S pre-rRNA are not efficiently incorporated into polyribosomes. We also provide evidence for a genetic interaction between eS12 or eS31 and the late-acting 40S assembly factors Enp1 and Ltv1, which appears not to be linked to the dynamics of their association with or release from pre-40S particles in the absence of either eS12 or eS31. Finally, we show that eS12- and eS31-deficient ribosomes exhibit increased levels of translational misreading. Altogether, our data highlight distinct important roles of the beak region during ribosome assembly and function.
Collapse
Affiliation(s)
- Sara Martín-Villanueva
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| | - José Fernández-Fernández
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| | - Olga Rodríguez-Galán
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| | - Julia Fernández-Boraita
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| | - Eduardo Villalobo
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla , Seville, Spain
| | - Jesús de La Cruz
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla , Seville, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla , Seville, Spain
| |
Collapse
|
12
|
Shayan R, Rinaldi D, Larburu N, Plassart L, Balor S, Bouyssié D, Lebaron S, Marcoux J, Gleizes PE, Plisson-Chastang C. Good Vibrations: Structural Remodeling of Maturing Yeast Pre-40S Ribosomal Particles Followed by Cryo-Electron Microscopy. Molecules 2020; 25:molecules25051125. [PMID: 32138239 PMCID: PMC7179242 DOI: 10.3390/molecules25051125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/03/2022] Open
Abstract
Assembly of eukaryotic ribosomal subunits is a very complex and sequential process that starts in the nucleolus and finishes in the cytoplasm with the formation of functional ribosomes. Over the past few years, characterization of the many molecular events underlying eukaryotic ribosome biogenesis has been drastically improved by the “resolution revolution” of cryo-electron microscopy (cryo-EM). However, if very early maturation events have been well characterized for both yeast ribosomal subunits, little is known regarding the final maturation steps occurring to the small (40S) ribosomal subunit. To try to bridge this gap, we have used proteomics together with cryo-EM and single particle analysis to characterize yeast pre-40S particles containing the ribosome biogenesis factor Tsr1. Our analyses lead us to refine the timing of the early pre-40S particle maturation steps. Furthermore, we suggest that after an early and structurally stable stage, the beak and platform domains of pre-40S particles enter a “vibrating” or “wriggling” stage, that might be involved in the final maturation of 18S rRNA as well as the fitting of late ribosomal proteins into their mature position.
Collapse
Affiliation(s)
- Ramtin Shayan
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse CEDEX, France; (R.S.); (D.R.); (N.L.); (L.P.); (S.B.); (S.L.)
| | - Dana Rinaldi
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse CEDEX, France; (R.S.); (D.R.); (N.L.); (L.P.); (S.B.); (S.L.)
| | - Natacha Larburu
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse CEDEX, France; (R.S.); (D.R.); (N.L.); (L.P.); (S.B.); (S.L.)
| | - Laura Plassart
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse CEDEX, France; (R.S.); (D.R.); (N.L.); (L.P.); (S.B.); (S.L.)
| | - Stéphanie Balor
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse CEDEX, France; (R.S.); (D.R.); (N.L.); (L.P.); (S.B.); (S.L.)
| | - David Bouyssié
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31062 Toulouse CEDEX, France;
| | - Simon Lebaron
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse CEDEX, France; (R.S.); (D.R.); (N.L.); (L.P.); (S.B.); (S.L.)
| | - Julien Marcoux
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse CEDEX, France; (R.S.); (D.R.); (N.L.); (L.P.); (S.B.); (S.L.)
- Correspondence: (J.M.); (P.-E.G.); (C.P.-C.)
| | - Pierre-Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse CEDEX, France; (R.S.); (D.R.); (N.L.); (L.P.); (S.B.); (S.L.)
- Correspondence: (J.M.); (P.-E.G.); (C.P.-C.)
| | - Célia Plisson-Chastang
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse CEDEX, France; (R.S.); (D.R.); (N.L.); (L.P.); (S.B.); (S.L.)
- Correspondence: (J.M.); (P.-E.G.); (C.P.-C.)
| |
Collapse
|
13
|
Nieto B, Gaspar SG, Moriggi G, Pestov DG, Bustelo XR, Dosil M. Identification of distinct maturation steps involved in human 40S ribosomal subunit biosynthesis. Nat Commun 2020; 11:156. [PMID: 31919354 PMCID: PMC6952385 DOI: 10.1038/s41467-019-13990-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/11/2019] [Indexed: 02/02/2023] Open
Abstract
Technical problems intrinsic to the purification of preribosome intermediates have limited our understanding of ribosome biosynthesis in humans. Addressing this issue is important given the implication of this biological process in human disease. Here we report a preribosome purification and tagging strategy that overcomes some of the existing technical difficulties. Using these tools, we find that the pre-40S precursors go through two distinct maturation phases inside the nucleolus and follow a regulatory step that precedes late maturation in the cytoplasm. This regulatory step entails the intertwined actions of both PARN (a metazoan-specific ribonuclease) and RRP12 (a phylogenetically conserved 40S biogenesis factor that has acquired additional functional features in higher eukaryotes). Together, these results demonstrate the usefulness of this purification method for the dissection of ribosome biogenesis in human cells. They also identify distinct maturation stages and metazoan-specific regulatory mechanisms involved in the generation of the human 40S ribosomal subunit. Ribosome synthesis is a complex multi-step process. Here the authors present a method that allows the efficient isolation and characterization of the preribosomal complexes formed along the entire ribosome synthesis pathway in human cells.
Collapse
Affiliation(s)
- Blanca Nieto
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain
| | - Sonia G Gaspar
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain
| | - Giulia Moriggi
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084, USA
| | - Xosé R Bustelo
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain
| | - Mercedes Dosil
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain. .,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain. .,Departamento de Bioquímica y Biología Molecular, University of Salamanca, Campus Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
14
|
Parker MD, Collins JC, Korona B, Ghalei H, Karbstein K. A kinase-dependent checkpoint prevents escape of immature ribosomes into the translating pool. PLoS Biol 2019; 17:e3000329. [PMID: 31834877 PMCID: PMC6934326 DOI: 10.1371/journal.pbio.3000329] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 12/27/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022] Open
Abstract
Premature release of nascent ribosomes into the translating pool must be prevented because these do not support viability and may be prone to mistakes. Here, we show that the kinase Rio1, the nuclease Nob1, and its binding partner Pno1 cooperate to establish a checkpoint that prevents the escape of immature ribosomes into polysomes. Nob1 blocks mRNA recruitment, and rRNA cleavage is required for its dissociation from nascent 40S subunits, thereby setting up a checkpoint for maturation. Rio1 releases Nob1 and Pno1 from pre-40S ribosomes to discharge nascent 40S into the translating pool. Weak-binding Nob1 and Pno1 mutants can bypass the requirement for Rio1, and Pno1 mutants rescue cell viability. In these strains, immature ribosomes escape into the translating pool, where they cause fidelity defects and perturb protein homeostasis. Thus, the Rio1-Nob1-Pno1 network establishes a checkpoint that safeguards against the release of immature ribosomes into the translating pool.
