1
|
Zaluski J, Bassetto M, Kiser PD, Tochtrop GP. Advances and therapeutic opportunities in visual cycle modulation. Prog Retin Eye Res 2025; 106:101360. [PMID: 40280538 DOI: 10.1016/j.preteyeres.2025.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The visual cycle is a metabolic pathway that enables continuous vision by regenerating the 11-cis-retinal chromophore for photoreceptors opsins. Although integral to normal visual function, the flux of retinoids through this cycle can contribute to a range of retinal pathologies, including Stargardt disease, age-related macular degeneration, and diabetic retinopathy. In such conditions, intermediates and byproducts of the visual cycle, such as bisretinoid components of lipofuscin, can accumulate, concomitant with cellular damage and eventual photoreceptor loss. This has inspired efforts to modulate the visual cycle, aiming to slow or prevent the formation of these toxic intermediates and thus preserve retinal structure and function. Over the past two decades, multiple strategies to modulate the visual cycle have emerged. These include both intrinsic approaches, targeting key enzymes, retinoid-binding proteins, or receptors within the pigment epithelium or photoreceptors (e.g., RPE65, CRBP1, and rhodopsin inhibitors/antagonists) and extrinsic strategies that indirectly alter retinoid availability within the retina (e.g., RBP4 antagonists). Many of these agents have shown promise in animal models of visual cycle-associated retinal diseases, reducing pathological changes, and improving retinal survival. Several have advanced into clinical studies, although none are currently FDA-approved. Challenges remain in optimizing drug specificity and duration of action while minimizing side effects such as nyctalopia. In this review, we comprehensively examine current and emerging visual cycle modulators, discuss their medicinal chemistry, mechanisms of action, efficacy in preclinical and clinical studies, and highlight future opportunities for drug discovery aimed at safely and effectively preserving vision through modulation of this biochemical pathway.
Collapse
Affiliation(s)
- Jordan Zaluski
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Marco Bassetto
- Department of Physiology and Biophysics, School of Medicine, University of California- Irvine, Irvine, CA, 92697, USA; Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, School of Medicine, University of California- Irvine, Irvine, CA, 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA, 90822, USA
| | - Philip D Kiser
- Department of Physiology and Biophysics, School of Medicine, University of California- Irvine, Irvine, CA, 92697, USA; Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, School of Medicine, University of California- Irvine, Irvine, CA, 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA, 90822, USA; Department of Clinical Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of California - Irvine, Irvine, CA, 92697, USA.
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
2
|
Gerhardt M, Stingl K, Reith M. [Pharmacotherapy of ABCA4-associated Retinal Dystrophies]. Klin Monbl Augenheilkd 2025; 242:205-212. [PMID: 40127654 DOI: 10.1055/a-2533-1009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
ABCA4-associated retinal dystrophies, including Stargardt's disease, comprise a heterogeneous group of inherited retinal diseases caused by mutations in the ABCA4 gene and are inherited in an autosomal recessive manner. These diseases cause vision loss due to progressive degeneration of photoreceptors and retinal pigment epithelium, for which there is currently no approved treatment available. Based on the progress made in recent years and the well-understood pathobiology, promising therapeutic approaches have reached the clinical development phase, with pharmacological approaches being among the most advanced therapeutic options. Preclinical and clinical studies show progress in the development of drugs that have the potential to slow the progression of these diseases. Among these are compounds that have the potential to reduce lipofuscin accumulation in the retina, slow the formation of toxic vitamin A dimers or remove lipofuscin from the retina. Other substances interfere with the vitamin A metabolism in the visual cycle by reducing the amount of available vitamin A in the eye, which should lead to lower formation of toxic metabolic by-products. This article summarises the underlying pathophysiology of ABCA4-associated retinal degeneration and provides an overview of current pharmacological treatment approaches.
Collapse
Affiliation(s)
| | - Katarina Stingl
- Universitäts-Augenklinik, Department für Augenheilkunde, Universität Tübingen, Tübingen, Deutschland
| | - Milda Reith
- Universitäts-Augenklinik, Department für Augenheilkunde, Universität Tübingen, Tübingen, Deutschland
| |
Collapse
|
3
|
Tang S, Yang J, Xiao B, Wang Y, Lei Y, Lai D, Qiu Q. Aberrant Lipid Metabolism and Complement Activation in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 39405051 PMCID: PMC11482642 DOI: 10.1167/iovs.65.12.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Age-related macular degeneration (AMD) stands as a leading cause of severe visual impairment and blindness among the elderly globally. As a multifactorial disease, AMD's pathogenesis is influenced by genetic, environmental, and age-related factors, with lipid metabolism abnormalities and complement system dysregulation playing critical roles. This review delves into recent advancements in understanding the intricate interaction between these two crucial pathways, highlighting their contribution to the disease's progression through chronic inflammation, drusen formation, and retinal pigment epithelium dysfunction. Importantly, emerging evidence points to dysregulated lipid profiles, particularly alterations in high-density lipoprotein levels, oxidized lipid deposits, and intracellular lipofuscin accumulation, as exacerbating factors that enhance complement activation and subsequently amplify tissue damage in AMD. Furthermore, genetic studies have revealed significant associations between AMD and specific genes involved in lipid transport and complement regulation, shedding light on disease susceptibility and underlying mechanisms. The review further explores the clinical implications of these findings, advocating for a novel therapeutic approach that integrates lipid metabolism modulators with complement inhibitors. By concurrently targeting these pathways, the dual-targeted approach holds promise in significantly improving outcomes for AMD patients, heralding a new horizon in AMD management and treatment.
Collapse
Affiliation(s)
- Siao Tang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Jiaqi Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Bingqing Xiao
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yani Wang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yiou Lei
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
4
|
Finzi A, Ottoboni S, Cellini M, Corcioni B, Gaudiano C, Fontana L. Color Doppler Imaging, Endothelin-1, Corneal Biomechanics and Scleral Rigidity in Asymmetric Age-Related Macular Degeneration. Clin Ophthalmol 2024; 18:2583-2591. [PMID: 39281979 PMCID: PMC11401527 DOI: 10.2147/opth.s479225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024] Open
Abstract
Purpose Age-related macular degeneration (AMD) presents a multifaceted etiopathogenesis involving ischemic, inflammatory, and genetic components. This study investigates the correlation between ocular hemodynamics, scleral rigidity (SR), and plasma endothelin-1 (ET1) levels in treatment-naive patients with asymmetrical AMD. Patients and Methods This study included 20 treatment-naive patients (12 females and 8 males) with an average age of 76.4 ± 3.7 years, who presented with AMD with neovascular membrane formation (nAMD) in one eye, and intermediate grade 2 AMD (iAMD) in the other eye. The control group consisted of 20 healthy subjects (13 females and 7 males) with a mean age of 74.7 ± 3.9 years. All patients and healthy controls underwent color Doppler imaging (i) of the ophthalmic artery (OA), short posterior ciliary arteries (SPCAs), and central retinal artery (CRA); Plasma ET-1 levels were measured for all patients and healthy subjects. Corneal biomechanics were assessed using an Ocular Response Analyzer and two indices were obtained: corneal hysteresis (CH) and corneal resistance factor (CRF). Results Results showed reduced blood flow velocities and increased resistance indices in AMD eyes, particularly affecting the short posterior ciliary arteries. According to mechanical theory, ARMD eyes exhibited elevated scleral rigidity and corneal resistance factor compared to controls, with a notable rise in SR in neovascular AMD (nAMD) eyes. As per the chronic subacute inflammation theory, plasma ET-1 levels were significantly higher in AMD patients, correlating with abnormal SPCAs blood flow and increased resistance indices. Conclusion Findings suggest a multifactorial etiology of AMD involving an increase of ET-1 plasma levels with biomechanic damages of corneal and scleral tissue in nAMD.
Collapse
Affiliation(s)
- Alessandro Finzi
- Ophthalmology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Simone Ottoboni
- Ophthalmology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mauro Cellini
- Ophthalmology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Beniamino Corcioni
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Caterina Gaudiano
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luigi Fontana
- Ophthalmology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
5
|
Kaufmann M, Han Z. RPE melanin and its influence on the progression of AMD. Ageing Res Rev 2024; 99:102358. [PMID: 38830546 PMCID: PMC11260545 DOI: 10.1016/j.arr.2024.102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVE The aim of this review article is to summarize the latest findings and current understanding of the origin of melanin in the retinal pigment epithelium (RPE), its function within the RPE, its role in the pathogenesis of age-related macular degeneration (AMD), its effect on retinal development, and its potential therapeutic benefit in the treatment of AMD. METHODS A comprehensive search of peer-reviewed journals was conducted using various combinations of key terms such as "melanin," "retinal pigment epithelium" or "RPE," "age-related macular degeneration" or AMD," "lipofuscin," "oxidative stress," and "albinism." Databases searched include PubMed, Scopus, Science Direct, and Google Scholar. 147 papers published between the years of 1957 and 2023 were considered with an emphasis on recent findings. SUMMARY OF FINDINGS AMD is thought to result from chronic oxidative stress within the RPE that results in cellular dysfunction, metabolic dysregulation, inflammation, and lipofuscin accumulation. Melanin functions as a photoscreener, free radical scavenger, and metal cation binding reservoir within the RPE. RPE melanin does not regenerate, and it undergoes degradation over time in response to chronic light exposure and oxidative stress. RPE melanin is important for retinal development and RPE function, and in the aging eye, melanin loss is associated with increased lipid peroxidation, inflammation, and the accumulation of toxic oxidized cellular products. Therefore, melanin-based treatments may serve to preserve RPE and retinal function in AMD. CONCLUSIONS The pathogenesis of AMD is not fully understood, but RPE dysfunction and melanin loss in response to chronic oxidative stress and inflammation are thought to be primary drivers of the disease. Due to melanin's antioxidative effects, melanin-based nanotechnology represents a promising avenue for the treatment of AMD.
Collapse
Affiliation(s)
- Mary Kaufmann
- University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Zongchao Han
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Zaydon YA, Tsang SH. The ABCs of Stargardt disease: the latest advances in precision medicine. Cell Biosci 2024; 14:98. [PMID: 39060921 PMCID: PMC11282698 DOI: 10.1186/s13578-024-01272-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Stargardt disease (STGD) is the most common form of inherited juvenile macular dystrophy and is caused by sequence variants in the ABCA4 gene. Due to its genetic complexity and phenotypic variability, STGD poses significant therapeutic challenges. In the past decade, a lot of progress has been made regarding our understanding of the molecular and clinical aspects of STGD, along with its mechanisms. This has led to the development of new therapies, and there are human clinical trials currently ongoing. This paper evaluates the emergence of pharmacological approaches targeting the visual cycle to mitigate retinal damage, the role of gene therapy in correcting specific genetic defects, and the use of stem cell therapies aimed at retinal regeneration by showcasing the latest clinical trials and precision medicine approaches.
