1
|
Ahmed WS, Geethakumari AM, Sultana A, Tiwari A, Altamash T, Arshad N, Visweswariah SS, Biswas KH. Coevolving residues distant from the ligand binding site are involved in GAF domain function. Commun Chem 2025; 8:107. [PMID: 40195517 PMCID: PMC11977230 DOI: 10.1038/s42004-025-01447-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/04/2025] [Indexed: 04/09/2025] Open
Abstract
Ligand binding to GAF domains regulates the activity of associated catalytic domains in various proteins, such as the cGMP-hydrolyzing catalytic domain of phosphodiesterase 5 (PDE5) activated by cGMP binding to GAFa domain. However, the specific residues involved and the mechanism of GAF domain function remain unclear. Here, we combine computational and experimental approaches to demonstrate that two highly coevolving residues, L267 and F295, distant from the ligand binding site, play a critical role in GAF domain allostery. Statistical Coupling Analysis (SCA) of GAF domain sequences identified these residues, and molecular dynamics (MD) simulations of both apo and holo forms of wild-type and mutant (L267A, F295A) PDE5 GAFa domains revealed significant changes in structural dynamics and cGMP interaction. Mutational incorporation into a Bioluminescence Resonance Energy Transfer (BRET)-based biosensors, which detects ligand-induced conformational changes, showed altered GAF domain conformation and increased EC50 for cGMP-induced conformational changes. Similar effects were observed in full-length PDE5 and the GAF domain fluorescent protein, miRFP670nano3. Structural analysis of conformers observed in MD simulations suggested a mechanism by which these coevolving residues influence GAF domain allostery. Our findings provide insight into the role of distant residues in GAF domain function and may enhance understanding of allostery in proteins.
Collapse
Affiliation(s)
- Wesam S Ahmed
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Asfia Sultana
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Anmol Tiwari
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Tausif Altamash
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Materials Science and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Najla Arshad
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, US
- Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL, US
| | - Sandhya S Visweswariah
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India
| | - Kabir H Biswas
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
2
|
Fatima A, Geethakumari AM, Ahmed WS, Biswas KH. A potential allosteric inhibitor of SARS-CoV-2 main protease (M pro) identified through metastable state analysis. Front Mol Biosci 2024; 11:1451280. [PMID: 39310374 PMCID: PMC11413593 DOI: 10.3389/fmolb.2024.1451280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
Anti-COVID19 drugs, such as nirmatrelvir, have been developed targeting the SARS-CoV-2 main protease, Mpro, based on the critical requirement of its proteolytic processing of the viral polyproteins into functional proteins essential for viral replication. However, the emergence of SARS-CoV-2 variants with Mpro mutations has raised the possibility of developing resistance against these drugs, likely due to therapeutic targeting of the Mpro catalytic site. An alternative to these drugs is the development of drugs that target an allosteric site distant from the catalytic site in the protein that may reduce the chance of the emergence of resistant mutants. Here, we combine computational analysis with in vitro assay and report the discovery of a potential allosteric site and an allosteric inhibitor of SARS-CoV-2 Mpro. Specifically, we identified an Mpro metastable state with a deformed catalytic site harboring potential allosteric sites, raising the possibility that stabilization of this metastable state through ligand binding can lead to the inhibition of Mpro activity. We then performed a computational screening of a library (∼4.2 million) of drug-like compounds from the ZINC database and identified several candidate molecules with high predicted binding affinity. MD simulations showed stable binding of the three top-ranking compounds to the putative allosteric sites in the protein. Finally, we tested the three compounds in vitro using a BRET-based Mpro biosensor and found that one of the compounds (ZINC4497834) inhibited the Mpro activity. We envisage that the identification of a potential allosteric inhibitor of Mpro will aid in developing improved anti-COVID-19 therapy.
Collapse
|
3
|
Sultana A, Geethakumari AM, Islam Z, Kolatkar PR, Biswas KH. BRET-based biosensors for SARS-CoV-2 oligonucleotide detection. Front Bioeng Biotechnol 2024; 12:1353479. [PMID: 38887615 PMCID: PMC11181354 DOI: 10.3389/fbioe.2024.1353479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/09/2024] [Indexed: 06/20/2024] Open
Abstract
The need for the early detection of emerging pathogenic viruses and their newer variants has driven the urgent demand for developing point-of-care diagnostic tools. Although nucleic acid-based methods such as reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and loop-mediated isothermal amplification (LAMP) have been developed, a more facile and robust platform is still required. To address this need, as a proof-of-principle study, we engineered a prototype-the versatile, sensitive, rapid, and cost-effective bioluminescence resonance energy transfer (BRET)-based biosensor for oligonucleotide detection (BioOD). Specifically, we designed BioODs against the SARS-CoV-2 parental (Wuhan strain) and B.1.617.2 Delta variant through the conjugation of specific, fluorescently modified molecular beacons (sensor module) through a complementary oligonucleotide handle DNA functionalized with the NanoLuc (NLuc) luciferase protein such that the dissolution of the molecular beacon loop upon the binding of the viral oligonucleotide will result in a decrease in BRET efficiency and, thus, a change in the bioluminescence spectra. Following the assembly of the BioODs, we determined their kinetics response, affinity for variant-specific oligonucleotides, and specificity, and found them to be rapid and highly specific. Furthermore, the decrease in BRET efficiency of the BioODs in the presence of viral oligonucleotides can be detected as a change in color in cell phone camera images. We envisage that the BioODs developed here will find application in detecting viral infections with variant specificity in a point-of-care-testing format, thus aiding in large-scale viral infection surveillance.