Collapse
Affiliation(s)
- Melissa D. Parker
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Jason C. Collins
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Boguslawa Korona
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Homa Ghalei
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Katrin Karbstein
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
- HHMI Faculty Scholar, Chevy Chase, Maryland, United States of America
| |
Collapse
|
15
|
Ke W, Lu Z, Zhao X. NOB1: A Potential Biomarker or Target in Cancer. Curr Drug Targets 2019; 20:1081-1089. [DOI: doi10.2174/1389450120666190308145346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/06/2019] [Accepted: 03/05/2019] [Indexed: 09/01/2023]
Abstract
Human NIN1/RPN12 binding protein 1 homolog (NOB1), an RNA binding protein, is expressed ubiquitously in normal tissues such as the lung, liver, and spleen. Its core physiological function is to regulate protease activities and participate in maintaining RNA metabolism and stability. NOB1 is overexpressed in a variety of cancers, including pancreatic cancer, non-small cell lung cancer, ovarian cancer, prostate carcinoma, osteosarcoma, papillary thyroid carcinoma, colorectal cancer, and glioma. Although existing data indicate that NOB1 overexpression is associated with cancer growth, invasion, and poor prognosis, the molecular mechanisms behind these effects and its exact roles remain unclear. Several studies have confirmed that NOB1 is clinically relevant in different cancers, and further research at the molecular level will help evaluate the role of NOB1 in tumors. NOB1 has become an attractive target in anticancer therapy because it is overexpressed in many cancers and mediates different stages of tumor development. Elucidating the role of NOB1 in different signaling pathways as a potential cancer treatment will provide new ideas for existing cancer treatment methods. This review summarizes the research progress made into NOB1 in cancer in the past decade; this information provides valuable clues and theoretical guidance for future anticancer therapy by targeting NOB1.
Collapse
Affiliation(s)
- Weiwei Ke
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| |
Collapse
|
16
|
Shen A, Chen Y, Liu L, Huang Y, Chen H, Qi F, Lin J, Shen Z, Wu X, Wu M, Li Q, Qiu L, Yu N, Sferra TJ, Peng J. EBF1-Mediated Upregulation of Ribosome Assembly Factor PNO1 Contributes to Cancer Progression by Negatively Regulating the p53 Signaling Pathway. Cancer Res 2019; 79:2257-2270. [PMID: 30862720 DOI: 10.1158/0008-5472.can-18-3238] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/31/2019] [Accepted: 03/08/2019] [Indexed: 11/16/2022]
Abstract
The RNA-binding protein PNO1 is critical for ribosome biogenesis, but its potential role in cancer remains unknown. In this study, online data mining, cDNA, and tissue microarrays indicated that PNO1 expression was higher in colorectal cancer tissue than in noncancerous tissue, and its overexpression was associated with worse patient survival. Gain-of-function and loss-of-function studies demonstrated that PNO1 knockdown suppressed growth of colorectal cancer cells in vitro and in vivo, while PNO1 overexpression promoted colorectal cancer cell proliferation in vitro. In colorectal cancer cells expressing wild-type p53, PNO1 knockdown enhanced expression of p53 and its downstream gene p21, and reduced cell viability; these effects were prevented by p53 knockout and attenuated by the p53 inhibitor PFT-α. Moreover, PNO1 knockdown in HCT116 cells decreased levels of 18S rRNA, of 40S and 60S ribosomal subunits, and of the 80S ribosome. It also reduced global protein synthesis, increasing nuclear stress and inhibiting MDM2-mediated ubiquitination and p53 degradation. Overexpressing EBF1 suppressed PNO1 promoter activity and decreased PNO1 mRNA and protein, inhibiting cell proliferation and inducing cell apoptosis through the p53/p21 pathway. In colorectal cancer tissues, the expression of EBF1 correlated inversely with PNO1. Data mining of online breast and lung cancer databases showed increased PNO1 expression and association with poor patient survival; PNO1 knockdown reduced cell viability of cultured breast and lung cancer cells. Taken together, these findings indicate that PNO1 is overexpressed in colorectal cancer and correlates with poor patient survival, and that PNO1 exerts oncogenic effects, at least, in part, by altering ribosome biogenesis. SIGNIFICANCE: This study identifies the ribosome assembly factor PNO1 as a potential oncogene involved in tumor growth and progression of colorectal cancer.
Collapse
Affiliation(s)
- Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Youqin Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Yue Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Hongwei Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Fei Qi
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Zhiqing Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Xiangyan Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Qiongyu Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Liman Qiu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Na Yu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Thomas J Sferra
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| |
Collapse
|
17
|
Raoelijaona F, Thore S, Fribourg S. Domain definition and interaction mapping for the endonuclease complex hNob1/hPno1. RNA Biol 2018; 15:1174-1180. [PMID: 30176151 DOI: 10.1080/15476286.2018.1517013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Ribosome biogenesis requires a variety of trans-acting factors in order to produce functional ribosomal subunits. In human cells, the complex formed by the proteins hNob1 and hPno1 is crucial to the site 3 cleavage occurring at the 3'-end of 18S pre-rRNA. However, the properties and activity of this complex are still poorly understood. We present here a detailed characterization of hNob1 organization and its interaction with hPno1. We redefine the boundaries of the endonuclease PIN domain present in hNob1 and we further delineate the precise interacting modules required for complex formation in hNob1 and hPno1. Altogether, our data contributes to a better understanding of the complex biology required during the site 3 cleavage step in ribosome biogenesis.
Collapse
Affiliation(s)
| | - Stéphane Thore
- a INSERM U1212, CNRS UMR5320 , Université de Bordeaux , Bordeaux , France
| | - Sébastien Fribourg
- a INSERM U1212, CNRS UMR5320 , Université de Bordeaux , Bordeaux , France
| |
Collapse
|
18
|
Landvogt L, Ruland JA, Montellese C, Siebrasse JP, Kutay U, Kubitscheck U. Observing and tracking single small ribosomal subunits in vivo. Methods 2018; 153:63-70. [PMID: 30194975 DOI: 10.1016/j.ymeth.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
Ribosomes are formed of a small and a large subunit (SSU/LSU), both consisting of rRNA and a plethora of accessory proteins. While biochemical and genetic studies identified most of the involved proteins and deciphered the ribosomal synthesis steps, our knowledge of the molecular dynamics of the different ribosomal subunits and also of the kinetics of their intracellular trafficking is still limited. Adopting a labelling strategy initially used to study mRNA export we were able to fluorescently stain the SSU in vivo. We chose DIM2/PNO1 (Defective In DNA Methylation 2/Partner of NOb1) as labelling target and created a stable cell line carrying an inducible SNAP-DIM2 fusion protein. After bulk labelling with a green fluorescent dye combined with very sparse labelling with a red fluorescent dye the nucleoli and single SSU could be visualized simultaneously in the green and red channel, respectively. We used single molecule microscopy to track single SSU in the nucleolus and nucleoplasm. Resulting trajectory data were analyzed by jump-distance analysis and the variational Bayes single-particle tracking approach. Both methods allowed identifying the number of diffusive states and the corresponding diffusion coefficients. For both nucleoli and nucleoplasm we could identify mobile (D = 2.3-2.8 µm2/s), retarded (D = 0.18-0.31 µm2/s) and immobilized (D = 0.04-0.05 µm2/s) SSU fractions and, as expected, the size of the fractions differed in the two compartments. While the fast mobility fraction matches perfectly the expected nuclear mobility of the SSU (D = 2.45 µm2/s), we were surprised to find a substantial fraction (33%) of immobile SSU in the nucleoplasm, something not observed for inert control molecules.