Collapse
Affiliation(s)
- Yasmine A Zaydon
- Departments of Ophthalmology, Pathology and Cell Biology, Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Stephen H Tsang
- Departments of Ophthalmology, Pathology and Cell Biology, Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
- Department of Pathology and Cell Biology, The Herbert Irving Comprehensive Cancer Center, Institute of Human Nutrition, Columbia University, New York, NY, USA
| |
Collapse
|
7
|
Fu C, Yang N, Chuang JZ, Nakajima N, Iraha S, Roy N, Wu Z, Jiang Z, Otsu W, Radu RA, Yang HH, Lee MP, Worgall TS, Xiong WC, Sung CH. Mutant mice with rod-specific VPS35 deletion exhibit retinal α-synuclein pathology-associated degeneration. Nat Commun 2024; 15:5970. [PMID: 39043666 PMCID: PMC11266608 DOI: 10.1038/s41467-024-50189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Vacuolar protein sorting 35 (VPS35), the core component of the retromer complex which regulates endosomal trafficking, is genetically linked with Parkinson's disease (PD). Impaired vision is a common non-motor manifestation of PD. Here, we show mouse retinas with VPS35-deficient rods exhibit synapse loss and visual deficit, followed by progressive degeneration concomitant with the emergence of Lewy body-like inclusions and phospho-α-synuclein (P-αSyn) aggregation. Ultrastructural analyses reveal VPS35-deficient rods accumulate aggregates in late endosomes, deposited as lipofuscins bound to P-αSyn. Mechanistically, we uncover a protein network of VPS35 and its interaction with HSC70. VPS35 deficiency promotes sequestration of HSC70 and P-αSyn aggregation in late endosomes. Microglia which engulf lipofuscins and P-αSyn aggregates are activated, displaying autofluorescence, observed as bright dots in fundus imaging of live animals, coinciding with pathology onset and progression. The Rod∆Vps35 mouse line is a valuable tool for further mechanistic investigation of αSyn lesions and retinal degenerative diseases.
Collapse
Affiliation(s)
- Cheng Fu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nan Yang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nobuyuki Nakajima
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Urology, Tokai University School of Medicipne, Tokyo, Japan
| | - Satoshi Iraha
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University; Department of Ophthalmology, National Sanatorium Kikuchi Keifuen, Kumamoto, Japan
| | - Neeta Roy
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Zhenquan Wu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Zhichun Jiang
- UCLA Stein Eye Institute, and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Wataru Otsu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Roxana A Radu
- UCLA Stein Eye Institute, and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Howard Hua Yang
- The Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maxwell Ping Lee
- The Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tilla S Worgall
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
8
|
Andreazzoli M, Longoni B, Angeloni D, Demontis GC. Retinoid Synthesis Regulation by Retinal Cells in Health and Disease. Cells 2024; 13:871. [PMID: 38786093 PMCID: PMC11120330 DOI: 10.3390/cells13100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Vision starts in retinal photoreceptors when specialized proteins (opsins) sense photons via their covalently bonded vitamin A derivative 11cis retinaldehyde (11cis-RAL). The reaction of non-enzymatic aldehydes with amino groups lacks specificity, and the reaction products may trigger cell damage. However, the reduced synthesis of 11cis-RAL results in photoreceptor demise and suggests the need for careful control over 11cis-RAL handling by retinal cells. This perspective focuses on retinoid(s) synthesis, their control in the adult retina, and their role during retina development. It also explores the potential importance of 9cis vitamin A derivatives in regulating retinoid synthesis and their impact on photoreceptor development and survival. Additionally, recent advancements suggesting the pivotal nature of retinoid synthesis regulation for cone cell viability are discussed.
Collapse
Affiliation(s)
| | - Biancamaria Longoni
- Department of Translational Medicine and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Debora Angeloni
- The Institute of Biorobotics, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | | |
Collapse
|
9
|
Wang L, Shah SM, Mangwani-Mordani S, Gregori NZ. Updates on Emerging Interventions for Autosomal Recessive ABCA4-Associated Stargardt Disease. J Clin Med 2023; 12:6229. [PMID: 37834872 PMCID: PMC10573680 DOI: 10.3390/jcm12196229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Autosomal recessive Stargardt disease (STGD1) is an inherited retinal degenerative disease associated with a mutated ATP-binding cassette, subfamily A, member 4 (ABCA4) gene. STGD1 is the most common form of juvenile macular degeneration with onset in late childhood to early or middle adulthood and causes progressive, irreversible visual impairment and blindness. No effective treatment is currently available. In the present article, we review the most recent updates in clinical trials targeting the management of STGD1, including gene therapy, small molecule therapy, and stem cell therapy. In gene therapy, dual adeno-associated virus and non-viral vectors have been successful in delivering the human ABCA4 gene in preclinical studies. For pharmaceutical therapies ALK-001, deuterated vitamin A shows promise with preliminary data for phase 2 trial, demonstrating a decreased atrophy growth rate after two years. Stem cell therapy using human pluripotent stem cell-derived retinal pigment epithelium cells demonstrated long-term safety three years after implantation and visual acuity improvements in the first two years after initiation of therapy. Many other treatment options have ongoing investigations and clinical trials. While multiple potential interventions have shown promise in attenuating disease progression, further exploration is necessary to demonstrate treatment safety and efficacy.
Collapse
Affiliation(s)
- Liang Wang
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (L.W.); (S.M.S.)
| | - Serena M. Shah
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (L.W.); (S.M.S.)
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Simran Mangwani-Mordani
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Ninel Z. Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Miami Veterans Administration Medical Center, Miami, FL 33125, USA
| |
Collapse
|
10
|
Farnoodian M, Bose D, Barone F, Nelson LM, Boyle M, Jun B, Do K, Gordon W, Guerin MAK, Perera R, Ji JX, Cogliati T, Sharma R, Brooks BP, Bazan NG, Bharti K. Retina and RPE lipid profile changes linked with ABCA4 associated Stargardt's maculopathy. Pharmacol Ther 2023; 249:108482. [PMID: 37385300 PMCID: PMC10530239 DOI: 10.1016/j.pharmthera.2023.108482] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Stargardt maculopathy, caused predominantly by mutations in the ABCA4 gene, is characterized by an accumulation of non-degradable visual pigment derivative, lipofuscin, in the retinal pigment epithelium (RPE) - resulting in RPE atrophy. RPE is a monolayer tissue located adjacent to retinal photoreceptors and regulates their health and functioning; RPE atrophy triggers photoreceptor cell death and vision loss in Stargardt patients. Previously, ABCA4 mutations in photoreceptors were thought to be the major contributor to lipid homeostasis defects in the eye. Recently, we demonstrated that ABCA4 loss of function in the RPE leads to cell-autonomous lipid homeostasis defects. Our work underscores that an incomplete understanding of lipid metabolism and lipid-mediated signaling in the retina and RPE are potential causes for lacking treatments for this disease. Here we report altered lipidomic in mouse and human Stargardt models. This work provides the basis for therapeutics that aim to restore lipid homeostasis in the retina and the RPE.
Collapse
Affiliation(s)
- Mitra Farnoodian
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Devika Bose
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Francesca Barone
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Luke Mathew Nelson
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Marisa Boyle
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Khanh Do
- Faculty of Medicine, Phenikaa University, Hanoi, Viet Nam
| | - William Gordon
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Marie-Audrey Kautzmann Guerin
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Rasangi Perera
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Jeff X Ji
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Tiziana Cogliati
- Division of Aging Biology, National Institute on Aging, National Institute of Health, Bethesda, MD, USA
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Song SB, Shim W, Hwang ES. Lipofuscin Granule Accumulation Requires Autophagy Activation. Mol Cells 2023; 46:486-495. [PMID: 37438887 PMCID: PMC10440269 DOI: 10.14348/molcells.2023.0019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/13/2023] [Accepted: 05/13/2023] [Indexed: 07/14/2023] Open
Abstract
Lipofuscins are oxidized lipid and protein complexes that accumulate during cellular senescence and tissue aging, regarded as markers for cellular oxidative damage, tissue aging, and certain aging-associated diseases. Therefore, understanding their cellular biological properties is crucial for effective treatment development. Through traditional microscopy, lipofuscins are readily observed as fluorescent granules thought to accumulate in lysosomes. However, lipofuscin granule formation and accumulation in senescent cells are poorly understood. Thus, this study examined lipofuscin accumulation in human fibroblasts exposed to various stressors. Our results substantiate that in glucose-starved or replicative senescence cells, where elevated oxidative stress levels activate autophagy, lipofuscins predominately appear as granules that co-localize with autolysosomes due to lysosomal acidity or impairment. Meanwhile, autophagosome formation is attenuated in cells experiencing oxidative stress induced by a doxorubicin pulse and chase, and lipofuscin fluorescence granules seldom manifest in the cytoplasm. As Torin-1 treatment activates autophagy, granular lipofuscins intensify and dominate, indicating that autophagy activation triggers their accumulation. Our results suggest that high oxidative stress activates autophagy but fails in lipofuscin removal, leaving an abundance of lipofuscin-filled impaired autolysosomes, referred to as residual bodies. Therefore, future endeavors in treating lipofuscin pathology-associated diseases and dysfunctions through autophagy activation demand meticulous consideration.
Collapse
Affiliation(s)
- Seon Beom Song
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Woosung Shim
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Eun Seong Hwang
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
12
|
Lyu Y, Tschulakow AV, Wang K, Brash DE, Schraermeyer U. Chemiexcitation and melanin in photoreceptor disc turnover and prevention of macular degeneration. Proc Natl Acad Sci U S A 2023; 120:e2216935120. [PMID: 37155898 PMCID: PMC10194005 DOI: 10.1073/pnas.2216935120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
Age-related macular degeneration, Stargardt disease, and their Abca4-/- mouse model are characterized by accelerated accumulation of the pigment lipofuscin, derived from photoreceptor disc turnover in the retinal pigment epithelium (RPE); lipofuscin accumulation and retinal degeneration both occur earlier in albino mice. Intravitreal injection of superoxide (O2•-) generators reverses lipofuscin accumulation and rescues retinal pathology, but neither the target nor mechanism is known. Here we show that RPE contains thin multi-lamellar membranes (TLMs) resembling photoreceptor discs, which associate with melanolipofuscin granules in pigmented mice but in albinos are 10-fold more abundant and reside in vacuoles. Genetically over-expressing tyrosinase in albinos generates melanosomes and decreases TLM-related lipofuscin. Intravitreal injection of generators of O2•- or nitric oxide (•NO) decreases TLM-related lipofuscin in melanolipofuscin granules of pigmented mice by ~50% in 2 d, but not in albinos. Prompted by evidence that O2•- plus •NO creates a dioxetane on melanin that excites its electrons to a high-energy state (termed "chemiexcitation"), we show that exciting electrons directly using a synthetic dioxetane reverses TLM-related lipofuscin even in albinos; quenching the excited-electron energy blocks this reversal. Melanin chemiexcitation assists in safe photoreceptor disc turnover.