Collapse
Affiliation(s)
- Asfia Sultana
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Anupriya M. Geethakumari
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Zeyaul Islam
- Diabetes Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Prasanna R. Kolatkar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
- Diabetes Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
4
|
Ahmed WS, Geethakumari AM, Sultana A, Fatima A, Philip AM, Uddin SMN, Biswas KH. A slow but steady nanoLuc: R162A mutation results in a decreased, but stable, nanoLuc activity. Int J Biol Macromol 2024; 269:131864. [PMID: 38692549 DOI: 10.1016/j.ijbiomac.2024.131864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
NanoLuc (NLuc) luciferase has found extensive application in designing a range of biological assays, including gene expression analysis, protein-protein interaction, and protein conformational changes due to its enhanced brightness and small size. However, questions related to its mechanism of interaction with the substrate, furimazine, as well as bioluminescence activity remain elusive. Here, we combined molecular dynamics (MD) simulation and mutational analysis to show that the R162A mutation results in a decreased but stable bioluminescence activity of NLuc in living cells and in vitro. Specifically, we performed multiple, all-atom, explicit solvent MD simulations of the apo and furimazine-docked (holo) NLuc structures revealing differential dynamics of the protein in the absence and presence of the ligand. Further, analysis of trajectories for hydrogen bonds (H-bonds) formed between NLuc and furimazine revealed substantial H-bond interaction between R162 and Q32 residues. Mutation of the two residues in NLuc revealed a decreased but stable activity of the R162A, but not Q32A, mutant NLuc in live cell and in vitro assays performed using lysates prepared from cells expressing the proteins and with the furimazine substrate. In addition to highlighting the role of the R162 residue in NLuc activity, we believe that the mutant NLuc will find wide application in designing in vitro assays requiring extended monitoring of NLuc bioluminescence activity. SIGNIFICANCE: Bioluminescence has been extensively utilized in developing a variety of biological and biomedical assays. In this regard, engineering of brighter bioluminescent proteins, i.e. luciferases, has played a significant role. This is acutely exemplified by the engineering of the NLuc luciferase, which is small in size and displays much enhanced bioluminescence and thermal stability compared to previously available luciferases. While enhanced bioluminescent activity is desirable in a multitude of biological and biomedical assays, it would also be useful to develop variants of the protein that display a prolonged bioluminescence activity. This is specifically relevant in designing assays that require bioluminescence for extended periods, such as in the case of biosensors designed for monitoring slow enzymatic or cellular signaling reactions, without necessitating multiple rounds of luciferase substrate addition or any specialized reagents that result in increased assay costs. In the current manuscript, we report a mutant NLuc that possesses a stable and prolonged bioluminescence activity, albeit lower than the wild-type NLuc, and envisage a wider application of the mutant NLuc in designing biosensors for monitoring slower biological and biomedical events.
Collapse
Affiliation(s)
- Wesam S Ahmed
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Anupriya M Geethakumari
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Asfia Sultana
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Asma Fatima
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Angelin M Philip
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - S M Nasir Uddin
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Kabir H Biswas
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar.
| |
Collapse
|
5
|
Jan Z, Geethakumari AM, Biswas KH, Jithesh PV. Protegrin-2, a potential inhibitor for targeting SARS-CoV-2 main protease M pro. Comput Struct Biotechnol J 2023; 21:3665-3671. [PMID: 37576748 PMCID: PMC10412832 DOI: 10.1016/j.csbj.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Background SARS-CoV-2 variants continue to spread throughout the world and cause waves of COVID-19 infections. It is important to find effective antiviral drugs to combat SARS-CoV-2 and its variants. The main protease (Mpro) of SARS-CoV-2 is a promising therapeutic target due to its crucial role in viral replication and its conservation in all the variants. Therefore, the aim of this work was to identify an effective inhibitor of Mpro. Methods We studied around 200 antimicrobial peptides using in silico methods including molecular docking and allergenicity and toxicity prediction. One selected antiviral peptide was studied experimentally using a Bioluminescence Resonance Energy Transfer (BRET)-based Mpro biosensor, which reports Mpro activity through a decrease in energy transfer. Results Molecular docking identified one natural antimicrobial peptide, Protegrin-2, with high binding affinity and stable interactions with Mpro allosteric residues. Furthermore, free energy calculations and molecular dynamics simulation illustrated a high affinity interaction between the two. We also determined the impact of the binding of Protegrin-2 to Mpro using a BRET-based assay, showing that it inhibits the proteolytic cleavage activity of Mpro. Conclusions Our in silico and experimental studies identified Protegrin-2 as a potent inhibitor of Mpro that could be pursued further towards drug development against COVID-19 infection.