Collapse
Affiliation(s)
- Lisa Landvogt
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Wegeler Str. 12, 53115 Bonn, Germany
| | - Jan Andreas Ruland
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Wegeler Str. 12, 53115 Bonn, Germany
| | - Christian Montellese
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Jan Peter Siebrasse
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Wegeler Str. 12, 53115 Bonn, Germany
| | - Ulrike Kutay
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Ulrich Kubitscheck
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Wegeler Str. 12, 53115 Bonn, Germany.
| |
Collapse
|
19
|
Ameismeier M, Cheng J, Berninghausen O, Beckmann R. Visualizing late states of human 40S ribosomal subunit maturation. Nature 2018; 558:249-253. [PMID: 29875412 DOI: 10.1038/s41586-018-0193-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/20/2018] [Indexed: 01/24/2023]
Abstract
The formation of eukaryotic ribosomal subunits extends from the nucleolus to the cytoplasm and entails hundreds of assembly factors. Despite differences in the pathways of ribosome formation, high-resolution structural information has been available only from fungi. Here we present cryo-electron microscopy structures of late-stage human 40S assembly intermediates, representing one state reconstituted in vitro and five native states that range from nuclear to late cytoplasmic. The earliest particles reveal the position of the biogenesis factor RRP12 and distinct immature rRNA conformations that accompany the formation of the 40S subunit head. Molecular models of the late-acting assembly factors TSR1, RIOK1, RIOK2, ENP1, LTV1, PNO1 and NOB1 provide mechanistic details that underlie their contribution to a sequential 40S subunit assembly. The NOB1 architecture displays an inactive nuclease conformation that requires rearrangement of the PNO1-bound 3' rRNA, thereby coordinating the final rRNA folding steps with site 3 cleavage.
Collapse
Affiliation(s)
- Michael Ameismeier
- Gene Center Munich and Center of Integrated Protein Science-Munich (CiPS-M), Department of Biochemistry, University of Munich, Munich, Germany
| | - Jingdong Cheng
- Gene Center Munich and Center of Integrated Protein Science-Munich (CiPS-M), Department of Biochemistry, University of Munich, Munich, Germany
| | - Otto Berninghausen
- Gene Center Munich and Center of Integrated Protein Science-Munich (CiPS-M), Department of Biochemistry, University of Munich, Munich, Germany
| | - Roland Beckmann
- Gene Center Munich and Center of Integrated Protein Science-Munich (CiPS-M), Department of Biochemistry, University of Munich, Munich, Germany.
| |
Collapse
|
20
|
Liu K, Chen H, You Q, Ye Q, Wang F, Wang S, Zhang S, Yu K, Li W, Gu M. miR‑145 inhibits human non‑small-cell lung cancer growth by dual-targeting RIOK2 and NOB1. Int J Oncol 2018; 53:257-265. [PMID: 29749434 DOI: 10.3892/ijo.2018.4393] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/10/2018] [Indexed: 12/15/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-associated mortality worldwide. Right open reading frame kinase 2 (RIOK2) and nin one binding protein (NOB1) are important accessory factors in ribosome assembly. In our previous study, RIOK2 and NOB1 were revealed to be highly expressed in NSCLC, and were associated with the clinicopathological characteristics of patients with NSCLC, i.e. TNM clinical stage, lymph node metastasis and differentiation. In addition, RIOK2 expression was correlated with NOB1. To further explore the mechanism and the RIOK2 and NOB1 signaling pathway, microRNA (miR) regulation was analyzed. The tumor suppressor miR‑145 has been reported to be lowly expressed in numerous types of human cancer; in the present study, the expression levels of miR‑145 were decreased in patients with NSCLC. Furthermore, RIOK2 and NOB1 were predicted to be the direct targets of miR‑145 using bioinformatics software; this was further validated using a dual luciferase reporter assay. In addition, the protein expression levels of RIOK2 and NOB1 were inhibited in response to miR‑145 overexpression, thus resulting in the suppression of cell viability, migration and invasion. These results suggested that RIOK2 and NOB1 may be potential targets in the treatment of NSCLC, and miR‑145 may be considered a therapeutic inhibitor of both genes.
Collapse
Affiliation(s)
- Kun Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Honglin Chen
- School of Nursing, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qingsheng You
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qing Ye
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Fei Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shuo Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shuanglong Zhang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Kangjun Yu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Weinan Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Mingming Gu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
21
|
Scaiola A, Peña C, Weisser M, Böhringer D, Leibundgut M, Klingauf-Nerurkar P, Gerhardy S, Panse VG, Ban N. Structure of a eukaryotic cytoplasmic pre-40S ribosomal subunit. EMBO J 2018; 37:embj.201798499. [PMID: 29459436 DOI: 10.15252/embj.201798499] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/18/2017] [Accepted: 01/10/2018] [Indexed: 11/09/2022] Open
Abstract
Final maturation of eukaryotic ribosomes occurs in the cytoplasm and requires the sequential removal of associated assembly factors and processing of the immature 20S pre-RNA Using cryo-electron microscopy (cryo-EM), we have determined the structure of a yeast cytoplasmic pre-40S particle in complex with Enp1, Ltv1, Rio2, Tsr1, and Pno1 assembly factors poised to initiate final maturation. The structure reveals that the pre-rRNA adopts a highly distorted conformation of its 3' major and 3' minor domains stabilized by the binding of the assembly factors. This observation is consistent with a mechanism that involves concerted release of the assembly factors orchestrated by the folding of the rRNA in the head of the pre-40S subunit during the final stages of maturation. Our results provide a structural framework for the coordination of the final maturation events that drive a pre-40S particle toward the mature form capable of engaging in translation.