Collapse
Affiliation(s)
- Yanan Lyu
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen72076, Germany
| | - Alexander V. Tschulakow
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen72076, Germany
- OcuTox GmbH, Preclinical Drug Assessment, Hechingen72379, Germany
| | - Kun Wang
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen72076, Germany
| | - Douglas E. Brash
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT06520-8040
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT06520-8028
| | - Ulrich Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen72076, Germany
- OcuTox GmbH, Preclinical Drug Assessment, Hechingen72379, Germany
| |
Collapse
|
13
|
Dhingra A, Tobias JW, Philp NJ, Boesze-Battaglia K. Transcriptomic Changes Predict Metabolic Alterations in LC3 Associated Phagocytosis in Aged Mice. Int J Mol Sci 2023; 24:6716. [PMID: 37047689 PMCID: PMC10095460 DOI: 10.3390/ijms24076716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
LC3b (Map1lc3b) plays an essential role in canonical autophagy and is one of several components of the autophagy machinery that mediates non-canonical autophagic functions. Phagosomes are often associated with lipidated LC3b to promote phagosome maturation in a process called LC3-associated phagocytosis (LAP). Specialized phagocytes, such as mammary epithelial cells, retinal pigment epithelial (RPE) cells, and sertoli cells, utilize LAP for optimal degradation of phagocytosed material, including debris. In the visual system, LAP is critical to maintain retinal function, lipid homeostasis, and neuroprotection. In a mouse model of retinal lipid steatosis-mice lacking LC3b (LC3b-/-), we observed increased lipid deposition, metabolic dysregulation, and enhanced inflammation. Herein, we present a non-biased approach to determine if loss of LAP mediated processes modulate the expression of various genes related to metabolic homeostasis, lipid handling, and inflammation. A comparison of the RPE transcriptome of WT and LC3b-/- mice revealed 1533 DEGs, with ~73% upregulated and 27% downregulated. Enriched gene ontology (GO) terms included inflammatory response (upregulated DEGs), fatty acid metabolism, and vascular transport (downregulated DEGs). Gene set enrichment analysis (GSEA) identified 34 pathways; 28 were upregulated (dominated by inflammation/related pathways) and 6 were downregulated (dominated by metabolic pathways). Analysis of additional gene families identified significant differences for genes in the solute carrier family, RPE signature genes, and genes with a potential role in age-related macular degeneration. These data indicate that loss of LC3b induces robust changes in the RPE transcriptome contributing to lipid dysregulation and metabolic imbalance, RPE atrophy, inflammation, and disease pathophysiology.
Collapse
Affiliation(s)
- Anuradha Dhingra
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John W. Tobias
- Penn Genomics and Sequencing Core, Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy J. Philp
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Dhingra A, Tobias JW, Philp NJ, Boesze-Battaglia K. Transcriptomic changes predict metabolic alterations in LC3 associated phagocytosis in aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532586. [PMID: 36993501 PMCID: PMC10054970 DOI: 10.1101/2023.03.14.532586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
LC3b ( Map1lc3b ) plays an essential role in canonical autophagy and is one of several components of the autophagy machinery that mediates non-canonical autophagic functions. Phagosomes are often associated with lipidated LC3b, to pro-mote phagosome maturation in a process called LC3-associated phagocytosis (LAP). Specialized phagocytes such as mammary epithelial cells, retinal pigment epithelial (RPE) cells, and sertoli cells utilize LAP for optimal degradation of phagocytosed material, including debris. In the visual system, LAP is critical to maintain retinal function, lipid homeostasis and neuroprotection. In a mouse model of retinal lipid steatosis - mice lacking LC3b ( LC3b -/- ), we observed increased lipid deposition, metabolic dysregulation and enhanced inflammation. Herein we present a non-biased approach to determine if loss of LAP mediated processes modulate the expression of various genes related to metabolic homeostasis, lipid handling, and inflammation. A comparison of the RPE transcriptome of WT and LC3b -/- mice revealed 1533 DEGs, with ~73% upregulated and 27% down-regulated. Enriched gene ontology (GO) terms included inflammatory response (upregulated DEGs), fatty acid metabolism and vascular transport (downregulated DEGs). Gene set enrichment analysis (GSEA) identified 34 pathways; 28 were upregulated (dominated by inflammation/related pathways) and 6 were downregulated (dominated by metabolic pathways). Analysis of additional gene families identified significant differences for genes in the solute carrier family, RPE signature genes, and genes with potential role in age-related macular degeneration. These data indicate that loss of LC3b induces robust changes in the RPE transcriptome contributing to lipid dysregulation and metabolic imbalance, RPE atrophy, inflammation, and disease pathophysiology.
Collapse
|
15
|
Brash DE, Goncalves LCP. Chemiexcitation: Mammalian Photochemistry in the Dark †. Photochem Photobiol 2023; 99:251-276. [PMID: 36681894 PMCID: PMC10065968 DOI: 10.1111/php.13781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/18/2023] [Indexed: 01/23/2023]
Abstract
Light is one way to excite an electron in biology. Another is chemiexcitation, birthing a reaction product in an electronically excited state rather than exciting from the ground state. Chemiexcited molecules, as in bioluminescence, can release more energy than ATP. Excited states also allow bond rearrangements forbidden in ground states. Molecules with low-lying unoccupied orbitals, abundant in biology, are particularly susceptible. In mammals, chemiexcitation was discovered to transfer energy from excited melanin, neurotransmitters, or hormones to DNA, creating the lethal and carcinogenic cyclobutane pyrimidine dimer. That process was initiated by nitric oxide and superoxide, radicals triggered by ultraviolet light or inflammation. Several poorly understood chronic diseases share two properties: inflammation generates those radicals across the tissue, and cells that die are those containing melanin or neuromelanin. Chemiexcitation may therefore be a pathogenic event in noise- and drug-induced deafness, Parkinson's disease, and Alzheimer's; it may prevent macular degeneration early in life but turn pathogenic later. Beneficial evolutionary selection for excitable biomolecules may thus have conferred an Achilles heel. This review of recent findings on chemiexcitation in mammalian cells also describes the underlying physics, biochemistry, and potential pathogenesis, with the goal of making this interdisciplinary phenomenon accessible to researchers within each field.
Collapse
Affiliation(s)
- Douglas E. Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520-8028, USA
| | - Leticia C. P. Goncalves
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| |
Collapse
|
16
|
Biasella F, Plössl K, Baird PN, Weber BHF. The extracellular microenvironment in immune dysregulation and inflammation in retinal disorders. Front Immunol 2023; 14:1147037. [PMID: 36936905 PMCID: PMC10014728 DOI: 10.3389/fimmu.2023.1147037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) as well as genetically complex retinal phenotypes represent a heterogenous group of ocular diseases, both on account of their phenotypic and genotypic characteristics. Therefore, overlaps in clinical features often complicate or even impede their correct clinical diagnosis. Deciphering the molecular basis of retinal diseases has not only aided in their disease classification but also helped in our understanding of how different molecular pathologies may share common pathomechanisms. In particular, these relate to dysregulation of two key processes that contribute to cellular integrity, namely extracellular matrix (ECM) homeostasis and inflammation. Pathological changes in the ECM of Bruch's membrane have been described in both monogenic IRDs, such as Sorsby fundus dystrophy (SFD) and Doyne honeycomb retinal dystrophy (DHRD), as well as in the genetically complex age-related macular degeneration (AMD) or diabetic retinopathy (DR). Additionally, complement system dysfunction and distorted immune regulation may also represent a common connection between some IRDs and complex retinal degenerations. Through highlighting such overlaps in molecular pathology, this review aims to illuminate how inflammatory processes and ECM homeostasis are linked in the healthy retina and how their interplay may be disturbed in aging as well as in disease.
Collapse
Affiliation(s)
- Fabiola Biasella
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Karolina Plössl
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Paul N. Baird
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Surgery, Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Paul N. Baird, ; Bernhard H. F. Weber,
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
- *Correspondence: Paul N. Baird, ; Bernhard H. F. Weber,
| |
Collapse
|
17
|
Ng ESY, Kady N, Hu J, Dave A, Jiang Z, Pei J, Gorin MB, Matynia A, Radu RA. Membrane Attack Complex Mediates Retinal Pigment Epithelium Cell Death in Stargardt Macular Degeneration. Cells 2022; 11:3462. [PMID: 36359858 PMCID: PMC9655712 DOI: 10.3390/cells11213462] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 08/22/2023] Open
Abstract
Recessive Stargardt disease (STGD1) is an inherited retinopathy caused by mutations in the ABCA4 gene. The ABCA4 protein is a phospholipid-retinoid flippase in the outer segments of photoreceptors and the internal membranes of retinal pigment epithelial (RPE) cells. Here, we show that RPE cells derived via induced pluripotent stem-cell from a molecularly and clinically diagnosed STGD1 patient exhibited reduced ABCA4 protein and diminished activity compared to a normal subject. Consequently, STGD1 RPE cells accumulated intracellular autofluorescence-lipofuscin and displayed increased complement C3 activity. The level of C3 inversely correlated with the level of CD46, an early negative regulator of the complement cascade. Persistent complement dysregulation led to deposition of the membrane attack complex on the surface of RPE cells, decrease in transepithelial resistance, and subsequent cell death. These findings are strong evidence of complement-mediated RPE cell damage in STGD1, in the absence of photoreceptors, caused by reduced CD46 regulatory protein.
