1
|
Watanabe Y, Kumeta H, Watanabe S. Structural basis for phosphatidylcholine synthesis by bacterial phospholipid N-methyltransferases. J Biol Chem 2025; 301:108507. [PMID: 40222548 DOI: 10.1016/j.jbc.2025.108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025] Open
Abstract
In phosphatidylcholine (PC)-containing bacteria, PC is synthesized by phospholipid N-methyltransferases (Pmts) and plays an important role in the interactions between symbiotic and pathogenic bacteria and their eukaryotic host cells. Pmts catalyze the SAM-dependent three methylation reactions of the head group of phosphatidylethanolamine (PE) to form PC through monomethyl PE and dimethyl PE. However, the precise molecular mechanisms underlying PC biosynthesis by PmtA remain largely unclear, owing to the lack of structural information. Here, we determined the crystal structures of Agrobacterium tumefaciens Pmt (AtPmtA) in complex with SAH or 5'-methylthioadenosine. Crystal structures and NMR analysis revealed the binding mode of AtPmtA to SAH in solution. Structure-based mutational analyses showed that a conserved tyrosine residue in the substrate-binding groove is involved in methylation. Furthermore, we showed that differences in substrate specificity among Pmt homologs were determined by whether the amino acid residues comprising the substrate-binding groove were isoleucine or phenylalanine. These findings provide a structural basis for understanding the mechanisms underlying Pmts-mediated PC biosynthesis.
Collapse
Affiliation(s)
| | - Hiroyuki Kumeta
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Seiya Watanabe
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan; Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan; Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
2
|
Singh PR, Nagaraja V. Epigenetic maneuvering: an emerging strategy for mycobacterial intracellular survival. Trends Microbiol 2025; 33:354-369. [PMID: 39613689 DOI: 10.1016/j.tim.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024]
Abstract
Mycobacterium tuberculosis (Mtb) has elaborated numerous mechanisms for its pathogenesis. Mtb manipulates host signaling pathways to interfere with the immune response and cell death pathways. By employing virulence factors - of which secretory proteins are emerging as significant components - it ensures successful survival in the host. In this review, we discuss advances made on the largely unexplored secretory modifiers of Mtb that alter the host epigenome to impact host pathways for the pathogen's advantage. We highlight the findings on the Mtb-encoded modification enzymes and their role in maneuvering the host machinery. We also provide pointers to the gaps that still exist in this area and approaches to address these questions for a better appreciation of the uncanny success of Mtb as an intracellular pathogen.
Collapse
Affiliation(s)
- Prakruti R Singh
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India; Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Valakunja Nagaraja
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India; Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India.
| |
Collapse
|
3
|
Popova A, Jain N, Dong X, Abdollah-Nia F, Britton R, Williamson J. Complete list of canonical post-transcriptional modifications in the Bacillus subtilis ribosome and their link to RbgA driven large subunit assembly. Nucleic Acids Res 2024; 52:11203-11217. [PMID: 39036956 PMCID: PMC11472175 DOI: 10.1093/nar/gkae626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Ribosomal RNA modifications in prokaryotes have been sporadically studied, but there is a lack of a comprehensive picture of modification sites across bacterial phylogeny. Bacillus subtilis is a preeminent model organism for gram-positive bacteria, with a well-annotated and editable genome, convenient for fundamental studies and industrial use. Yet remarkably, there has been no complete characterization of its rRNA modification inventory. By expanding modern MS tools for the discovery of RNA modifications, we found a total of 25 modification sites in 16S and 23S rRNA of B. subtilis, including the chemical identity of the modified nucleosides and their precise sequence location. Furthermore, by perturbing large subunit biogenesis using depletion of an essential factor RbgA and measuring the completion of 23S modifications in the accumulated intermediate, we provide a first look at the order of modification steps during the late stages of assembly in B. subtilis. While our work expands the knowledge of bacterial rRNA modification patterns, adding B. subtilis to the list of fully annotated species after Escherichia coli and Thermus thermophilus, in a broader context, it provides the experimental framework for discovery and functional profiling of rRNA modifications to ultimately elucidate their role in ribosome biogenesis and translation.