Collapse
Affiliation(s)
- Alain Scaiola
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Cohue Peña
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Melanie Weisser
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Daniel Böhringer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Purnima Klingauf-Nerurkar
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Stefan Gerhardy
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Sturm M, Cheng J, Baßler J, Beckmann R, Hurt E. Interdependent action of KH domain proteins Krr1 and Dim2 drive the 40S platform assembly. Nat Commun 2017; 8:2213. [PMID: 29263326 PMCID: PMC5738357 DOI: 10.1038/s41467-017-02199-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 11/12/2017] [Indexed: 12/14/2022] Open
Abstract
Ribosome biogenesis begins in the nucleolus with the formation of 90S pre-ribosomes, from which pre-40S and pre-60S particles arise that subsequently follow separate maturation pathways. Here, we show how structurally related assembly factors, the KH domain proteins Krr1 and Dim2, participate in ribosome assembly. Initially, Dim2 (Pno1) orchestrates an early step in small subunit biogenesis through its binding to a distinct region of the 90S pre-ribosome. This involves Utp1 of the UTP-B module, and Utp14, an activator of the DEAH-box helicase Dhr1 that catalyzes the removal of U3 snoRNP from the 90S. Following this dismantling reaction, the pre-40S subunit emerges, but Dim2 relocates to the pre-40S platform domain, previously occupied in the 90S by the other KH factor Krr1 through its interaction with Rps14 and the UTP-C module. Our findings show how the structurally related Krr1 and Dim2 can control stepwise ribosome assembly during the 90S-to-pre-40S subunit transition. The biogenesis of eukaryotic ribosomes involves the coordinated interplay of a large number of assembly factors. Here, the authors detail how the conserved KH domain-containing assembly factors Dim2 and Krr1 function in ordering key events during ribosome maturation.
Collapse
Affiliation(s)
- Miriam Sturm
- Biochemistry Centre, University of Heidelberg, Heidelberg, 69221, Germany
| | - Jingdong Cheng
- Department of Biochemistry, Gene Center, Center for integrated Protein Science - Munich (CiPS-M), Ludwig-Maximillian University, Munich, 81377, Germany
| | - Jochen Baßler
- Biochemistry Centre, University of Heidelberg, Heidelberg, 69221, Germany
| | - Roland Beckmann
- Department of Biochemistry, Gene Center, Center for integrated Protein Science - Munich (CiPS-M), Ludwig-Maximillian University, Munich, 81377, Germany
| | - Ed Hurt
- Biochemistry Centre, University of Heidelberg, Heidelberg, 69221, Germany.
| |
Collapse
|
23
|
Heuer A, Thomson E, Schmidt C, Berninghausen O, Becker T, Hurt E, Beckmann R. Cryo-EM structure of a late pre-40S ribosomal subunit from Saccharomyces cerevisiae. eLife 2017; 6. [PMID: 29155690 PMCID: PMC5695908 DOI: 10.7554/elife.30189] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/03/2017] [Indexed: 01/10/2023] Open
Abstract
Mechanistic understanding of eukaryotic ribosome formation requires a detailed structural knowledge of the numerous assembly intermediates, generated along a complex pathway. Here, we present the structure of a late pre-40S particle at 3.6 Å resolution, revealing in molecular detail how assembly factors regulate the timely folding of pre-18S rRNA. The structure shows that, rather than sterically blocking 40S translational active sites, the associated assembly factors Tsr1, Enp1, Rio2 and Pno1 collectively preclude their final maturation, thereby preventing untimely tRNA and mRNA binding and error prone translation. Moreover, the structure explains how Pno1 coordinates the 3’end cleavage of the 18S rRNA by Nob1 and how the late factor’s removal in the cytoplasm ensures the structural integrity of the maturing 40S subunit.
Collapse
Affiliation(s)
- André Heuer
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Emma Thomson
- Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
| | - Christian Schmidt
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Otto Berninghausen
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Thomas Becker
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| | - Ed Hurt
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany.,Heidelberg University Biochemistry Center, Heidelberg University, Heidelberg, Germany
| | - Roland Beckmann
- Gene Center Munich, Department of Biochemistry, University of Munich, Munich, Germany
| |
Collapse
|
24
|
|
25
|
Tomecki R, Sikorski PJ, Zakrzewska-Placzek M. Comparison of preribosomal RNA processing pathways in yeast, plant and human cells - focus on coordinated action of endo- and exoribonucleases. FEBS Lett 2017; 591:1801-1850. [PMID: 28524231 DOI: 10.1002/1873-3468.12682] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022]
Abstract
Proper regulation of ribosome biosynthesis is mandatory for cellular adaptation, growth and proliferation. Ribosome biogenesis is the most energetically demanding cellular process, which requires tight control. Abnormalities in ribosome production have severe consequences, including developmental defects in plants and genetic diseases (ribosomopathies) in humans. One of the processes occurring during eukaryotic ribosome biogenesis is processing of the ribosomal RNA precursor molecule (pre-rRNA), synthesized by RNA polymerase I, into mature rRNAs. It must not only be accurate but must also be precisely coordinated with other phenomena leading to the synthesis of functional ribosomes: RNA modification, RNA folding, assembly with ribosomal proteins and nucleocytoplasmic RNP export. A multitude of ribosome biogenesis factors ensure that these events take place in a correct temporal order. Among them are endo- and exoribonucleases involved in pre-rRNA processing. Here, we thoroughly present a wide spectrum of ribonucleases participating in rRNA maturation, focusing on their biochemical properties, regulatory mechanisms and substrate specificity. We also discuss cooperation between various ribonucleolytic activities in particular stages of pre-rRNA processing, delineating major similarities and differences between three representative groups of eukaryotes: yeast, plants and humans.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | | | | |
Collapse
|
26
|
Johnson MC, Ghalei H, Doxtader KA, Karbstein K, Stroupe ME. Structural Heterogeneity in Pre-40S Ribosomes. Structure 2017; 25:329-340. [PMID: 28111018 DOI: 10.1016/j.str.2016.12.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/07/2016] [Accepted: 12/21/2016] [Indexed: 11/24/2022]
Abstract
Late-stage 40S ribosome assembly is a highly regulated dynamic process that occurs in the cytoplasm, alongside the full translation machinery. Seven assembly factors (AFs) regulate and facilitate maturation, but the mechanisms through which they work remain undetermined. Here, we present a series of structures of the immature small subunit (pre-40S) determined by three-dimensional (3D) cryoelectron microscopy with 3D sorting to assess the molecule's heterogeneity. These structures demonstrate an extensive structural heterogeneity of interface AFs that likely regulates subunit joining during 40S maturation. We also present structural models for the beak and the platform, two regions where the low resolution of previous studies did not allow for localization of AFs and the rRNA, respectively. These models are supported by biochemical analyses using point variants and suggest that maturation of the 18S 3' end is regulated by dissociation of the AF Dim1 from the subunit interface, consistent with previous biochemical analyses.