Collapse
Affiliation(s)
- Eunice Sze Yin Ng
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
- Molecular Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA 90095, USA
| | - Nermin Kady
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Jane Hu
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
| | - Arpita Dave
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
| | - Zhichun Jiang
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
| | - Jacqueline Pei
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
| | - Michael B. Gorin
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
| | - Anna Matynia
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
| | - Roxana A. Radu
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
| |
Collapse
|
18
|
Luo M, Wang S, Tang Y, Zeng C, Cai S. The Effect of A2E on the Ca 2+-PKC Signaling Pathway in Human RPE Cells Exposed to Blue Light. J Ophthalmol 2022; 2022:2233223. [PMID: 36304713 PMCID: PMC9596233 DOI: 10.1155/2022/2233223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
AIMS In a model of blue light-induced damage in N-retinylidene-N-retinylethanolamine (A2E)-loaded human retinal pigment epithelial (RPE) cells, we examined the effect of A2E on the calcium (Ca2+)-protein kinase C (PKC) signaling pathway. METHODS Primary human RPE cells were cultured, and the cells in the 4th-6th passages were used in this study. The cells were divided into 5 groups: control cells (no A2E, no blue light), blue light-treated cells, blue light + chloroquine-treated cells, blue light + A2E-treated cells, and blue light + A2E + chloroquine-treated cells. The cells were first treated with chloroquine (15 μM for 12 h) and then loaded with A2E (25 μM for 2 h).The blue light intensity was 2000 ± 500 lux, and the duration was 6 h. After blue light exposure, the cells were cultured for 24 h. Fluo-3/AM staining was used to determine the level of cytoplasmic Ca2+, and the cells were photographed using a laser scanning confocal microscope to analyze the fluorescence intensity. The intracellular levels of inositol triphosphate (IP3) and diacylglycerol (DAG) were measured by enzyme-linked immunosorbent assay (ELISA). Intracellular PKC activity was measured with a nonradioactive nuclide assay. RESULTS Among all cell groups, the levels of Ca2+, DAG, and IP3 were lowest in the control cells (P < 0.05). The Ca2+, DAG, and IP3 levels in the blue light + A2E-treated cells and blue light + chloroquine-treated cells were higher than those in the blue light-treated cells (P < 0.05). The Ca2+, DAG, and IP3 levels were highest in the blue light + A2E + chloroquine-treated group (P < 0.05). PKC activity was lowest in the control cells (P < 0.05). The PKC activity of the blue light + A2E-treated cells and blue light + chloroquine-treated cells was higher than that of the blue light-treated cells (P < 0.05), and the PKC activity of the blue light + A2E + chloroquine-treated cells was the highest (P < 0.05). CONCLUSION Blue light and A2E increased the levels of Ca2+, IP3, and DAG in human RPE cells and enhanced PKC activity, and blue light and A2E had a synergistic effect. Chloroquine further increased the levels of Ca2+, IP3, and DAG and PKC activity in RPE cells or A2E-loaded RPE cells exposed to blue light.
Collapse
Affiliation(s)
- Maomei Luo
- Department of Ophthalmology, Guizhou Eye Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Ophthalmology, Dazhou Central Hospital, Dazhou, Sichuan, China
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Shu Wang
- Department of Ophthalmology, Guizhou Eye Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Yun Tang
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Chun Zeng
- Department of Ophthalmology, Guizhou Eye Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Shanjun Cai
- Department of Ophthalmology, Guizhou Eye Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
19
|
Farnoodian M, Bose D, Khristov V, Susaimanickam PJ, Maddileti S, Mariappan I, Abu-Asab M, Campos M, Villasmil R, Wan Q, Maminishkis A, McGaughey D, Barone F, Gundry RL, Riordon DR, Boheler KR, Sharma R, Bharti K. Cell-autonomous lipid-handling defects in Stargardt iPSC-derived retinal pigment epithelium cells. Stem Cell Reports 2022; 17:2438-2450. [DOI: 10.1016/j.stemcr.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
|
20
|
Cui X, Kim HJ, Cheng CH, Jenny LA, Lima de Carvalho JR, Chang YJ, Kong Y, Hsu CW, Huang IW, Ragi SD, Lin CS, Li X, Sparrow JR, Tsang SH. Long-term vitamin A supplementation in a preclinical mouse model for RhoD190N-associated retinitis pigmentosa. Hum Mol Genet 2022; 31:2438-2451. [PMID: 35195241 PMCID: PMC9307315 DOI: 10.1093/hmg/ddac032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/10/2022] [Accepted: 01/25/2022] [Indexed: 01/12/2023] Open
Abstract
Retinitis pigmentosa (RP) is caused by one of many possible gene mutations. The National Institutes of Health recommends high daily doses of vitamin A palmitate for RP patients. There is a critical knowledge gap surrounding the therapeutic applicability of vitamin A to patients with the different subtypes of the disease. Here, we present a case report of a patient with RP caused by a p.D190N mutation in Rhodopsin (RHO) associated with abnormally high quantitative autofluorescence values after long-term vitamin A supplementation. We investigated the effects of vitamin A treatment strategy on RP caused by the p.D190N mutation in RHO by exposing Rhodopsin p.D190N (RhoD190N/+) and wild-type (WT) mice to experimental vitamin A-supplemented and standard control diets. The patient's case suggests that the vitamin A treatment strategy should be further studied to determine its effect on RP caused by p.D190N mutation in RHO and other mutations. Our mouse experiments revealed that RhoD190N/+ mice on the vitamin A diet exhibited higher levels of autofluorescence and lipofuscin metabolites compared to WT mice on the same diet and isogenic controls on the standard control diet. Vitamin A supplementation diminished photoreceptor function in RhoD190N/+ mice while preserving cone response in WT mice. Our findings highlight the importance of more investigations into the efficacy of clinical treatments like vitamin A for patients with certain genetic subtypes of disease and of genotyping in the precision care of inherited retinal degenerations.
Collapse
Affiliation(s)
- Xuan Cui
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
- School of Optometry and Ophthalmology, Tianjin Medical University Eye Institute, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin 300384, China
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
| | - Hye Jin Kim
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Chia-Hua Cheng
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Laura A Jenny
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Jose Ronaldo Lima de Carvalho
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Ya-Ju Chang
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Yang Kong
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Chun-Wei Hsu
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - I-Wen Huang
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Sara D Ragi
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
| | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Xiaorong Li
- School of Optometry and Ophthalmology, Tianjin Medical University Eye Institute, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin 300384, China
| | - Janet R Sparrow
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen H Tsang
- Jonas Children’s Vision Care, and the Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Ophthalmology, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| |
Collapse
|
21
|
Zauhar R, Biber J, Jabri Y, Kim M, Hu J, Kaplan L, Pfaller AM, Schäfer N, Enzmann V, Schlötzer-Schrehardt U, Straub T, Hauck SM, Gamlin PD, McFerrin MB, Messinger J, Strang CE, Curcio CA, Dana N, Pauly D, Grosche A, Li M, Stambolian D. As in Real Estate, Location Matters: Cellular Expression of Complement Varies Between Macular and Peripheral Regions of the Retina and Supporting Tissues. Front Immunol 2022; 13:895519. [PMID: 35784369 PMCID: PMC9240314 DOI: 10.3389/fimmu.2022.895519] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/11/2022] [Indexed: 01/02/2023] Open
Abstract
The cellular events that dictate the initiation of the complement pathway in ocular degeneration, such as age-related macular degeneration (AMD), is poorly understood. Using gene expression analysis (single cell and bulk), mass spectrometry, and immunohistochemistry, we dissected the role of multiple retinal and choroidal cell types in determining the complement homeostasis. Our scRNA-seq data show that the cellular response to early AMD is more robust in the choroid, particularly in fibroblasts, pericytes and endothelial cells. In late AMD, complement changes were more prominent in the retina especially with the expression of the classical pathway initiators. Notably, we found a spatial preference for these differences. Overall, this study provides insights into the heterogeneity of cellular responses for complement expression and the cooperation of neighboring cells to complete the pathway in healthy and AMD eyes. Further, our findings provide new cellular targets for therapies directed at complement.
Collapse
Affiliation(s)
- Randy Zauhar
- Department of Chemistry and Biochemistry, The University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Josef Biber
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Yassin Jabri
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Mijin Kim
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jian Hu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Lew Kaplan
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anna M. Pfaller
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Nicole Schäfer
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany
| | - Volker Enzmann
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Tobias Straub
- Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core and Research Unit Protein Science, Helmholtz-Zentrum München, Neuherberg, Germany
| | - Paul D. Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael B. McFerrin
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeffrey Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christianne E. Strang
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nicholas Dana
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Diana Pauly
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
- Experimental Ophthalmology, University of Marburg, Marburg, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Dwight Stambolian
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
22
|
Peng H, Ramadurgum P, Woodard DR, Daniel S, Nakahara E, Renwick M, Aredo B, Datta S, Chen B, Ufret-Vincenty R, Hulleman JD. Utility of the DHFR-based destabilizing domain across mouse models of retinal degeneration and aging. iScience 2022; 25:104206. [PMID: 35521529 PMCID: PMC9062244 DOI: 10.1016/j.isci.2022.104206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 02/16/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
The Escherichia coli dihydrofolate reductase (DHFR) destabilizing domain (DD) serves as a promising approach to conditionally regulate protein abundance in a variety of tissues. To test whether this approach could be effectively applied to a wide variety of aged and disease-related ocular mouse models, we evaluated the DHFR DD system in the eyes of aged mice (up to 24 months), a light-induced retinal degeneration (LIRD) model, and two genetic models of retinal degeneration (rd2 and Abca4−/− mice). The DHFR DD was effectively degraded in all model systems, including rd2 mice, which showed significant defects in chymotrypsin proteasomal activity. Moreover, trimethoprim (TMP) administration stabilized the DHFR DD in all mouse models. Thus, the DHFR DD-based approach allows for control of protein abundance in a variety of mouse models, laying the foundation to use this strategy for the conditional control of gene therapies to potentially treat multiple eye diseases. Destabilizing domains (DDs) confer conditional control of ocular protein abundance The DHFR DD is effectively turned over and stabilized in aged mouse’s retina DHFR DDs perform well in environmental and genetic retinal degenerative models
Collapse
|
23
|
Matynia A, Wang J, Kim S, Li Y, Dimashkie A, Jiang Z, Hu J, Strom SP, Radu RA, Chen R, Gorin MB. Assessing Variant Causality and Severity Using Retinal Pigment Epithelial Cells Derived from Stargardt Disease Patients. Transl Vis Sci Technol 2022; 11:33. [PMID: 35348597 PMCID: PMC8976924 DOI: 10.1167/tvst.11.3.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/19/2022] [Indexed: 02/06/2023] Open
Abstract
Purpose Modern molecular genetics has revolutionized gene discovery, genetic diagnoses, and precision medicine yet many patients remain unable to benefit from these advances as disease-causing variants remain elusive for up to half of Mendelian genetic disorders. Patient-derived induced pluripotent stem (iPS) cells and transcriptomics were used to identify the fate of unsolved ABCA4 alleles in patients with Stargardt disease. Methods Multiple independent iPS lines were generated from skin biopsies of three patients with Stargardt disease harboring a single identified pathogenic ABCA4 variant. Derived retinal pigment epithelial cells (dRPE) from a normal control and patient cells were subjected to RNA-Seq on the Novaseq6000 platform, analyzed using DESeq2 with calculation of allele specific imbalance from the pathogenic or a known linked variant. Protein analysis was performed using the automated Simple Western system. Results Nine dRPE samples were generated, with transcriptome analysis on eight. Allele-specific expression indicated normal transcripts expressed from splice variants albeit at low levels, and missense transcripts expressed at near-normal levels. Corresponding protein was not easily detected. Patient phenotype correlation indicated missense variants expressed at high levels have more deleterious outcomes. Transcriptome analysis suggests mitochondrial membrane biodynamics and the unfolded protein response pathway may be relevant in Stargardt disease. Conclusions Patient-specific iPS-derived RPE cells set the stage to assess non-expressing variants in difficult-to-detect genomic regions using easily biopsied tissue. Translational Relevance This "Disease in a Dish" approach is likely to enhance the ability of patients to participate in and benefit from clinical trials while providing insights into perturbations in RPE biology.