Collapse
Affiliation(s)
- Zainab Jan
- Division of Genomics and Translational Biomedicine, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar
| | - Anupriya M. Geethakumari
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar
| | - Puthen Veettil Jithesh
- Division of Genomics and Translational Biomedicine, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar
| |
Collapse
|
6
|
Samidurai A, Xi L, Das A, Kukreja RC. Beyond Erectile Dysfunction: cGMP-Specific Phosphodiesterase 5 Inhibitors for Other Clinical Disorders. Annu Rev Pharmacol Toxicol 2023; 63:585-615. [PMID: 36206989 DOI: 10.1146/annurev-pharmtox-040122-034745] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cyclic guanosine monophosphate (cGMP), an important intracellular second messenger, mediates cellular functional responses in all vital organs. Phosphodiesterase 5 (PDE5) is one of the 11 members of the cyclic nucleotide phosphodiesterase (PDE) family that specifically targets cGMP generated by nitric oxide-driven activation of the soluble guanylyl cyclase. PDE5 inhibitors, including sildenafil and tadalafil, are widely used for the treatment of erectile dysfunction, pulmonary arterial hypertension, and certain urological disorders. Preclinical studies have shown promising effects of PDE5 inhibitors in the treatment of myocardial infarction, cardiac hypertrophy, heart failure, cancer and anticancer-drug-associated cardiotoxicity, diabetes, Duchenne muscular dystrophy, Alzheimer's disease, and other aging-related conditions. Many clinical trials with PDE5 inhibitors have focused on the potential cardiovascular, anticancer, and neurological benefits. In this review, we provide an overview of the current state of knowledge on PDE5 inhibitors and their potential therapeutic indications for various clinical disorders beyond erectile dysfunction.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA;
| | - Lei Xi
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA;
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA;
| | - Rakesh C Kukreja
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, USA;
| |
Collapse
|
7
|
Young BD, Cook ME, Costabile BK, Samanta R, Zhuang X, Sevdalis SE, Varney KM, Mancia F, Matysiak S, Lattman E, Weber DJ. Binding and Functional Folding (BFF): A Physiological Framework for Studying Biomolecular Interactions and Allostery. J Mol Biol 2022; 434:167872. [PMID: 36354074 PMCID: PMC10871162 DOI: 10.1016/j.jmb.2022.167872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
EF-hand Ca2+-binding proteins (CBPs), such as S100 proteins (S100s) and calmodulin (CaM), are signaling proteins that undergo conformational changes upon increasing intracellular Ca2+. Upon binding Ca2+, S100 proteins and CaM interact with protein targets and induce important biological responses. The Ca2+-binding affinity of CaM and most S100s in the absence of target is weak (CaKD > 1 μM). However, upon effector protein binding, the Ca2+ affinity of these proteins increases via heterotropic allostery (CaKD < 1 μM). Because of the high number and micromolar concentrations of EF-hand CBPs in a cell, at any given time, allostery is required physiologically, allowing for (i) proper Ca2+ homeostasis and (ii) strict maintenance of Ca2+-signaling within a narrow dynamic range of free Ca2+ ion concentrations, [Ca2+]free. In this review, mechanisms of allostery are coalesced into an empirical "binding and functional folding (BFF)" physiological framework. At the molecular level, folding (F), binding and folding (BF), and BFF events include all atoms in the biomolecular complex under study. The BFF framework is introduced with two straightforward BFF types for proteins (type 1, concerted; type 2, stepwise) and considers how homologous and nonhomologous amino acid residues of CBPs and their effector protein(s) evolved to provide allosteric tightening of Ca2+ and simultaneously determine how specific and relatively promiscuous CBP-target complexes form as both are needed for proper cellular function.
Collapse
Affiliation(s)
- Brianna D Young
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mary E Cook
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brianna K Costabile
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Riya Samanta
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Xinhao Zhuang
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Spiridon E Sevdalis
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kristen M Varney
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Silvina Matysiak
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Eaton Lattman
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - David J Weber
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), Rockville, MD 20850, USA.