Collapse
Affiliation(s)
- Matthew C Johnson
- Department of Biological Science, Institute of Molecular Biophysics, Florida State University, 91 Chieftain Way, Tallahassee, FL 32306, USA
| | - Homa Ghalei
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Katelyn A Doxtader
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Katrin Karbstein
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - M Elizabeth Stroupe
- Department of Biological Science, Institute of Molecular Biophysics, Florida State University, 91 Chieftain Way, Tallahassee, FL 32306, USA.
| |
Collapse
|
27
|
Kala S, Mehta V, Yip CW, Moshiri H, Najafabadi HS, Ma R, Nikpour N, Zimmer SL, Salavati R. The interaction of a Trypanosoma brucei KH-domain protein with a ribonuclease is implicated in ribosome processing. Mol Biochem Parasitol 2016; 211:94-103. [PMID: 27965085 DOI: 10.1016/j.molbiopara.2016.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/24/2022]
Abstract
Ribosomal RNA maturation is best understood in yeast. While substantial efforts have been made to explore parts of these essential pathways in animals, the similarities and uniquenesses of rRNA maturation factors in non-Opisthokonts remain largely unexplored. Eukaryotic ribosome synthesis requires the coordinated activities of hundreds of Assembly Factors (AFs) that transiently associate with pre-ribosomes, many of which are essential. Pno1 and Nob1 are two of six AFs that are required for the cytoplasmic maturation of the 20S pre-rRNA to 18S rRNA in yeast where it has been almost exclusively analyzed. Specifically, Nob1 ribonucleolytic activity generates the mature 3'-end of 18S rRNA. We identified putative Pno1 and Nob1 homologues in the protist Trypanosoma brucei, named TbPNO1 and TbNOB1, and set out to explore their rRNA maturation role further as they are both essential for normal growth. TbPNO1 is a nuclear protein with limited cytosolic localization relative to its yeast homologue. Like in yeast, it interacts directly with TbNOB1, with indications of associations with a larger AF-containing complex. Interestingly, in the absence of TbPNO1, TbNOB1 exhibits non-specific degradation activity on RNA substrates, and its cleavage activity becomes specific only in the presence of TbPNO1, suggesting that TbPNO1-TbNOB1 interaction is essential for regulation and site-specificity of TbNOB1 activity. These results highlight a conserved role of the TbPNO1-TbNOB1 complex in 18S rRNA maturation across eukaryotes; yet reveal a novel role of their interaction in regulation of TbNOB1 enzymatic activity.
Collapse
Affiliation(s)
- Smriti Kala
- Institute of Parasitology, McGill University, Quebec, H9X3V9, Canada
| | - Vaibhav Mehta
- Institute of Parasitology, McGill University, Quebec, H9X3V9, Canada; Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Chun Wai Yip
- Institute of Parasitology, McGill University, Quebec, H9X3V9, Canada
| | - Houtan Moshiri
- Institute of Parasitology, McGill University, Quebec, H9X3V9, Canada; Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | | | - Ruoyu Ma
- Institute of Parasitology, McGill University, Quebec, H9X3V9, Canada
| | - Najmeh Nikpour
- Institute of Parasitology, McGill University, Quebec, H9X3V9, Canada
| | - Sara L Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Reza Salavati
- Institute of Parasitology, McGill University, Quebec, H9X3V9, Canada; Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
28
|
Khoshnevis S, Askenasy I, Johnson MC, Dattolo MD, Young-Erdos CL, Stroupe ME, Karbstein K. The DEAD-box Protein Rok1 Orchestrates 40S and 60S Ribosome Assembly by Promoting the Release of Rrp5 from Pre-40S Ribosomes to Allow for 60S Maturation. PLoS Biol 2016; 14:e1002480. [PMID: 27280440 PMCID: PMC4900678 DOI: 10.1371/journal.pbio.1002480] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/10/2016] [Indexed: 12/25/2022] Open
Abstract
DEAD-box proteins are ubiquitous regulators of RNA biology. While commonly dubbed “helicases,” their activities also include duplex annealing, adenosine triphosphate (ATP)-dependent RNA binding, and RNA-protein complex remodeling. Rok1, an essential DEAD-box protein, and its cofactor Rrp5 are required for ribosome assembly. Here, we use in vivo and in vitro biochemical analyses to demonstrate that ATP-bound Rok1, but not adenosine diphosphate (ADP)-bound Rok1, stabilizes Rrp5 binding to 40S ribosomes. Interconversion between these two forms by ATP hydrolysis is required for release of Rrp5 from pre-40S ribosomes in vivo, thereby allowing Rrp5 to carry out its role in 60S subunit assembly. Furthermore, our data also strongly suggest that the previously described accumulation of snR30 upon Rok1 inactivation arises because Rrp5 release is blocked and implicate a previously undescribed interaction between Rrp5 and the DEAD-box protein Has1 in mediating snR30 accumulation when Rrp5 release from pre-40S subunits is blocked. During ribosomal biogenesis, Rrp5 is unusual in being required for assembly of both small and large subunits. This study demonstrates a role for ATP hydrolysis by the DEAD-box protein Rok1 in releasing Rrp5 from pre-40S subunits. Assembly of the small and large ribosomal subunits requires two separate machineries. The assembly factor Rrp5 is unusual in being one of only three proteins required for assembly of both subunits. While it binds cotranscriptionally during early stages of small subunit assembly, it departs with large subunit intermediates after the separation of these precursors. How Rrp5 switches from interacting with small subunit precursors to binding large subunit precursors remains unknown but is potentially important, as it could regulate the interplay between small and large subunit assembly. Here, we show that the DEAD-box protein Rok1, a member of a ubiquitous class of RNA-dependent ATPases, releases Rrp5 from assembling small subunits to allow for its function in large subunit assembly. We show that a complex of Rrp5, Rok1, and adenosine triphosphate (ATP) binds small subunits or mimics of ribosomal RNA more tightly than does a complex of Rrp5, Rok1, and adenosine diphosphate (ADP). In cells, interconversion between the ATP and the ADP-form of Rok1 is required for release of Rrp5 from nascent small subunits and for binding to assembling large subunits. Furthermore, we show that the release of snR30, which leads to formation of a large substructure on small subunits, also requires Rok1-mediated release of Rrp5.
Collapse
MESH Headings
- Adenosine Diphosphate/metabolism
- Adenosine Triphosphate/metabolism
- Binding Sites/genetics
- DEAD-box RNA Helicases/chemistry
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Hydrolysis
- Models, Molecular
- Molecular Conformation
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Binding
- Protein Domains
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/chemistry
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/chemistry
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Sohail Khoshnevis
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Isabel Askenasy
- Department of Biological Science and the Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Matthew C. Johnson
- Department of Biological Science and the Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Maria D. Dattolo
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
- The Benjamin School, Palm Beach Gardens, Florida, United States of America
| | - Crystal L. Young-Erdos
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - M. Elizabeth Stroupe
- Department of Biological Science and the Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
- * E-mail: (MES); (KK)
| | - Katrin Karbstein
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail: (MES); (KK)
| |
Collapse
|
29
|
Parks MM, Lawrence CE, Raphael BJ. Detecting non-allelic homologous recombination from high-throughput sequencing data. Genome Biol 2015; 16:72. [PMID: 25886137 PMCID: PMC4425883 DOI: 10.1186/s13059-015-0633-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/16/2015] [Indexed: 12/27/2022] Open
Abstract
Non-allelic homologous recombination (NAHR) is a common mechanism for generating genome rearrangements and is implicated in numerous genetic disorders, but its detection in high-throughput sequencing data poses a serious challenge. We present a probabilistic model of NAHR and demonstrate its ability to find NAHR in low-coverage sequencing data from 44 individuals. We identify NAHR-mediated deletions or duplications in 109 of 324 potential NAHR loci in at least one of the individuals. These calls segregate by ancestry, are more common in closely spaced repeats, often result in duplicated genes or pseudogenes, and affect highly studied genes such as GBA and CYP2E1.