Collapse
Affiliation(s)
- Anna Matynia
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jun Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sangbae Kim
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Anupama Dimashkie
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Zhichun Jiang
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jane Hu
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | - Roxana A. Radu
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Michael B. Gorin
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
24
|
Chuang JZ, Yang N, Nakajima N, Otsu W, Fu C, Yang HH, Lee MP, Akbar AF, Badea TC, Guo Z, Nuruzzaman A, Hsu KS, Dunaief JL, Sung CH. Retinal pigment epithelium-specific CLIC4 mutant is a mouse model of dry age-related macular degeneration. Nat Commun 2022; 13:374. [PMID: 35042858 PMCID: PMC8766482 DOI: 10.1038/s41467-021-27935-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly. Dry AMD has unclear etiology and no treatment. Lipid-rich drusen are the hallmark of dry AMD. An AMD mouse model and insights into drusenogenesis are keys to better understanding of this disease. Chloride intracellular channel 4 (CLIC4) is a pleomorphic protein regulating diverse biological functions. Here we show that retinal pigment epithelium (RPE)-specific Clic4 knockout mice exhibit a full spectrum of functional and pathological hallmarks of dry AMD. Multidisciplinary longitudinal studies of disease progression in these mice support a mechanistic model that links RPE cell-autonomous aberrant lipid metabolism and transport to drusen formation.
Collapse
Affiliation(s)
- Jen-Zen Chuang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| | - Nan Yang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nobuyuki Nakajima
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Urology, Tokai University, Kanagawa, Japan
| | - Wataru Otsu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Cheng Fu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Howard Hua Yang
- The Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maxwell Ping Lee
- The Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Tudor Constantin Badea
- National Eye Institute, National institute of Health, Bethesda, MD, USA
- Research and Development Institute, Transilvania University of Brasov, School of Medicine, Brasov, Romania
| | - Ziqi Guo
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Afnan Nuruzzaman
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Kuo-Shun Hsu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Sloan Kettering Cancer Institute, New York, NY, USA
| | - Joshua L Dunaief
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
25
|
Ma Y, Ding X, Shao M, Qiu Y, Li S, Cao W, Xu G. Association of Serum Complement C1q and C3 Level with Age-Related Macular Degeneration in Women. J Inflamm Res 2022; 15:285-294. [PMID: 35058703 PMCID: PMC8765539 DOI: 10.2147/jir.s348539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/25/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To investigate the association between serum complement components and age-related macular degeneration (AMD). PATIENTS AND METHODS A total of 118 AMD patients and age- and sex-matched 106 control subjects were included. Demographic data and the level of serum complement component (C)1q, C3 and C4 were evaluated. Based on sex, the subjects were stratified into male and female subgroups. RESULTS The level of C1q (226.31±45.33mg/dL) was significantly higher and C3 (121.14±15.76mg/dL) was significantly lower than that in control group (200.03±38.54mg/dL) (128.42±19.81mg/dL) in the female AMD patients (p = 0.005, p = 0.045). Logistic regression showed that increased C1q (OR = 1.132, p = 0.016) and decreased C3 (OR = 0.960, p = 0.048) were independent risk factors for female AMD patients. No statistical significance was observed in the male. CONCLUSION Increased C1q and decreased C3 were associated with increased risk of AMD, suggesting that the complement classical pathway probably be involved in AMD, especially in female.
Collapse
Affiliation(s)
- Yingbo Ma
- Department of Clinical Laboratory, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Xueqing Ding
- Department of Clinical Laboratory, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Mingxi Shao
- Department of Clinical Laboratory, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Yichao Qiu
- Department of Clinical Laboratory, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Shengjie Li
- Department of Clinical Laboratory, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Wenjun Cao
- Department of Clinical Laboratory, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, People's Republic of China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
26
|
Abstract
The eye presents a unique opportunity for complement component 3 (C3) therapeutics. Drugs can be delivered directly to specific parts of the eye, and growing evidence has established a pivotal role for C3 in age-related macular degeneration (AMD). Emerging data show that C3 may be important to the pathophysiology of other eye diseases as well. This article will discuss the location of C3 expression in the eye as well as the preclinical and clinical data regarding C3's functions in AMD. We will provide a comprehensive review of developing C3 inhibitors for the eye, including the Phase 2 and 3 data for the C3 inhibitor pegcetacoplan as a treatment for the geographic atrophy of AMD. Developing evidence also points toward C3 as a therapeutic target for stages of AMD preceding geographic atrophy. We will also discuss data illuminating C3's relationship to other eye diseases, such as Stargardt disease, diabetic retinopathy, and glaucoma. In addition to being a converging point and centerpiece of the complement cascade, C3 has broad effects as a multifaceted controller of opsonophagocytosis, microglia/macrophage recruitment, and downstream terminal pathway activity. C3 is a crucial player in the pathophysiology of AMD but also seems to have importance in other diseases that are major causes of blindness. Directions for further investigation will be highlighted, as culminating evidence suggests that we may be approaching an era of C3 therapeutics for the eye.
Collapse
Affiliation(s)
- Benjamin J Kim
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Tianyu Liu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - John D Lambris
- Department of Laboratory Medicine and Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Molday RS, Garces FA, Scortecci JF, Molday LL. Structure and function of ABCA4 and its role in the visual cycle and Stargardt macular degeneration. Prog Retin Eye Res 2021; 89:101036. [PMID: 34954332 DOI: 10.1016/j.preteyeres.2021.101036] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022]
Abstract
ABCA4 is a member of the superfamily of ATP-binding cassette (ABC) transporters that is preferentially localized along the rim region of rod and cone photoreceptor outer segment disc membranes. It uses the energy from ATP binding and hydrolysis to transport N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff base adduct of retinal and phosphatidylethanolamine, from the lumen to the cytoplasmic leaflet of disc membranes. This ensures that all-trans-retinal and excess 11-cis-retinal are efficiently cleared from photoreceptor cells thereby preventing the accumulation of toxic retinoid compounds. Loss-of-function mutations in the gene encoding ABCA4 cause autosomal recessive Stargardt macular degeneration, also known as Stargardt disease (STGD1), and related autosomal recessive retinopathies characterized by impaired central vision and an accumulation of lipofuscin and bis-retinoid compounds. High resolution structures of ABCA4 in its substrate and nucleotide free state and containing bound N-Ret-PE or ATP have been determined by cryo-electron microscopy providing insight into the molecular architecture of ABCA4 and mechanisms underlying substrate recognition and conformational changes induced by ATP binding. The expression and functional characterization of a large number of disease-causing missense ABCA4 variants have been determined. These studies have shed light into the molecular mechanisms underlying Stargardt disease and a classification that reliably predicts the effect of a specific missense mutation on the severity of the disease. They also provide a framework for developing rational therapeutic treatments for ABCA4-associated diseases.
Collapse
Affiliation(s)
- Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada; Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, B.C., Canada.
| | - Fabian A Garces
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | | | - Laurie L Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| |
Collapse
|
28
|
Adamus G. Importance of Autoimmune Responses in Progression of Retinal Degeneration Initiated by Gene Mutations. Front Med (Lausanne) 2021; 8:672444. [PMID: 34926479 PMCID: PMC8674421 DOI: 10.3389/fmed.2021.672444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal diseases (IRDs) are clinically and genetically heterogeneous rare disorders associated with retinal dysfunction and death of retinal photoreceptor cells, leading to blindness. Among the most frequent and severe forms of those retinopathies is retinitis pigmentosa (RP) that affects 1:4,000 individuals worldwide. The genes that have been implicated in RP are associated with the proteins present in photoreceptor cells or retinal pigment epithelium (RPE). Asymmetric presentation or sudden progression in retinal disease suggests that a gene mutation alone might not be responsible for retinal degeneration. Immune responses could directly target the retina or be site effect of immunity as a bystander deterioration. Autoantibodies against retinal autoantigens have been found in RP, which led to a hypothesis that autoimmunity could be responsible for the progression of photoreceptor cell death initiated by a genetic mutation. The other contributory factor to retinal degeneration is inflammation that activates the innate immune mechanisms, such as complement. If autoimmune responses contribute to the progression of retinopathy, this could have an implication on treatment, such as gene replacement therapy. In this review, we provide a perspective on the current role of autoimmunity/immunity in RP pathophysiology.