| |
Collapse
|
8
|
Structure-Based Virtual Screening and Functional Validation of Potential Hit Molecules Targeting the SARS-CoV-2 Main Protease. Biomolecules 2022; 12:biom12121754. [PMID: 36551182 PMCID: PMC9775371 DOI: 10.3390/biom12121754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022] Open
Abstract
The recent global health emergency caused by the coronavirus disease 2019 (COVID-19) pandemic has taken a heavy toll, both in terms of lives and economies. Vaccines against the disease have been developed, but the efficiency of vaccination campaigns worldwide has been variable due to challenges regarding production, logistics, distribution and vaccine hesitancy. Furthermore, vaccines are less effective against new variants of the SARS-CoV-2 virus and vaccination-induced immunity fades over time. These challenges and the vaccines' ineffectiveness for the infected population necessitate improved treatment options, including the inhibition of the SARS-CoV-2 main protease (Mpro). Drug repurposing to achieve inhibition could provide an immediate solution for disease management. Here, we used structure-based virtual screening (SBVS) to identify natural products (from NP-lib) and FDA-approved drugs (from e-Drug3D-lib and Drugs-lib) which bind to the Mpro active site with high-affinity and therefore could be designated as potential inhibitors. We prioritized nine candidate inhibitors (e-Drug3D-lib: Ciclesonide, Losartan and Telmisartan; Drugs-lib: Flezelastine, Hesperidin and Niceverine; NP-lib: three natural products) and predicted their half maximum inhibitory concentration using DeepPurpose, a deep learning tool for drug-target interactions. Finally, we experimentally validated Losartan and two of the natural products as in vitro Mpro inhibitors, using a bioluminescence resonance energy transfer (BRET)-based Mpro sensor. Our study suggests that existing drugs and natural products could be explored for the treatment of COVID-19.
Collapse
|
9
|
Geethakumari AM, Ahmed WS, Rasool S, Fatima A, Nasir Uddin SM, Aouida M, Biswas KH. A genetically encoded BRET-based SARS-CoV-2 M pro protease activity sensor. Commun Chem 2022; 5:117. [PMID: 36187754 PMCID: PMC9516532 DOI: 10.1038/s42004-022-00731-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/07/2022] [Indexed: 01/27/2023] Open
Abstract
The main protease, Mpro, is critical for SARS-CoV-2 replication and an appealing target for designing anti-SARS-CoV-2 agents. Therefore, there is a demand for the development of improved sensors to monitor its activity. Here, we report a pair of genetically encoded, bioluminescence resonance energy transfer (BRET)-based sensors for detecting Mpro proteolytic activity in live cells as well as in vitro. The sensors were generated by sandwiching peptides containing the Mpro N-terminal autocleavage sites, either AVLQSGFR (short) or KTSAVLQSGFRKME (long), in between the mNeonGreen and NanoLuc proteins. Co-expression of the sensors with Mpro in live cells resulted in their cleavage while mutation of the critical C145 residue (C145A) in Mpro completely abrogated their cleavage. Additionally, the sensors recapitulated the inhibition of Mpro by the well-characterized pharmacological agent GC376. Further, in vitro assays with the BRET-based Mpro sensors revealed a molecular crowding-mediated increase in the rate of Mpro activity and a decrease in the inhibitory potential of GC376. The sensors developed here will find direct utility in studies related to drug discovery targeting the SARS-CoV-2 Mpro and functional genomics application to determine the effect of sequence variation in Mpro.
Collapse
Affiliation(s)
- Anupriya M. Geethakumari
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Wesam S. Ahmed
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Saad Rasool
- Division of Genomics and Precision Medicine, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Asma Fatima
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - S. M. Nasir Uddin
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Mustapha Aouida
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| |
Collapse
|
10
|
Ahmed WS, Philip AM, Biswas KH. Decreased Interfacial Dynamics Caused by the N501Y Mutation in the SARS-CoV-2 S1 Spike:ACE2 Complex. Front Mol Biosci 2022; 9:846996. [PMID: 35936792 PMCID: PMC9355283 DOI: 10.3389/fmolb.2022.846996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
Coronavirus Disease of 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has resulted in a massive health crisis across the globe, with some genetic variants gaining enhanced infectivity and competitive fitness, and thus significantly aggravating the global health concern. In this regard, the recent SARS-CoV-2 alpha, beta, and gamma variants (B.1.1.7, B.1.351, and P.1 lineages, respectively) are of great significance in that they contain several mutations that increase their transmission rates as evident from clinical reports. By the end of March 2021, these variants were accounting for about two-thirds of SARS-CoV-2 variants circulating worldwide. Specifically, the N501Y mutation in the S1 spike receptor binding domain (S1-RBD) of these variants have been reported to increase its affinity for ACE2, although the basis for this is not entirely clear yet. Here, we dissect the mechanism underlying the increased binding affinity of the N501Y mutant for ACE2 using molecular dynamics (MD) simulations of the available ACE2-S1-RBD complex structure (6M0J) and show a prolonged and stable interfacial interaction of the N501Y mutant S1-RBD with ACE2 compared to the wild type S1-RBD. Additionally, we find that the N501Y mutant S1-RBD displays altered dynamics that likely aids in its enhanced interaction with ACE2. By elucidating a mechanistic basis for the increased affinity of the N501Y mutant S1-RBD for ACE2, we believe that the results presented here will aid in developing therapeutic strategies against SARS-CoV-2 including designing of therapeutic agents targeting the ACE2-S1-RBD interaction.