Collapse
MESH Headings
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Large, Bacterial/genetics
- Bacterial Proteins/metabolism
- Bacterial Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomal Proteins/genetics
- Ribosomes/metabolism
- Ribosomes/genetics
Collapse
Affiliation(s)
- Anna M Popova
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nikhil Jain
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
- INSITRO, 279 E Grand Ave., South San Francisco, CA 94080, USA
| | - Xiyu Dong
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Farshad Abdollah-Nia
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Liu T, Wei W, Xu M, Ren Q, Liu M, Pan X, Feng F, Han T, Gou L. The Restriction Activity Investigation of Rv2528c, an Mrr-like Modification-Dependent Restriction Endonuclease from Mycobacterium tuberculosis. Microorganisms 2024; 12:1456. [PMID: 39065224 PMCID: PMC11279042 DOI: 10.3390/microorganisms12071456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb), as a typical intracellular pathogen, possesses several putative restriction-modification (R-M) systems, which restrict exogenous DNA's entry, such as bacterial phage infection. Here, we investigate Rv2528c, a putative Mrr-like type IV restriction endonuclease (REase) from Mtb H37Rv, which is predicted to degrade methylated DNA that contains m6A, m5C, etc. Rv2528c shows significant cytotoxicity after being expressed in Escherichia coli BL21(DE3)pLysS strain. The Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) assay indicates that Rv2528c cleaves genomic DNA in vivo. The plasmid transformation efficiency of BL21(DE3)pLysS strain harboring Rv2528c gene was obviously decreased after plasmids were in vitro methylated by commercial DNA methyltransferases such as M.EcoGII, M.HhaI, etc. These results are consistent with the characteristics of type IV REases. The in vitro DNA cleavage condition and the consensus cleavage/recognition site of Rv2528c still remain unclear, similar to that of most Mrr-family proteins. The possible reasons mentioned above and the potential role of Rv2528c for Mtb were discussed.
Collapse
Affiliation(s)
- Tong Liu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (M.X.); (Q.R.); (M.L.); (X.P.); (F.F.)
| | - Wei Wei
- Centers for Disease Control and Prevention of He Xi District, Tianjin 300210, China;
| | - Mingyan Xu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (M.X.); (Q.R.); (M.L.); (X.P.); (F.F.)
| | - Qi Ren
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (M.X.); (Q.R.); (M.L.); (X.P.); (F.F.)
| | - Meikun Liu
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (M.X.); (Q.R.); (M.L.); (X.P.); (F.F.)
| | - Xuemei Pan
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (M.X.); (Q.R.); (M.L.); (X.P.); (F.F.)
| | - Fumin Feng
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (M.X.); (Q.R.); (M.L.); (X.P.); (F.F.)
| | - Tiesheng Han
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (M.X.); (Q.R.); (M.L.); (X.P.); (F.F.)
| | - Lixia Gou
- School of Life Science, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
5
|
Popova AM, Jain N, Dong X, Abdollah-Nia F, Britton RA, Williamson JR. Complete list of canonical post-transcriptional modifications in the Bacillus subtilis ribosome and their link to RbgA driven large subunit assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593627. [PMID: 38765983 PMCID: PMC11100780 DOI: 10.1101/2024.05.10.593627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ribosomal RNA modifications in prokaryotes have been sporadically studied, but there is a lack of a comprehensive picture of modification sites across bacterial phylogeny. B. subtilis is a preeminent model organism for gram-positive bacteria, with a well-annotated and editable genome, convenient for fundamental studies and industrial use. Yet remarkably, there has been no complete characterization of its rRNA modification inventory. By expanding modern MS tools for the discovery of RNA modifications, we found a total of 25 modification sites in 16S and 23S rRNA of B. subtilis, including the chemical identity of the modified nucleosides and their precise sequence location. Furthermore, by perturbing large subunit biogenesis using depletion of an essential factor RbgA and measuring the completion of 23S modifications in the accumulated intermediate, we provide a first look at the order of modification steps during the late stages of assembly in B. subtilis. While our work expands the knowledge of bacterial rRNA modification patterns, adding B. subtilis to the list of fully annotated species after E. coli and T. thermophilus, in a broader context, it provides the experimental framework for discovery and functional profiling of rRNA modifications to ultimately elucidate their role in ribosome biogenesis and translation.