Collapse
Affiliation(s)
- Grazyna Adamus
- Ocular Immunology Laboratory, Casey Eye Institute, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
29
|
Zhang D, Robinson K, Washington I. C20D3-Vitamin A Prevents Retinal Pigment Epithelium Atrophic Changes in a Mouse Model. Transl Vis Sci Technol 2021; 10:8. [PMID: 34878528 PMCID: PMC8662574 DOI: 10.1167/tvst.10.14.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose This study aimed to evaluate the contribution of vitamin A dimerization to retinal pigment epithelium (RPE) atrophic changes. Leading causes of irreversible blindness, including Stargardt disease and age-related macular degeneration (AMD), occur as a result of atrophic changes in RPE. The cause of the RPE atrophic changes is not apparent. During the vitamin A cycle, vitamin A dimerizes, leading to vitamin A cycle byproducts, such as vitamin A dimers, in the RPE. Methods To study the consequence of vitamin A dimerization to RPE atrophic changes, we used a rodent model with accelerated vitamin A dimerization, Abca4−/−/Rdh8−/− mice, and the vitamin A analog C20D3-vitamin A to selectively ameliorate the accelerated rate of vitamin A dimerization. Results We show that ameliorating the rate of vitamin A dimerization with C20D3-vitamin A mitigates pathological changes observed in the prodromal phase of the most prevalent retinal degenerative diseases, including fundus autofluorescence changes, dark adaptation delays, and signature RPE atrophic changes. Conclusions Data demonstrate that the dimerization of vitamin A during the vitamin A cycle is sufficient alone to cause the prerequisite RPE atrophic changes thought to be responsible for the leading causes of irreversible blindness and that correcting the dimerization rate with C20D3-vitamin A may be sufficient to prevent the RPE atrophic changes. Translational Relevance Preventing the dimerization of vitamin A with the vitamin A analog C20D3-vitamin A may be sufficient to alter the clinical course of the most prevalent forms of blindness, including Stargardt disease and age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Dan Zhang
- Columbia University Medical Center, Ophthalmology, New York, NY, USA
| | - Kiera Robinson
- Columbia University Medical Center, Ophthalmology, New York, NY, USA
| | - Ilyas Washington
- Columbia University Medical Center, Ophthalmology, New York, NY, USA.,biOOrg3.14, Buffalo, WY, USA
| |
Collapse
|
30
|
Landowski M, Bowes Rickman C. Targeting Lipid Metabolism for the Treatment of Age-Related Macular Degeneration: Insights from Preclinical Mouse Models. J Ocul Pharmacol Ther 2021; 38:3-32. [PMID: 34788573 PMCID: PMC8817708 DOI: 10.1089/jop.2021.0067] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major leading cause of irreversible visual impairment in the world with limited therapeutic interventions. Histological, biochemical, genetic, and epidemiological studies strongly implicate dysregulated lipid metabolism in the retinal pigmented epithelium (RPE) in AMD pathobiology. However, effective therapies targeting lipid metabolism still need to be identified and developed for this blinding disease. To test lipid metabolism-targeting therapies, preclinical AMD mouse models are needed to establish therapeutic efficacy and the role of lipid metabolism in the development of AMD-like pathology. In this review, we provide a comprehensive overview of current AMD mouse models available to researchers that could be used to provide preclinical evidence supporting therapies targeting lipid metabolism for AMD. Based on previous studies of AMD mouse models, we discuss strategies to modulate lipid metabolism as well as examples of studies evaluating lipid-targeting therapeutics to restore lipid processing in the RPE. The use of AMD mouse models may lead to worthy lipid-targeting candidate therapies for clinical trials to prevent the blindness caused by AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
31
|
Huang D, Heath Jeffery RC, Aung-Htut MT, McLenachan S, Fletcher S, Wilton SD, Chen FK. Stargardt disease and progress in therapeutic strategies. Ophthalmic Genet 2021; 43:1-26. [PMID: 34455905 DOI: 10.1080/13816810.2021.1966053] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Stargardt disease (STGD1) is an autosomal recessive retinal dystrophy due to mutations in ABCA4, characterized by subretinal deposition of lipofuscin-like substances and bilateral centrifugal vision loss. Despite the tremendous progress made in the understanding of STGD1, there are no approved treatments to date. This review examines the challenges in the development of an effective STGD1 therapy.Materials and Methods: A literature review was performed through to June 2021 summarizing the spectrum of retinal phenotypes in STGD1, the molecular biology of ABCA4 protein, the in vivo and in vitro models used to investigate the mechanisms of ABCA4 mutations and current clinical trials.Results: STGD1 phenotypic variability remains an challenge for clinical trial design and patient selection. Pre-clinical development of therapeutic options has been limited by the lack of animal models reflecting the diverse phenotypic spectrum of STDG1. Patient-derived cell lines have facilitated the characterization of splice mutations but the clinical presentation is not always predicted by the effect of specific mutations on retinoid metabolism in cellular models. Current therapies primarily aim to delay vision loss whilst strategies to restore vision are less well developed.Conclusions: STGD1 therapy development can be accelerated by a deeper understanding of genotype-phenotype correlations.
Collapse
Affiliation(s)
- Di Huang
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.,Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), the University of Western Australia, Nedlands, Western Australia, Australia.,Perron Institute for Neurological and Translational Science & the University of Western Australia, Nedlands, Western Australia, Australia
| | - Rachael C Heath Jeffery
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), the University of Western Australia, Nedlands, Western Australia, Australia
| | - May Thandar Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.,Perron Institute for Neurological and Translational Science & the University of Western Australia, Nedlands, Western Australia, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), the University of Western Australia, Nedlands, Western Australia, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.,Perron Institute for Neurological and Translational Science & the University of Western Australia, Nedlands, Western Australia, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.,Perron Institute for Neurological and Translational Science & the University of Western Australia, Nedlands, Western Australia, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), the University of Western Australia, Nedlands, Western Australia, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia.,Department of Ophthalmology, Perth Children's Hospital, Nedlands, Western Australia, Australia
| |
Collapse
|
32
|
Piotter E, McClements ME, MacLaren RE. Therapy Approaches for Stargardt Disease. Biomolecules 2021; 11:1179. [PMID: 34439845 PMCID: PMC8393614 DOI: 10.3390/biom11081179] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Despite being the most prevalent cause of inherited blindness in children, Stargardt disease is yet to achieve the same clinical trial success as has been achieved for other inherited retinal diseases. With an early age of onset and continual progression of disease over the life course of an individual, Stargardt disease appears to lend itself to therapeutic intervention. However, the aetiology provides issues not encountered with the likes of choroideremia and X-linked retinitis pigmentosa and this has led to a spectrum of treatment strategies that approach the problem from different aspects. These include therapeutics ranging from small molecules and anti-sense oligonucleotides to viral gene supplementation and cell replacement. The advancing development of CRISPR-based molecular tools is also likely to contribute to future therapies by way of genome editing. In this we review, we consider the most recent pre-clinical and clinical trial data relating to the different strategies being applied to the problem of generating a treatment for the large cohort of Stargardt disease patients worldwide.
Collapse
Affiliation(s)
- Elena Piotter
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (E.P.); (M.E.M.)
- Oxford University Hospitals NHS Foundation Trust NIHR Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (E.P.); (M.E.M.)
- Oxford University Hospitals NHS Foundation Trust NIHR Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (E.P.); (M.E.M.)
- Oxford University Hospitals NHS Foundation Trust NIHR Biomedical Research Centre, Oxford OX3 9DU, UK
| |
Collapse
|
33
|
Arunkumar R, Gorusupudi A, Li B, Blount JD, Nwagbo U, Kim HJ, Sparrow JR, Bernstein PS. Lutein and zeaxanthin reduce A2E and iso-A2E levels and improve visual performance in Abca4 -/-/Bco2 -/- double knockout mice. Exp Eye Res 2021; 209:108680. [PMID: 34161819 PMCID: PMC8595537 DOI: 10.1016/j.exer.2021.108680] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
Accumulation of bisretinoids such as A2E and its isomer iso-A2E is thought to mediate blue light-induced oxidative damage associated with age-related macular degeneration (AMD) and autosomal recessive Stargardt disease (STGD1). We hypothesize that increasing dietary intake of the macular carotenoids lutein and zeaxanthin in individuals at risk of AMD and STGD1 can inhibit the formation of bisretinoids A2E and iso-A2E, which can potentially ameliorate macular degenerative diseases. To study the beneficial effect of macular carotenoids in a retinal degenerative diseases model, we used ATP-binding cassette, sub-family A member 4 (Abca4-/-)/β,β-carotene-9',10'-oxygenase 2 (Bco2-/-) double knockout (KO) mice that accumulate elevated levels of A2E and iso-A2E in the retinal pigment epithelium (RPE) and macular carotenoids in the retina. Abca4-/-/Bco2-/- and Abca4-/- mice were fed a lutein-supplemented chow, zeaxanthin-supplemented chow or placebo chow (~2.6 mg of carotenoid/mouse/day) for three months. Visual function and electroretinography (ERG) were measured after one month and three months of carotenoid supplementation. The lutein and zeaxanthin supplemented Abca4-/-/Bco2-/- mice had significantly lower levels of RPE/choroid A2E and iso-A2E compared to control mice fed with placebo chow and improved visual performance. Carotenoid supplementation in Abca4-/- mice minimally raised retinal carotenoid levels and did not show much difference in bisretinoid levels or visual function compared to the control diet group. There was a statistically significant inverse correlation between carotenoid levels in the retina and A2E and iso-A2E levels in the RPE/choroid. Supplementation with retinal carotenoids, especially zeaxanthin, effectively inhibits bisretinoid formation in a mouse model of STGD1 genetically enhanced to accumulate carotenoids in the retina. These results provide further impetus to pursue oral carotenoids as therapeutic interventions for STGD1 and AMD.
Collapse
Affiliation(s)
- Ranganathan Arunkumar
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Aruna Gorusupudi
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Binxing Li
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - J David Blount
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Uzoamaka Nwagbo
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Hye Jin Kim
- Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Science, John A. Moran Eye Center, University of Utah, School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
34
|
Dhooge PPA, Runhart EH, Li CHZ, de Kat Angelino CM, Hoyng CB, van der Molen RG, den Hollander AI. Systemic complement activation levels in Stargardt disease. PLoS One 2021; 16:e0253716. [PMID: 34170959 PMCID: PMC8232401 DOI: 10.1371/journal.pone.0253716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose Preclinical research provides evidence for the complement system as a potential common pathway in Stargardt disease (STGD1) and age-related macular degeneration (AMD) leading to retinal pigment epithelium (RPE) loss. However, systemic complement activation has not yet been assessed in STGD1 patients. We conducted a cross-sectional case-control study to assess systemic complement activation in STGD1 patients and its association with disease severity. Methods Systemic concentrations of complement component C3 and its degradation product C3d were compared between 80 STGD1 patients and 80 controls that were frequency matched for age and sex. The C3d/C3 ratio was used as parameter of systemic complement activation. Within the STGD1 cohort, we additionally examined the association between the C3d/C3 ratio, demographic and behavioural factors (age, sex, smoking and BMI), and measures of disease severity (age at onset, visual acuity, and area of atrophy). Results The C3d/C3 ratio did not significantly differ between patients (mean C3d/C3 ratio 3.5±1.4) and controls (mean C3d/C3 ratio 3.6±1.0), mean difference -0.156 (p = 0.804, independent samples t-test). The overall effect size was 8% (95% confidence interval, 3–15%). Elevated C3d/C3 ratios (>8.1) were found in three patients who all had a concomitant inflammatory condition at the time of blood draw. Within the patient cohort, C3 levels were associated with sex (mean difference -134, p = 0.001, independent samples t-test) and BMI (correlation coefficient 0.463, p<0.001, Spearman’s Correlation). Conclusions Systemic complement levels were not elevated in STGD1 patients compared to age and sex matched controls and was not associated with STGD1 severity. Considering the continued absent proof of a systemic contribution of the complement system to RPE loss in STGD1 patients, we hypothesize that complement activation in STGD1 is more likely a local process. In light of upcoming complement-targeted therapies, further studies are needed that measure complement levels in the eye of STGD1 patients.
Collapse
Affiliation(s)
- Patty P. A. Dhooge
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Esmee H. Runhart
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Catherina H. Z. Li
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Corrie M. de Kat Angelino
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Renate G. van der Molen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anneke I. den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
35
|
EX-vivo whole blood stimulation with A2E does not elicit an inflammatory cytokine response in patients with age-related macular degeneration. Sci Rep 2021; 11:8226. [PMID: 33859228 PMCID: PMC8050255 DOI: 10.1038/s41598-021-87337-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/23/2021] [Indexed: 11/29/2022] Open
Abstract
Age-related macular degeneration (AMD) is a highly prevalent degenerative disease and a leading cause of vision loss worldwide. Evidence for an inflammatory component in the development of AMD exists, yet the exact mechanisms remain unclear. Bisretinoid N-retinylidene-N-retinylethanolamine (A2E) in retinal pigmental epithelial (RPE) cells, and in extracellular deposits constitutes a hallmark of AMD, but its role in the pathology of AMD is elusive. Here, we tested the hypothesis that A2E is responsible for the heightened inflammatory activity in AMD. To this end, we measured ex vivo mRNA expression of the cytokines TNF-α, IL-6, and IL-10 in whole blood samples after stimulation with A2E in a clinical sample of 27 patients with neovascular AMD and 24 patients with geographic atrophy secondary to AMD. Patients’ spouses (n = 30) were included as non-affected controls. After stimulation with A2E, no statistical differences were found in the median expression level of TNF-α, IL-6, IL-10 between the control group, and the neovascular AMD and the geographic atrophy group. Our findings do not support evidence for the hypothesis, that A2E per se contributes to heightened inflammatory activity in AMD.