Collapse
Affiliation(s)
- Wesam S. Ahmed
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Angelin M. Philip
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
11
|
Tagua VG, Molina‐Henares MA, Travieso ML, Nisa‐Martínez R, Quesada JM, Espinosa‐Urgel M, Ramos‐González MI. C‐di‐GMP
and biofilm are regulated in
Pseudomonas putida
by the
CfcA
/
CfcR
two‐component system in response to salts. Environ Microbiol 2022; 24:158-178. [DOI: 10.1111/1462-2920.15891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/14/2021] [Accepted: 12/26/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Víctor G. Tagua
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | | | - María L. Travieso
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | - Rafael Nisa‐Martínez
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | - José Miguel Quesada
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | - Manuel Espinosa‐Urgel
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | | |
Collapse
|
12
|
Intracellular Ionic Strength Sensing Using NanoLuc. Int J Mol Sci 2021; 22:ijms22020677. [PMID: 33445497 PMCID: PMC7826950 DOI: 10.3390/ijms22020677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Intracellular ionic strength regulates myriad cellular processes that are fundamental to cellular survival and proliferation, including protein activity, aggregation, phase separation, and cell volume. It could be altered by changes in the activity of cellular signaling pathways, such as those that impact the activity of membrane-localized ion channels or by alterations in the microenvironmental osmolarity. Therefore, there is a demand for the development of sensitive tools for real-time monitoring of intracellular ionic strength. Here, we developed a bioluminescence-based intracellular ionic strength sensing strategy using the Nano Luciferase (NanoLuc) protein that has gained tremendous utility due to its high, long-lived bioluminescence output and thermal stability. Biochemical experiments using a recombinantly purified protein showed that NanoLuc bioluminescence is dependent on the ionic strength of the reaction buffer for a wide range of ionic strength conditions. Importantly, the decrease in the NanoLuc activity observed at higher ionic strengths could be reversed by decreasing the ionic strength of the reaction, thus making it suitable for sensing intracellular ionic strength alterations. Finally, we used an mNeonGreen–NanoLuc fusion protein to successfully monitor ionic strength alterations in a ratiometric manner through independent fluorescence and bioluminescence measurements in cell lysates and live cells. We envisage that the biosensing strategy developed here for detecting alterations in intracellular ionic strength will be applicable in a wide range of experiments, including high throughput cellular signaling, ion channel functional genomics, and drug discovery.
Collapse
|
13
|
Role of Actin Cytoskeleton in E-cadherin-Based Cell–Cell Adhesion Assembly and Maintenance. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00214-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Phosphodiesterase 5 (PDE5): Structure-function regulation and therapeutic applications of inhibitors. Biomed Pharmacother 2020; 134:111128. [PMID: 33348311 DOI: 10.1016/j.biopha.2020.111128] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
Phosphodiesterase 5 (PDE5) is one of the most well-studied phosphodiesterases (PDEs) that specifically targets cGMP typically generated by nitric oxide (NO)-mediated activation of the soluble guanylyl cyclase. Given the crucial role of cGMP generated through the activation of this cellular signaling pathway in a variety of physiologically processes, pharmacological inhibition of PDE5 has been demonstrated to have several therapeutic applications including erectile dysfunction and pulmonary arterial hypertension. While they are designed to inhibit PDE5, the inhibitors show different affinities and specificities against all PDE subtypes. Additionally, they have been shown to induce allosteric structural changes in the protein. These are mostly attributed to their chemical structure and, therefore, binding interactions with PDE catalytic domains. Therefore, understanding how these inhibitors interact with PDE5 and the structural basis of their selectivity is critically important for the design of novel, highly selective PDE5 inhibitors. Here, we review the structure of PDE5, how its function is regulated, and discuss the clinically available inhibitors that target phosphodiesterase 5, aiming to better understand the structural bases of their affinity and specificity. We also discuss the therapeutic indications of these inhibitors and the potential of repurposing for a wider range of clinical applications.
Collapse
|
15
|
Biswas KH. Molecular Mobility-Mediated Regulation of E-Cadherin Adhesion. Trends Biochem Sci 2019; 45:163-173. [PMID: 31810601 DOI: 10.1016/j.tibs.2019.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Cells in epithelial tissues utilize homotypic E-cadherin interaction-mediated adhesions to both physically adhere to each other and sense the physical properties of their microenvironment, such as the presence of other cells in close vicinity or an alteration in the mechanical tension of the tissue. These position E-cadherin centrally in organogenesis and other processes, and its function is therefore tightly regulated through a variety of means including endocytosis and gene expression. How does membrane molecular mobility of E-cadherin, and thus membrane physical properties and associated actin cytoskeleton, impinges on the assembly of adhesive clusters and signaling is discussed.