Collapse
Affiliation(s)
- Anna M. Popova
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nikhil Jain
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA, Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiyu Dong
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Farshad Abdollah-Nia
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA, Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R. Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Gong C, Chakraborty D, Koudelka GB. A prophage encoded ribosomal RNA methyltransferase regulates the virulence of Shiga-toxin-producing Escherichia coli (STEC). Nucleic Acids Res 2024; 52:856-871. [PMID: 38084890 PMCID: PMC10810198 DOI: 10.1093/nar/gkad1150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 01/26/2024] Open
Abstract
Shiga toxin (Stx) released by Shiga toxin producing Escherichia coli (STEC) causes life-threatening illness. Its production and release require induction of Stx-encoding prophage resident within the STEC genome. We identified two different STEC strains, PA2 and PA8, bearing Stx-encoding prophage whose sequences primarily differ by the position of an IS629 insertion element, yet differ in their abilities to kill eukaryotic cells and whose prophages differ in their spontaneous induction frequencies. The IS629 element in ϕPA2, disrupts an ORF predicted to encode a DNA adenine methyltransferase, whereas in ϕPA8, this element lies in an intergenic region. Introducing a plasmid expressing the methyltransferase gene product into ϕPA2 bearing-strains increases both the prophage spontaneous induction frequency and virulence to those exhibited by ϕPA8 bearing-strains. However, a plasmid bearing mutations predicted to disrupt the putative active site of the methyltransferase does not complement either of these defects. When complexed with a second protein, the methyltransferase holoenzyme preferentially uses 16S rRNA as a substrate. The second subunit is responsible for directing the preferential methylation of rRNA. Together these findings reveal a previously unrecognized role for rRNA methylation in regulating induction of Stx-encoding prophage.
Collapse
Affiliation(s)
- Chen Gong
- Department of Biological Sciences University at Buffalo, Buffalo, NY 14260, USA
| | | | - Gerald B Koudelka
- Department of Biological Sciences University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
7
|
Nazim T, Kumar V, Ahmed F, Ehtesham NZ, Hasnain SE, Sundar D, Grover S. Computational analysis of RNA methyltransferase Rv3366 as a potential drug target for combating drug-resistant Mycobacterium tuberculosis. Front Mol Biosci 2024; 10:1348337. [PMID: 38274093 PMCID: PMC10808684 DOI: 10.3389/fmolb.2023.1348337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Mycobacterium tuberculosis (M.tb) remains a formidable global health threat. The increasing drug resistance among M.tb clinical isolates is exacerbating the current tuberculosis (TB) burden. In this study we focused on identifying novel repurposed drugs that could be further investigated as potential anti-TB drugs. We utilized M.tb RNA methyltransferase Rv3366 (spoU) as a potential drug target due to its imperative activity in RNA modification and no structural homology with human proteins. Using computational modeling approaches the structure of Rv3366 was determined followed by high throughput virtual screening of Food and Drug Administration (FDA) approved drugs to screen potential binders of Rv3366. Molecular dynamics (MD) simulations were performed to assess the drug-protein binding interactions, complex stability and rigidity. Through this multi-step structure-based drug repurposing workflow two promising inhibitors of Rv3366 were identified, namely, Levodopa and Droxidopa. This study highlights the significance of targeting M.tb RNA methyltransferases to combat drug-resistant M.tb. and proposes Levodopa and Droxidopa as promising inhibitors of Rv3366 for future pre-clinical investigations.
Collapse
Affiliation(s)
- Tasmin Nazim
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Vipul Kumar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Faraz Ahmed
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Nasreen Z. Ehtesham
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, India
| | - Seyed E. Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, India
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Sonam Grover
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| |
Collapse
|
8
|
Ferraz R, Coimbra S, Correia S, Canhoto J. RNA methyltransferases in plants: Breakthroughs in function and evolution. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:449-460. [PMID: 36502609 DOI: 10.1016/j.plaphy.2022.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Each day it is becoming increasingly difficult not to notice the completely new, fast growing, extremely intricate and challenging world of epitranscriptomics as the understanding of RNA methylation is expanding at a hasty rate. Writers (methyltransferases), erasers (demethylases) and readers (RNA-binding proteins) are responsible for adding, removing and recognising methyl groups on RNA, respectively. Several methyltransferases identified in plants are now being investigated and recent studies have shown a connection between RNA-methyltransferases (RNA-MTases) and stress and development processes. However, compared to their animal and bacteria counterparts, the understanding of RNA methyltransferases is still incipient, particularly those located in organelles. Comparative and systematic analyses allowed the tracing of the evolution of these enzymes suggesting the existence of several methyltransferases yet to be characterised. This review outlines the functions of plant nuclear and organellar RNA-MTases in plant development and stress responses and the comparative and evolutionary discoveries made on RNA-MTases across kingdoms.