Collapse
|
36
|
Kim HJ, Sparrow JR. Bisretinoid phospholipid and vitamin A aldehyde: shining a light. J Lipid Res 2021; 62:100042. [PMID: 32371567 PMCID: PMC7933493 DOI: 10.1194/jlr.tr120000742] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Vitamin A aldehyde covalently bound to opsin protein is embedded in a phospholipid-rich membrane that supports photon absorption and phototransduction in photoreceptor cell outer segments. Following absorption of a photon, the 11-cis-retinal chromophore of visual pigment in photoreceptor cells isomerizes to all-trans-retinal. To maintain photosensitivity 11-cis-retinal must be replaced. At the same time, however, all-trans-retinal has to be handled so as to prevent nonspecific aldehyde activity. Some molecules of retinaldehyde upon release from opsin are efficiently reduced to retinol. Other molecules are released into the lipid phase of the disc membrane where they form a conjugate [N-retinylidene-PE (NRPE)] through a Schiff base linkage with PE. The reversible formation of NRPE serves as a transient sink for retinaldehyde that is intended to return retinaldehyde to the visual cycle. However, if instead of hydrolyzing to PE and retinaldehyde, NRPE reacts with a second molecule of retinaldehyde, a synthetic pathway is initiated that leads to the formation of multiple species of unwanted bisretinoid fluorophores. We report on recently identified members of the bisretinoid family, some of which differ with respect to the acyl chains associated with the glycerol backbone. We discuss processing of the lipid moieties of these fluorophores in lysosomes of retinal pigment epithelial cells, their fluorescence characters, and new findings related to light- and iron-associated oxidation of bisretinoids.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
37
|
Zhao J, Kim HJ, Ueda K, Zhang K, Montenegro D, Dunaief JL, Sparrow JR. A vicious cycle of bisretinoid formation and oxidation relevant to recessive Stargardt disease. J Biol Chem 2021; 296:100259. [PMID: 33837742 PMCID: PMC7948646 DOI: 10.1016/j.jbc.2021.100259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/09/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022] Open
Abstract
The ability of iron to transfer electrons enables the contribution of this metal to a variety of cellular activities even as the redox properties of iron are also responsible for the generation of hydroxyl radicals (•OH), the most destructive of the reactive oxygen species. We previously showed that iron can promote the oxidation of bisretinoid by generating highly reactive hydroxyl radical (•OH). Now we report that preservation of iron regulation in the retina is not sufficient to prevent iron-induced bisretinoid oxidative degradation when blood iron levels are elevated in liver-specific hepcidin knockout mice. We obtained evidence for the perpetuation of Fenton reactions in the presence of the bisretinoid A2E and visible light. On the other hand, iron chelation by deferiprone was not associated with changes in postbleaching recovery of 11-cis-retinal or dark-adapted ERG b-wave amplitudes indicating that the activity of Rpe65, a rate-determining visual cycle protein that carries an iron-binding domain, is not affected. Notably, iron levels were elevated in the neural retina and retinal pigment epithelial (RPE) cells of Abca4−/− mice. Consistent with higher iron content, ferritin-L immunostaining was elevated in RPE of a patient diagnosed with ABCA4-associated disease and in RPE and photoreceptor cells of Abca4−/− mice. In neural retina of the mutant mice, reduced Tfrc mRNA was also an indicator of retinal iron overload. Thus iron chelation may defend retina when bisretinoid toxicity is implicated in disease processes.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, USA
| | - Hye Jin Kim
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, USA
| | - Keiko Ueda
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, USA
| | - Kevin Zhang
- Department of Ophthalmology, University of Pennsylvania, Philadelphia Pennsylvania, USA
| | - Diego Montenegro
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, USA
| | - Joshua L Dunaief
- Department of Ophthalmology, University of Pennsylvania, Philadelphia Pennsylvania, USA
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA.
| |
Collapse
|
38
|
Hamba N, Gerbi A, Tesfaye S. Histopathological effects of ultraviolet radiation exposure on the ocular structures in animal studies –literature review. TRANSLATIONAL RESEARCH IN ANATOMY 2021. [DOI: 10.1016/j.tria.2020.100086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
39
|
Starace V, Battista M, Brambati M, Pederzolli M, Viganò C, Arrigo A, Cicinelli MV, Bandello F, Parodi MB. Genotypic and phenotypic factors influencing the rate of progression in ABCA-4-related Stargardt disease. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2021.1860753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Vincenzo Starace
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battista
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Brambati
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Pederzolli
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Viganò
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Vittoria Cicinelli
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Maurizio Battaglia Parodi
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
40
|
Cell-Type-Specific Complement Profiling in the ABCA4 -/- Mouse Model of Stargardt Disease. Int J Mol Sci 2020; 21:ijms21228468. [PMID: 33187113 PMCID: PMC7697683 DOI: 10.3390/ijms21228468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Stargardt macular degeneration is an inherited retinal disease caused by mutations in the ATP-binding cassette subfamily A member 4 (ABCA4) gene. Here, we characterized the complement expression profile in ABCA4−/− retinae and aligned these findings with morphological markers of retinal degeneration. We found an enhanced retinal pigment epithelium (RPE) autofluorescence, cell loss in the inner retina of ABCA4−/− mice and demonstrated age-related differences in complement expression in various retinal cell types irrespective of the genotype. However, 24-week-old ABCA4−/− mice expressed more c3 in the RPE and fewer cfi transcripts in the microglia compared to controls. At the protein level, the decrease of complement inhibitors (complement factor I, CFI) in retinae, as well as an increased C3b/C3 ratio in the RPE/choroid and retinae of ABCA4−/−, mice was confirmed. We showed a corresponding increase of the C3d/C3 ratio in the serum of ABCA4−/− mice, while no changes were observed for CFI. Our findings suggest an overactive complement cascade in the ABCA4−/− retinae that possibly contributes to pathological alterations, including microglial activation and neurodegeneration. Overall, this underpins the importance of well-balanced complement homeostasis to maintain retinal integrity.
Collapse
|
41
|
Evidence of complement dysregulation in outer retina of Stargardt disease donor eyes. Redox Biol 2020; 37:101787. [PMID: 33214125 PMCID: PMC7767765 DOI: 10.1016/j.redox.2020.101787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 01/24/2023] Open
Abstract
Stargardt macular degeneration (STGD) is a central blinding disease caused by loss of or dysfunctional ABCA4 transporter in both photoreceptors and retinal pigment epithelial (RPE) cells. Toxic bisretinoid-lipofuscin buildup in the RPE cells is a pathological hallmark of STGD patients and its mouse model, the Abca4-/-. These vitamin A-derived fluorophores have been shown to induce oxidative stress, stimulate complement activity, and cause chronic inflammation of the RPE. In vivo modulation of complement regulatory pathway in the STGD mouse model has partially rescued the STGD phenotype suggesting that complement attack on the RPE is an important etiologic factor in disease pathogenesis. While bisretinoid-dependent complement activation was further evidenced in cultured RPE cells, this pathway has never been investigated directly in the context of RPE from STGD donor eyes. In the current study, we evaluate the complement reactivity in postmortem donor eyes of clinically diagnosed STGD patients. All three STGD donor eyes RPE displayed strong immunoreactivity for an antibody specific to 4-Hydroxynonenal, a lipid peroxidation byproduct. Also, unlike the control eyes, all three STGD donor eyes showed significantly increased membrane attack complex deposition on the RPE cells. In STGD eyes, increased MAC accumulation was mirrored by elevated C3 fragments internalized by the RPE and inversely correlated with the levels of complement factor H, a major complement regulatory protein. Here, we report the first direct evidence of RPE complement dysregulation as a causative factor in developing Stargardt phenotype.
Collapse
|
42
|
Cheng X, He D, Liao C, Lin S, Tang L, Wang YL, Hu J, Li W, Liu Z, Wu Y, Liao Y. IL-1/IL-1R signaling induced by all-trans-retinal contributes to complement alternative pathway activation in retinal pigment epithelium. J Cell Physiol 2020; 236:3660-3674. [PMID: 33034385 DOI: 10.1002/jcp.30103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
The underlying mechanisms of complement activation in Stargardt disease type 1 (STGD1) and age-related macular degeneration (AMD) are not fully understood. Overaccumulation of all-trans-retinal (atRAL) has been proposed as the pathogenic factor in both diseases. By incubating retinal pigment epithelium (RPE) cells with atRAL, we showed that C5b-9 membrane attack complexes (MACs) were generated mainly through complement alternative pathway. An increase in complement factor B (CFB) expression as well as downregulation of complement regulatory proteins CD46, CD55, CD59, and CFH were observed in RPE cells after atRAL treatment. Furthermore, interleukin-1β production was provoked in both atRAL-treated RPE cells and microglia/macrophages. Coincubation of RPE cells with interleukin-1 receptor antagonist (IL1Ra) and atRAL ameliorated complement activation and downregulated CFB expression by attenuating both p38 and c-Jun N-terminal kinase (JNK) signaling pathways. Our findings demonstrate that atRAL induces an autocrine/paracrine IL-1/IL-1R signaling to promote complement alternative pathway activation in RPE cells and provide a novel perspective on the pathomechanism of macular degeneration.
Collapse
Affiliation(s)
- Xinxuan Cheng
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Danxue He
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Chunyan Liao
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Sijie Lin
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Liying Tang
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Yuan-Liang Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.,Section of Molecular Biology, University of California, San Diego, La Jolla, California, USA
| | - Jiaoyue Hu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Wei Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Zuguo Liu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Yalin Wu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| | - Yi Liao
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, China
| |
Collapse
|
43
|
Tan LX, Germer CJ, La Cunza N, Lakkaraju A. Complement activation, lipid metabolism, and mitochondrial injury: Converging pathways in age-related macular degeneration. Redox Biol 2020; 37:101781. [PMID: 33162377 PMCID: PMC7767764 DOI: 10.1016/j.redox.2020.101781] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
The retinal pigment epithelium (RPE) is the primary site of injury in non-neovascular age-related macular degeneration or dry AMD. Polymorphisms in genes that regulate complement activation and cholesterol metabolism are strongly associated with AMD, but the biology underlying disease-associated variants is not well understood. Here, we highlight recent studies that have used molecular, biochemical, and live-cell imaging methods to elucidate mechanisms by which aging-associated insults conspire with AMD genetic risk variants to tip the balance towards disease. We discuss how critical functions including lipid metabolism, autophagy, complement regulation, and mitochondrial dynamics are compromised in the RPE, and how a deeper understanding of these mechanisms has helped identify promising therapeutic targets to preserve RPE homeostasis in AMD.