Collapse
Affiliation(s)
- Matthew M Parks
- Division of Applied Mathematics, Brown University, Providence, USA.
| | - Charles E Lawrence
- Division of Applied Mathematics, Brown University, Providence, USA. .,Center for Computational Molecular Biology, Brown University, Providence, USA.
| | - Benjamin J Raphael
- Center for Computational Molecular Biology, Brown University, Providence, USA. .,Department of Computer Science, Brown University, Providence, USA.
| |
Collapse
|
30
|
Moriggi G, Nieto B, Dosil M. Rrp12 and the Exportin Crm1 participate in late assembly events in the nucleolus during 40S ribosomal subunit biogenesis. PLoS Genet 2014; 10:e1004836. [PMID: 25474739 PMCID: PMC4256259 DOI: 10.1371/journal.pgen.1004836] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/17/2014] [Indexed: 11/20/2022] Open
Abstract
During the biogenesis of small ribosomal subunits in eukaryotes, the pre-40S particles formed in the nucleolus are rapidly transported to the cytoplasm. The mechanisms underlying the nuclear export of these particles and its coordination with other biogenesis steps are mostly unknown. Here we show that yeast Rrp12 is required for the exit of pre-40S particles to the cytoplasm and for proper maturation dynamics of upstream 90S pre-ribosomes. Due to this, in vivo elimination of Rrp12 leads to an accumulation of nucleoplasmic 90S to pre-40S transitional particles, abnormal 35S pre-rRNA processing, delayed elimination of processing byproducts, and no export of intermediate pre-40S complexes. The exportin Crm1 is also required for the same pre-ribosome maturation events that involve Rrp12. Thus, in addition to their implication in nuclear export, Rrp12 and Crm1 participate in earlier biosynthetic steps that take place in the nucleolus. Our results indicate that, in the 40S subunit synthesis pathway, the completion of early pre-40S particle assembly, the initiation of byproduct degradation and the priming for nuclear export occur in an integrated manner in late 90S pre-ribosomes.
Collapse
Affiliation(s)
- Giulia Moriggi
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-University of Salamanca, Salamanca, Spain
| | - Blanca Nieto
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-University of Salamanca, Salamanca, Spain
| | - Mercedes Dosil
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-University of Salamanca, Salamanca, Spain
- Departamento de Bioquímica y Biología Molecular, University of Salamanca, Salamanca, Spain
| |
Collapse
|
31
|
Fernández-Pevida A, Kressler D, de la Cruz J. Processing of preribosomal RNA in Saccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:191-209. [PMID: 25327757 DOI: 10.1002/wrna.1267] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 11/07/2022]
Abstract
Most, if not all RNAs, are transcribed as precursors that require processing to gain functionality. Ribosomal RNAs (rRNA) from all organisms undergo both exo- and endonucleolytic processing. Also, in all organisms, rRNA processing occurs inside large preribosomal particles and is coupled to nucleotide modification, folding of the precursor rRNA (pre-rRNA), and assembly of the ribosomal proteins (r-proteins). In this review, we focus on the processing pathway of pre-rRNAs of cytoplasmic ribosomes in the yeast Saccharomyces cerevisiae, without doubt, the organism where this pathway is best characterized. We summarize the current understanding of the rRNA maturation process, particularly focusing on the pre-rRNA processing sites, the enzymes responsible for the cleavage or trimming reactions and the different mechanisms that monitor and regulate the pathway. Strikingly, the overall order of the various processing steps is reasonably well conserved in eukaryotes, perhaps reflecting common principles for orchestrating the concomitant events of pre-rRNA processing and ribosome assembly.
Collapse
Affiliation(s)
- Antonio Fernández-Pevida
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | | | | |
Collapse
|
32
|
Zheng S, Lan P, Liu X, Ye K. Interaction between ribosome assembly factors Krr1 and Faf1 is essential for formation of small ribosomal subunit in yeast. J Biol Chem 2014; 289:22692-22703. [PMID: 24990943 DOI: 10.1074/jbc.m114.584490] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ribosome formation in Saccharomyces cerevisiae requires a large number of transiently associated assembly factors that coordinate processing and folding of pre-rRNA and binding of ribosomal proteins. Krr1 and Faf1 are two interacting proteins present in early 90 S precursor particles of the small ribosomal subunit. Here, we determined a co-crystal structure of the core domain of Krr1 bound to a 19-residue fragment of Faf1 at 2.8 Å resolution. The structure reveals that Krr1 consists of two packed K homology (KH) domains, KH1 and KH2, and resembles archaeal Dim2-like proteins. We show that KH1 is a divergent KH domain that lacks the RNA-binding GXXG motif and is involved in binding another assembly factor, Kri1. KH2 contains a canonical RNA-binding surface and additionally associates with an α-helix of Faf1. Specific disruption of the Krr1-Faf1 interaction impaired early 18 S rRNA processing at sites A0, A1, and A2 and caused cell lethality, but it did not prevent incorporation of the two proteins into pre-ribosomes. The Krr1-Faf1 interaction likely maintains a critical conformation of 90 S pre-ribosomes required for pre-rRNA processing. Our results illustrate the versatility of KH domains in protein interaction and provide insight into the role of Krr1-Faf1 interaction in ribosome biogenesis.