Collapse
Affiliation(s)
- Kabir H Biswas
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 34110, Qatar.
| |
Collapse
|
16
|
Zahavi A, Weiss S, Vieyra M, Nicholson JD, Muhsinoglu O, Barinfeld O, Zadok D, Goldenberg-Cohen N. Ocular Effects of Sildenafil in Naïve Mice and a Mouse Model of Optic Nerve Crush. ACTA ACUST UNITED AC 2019; 60:1987-1995. [DOI: 10.1167/iovs.18-26333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Alon Zahavi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Ophthalmology, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Shirel Weiss
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Mark Vieyra
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - James D. Nicholson
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Orkun Muhsinoglu
- Department of Ophthalmology, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Orit Barinfeld
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - David Zadok
- Department of Ophthalmology, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University Medical Center, Jerusalem, Israel
| | - Nitza Goldenberg-Cohen
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
- Department of Ophthalmology, Bnai Zion Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
17
|
Campos R, Claudino MA, de Oliveira MG, Franco-Penteado CF, Del Grossi Ferraz Carvalho F, Zaminelli T, Antunes E, De Nucci G. Amiloride Relaxes Rat Corpus Cavernosum Relaxation In Vitro and Increases Intracavernous Pressure In Vivo. J Sex Med 2019; 16:500-511. [DOI: 10.1016/j.jsxm.2019.01.315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 01/30/2023]
|
18
|
Wang L, Biswas KH, Yoon BK, Kawakami LM, Park S, Groves JT, Li L, Huang W, Cho NJ. Membrane Reconstitution of Monoamine Oxidase Enzymes on Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10764-10773. [PMID: 30049212 DOI: 10.1021/acs.langmuir.8b01348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Monoamine oxidase A and B (MAO-A and B) are mitochondrial outer membrane enzymes that are implicated in a number of human diseases, and the pharmacological inhibition of these enzymes is a promising therapeutic strategy to alleviate disease symptoms. It has been suggested that optimal levels of enzymatic activity occur in the membrane-associated state, although details of the membrane association process remain to be understood. Herein, we have developed a supported lipid bilayer platform to study MAO-A and B binding and evaluate the effects of known pharmacological inhibitors on the membrane association process. By utilizing the quartz crystal microbalance-dissipation (QCM-D) technique, it was determined that both MAOs exhibit tight binding to negatively and positively charged bilayers with distinct concentration-dependent binding profiles while only transiently binding to neutral bilayers. Importantly, in the presence of known inhibitors, the MAOs showed increased binding to negatively charged bilayers, although there was no effect of inhibitor treatment on binding to positively charged bilayers. Taken together, our findings establish that the membrane association of MAOs is highly dependent on membrane surface charge, and we outline an experimental platform to support the in vitro reconstitution of monoamine oxidases on synthetic membranes, including the evaluation of pharmacological drug candidates.
Collapse
Affiliation(s)
- Liulin Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , Nanjing 211816 , China
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798 , Singapore
| | - Kabir H Biswas
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798 , Singapore
| | - Bo Kyeong Yoon
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798 , Singapore
| | - Lisa M Kawakami
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798 , Singapore
| | - Soohyun Park
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798 , Singapore
| | - Jay T Groves
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798 , Singapore
- Department of Chemistry , University of California, Berkeley , Berkeley , California 94720 , United States of America
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , Nanjing 211816 , China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , Nanjing 211816 , China
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , Singapore 639798 , Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637459 , Singapore
| |
Collapse
|
19
|
Bajraktari G, Burhenne J, Bugert P, Haefeli WE, Weiss J. Cyclic guanosine monophosphate modulates accumulation of phosphodiesterase 5 inhibitors in human platelets. Biochem Pharmacol 2017; 145:54-63. [PMID: 28964803 DOI: 10.1016/j.bcp.2017.08.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/23/2017] [Indexed: 11/19/2022]
Abstract
Sildenafil and tadalafil are widely-used phosphodiesterase 5 (PDE5) inhibitors for which no clear dose-response relationship could be established. Using isolated and/or recombinant PDE5, it has been demonstrated that cGMP can increase the affinity of this enzyme for sildenafil and tadalafil. We thus hypothesized that in cells expressing the nitric oxide - soluble guanylyl cyclase - cyclic guanosine monophosphate - PDE5 (NO-sGC-cGMP-PDE5) pathway such as platelets, the presence of NO increases the intracellular cGMP content and thus promotes the intracellular accumulation of sildenafil or tadalafil. As a cell model, isolated and washed human platelets were used. Platelet suspensions were incubated with sildenafil or tadalafil at different concentrations and for various time intervals with or without an NO donor to increase intraplatelet cGMP concentrations. Intracellular sildenafil or tadalafil was quantified by ultra-performance liquid chromatography tandem mass spectrometry and intracellular cGMP by an enzyme-linked immunosorbent assay. Sildenafil accumulated in platelets with an up to 4-fold higher accumulation when platelets were pretreated with an NO donor (p < .0001). Accumulation of tadalafil in platelets was even higher, whereas the increase was 2-fold when an NO donor was present (p < .001). This accumulation was time-dependent and happened concomitantly with a rise in intracellular cGMP. Our data demonstrate that intracellular cGMP increases intracellular PDE5 inhibitor concentrations most likely by raising the affinity of these compounds for PDE5. These findings suggest that PDE5 inhibitor action in humans is critically influenced by modulators of the activity of the NO pathway.