Collapse
Affiliation(s)
- Li Xuan Tan
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA
| | - Colin J Germer
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA
| | - Nilsa La Cunza
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA
| | - Aparna Lakkaraju
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA; Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
44
|
Zhorzholadze NV, Sheremet NL, Tanas AS, Strelnikov VV. [New possibilities in the treatment of Stargardt disease]. Vestn Oftalmol 2020; 136:333-343. [PMID: 32880159 DOI: 10.17116/oftalma2020136042333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Stargardt disease is a hereditary retinal dystrophy associated with mutations in the ABCA4 gene. Currently, no etiopathogenetic drugs nor treatment methods for Stargardt disease have completely passed clinical trials. The review summarizes experimental and clinical studies of drugs aimed at reducing the accumulation of vitamin A dimers, lipofuscin, complement inhibition and RPE regeneration by stem cell transplantation, as well as gene therapy studies with intravitreal vector injection of the ABCA4 functional gene.
Collapse
Affiliation(s)
| | - N L Sheremet
- Research Institute of Eye Diseases, Moscow, Russia
| | - A S Tanas
- Research Centre for Medical Genetics, Moscow, Russia
| | | |
Collapse
|
45
|
Cioffi CL, Muthuraman P, Raja A, Varadi A, Racz B, Petrukhin K. Discovery of Bispecific Antagonists of Retinol Binding Protein 4 That Stabilize Transthyretin Tetramers: Scaffolding Hopping, Optimization, and Preclinical Pharmacological Evaluation as a Potential Therapy for Two Common Age-Related Comorbidities. J Med Chem 2020; 63:11054-11084. [DOI: 10.1021/acs.jmedchem.0c00996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Christopher L. Cioffi
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Parthasarathy Muthuraman
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Arun Raja
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Andras Varadi
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| | - Boglarka Racz
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| | - Konstantin Petrukhin
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| |
Collapse
|
46
|
Parodi MB, Iacono P, Da Pozzo S. Anti-VEGF and Retinal Dystrophies. Curr Drug Targets 2020; 21:1201-1207. [PMID: 32342816 DOI: 10.2174/1389450121666200428103334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 11/22/2022]
Abstract
The therapeutic approach based on anti-vascular endothelial growth factor (anti-VEGF) molecules can be used to treat two important complications of retinal dystrophies: choroidal neovascularization and macular edema. The macular involvement in retinal dystrophies can lead to further visual deterioration in patients at a young age and already affected by functional limitations. The study reports the effect of anti-VEGF treatment in several subforms of retinal dystrophies, critically discussing advantages and limitations.
Collapse
|
47
|
Lakkaraju A, Umapathy A, Tan LX, Daniele L, Philp NJ, Boesze-Battaglia K, Williams DS. The cell biology of the retinal pigment epithelium. Prog Retin Eye Res 2020; 78:100846. [PMID: 32105772 PMCID: PMC8941496 DOI: 10.1016/j.preteyeres.2020.100846] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023]
Abstract
The retinal pigment epithelium (RPE), a monolayer of post-mitotic polarized epithelial cells, strategically situated between the photoreceptors and the choroid, is the primary caretaker of photoreceptor health and function. Dysfunction of the RPE underlies many inherited and acquired diseases that cause permanent blindness. Decades of research have yielded valuable insight into the cell biology of the RPE. In recent years, new technologies such as live-cell imaging have resulted in major advancement in our understanding of areas such as the daily phagocytosis and clearance of photoreceptor outer segment tips, autophagy, endolysosome function, and the metabolic interplay between the RPE and photoreceptors. In this review, we aim to integrate these studies with an emphasis on appropriate models and techniques to investigate RPE cell biology and metabolism, and discuss how RPE cell biology informs our understanding of retinal disease.
Collapse
Affiliation(s)
- Aparna Lakkaraju
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Ankita Umapathy
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Li Xuan Tan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Daniele
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy J Philp
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David S Williams
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
48
|
Runhart EH, Valkenburg D, Cornelis SS, Khan M, Sangermano R, Albert S, Bax NM, Astuti GDN, Gilissen C, Pott JWR, Verheij JBGM, Blokland EAW, Cremers FPM, van den Born LI, Hoyng CB. Late-Onset Stargardt Disease Due to Mild, Deep-Intronic ABCA4 Alleles. Invest Ophthalmol Vis Sci 2020; 60:4249-4256. [PMID: 31618761 DOI: 10.1167/iovs.19-27524] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the role of two deep-intronic ABCA4 variants, that showed a mild splice defect in vitro and can occur on the same allele as the low penetrant c.5603A>T, in Stargardt disease (STGD1). Methods Ophthalmic data were assessed of 18 STGD1 patients who harbored c.769-784C>T or c.4253+43G>A in combination with a severe ABCA4 variant. Subjects carrying c.[769-784C>T; 5603A>T] were clinically compared with a STGD1 cohort previously published carrying c.5603A>T noncomplex. We calculated the penetrances of the intronic variants using ABCA4 allele frequency data of the general population and investigated the effect of c.769-784C>T on splicing in photoreceptor progenitor cells (PPCs). Results Mostly, late-onset, foveal-sparing STGD1 was observed among subjects harboring c.769-784C>T or c.4253+43G>A (median age of onset, 54.5 and 52.0 years, respectively). However, ages of onset, phenotypes in fundo, and visual acuity courses varied widely. No significant clinical differences were observed between the c.[769-784C>T; 5603A>T] cohort and the c.4253+43G>A or the c.5603A>T cohort. The penetrances of c.769-784C>T (20.5%-39.6%) and c.4253+43G>A (35.8%-43.1%) were reduced, when not considering the effect of yet unidentified or known factors in cis, such as c.5603A>T (identified in 7/7 probands with c.769-784C>T; 1/8 probands with c.4253+43G>A). Variant c.769-784C>T resulted in a pseudo-exon insertion in 15% of the total mRNA (i.e., ∼30% of the c.769-784C>T allele alone). Conclusions Two mild intronic ABCA4 variants could further explain missing heritability in late-onset STGD1, distinguishing it from AMD. The observed clinical variability and calculated reduced penetrance urge research into modifiers within and outside of the ABCA4 gene.
Collapse
Affiliation(s)
- Esmee H Runhart
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dyon Valkenburg
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stéphanie S Cornelis
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mubeen Khan
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Riccardo Sangermano
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
| | - Silvia Albert
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nathalie M Bax
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Galuh D N Astuti
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Division of Human Genetics, Center for Biomedical Research, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Christian Gilissen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan-Willem R Pott
- Department of Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joke B G M Verheij
- Department of Medical Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ellen A W Blokland
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
49
|
Pharmacotherapy for metabolic and cellular stress in degenerative retinal diseases. Drug Discov Today 2019; 25:292-304. [PMID: 31809750 DOI: 10.1016/j.drudis.2019.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
Retinal photoreceptors continually endure stresses associated with prolonged light exposure and the metabolic demands of dark adaptation. Although healthy photoreceptors are able to withstand these stresses for several decades, the disease-affected retina functions at a reduced capacity and is at an increased risk for dysfunction. To alleviate cellular and metabolic stressors in degenerative retinal diseases, a new class of drugs that modulate the metabolic activity of the retina have been developed. A clinical candidate in this class (emixustat) has been shown to reduce retinal pathology in various animal models of human retinal disease and is currently under clinical study. Here, we describe the pharmacological properties of emixustat, its mechanisms of action, and potential for use in the treatment of specific retinal diseases.
Collapse
|
50
|
Pauly D, Agarwal D, Dana N, Schäfer N, Biber J, Wunderlich KA, Jabri Y, Straub T, Zhang NR, Gautam AK, Weber BHF, Hauck SM, Kim M, Curcio CA, Stambolian D, Li M, Grosche A. Cell-Type-Specific Complement Expression in the Healthy and Diseased Retina. Cell Rep 2019; 29:2835-2848.e4. [PMID: 31775049 PMCID: PMC6911814 DOI: 10.1016/j.celrep.2019.10.084] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/24/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Complement dysregulation is a feature of many retinal diseases, yet mechanistic understanding at the cellular level is limited. Given this knowledge gap about which retinal cells express complement, we performed single-cell RNA sequencing on ~92,000 mouse retinal cells and validated our results in five major purified retinal cell types. We found evidence for a distributed cell-type-specific complement expression across 11 cell types. Notably, Müller cells are the major contributor of complement activators c1s, c3, c4, and cfb. Retinal pigment epithelium (RPE) mainly expresses cfh and the terminal complement components, whereas cfi and cfp transcripts are most abundant in neurons. Aging enhances c1s, cfb, cfp, and cfi expression, while cfh expression decreases. Transient retinal ischemia increases complement expression in microglia, Müller cells, and RPE. In summary, we report a unique complement expression signature for murine retinal cell types suggesting a well-orchestrated regulation of local complement expression in the retinal microenvironment. Overshooting complement activity contributes to retinal degeneration. Pauly et al. demonstrate a distinct complement expression profile of retinal cell types that changes with aging and during retinal degeneration. This prompts the intriguing concept of a local retinal complement activation possibly independent of the systemic components typically produced by the liver.
Collapse
Affiliation(s)
- Diana Pauly
- Experimental Ophthalmology, University Hospital Regensburg, Regensburg 93053, Germany.
| | - Divyansh Agarwal
- Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Dana
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole Schäfer
- Experimental Ophthalmology, University Hospital Regensburg, Regensburg 93053, Germany
| | - Josef Biber
- Department of Physiological Genomics, Biomedical Center, Ludwig Maximilians University Munich, Planegg-Martinsried 82152, Germany
| | - Kirsten A Wunderlich
- Department of Physiological Genomics, Biomedical Center, Ludwig Maximilians University Munich, Planegg-Martinsried 82152, Germany
| | - Yassin Jabri
- Experimental Ophthalmology, University Hospital Regensburg, Regensburg 93053, Germany
| | - Tobias Straub
- Core Facility Bioinformatics, Biomedical Center, Ludwig Maximilians University Munich, Planegg-Martinsried 82152, Germany
| | - Nancy R Zhang
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Avneesh K Gautam
- Department of Medicine, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Regensburg 93053, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Research Center for Environmental Health (GmbH), Munich 80939, Germany
| | - Mijin Kim
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Dwight Stambolian
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Antje Grosche
- Department of Physiological Genomics, Biomedical Center, Ludwig Maximilians University Munich, Planegg-Martinsried 82152, Germany.
| |
Collapse
|