Collapse
Affiliation(s)
- Ricardo Ferraz
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal; LAQV Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal.
| | - Sílvia Coimbra
- University of Porto, Faculty of Sciences, Portugal; LAQV Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal.
| | - Sandra Correia
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal.
| | - Jorge Canhoto
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal.
| |
Collapse
|
9
|
Secretory proteins of
Mycobacterium tuberculosis
and their roles in modulation of host immune responses: focus on therapeutic targets. FEBS J 2022; 289:4146-4171. [DOI: 10.1111/febs.16369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 12/01/2022]
|
10
|
Sui J, Qiao W, Xiang X, Luo Y. Epigenetic Changes in Mycobacterium tuberculosis and its Host Provide Potential Targets or Biomarkers for Drug Discovery and Clinical Diagnosis. Pharmacol Res 2022; 179:106195. [DOI: 10.1016/j.phrs.2022.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 11/26/2022]
|
11
|
Salaikumaran MR, Badiger VP, Burra VLSP. 16S rRNA Methyltransferases as Novel Drug Targets Against Tuberculosis. Protein J 2022; 41:97-130. [PMID: 35112243 DOI: 10.1007/s10930-021-10029-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is an airborne infectious disease caused by Mycobacterium tuberculosis (M.tb) whose natural history traces back to 70,000 years. TB remains a major global health burden. Methylation is a type of post-replication, post-transcriptional and post-translational epi-genetic modification involved in transcription, translation, replication, tissue specific expression, embryonic development, genomic imprinting, genome stability and chromatin structure, protein protein interactions and signal transduction indicating its indispensable role in survival of a pathogen like M.tb. The pathogens use this epigenetic mechanism to develop resistance against certain drug molecules and survive the lethality. Drug resistance has become a major challenge to tackle and also a major concern raised by WHO. Methyltransferases are enzymes that catalyze the methylation of various substrates. None of the current TB targets belong to methyltransferases which provides therapeutic opportunities to develop novel drugs through studying methyltransferases as potential novel targets against TB. Targeting 16S rRNA methyltransferases serves two purposes simultaneously: a) translation inhibition and b) simultaneous elimination of the ability to methylate its substrates hence stopping the emergence of drug resistance strains. There are ~ 40 different rRNA methyltransferases and 13 different 16S rRNA specific methyltransferases which are unexplored and provide a huge opportunity for treatment of TB.
Collapse
Affiliation(s)
- M R Salaikumaran
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed To Be) University, Vaddeswaram, Andhra Pradesh, 522 502, India
| | - Veena P Badiger
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed To Be) University, Vaddeswaram, Andhra Pradesh, 522 502, India
| | - V L S Prasad Burra
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed To Be) University, Vaddeswaram, Andhra Pradesh, 522 502, India.
| |
Collapse
|
12
|
Joshi S, Ghosh P, Barage S, Basu B, Deobagkar DD. Genome-wide lone strand adenine methylation in Deinococcus radiodurans R1: Regulation of gene expression through DR0643-dependent adenine methylation. Microbiol Res 2022; 257:126964. [PMID: 35042054 DOI: 10.1016/j.micres.2022.126964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Abstract
DNA methylation is a covalent modification of adenine or cytosine in the genome of an organism and is found in diverse microbes including the radiation resistant bacterium Deinococcus radiodurans R1. Although earlier findings have confirmed repression or de-repression of certain genes in adenine methyltransferase (DR_0643/Dam1DR) deficient D. radiodurans mutant however, the overall regulatory aspects of Dam1DR-mediated adenine methylation remain mostly unexplored. In the present study, we compared the genome-wide methylome and the corresponding transcriptome of D. radiodurans WT and Δdam1 mutant to explore the correlation between methylation and gene expression. In D. radiodurans, deletion of DR_0643 ORF (Δdam1) led to hypomethylation of 512 genes resulting in differential expression of 168 genes (99 genes are upregulated and 69 genes are downregulated). The modification patterns deduced for Dam1DR (DR_0643) and Dam2DR (DR_2267) were non-palindromic and atypical. Moreover, we observed methylation at opportunistic sites that show adenine methylation only in D. radiodurans Δdam1 and not in D. radiodurans WT. Correlation between the methylome and transcriptome suggests that hypomethylation at Dam1DR specific sites had both negative as well as a positive effects on gene expression. Pathways such as amino acid metabolism, transport, oxidative phosphorylation, quorum sensing, signal transduction, two-component system, glycolysis/gluconeogenesis, TCA cycle, glyoxylate and dicarboxylate metabolism were modulated by Dam1DR-mediated adenine methylation in D. radiodurans. Processes such as DNA repair, recombination, ATPase and transmembrane transporter activity were enriched when Dam1DR mutant was subjected to radiation stress. We further evaluated the molecular interactions and mode of binding between Dam1DR protein and S-adenosyl methionine using molecular docking followed by MD simulation. To get a better insight into the methylation mechanism, the Dam1DR-SAM complex was also docked with a DNA molecule to elucidate DNA-Dam1DR structural interaction during methyl-group transfer reaction. In summary, our work presents comprehensive and integrative approaches to investigate both functional and structural aspects of DNA adenine methyltransferase (Dam1DR) in D. radiodurans biology.