Collapse
Affiliation(s)
- Gzona Bajraktari
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg-Hessen, Friedrich-Ebert-Strasse, 107, 68167 Mannheim, Germany
| | - Walter Emil Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
20
|
Sustained α-catenin Activation at E-cadherin Junctions in the Absence of Mechanical Force. Biophys J 2017; 111:1044-52. [PMID: 27602732 DOI: 10.1016/j.bpj.2016.06.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/08/2016] [Accepted: 06/24/2016] [Indexed: 11/22/2022] Open
Abstract
Mechanotransduction at E-cadherin junctions has been postulated to be mediated in part by a force-dependent conformational activation of α-catenin. Activation of α-catenin allows it to interact with vinculin in addition to F-actin, resulting in a strengthening of junctions. Here, using E-cadherin adhesions reconstituted on synthetic, nanopatterned membranes, we show that activation of α-catenin is dependent on E-cadherin clustering, and is sustained in the absence of mechanical force or association with F-actin or vinculin. Adhesions were formed by filopodia-mediated nucleation and micron-scale assembly of E-cadherin clusters, which could be distinguished as either peripheral or central assemblies depending on their relative location at the cell-bilayer adhesion. Whereas F-actin, vinculin, and phosphorylated myosin light chain associated only with the peripheral assemblies, activated α-catenin was present in both peripheral and central assemblies, and persisted in the central assemblies in the absence of actomyosin tension. Impeding filopodia-mediated nucleation and micron-scale assembly of E-cadherin adhesion complexes by confining the movement of bilayer-bound E-cadherin on nanopatterned substrates reduced the levels of activated α-catenin. Taken together, these results indicate that although the initial activation of α-catenin requires micron-scale clustering that may allow the development of mechanical forces, sustained force is not required for maintaining α-catenin in the active state.
Collapse
|
21
|
|
22
|
Ibrahim IM, Puthiyaveetil S, Allen JF. A Two-Component Regulatory System in Transcriptional Control of Photosystem Stoichiometry: Redox-Dependent and Sodium Ion-Dependent Phosphoryl Transfer from Cyanobacterial Histidine Kinase Hik2 to Response Regulators Rre1 and RppA. FRONTIERS IN PLANT SCIENCE 2016; 7:137. [PMID: 26904089 PMCID: PMC4751278 DOI: 10.3389/fpls.2016.00137] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/26/2016] [Indexed: 05/13/2023]
Abstract
Two-component systems (TCSs) are ubiquitous signaling units found in prokaryotes. A TCS consists of a sensor histidine kinase and a response regulator protein as signal transducers. These regulatory systems mediate acclimation to various environmental changes by coupling environmental cues to gene expression. Hik2 is a sensor histidine kinase and its gene is found in all cyanobacteria. Hik2 is the homolog of Chloroplast Sensor Kinase (CSK), a protein involved in redox regulation of chloroplast gene expression during changes in light quality in plants and algae. Here we describe biochemical characterization of the signaling mechanism of Hik2 and its phosphotransferase activity. Results presented here indicate that Hik2 undergoes autophosphorylation on a conserved histidine residue, and becomes rapidly dephosphorylated by the action of response regulators Rre1 and RppA. We also show that the autophosphorylation of Hik2 is specifically inhibited by sodium ions.
Collapse
Affiliation(s)
- Iskander M. Ibrahim
- Faculty of Engineering and Science, University of Greenwich, Chatham MaritimeKent, UK
| | | | - John F. Allen
- Research Department of Genetics, Evolution and Environment, University College LondonLondon, UK
- *Correspondence: John F. Allen
| |
Collapse
|
23
|
Biswas KH, Badireddy S, Rajendran A, Anand GS, Visweswariah SS. Cyclic nucleotide binding and structural changes in the isolated GAF domain of Anabaena adenylyl cyclase, CyaB2. PeerJ 2015; 3:e882. [PMID: 25922789 PMCID: PMC4411481 DOI: 10.7717/peerj.882] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/18/2015] [Indexed: 01/01/2023] Open
Abstract
GAF domains are a large family of regulatory domains, and a subset are found associated with enzymes involved in cyclic nucleotide (cNMP) metabolism such as adenylyl cyclases and phosphodiesterases. CyaB2, an adenylyl cyclase from Anabaena, contains two GAF domains in tandem at the N-terminus and an adenylyl cyclase domain at the C-terminus. Cyclic AMP, but not cGMP, binding to the GAF domains of CyaB2 increases the activity of the cyclase domain leading to enhanced synthesis of cAMP. Here we show that the isolated GAFb domain of CyaB2 can bind both cAMP and cGMP, and enhanced specificity for cAMP is observed only when both the GAFa and the GAFb domains are present in tandem (GAFab domain). In silico docking and mutational analysis identified distinct residues important for interaction with either cAMP or cGMP in the GAFb domain. Structural changes associated with ligand binding to the GAF domains could not be detected by bioluminescence resonance energy transfer (BRET) experiments. However, amide hydrogen-deuterium exchange mass spectrometry (HDXMS) experiments provided insights into the structural basis for cAMP-induced allosteric regulation of the GAF domains, and differences in the changes induced by cAMP and cGMP binding to the GAF domain. Thus, our findings could allow the development of molecules that modulate the allosteric regulation by GAF domains present in pharmacologically relevant proteins.