Collapse
Affiliation(s)
- Sanduo Zheng
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing 100875,; National Institute of Biological Sciences at Beijing, Beijing 102206, and
| | - Pengfei Lan
- National Institute of Biological Sciences at Beijing, Beijing 102206, and; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730
| | - Ximing Liu
- National Institute of Biological Sciences at Beijing, Beijing 102206, and
| | - Keqiong Ye
- National Institute of Biological Sciences at Beijing, Beijing 102206, and; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730,; Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
33
|
Dembowski JA, Ramesh M, McManus CJ, Woolford JL. Identification of the binding site of Rlp7 on assembling 60S ribosomal subunits in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2013; 19:1639-47. [PMID: 24129494 PMCID: PMC3884665 DOI: 10.1261/rna.041194.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Eukaryotic ribosome assembly requires over 200 assembly factors that facilitate rRNA folding, ribosomal protein binding, and pre-rRNA processing. One such factor is Rlp7, an essential RNA binding protein required for consecutive pre-rRNA processing steps for assembly of yeast 60S ribosomal subunits: exonucleolytic processing of 27SA3 pre-rRNA to generate the 5' end of 5.8S rRNA and endonucleolytic cleavage of the 27SB pre-rRNA to initiate removal of internal transcribed spacer 2 (ITS2). To better understand the functions of Rlp7 in 27S pre-rRNA processing steps, we identified where it crosslinks to pre-rRNA. We found that Rlp7 binds at the junction of ITS2 and the ITS2-proximal stem, between the 3' end of 5.8S rRNA and the 5' end of 25S rRNA. Consistent with Rlp7 binding to this neighborhood during assembly, two-hybrid and affinity copurification assays showed that Rlp7 interacts with other assembly factors that bind to or near ITS2 and the proximal stem. We used in vivo RNA structure probing to demonstrate that the proximal stem forms prior to Rlp7 binding and that Rlp7 binding induces RNA conformational changes in ITS2 that may chaperone rRNA folding and regulate 27S pre-rRNA processing. Our findings contradict the hypothesis that Rlp7 functions as a placeholder for ribosomal protein L7, from which Rlp7 is thought to have evolved in yeast. The binding site of Rlp7 is within eukaryotic-specific RNA elements, which are not found in bacteria. Thus, we propose that Rlp7 coevolved with these RNA elements to facilitate eukaryotic-specific functions in ribosome assembly and pre-rRNA processing.
Collapse
|
34
|
Karbstein K. Quality control mechanisms during ribosome maturation. Trends Cell Biol 2013; 23:242-50. [PMID: 23375955 DOI: 10.1016/j.tcb.2013.01.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 12/01/2022]
Abstract
Protein synthesis on ribosomes is carefully quality-controlled to ensure the faithful transmission of genetic information from mRNA to protein. Many of these mechanisms rely on communication between distant sites on the ribosomes, and thus on the integrity of the ribosome structure. Furthermore, haploinsufficiency of ribosomal proteins, which increases the chances of forming incompletely assembled ribosomes, can predispose to cancer. Finally, release of inactive ribosomes into the translating pool will lead to their degradation together with the degradation of the bound mRNA. Together, these findings suggest that quality control mechanisms must be in place to survey nascent ribosomes and ensure their functionality. This review gives an account of these mechanisms as currently known.
Collapse
Affiliation(s)
- Katrin Karbstein
- Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way #2C2, Jupiter, FL 33458, USA.
| |
Collapse
|
35
|
Wang X, Wu T, Hu Y, Marcinkiewicz M, Qi S, Valderrama-Carvajal H, Luo H, Wu J. Pno1 tissue-specific expression and its functions related to the immune responses and proteasome activities. PLoS One 2012; 7:e46093. [PMID: 23029399 PMCID: PMC3461026 DOI: 10.1371/journal.pone.0046093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/27/2012] [Indexed: 11/18/2022] Open
Abstract
Pno1 is a protein that plays a role in proteasome and ribosome neogenesis in yeast. So far, its functions in mammalian cells have not been investigated. To understand its function in mammals, we performed in situ hybridization analysis of Pno1 expression in different development stages and generated Pno1 gene knockout (KO) and transgenic (Tg) mice lineages. The results showed early lethality of homozygous Pno1 KO lineage caused, as demonstrated in parallel by ex vivo experiments, by arrest of embryo development before compaction stage. Though, heterozygous (HET) mice with 50% of normal Pno1 mRNA concentration were fertile and showed no obvious anomalies. The lymphoid organs of HET mice were normal in size, weight and cellularity, with normal T and B cell subpopulations. TCR-triggered activation and proliferation of HET T cells were normal. Proteasome activities in HET organs were uncompromised. Tg mice with actin promoter-driven Pno1 expression were also fertile, with no apparent anomalies, although they expressed 2–5-fold higher Pno1 mRNA levels. The lymphoid organs of Tg mice were of normal size, weight and cellularity with normal T and B cell sub-populations. TCR-triggered activation and proliferation of Tg T cells were normal. Tg organs and tissues presented normal proteasome activity as did their wild type counterparts. Tagged Pno1 over-expression in L cells and density gradient fractionation established that Pno1 existed in large complexes with sedimentation rates between 20S and 26S, bigger than mature 26S proteasomes. Pno1 in fractions did not coincide with 40S or 60S ribosome subunits. Our study indicates that Pno1 is essential for cellular functions, but only a small percentage of its normal level is sufficient, and excessive amounts are neither harmful nor useful. The nature of the large complexes it associates with remains to be identified, but it is certain that they are not mature proteasomes or ribosomes.
Collapse
Affiliation(s)
- Xuehai Wang
- Laboratoire d’immunologie, Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM)-Hôpital Notre-Dame, Montreal, Quebec, Canada
| | - Tao Wu
- Laboratoire d’immunologie, Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM)-Hôpital Notre-Dame, Montreal, Quebec, Canada
- Institute of Cardiology, First Affiliated Hospital, Zhejiang University Medical College, Hangzhou, China
| | - Yan Hu
- Laboratoire d’immunologie, Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM)-Hôpital Notre-Dame, Montreal, Quebec, Canada
| | | | - Shijie Qi
- Laboratoire d’immunologie, Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM)-Hôpital Notre-Dame, Montreal, Quebec, Canada
| | - Hector Valderrama-Carvajal
- Laboratoire d’immunologie, Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM)-Hôpital Notre-Dame, Montreal, Quebec, Canada
| | - Hongyu Luo
- Laboratoire d’immunologie, Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM)-Hôpital Notre-Dame, Montreal, Quebec, Canada
| | - Jiangping Wu
- Laboratoire d’immunologie, Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM)-Hôpital Notre-Dame, Montreal, Quebec, Canada
- Service de nephrologie, Centre de recherche, Centre hospitalier de l’Université de Montréal (CRCHUM)-Hôpital Notre-Dame, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
36
|
Lebaron S, Schneider C, van Nues RW, Swiatkowska A, Walsh D, Böttcher B, Granneman S, Watkins NJ, Tollervey D. Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nat Struct Mol Biol 2012; 19:744-53. [PMID: 22751017 PMCID: PMC3654374 DOI: 10.1038/nsmb.2308] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/06/2012] [Indexed: 01/02/2023]
Abstract
In the final steps of yeast ribosome synthesis, immature translation-incompetent pre-40S particles that contain 20S pre-rRNA are converted to the mature translation-competent subunits containing the 18S rRNA. An assay for 20S pre-rRNA cleavage in purified pre-40S particles showed that cleavage by the PIN domain endonuclease Nob1 was strongly stimulated by the GTPase activity of Fun12, the yeast homolog of cytoplasmic translation initiation factor eIF5b. Cleavage of the 20S pre-rRNA was also inhibited in vivo and in vitro by blocking binding of Fun12 to the 25S rRNA through specific methylation of its binding site. Cleavage competent pre-40S particles stably associated with Fun12 and formed 80S complexes with 60S ribosomal subunits. We propose that recruitment of 60S subunits promotes GTP hydrolysis by Fun12, leading to structural rearrangements within the pre-40S particle that bring Nob1 and the pre-rRNA cleavage site together.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Base Sequence