Collapse
Affiliation(s)
- Suraj Joshi
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India; Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India.
| | - Sagar Barage
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan, Post-Somathne, Panvel, Maharashtra, 410206, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Deepti D Deobagkar
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
13
|
Immunomodulation by epigenome alterations in Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2021; 128:102077. [PMID: 33812175 DOI: 10.1016/j.tube.2021.102077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 12/14/2022]
Abstract
Mycobacterium tuberculosis (MTB) has co-evolved with humans for decades and developed several mechanisms to evade host immunity. It can efficiently alter the host epigenome, thus playing a major role in immunomodulation by either activating or suppressing genes responsible for mounting an immune response against the pathogen. Epigenetic modifications such as DNA methylation and chromatin remodelling regulate gene expression and influence several cellular processes. The involvement of epigenetic factors in disease onset and development had been overlooked upon in comparison to genetic mutations. It is now believed that assessment of epigenetic changes hold great potential in diagnosis, prevention and treatment strategies for a wide range of diseases. In this review, we unravel the principles of epigenetics and the numerous ways by which MTB re-shapes the host epigenetic landscape as a strategy to overpower the host immune system for its survival and persistence.
Collapse
|
14
|
Khan SH, Bijpuria S, Maurya A, Taneja B. Structural and thermodynamic characterization of a highly stable conformation of Rv2966c, a 16S rRNA methyltransferase, at low pH. Int J Biol Macromol 2020; 164:3909-3921. [PMID: 32888991 DOI: 10.1016/j.ijbiomac.2020.08.236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/14/2020] [Accepted: 08/29/2020] [Indexed: 12/01/2022]
Abstract
Rv2966c is a highly specific methyltransferase that methylates G966 at the N2 position in 16S rRNA of mycobacterial ribosome and can be secreted inside the host cell to methylate host DNA. However, how the secreted protein retains its structure and function in the harsh environment of host cell, remains unclear. In this work, we investigate structural features of Rv2966c at pH 4.0 and pH 7.5 by far-UV- and near-UV-circular dichroism (CD) and fluorescence spectroscopy, to gain insights into its folding and stability at the acidic pH, that it is likely to encounter inside the macrophage. We show that Rv2966c exists in a compact, folded state at both pH 7.5 and pH 4.0, a result corroborated by molecular dynamics simulations as a function of pH. In fact, Rv2966c was found to be more stable at pH 4.0 than pH 7.5, as evidenced by thermal-induced CD and nanodifferential scanning fluorimetry, and urea-induced denaturation measurements. Interestingly, unlike pH 7.5 (two-state unfolding), denaturation of Rv2966c at pH 4.0 occurs in a biphasic (N ↔ X ↔ U) manner. Further spectroscopic characterization of 'X' state, identifies characteristics of a molten globule-like intermediate. We finally conclude that Rv2966c maintains a compact folded state at pH 4.0 akin to that at pH 7.5 but with higher stability.