Collapse
Affiliation(s)
- Kabir Hassan Biswas
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| | - Suguna Badireddy
- Department of Biological Sciences, National University of Singapore , Singapore , Singapore
| | - Abinaya Rajendran
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| | | | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science , Bangalore , India
| |
Collapse
|
24
|
Butrous G. The role of phosphodiesterase inhibitors in the management of pulmonary vascular diseases. Glob Cardiol Sci Pract 2014; 2014:257-90. [PMID: 25780785 PMCID: PMC4352681 DOI: 10.5339/gcsp.2014.42] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/11/2014] [Indexed: 01/07/2023] Open
Abstract
Phosphodiesterase inhibitors (PDE) can be used as therapeutic agents for various diseases such as dementia, depression, schizophrenia and erectile dysfunction in men, as well as congestive heart failure, chronic obstructive pulmonary disease, rheumatoid arthritis, other inflammatory diseases, diabetes and various other conditions. In this review we will concentrate on one type of PDE, mainly PDE5 and its role in pulmonary vascular diseases.
Collapse
|
25
|
Arshad N, Visweswariah SS. Cyclic nucleotide signaling in intestinal epithelia: getting to the gut of the matter. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:409-24. [PMID: 23610087 DOI: 10.1002/wsbm.1223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The intestine is the primary site of nutrient absorption, fluid-ion secretion, and home to trillions of symbiotic microbiota. The high turnover of the intestinal epithelia also renders it susceptible to neoplastic growth. These diverse processes are carefully regulated by an intricate signaling network. Among the myriad molecules involved in intestinal epithelial cell homeostasis are the second messengers, cyclic AMP (cAMP) and cyclic GMP (cGMP). These cyclic nucleotides are synthesized by nucleotidyl cyclases whose activities are regulated by extrinsic and intrinsic cues. Downstream effectors of cAMP and cGMP include protein kinases, cyclic nucleotide gated ion channels, and transcription factors, which modulate key processes such as ion-balance, immune response, and cell proliferation. The web of interaction involving the major signaling pathways of cAMP and cGMP in the intestinal epithelial cell, and possible cross-talk among the pathways, are highlighted in this review. Deregulation of these pathways occurs during infection by pathogens, intestinal inflammation, and cancer. Thus, an appreciation of the importance of cyclic nucleotide signaling in the intestine furthers our understanding of bowel disease, thereby aiding in the development of therapeutic approaches.
Collapse
Affiliation(s)
- Najla Arshad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
26
|
Nambi S, Badireddy S, Visweswariah SS, Anand GS. Cyclic AMP-induced conformational changes in mycobacterial protein acetyltransferases. J Biol Chem 2012; 287:18115-29. [PMID: 22447926 PMCID: PMC3365691 DOI: 10.1074/jbc.m111.328112] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/22/2012] [Indexed: 01/19/2023] Open
Abstract
The activities of a number of proteins are regulated by the binding of cAMP and cGMP to cyclic nucleotide binding (CNB) domains that are found associated with one or more effector domains with diverse functions. Although the conserved architecture of CNB domains has been extensively studied by x-ray crystallography, the key to unraveling the mechanisms of cAMP action has been protein dynamics analyses. Recently, we have identified a novel cAMP-binding protein from mycobacteria, where cAMP regulates the activity of an associated protein acetyltransferase domain. In the current study, we have monitored the conformational changes that occur upon cAMP binding to the CNB domain in these proteins, using a combination of bioluminescence resonance energy transfer and amide hydrogen/deuterium exchange mass spectrometry. Coupled with mutational analyses, our studies reveal the critical role of the linker region (positioned between the CNB domain and the acetyltransferase domain) in allosteric coupling of cAMP binding to activation of acetyltransferase catalysis. Importantly, major differences in conformational change upon cAMP binding were accompanied by stabilization of the CNB and linker domain alone. This is in contrast to other cAMP-binding proteins, where cyclic nucleotide binding has been shown to involve intricate and parallel allosteric relays. Finally, this powerful convergence of results from bioluminescence resonance energy transfer and hydrogen/deuterium exchange mass spectrometry reaffirms the power of solution biophysical tools in unraveling mechanistic bases of regulation of proteins in the absence of high resolution structural information.
Collapse
Affiliation(s)
- Subhalaxmi Nambi
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore, India
| | | | | | | |
Collapse
|