- Binding Sites
- Eukaryotic Initiation Factor-2/chemistry
- Eukaryotic Initiation Factor-2/metabolism
- Guanosine Triphosphate/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nuclear Proteins/metabolism
- Nucleic Acid Conformation
- Protein Conformation
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Ribosome Subunits, Large, Eukaryotic/chemistry
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/chemistry
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Simon Lebaron
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
| | - Claudia Schneider
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W. van Nues
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Agata Swiatkowska
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
| | - Dietrich Walsh
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
| | - Bettina Böttcher
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
- Institute of Structural and Molecular Biology, The University of Edinburgh, Scotland
| | | | - Nicholas J. Watkins
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
| |
Collapse
|
37
|
Veith T, Martin R, Wurm JP, Weis BL, Duchardt-Ferner E, Safferthal C, Hennig R, Mirus O, Bohnsack MT, Wöhnert J, Schleiff E. Structural and functional analysis of the archaeal endonuclease Nob1. Nucleic Acids Res 2012; 40:3259-74. [PMID: 22156373 PMCID: PMC3326319 DOI: 10.1093/nar/gkr1186] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 11/11/2011] [Accepted: 11/14/2011] [Indexed: 01/01/2023] Open
Abstract
Eukaryotic ribosome biogenesis requires the concerted action of numerous ribosome assembly factors, for most of which structural and functional information is currently lacking. Nob1, which can be identified in eukaryotes and archaea, is required for the final maturation of the small subunit ribosomal RNA in yeast by catalyzing cleavage at site D after export of the preribosomal subunit into the cytoplasm. Here, we show that this also holds true for Nob1 from the archaeon Pyrococcus horikoshii, which efficiently cleaves RNA-substrates containing the D-site of the preribosomal RNA in a manganese-dependent manner. The structure of PhNob1 solved by nuclear magnetic resonance spectroscopy revealed a PIN domain common with many nucleases and a zinc ribbon domain, which are structurally connected by a flexible linker. We show that amino acid residues required for substrate binding reside in the PIN domain whereas the zinc ribbon domain alone is sufficient to bind helix 40 of the small subunit rRNA. This suggests that the zinc ribbon domain acts as an anchor point for the protein on the nascent subunit positioning it in the proximity of the cleavage site.
Collapse
Affiliation(s)
- Thomas Veith
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Roman Martin
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Jan P. Wurm
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Benjamin L. Weis
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Charlotta Safferthal
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Raoul Hennig
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Oliver Mirus
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Markus T. Bohnsack
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Center of Biomolecular Magnetic Resonance (BMRZ), Cluster of Excellence Frankfurt: Macromolecular Complexes and Centre of Membrane Proteomics, Johann-Wolfgang-Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
38
|
Inside the 40S ribosome assembly machinery. Curr Opin Chem Biol 2011; 15:657-63. [PMID: 21862385 DOI: 10.1016/j.cbpa.2011.07.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 12/29/2022]
Abstract
Ribosome assembly involves rRNA transcription, modification, folding and cleavage from precursor transcripts, and association of ribosomal proteins (Rps). In bacteria, this complex process requires only a handful of proteins in addition to those needed for rRNA transcription, modification and cleavage, while in eukaryotes a large machinery comprising ∼200 proteins in the yeast S. cerevisiae has been identified. Furthermore, while the bacterial assembly factors generally produce only cold-sensitive phenotypes upon deletion, most of the eukaryotic assembly factors are essential, comprising ∼20% of essential yeast proteins. This review explores recent rapid progress in the structural and functional dissection of the 40S assembly machinery.
Collapse
|
39
|
Horn DM, Mason SL, Karbstein K. Rcl1 protein, a novel nuclease for 18 S ribosomal RNA production. J Biol Chem 2011; 286:34082-7. [PMID: 21849504 DOI: 10.1074/jbc.m111.268649] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In all forms of life, rRNAs for the small and large ribosomal subunit are co-transcribed as a single transcript. Although this ensures the equimolar production of rRNAs, it requires the endonucleolytic separation of pre-rRNAs to initiate rRNA production. In yeast, processing of the primary transcript encoding 18 S, 5.8 S, and 25 S rRNAs has been studied extensively. Nevertheless, most nucleases remain to be identified. Here, we show that Rcl1, conserved in all eukaryotes, cleaves pre-rRNA at so-called site A(2), a co-transcriptional cleavage step that separates rRNAs destined for the small and large subunit. Recombinant Rcl1 cleaves pre-rRNA mimics at site A(2) in a reaction that is sensitive to nearby RNA mutations that inhibit cleavage in vivo. Furthermore, mutations in Rcl1 disrupt rRNA processing at site A(2) in vivo and in vitro. Together, these results demonstrate that the role of Rcl1 in eukaryotic pre-rRNA processing is identical to that of RNase III in bacteria: to co-transcriptionally separate the pre-rRNAs destined for the small and large subunit. Furthermore, because Rcl1 has no homology to other known endonucleases, these data also establish a novel class of nucleases.
Collapse
Affiliation(s)
- Darryl M Horn
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | | | | |
Collapse
|
40
|
Strunk BS, Loucks CR, Su M, Vashisth H, Cheng S, Schilling J, Brooks CL, Karbstein K, Skiniotis G. Ribosome assembly factors prevent premature translation initiation by 40S assembly intermediates. Science 2011; 333:1449-53. [PMID: 21835981 DOI: 10.1126/science.1208245] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ribosome assembly in eukaryotes requires approximately 200 essential assembly factors (AFs) and occurs through ordered events that initiate in the nucleolus and culminate in the cytoplasm. Here, we present the electron cryo-microscopy (cryo-EM) structure of a late cytoplasmic 40S ribosome assembly intermediate from Saccharomyces cerevisiae at 18 angstrom resolution. We obtained cryo-EM reconstructions of preribosomal complexes lacking individual components to define the positions of all seven AFs bound to this intermediate. These late-binding AFs are positioned to prevent each step in the translation initiation pathway. Together, they obstruct the binding sites for initiation factors, prevent the opening of the messenger RNA channel, block 60S subunit joining, and disrupt the decoding site. These redundant mechanisms probably ensure that pre-40S particles do not enter the translation pathway, which would result in their rapid degradation.
Collapse
Affiliation(s)
- Bethany S Strunk
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Campbell MG, Karbstein K. Protein-protein interactions within late pre-40S ribosomes. PLoS One 2011; 6:e16194. [PMID: 21283762 PMCID: PMC3024409 DOI: 10.1371/journal.pone.0016194] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/07/2010] [Indexed: 12/28/2022] Open
Abstract
Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps.
Collapse
Affiliation(s)
- Melody G. Campbell
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Katrin Karbstein
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|