Collapse
Affiliation(s)
- Sabab Hasan Khan
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Shipra Bijpuria
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India; Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Anjali Maurya
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Bhupesh Taneja
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India; Academy of Scientific and Innovative Research, Ghaziabad, India.
| |
Collapse
|
15
|
Loss of U1498 methylation in 16S rRNA by RsmE methyltransferase associates its role with aminoglycoside resistance in mycobacteria. J Glob Antimicrob Resist 2020; 23:359-369. [PMID: 33186785 DOI: 10.1016/j.jgar.2020.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/28/2020] [Accepted: 10/06/2020] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Modulation of methylation pattern through mutations in ribosomal methyltransferases is a key mechanism of bacterial drug resistance. However, RsmG (GidB), which specifically methylates G527 in 16S rRNA, remains the only conserved methyltransferase known to be associated with low-level drug resistance in mycobacterial isolates. The mycobacterial RsmE homologue methylates U1498 in 16S rRNA in a highly specific manner. U1498 lies in the vicinity of the binding site for various aminoglycosides in the ribosome. However, the association of methylation at U1498 with altered drug response remains poorly understood. METHODS A deletion mutant of the RsmE homologue in Mycobacterium smegmatis was generated by a suicidal vector strategy and drug susceptibility assays were performed on wild-type, knockout and complemented strains with varying concentrations of ribosomal- and non-ribosomal-targeting drugs. RESULTS Deletion of the RsmE homologue of M. smegmatis led to an at least two-fold increase in the minimum inhibitory concentrations (MICs) of aminoglycosides that bind in the decoding centre proximal to U1498 in the 30S subunit. The change in MICs was highly specific and reproducible and did not show any cross-resistance to other drug classes. Surprisingly, Rv2372c, the RsmE homologue of Mycobacterium tuberculosis, has the largest number of mutations among conserved ribosomal methyltransferases, after gidB, highlighting the role of mutations in RsmE methyltransferase as a key emerging mechanism of resistance in clinical strains. CONCLUSION We present the first evidence of an association of methylation of U1498 in 16S rRNA with development of low-level resistance in mycobacteria that must be tackled in a timely manner.
Collapse
|
16
|
Wang R, Kong F, Wu H, Hou B, Kang Y, Cao Y, Duan S, Ye J, Zhang H. Complete genome sequence of high-yield strain S. lincolnensis B48 and identification of crucial mutations contributing to lincomycin overproduction. Synth Syst Biotechnol 2020; 5:37-48. [DOI: doi.org/10.1016/j.synbio.2020.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023] Open
|
17
|
Mariasina SS, Chang CF, Petrova OA, Efimov SV, Klochkov VV, Kechko OI, Mitkevich VA, Sergiev PV, Dontsova OA, Polshakov VI. Williams-Beuren syndrome-related methyltransferase WBSCR27: cofactor binding and cleavage. FEBS J 2020; 287:5375-5393. [PMID: 32255258 DOI: 10.1111/febs.15320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/20/2020] [Accepted: 03/30/2020] [Indexed: 11/28/2022]
Abstract
Williams-Beuren syndrome, characterized by numerous physiological and mental problems, is caused by the heterozygous deletion of chromosome region 7q11.23, which results in the disappearance of 26 protein-coding genes. Protein WBSCR27 is a product of one of these genes whose biological function has not yet been established and for which structural information has been absent until now. Using NMR, we investigated the structural and functional properties of murine WBSCR27. For protein in the apo form and in a complex with S-(5'-adenosyl)-l-homocysteine (SAH), a complete NMR resonance assignment has been obtained and the secondary structure has been determined. This information allows us to attribute WBSCR27 to Class I methyltransferases. The interaction of WBSCR27 with the cofactor S-(5'-adenosyl)-l-methionine (SAM) and its metabolic products - SAH, 5'-deoxy-5'-methylthioadenosine (MTA) and 5'-deoxyadenosine (5'dAdo) - was studied by NMR and isothermal titration calorimetry. SAH binds WBSCR27 much tighter than SAM, leaving open the question of cofactor turnover in the methylation reaction. One possible answer to this question is the presence of weak but detectable nucleosidase activity for WBSCR27. We found that the enzyme catalyses the cleavage of the adenine moiety from SAH, MTA and 5'dAdo, similar to the action of bacterial SAH/MTA nucleosidases. We also found that the binding of SAM or SAH causes a significant change in the structure of WBSCR27 and in the conformational mobility of the protein fragments, which can be attributed to the substrate recognition site. This indicates that the binding of the cofactor modulates the folding of the substrate-recognizing region of the enzyme.
Collapse
Affiliation(s)
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Sergey V Efimov
- NMR Laboratory, Institute of Physics, Kazan Federal University, Russia
| | | | - Olga I Kechko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Petr V Sergiev
- M.V. Lomonosov Moscow State University, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Olga A Dontsova
- M.V. Lomonosov Moscow State University, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| | | |
Collapse
|
18
|
Complete genome sequence of high-yield strain S. lincolnensis B48 and identification of crucial mutations contributing to lincomycin overproduction. Synth Syst Biotechnol 2020; 5:37-48. [PMID: 32322696 PMCID: PMC7160387 DOI: 10.1016/j.synbio.2020.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 02/08/2023] Open
Abstract
The lincosamide family antibiotic lincomycin is a widely used antibacterial pharmaceutical generated by Streptomyces lincolnensis, and the high-yield strain B48 produces 2.5 g/L lincomycin, approximately 30-fold as the wild-type strain NRRL 2936. Here, the genome of S. lincolnensis B48 was completely sequenced, revealing a ~10.0 Mb single chromosome with 71.03% G + C content. Based on the genomic information, lincomycin-related primary metabolism network was constructed and the secondary metabolic potential was analyzed. In order to dissect the overproduction mechanism, a comparative genomic analysis with NRRL 2936 was performed. Three large deletions (LDI-III), one large inverted duplication (LID), one long inversion and 80 small variations (including 50 single nucleotide variations, 13 insertions and 17 deletions) were found in B48 genome. Then several crucial mutants contributing to higher production phenotype were validated. Deleting of a MarR-type regulator-encoding gene slinc377 from LDI, and the whole 24.7 kb LDII in NRRL 2936 enhanced lincomycin titer by 244% and 284%, respectively. Besides, lincomycin production of NRRL 2936 was increased to 7.7-fold when a 71 kb supercluster BGC33 from LDIII was eliminated. As for the duplication region, overexpression of the cluster situated genes lmbB2 and lmbU, as well as two novel transcriptional regulator-encoding genes (slinc191 and slinc348) elevated lincomycin titer by 77%, 75%, 114% and 702%, respectively. Furthermore, three negative correlation genes (slinc6156, slinc4481 and slinc6011) on lincomycin biosynthesis, participating in regulation were found out. And surprisingly, inactivation of RNase J-encoding gene slinc6156 and TPR (tetratricopeptide repeat) domain-containing protein-encoding gene slinc4481 achieved lincomycin titer equivalent to 83% and 68% of B48, respectively, to 22.4 and 18.4-fold compared to NRRL 2936. Therefore, the comparative genomics approach combined with confirmatory experiments identified that large fragment deletion, long sequence duplication, along with several mutations of genes, especially regulator genes, are crucial for lincomycin overproduction.
Collapse
|
19
|
Wu X, Yan Z, Dong X, Cao F, Peng J, Li M. Cloning and characterization of a CCoAOMT gene involved in rapid lignification of endocarp in dove tree (Davidia involucrata Baill.). BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1525324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Xiaobo Wu
- Department of Bioengineering, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, PR China
| | - Ziwei Yan
- Department of Bioengineering, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, PR China
| | - Xujie Dong
- Department of Bioengineering, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, PR China
| | - Fuxiang Cao
- Department of Horticulture, College of Horticulture and Landscape, Hunan Agricultural University, Changsha, PR China
| | - Jiqing Peng
- Department of Bioengineering, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, PR China
| | - Meng Li
- Department of Bioengineering, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, PR China
| |
Collapse
|
20
|
Danjuma L, Ling MP, Hamat RA, Higuchi A, Alarfaj AA, Marlina, Benelli G, Arulselvan P, Rajan M, Kumar Subbiah S. Genomic plasticity between human and mycobacterial DNA: A review. Tuberculosis (Edinb) 2017; 107:38-47. [DOI: 10.1016/j.tube.2017.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/14/2017] [Accepted: 03/23/2017] [Indexed: 01/04/2023]
|
21
|
Cyclipostins and Cyclophostin analogs as promising compounds in the fight against tuberculosis. Sci Rep 2017; 7:11751. [PMID: 28924204 PMCID: PMC5603573 DOI: 10.1038/s41598-017-11843-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023] Open
Abstract
A new class of Cyclophostin and Cyclipostins (CyC) analogs have been investigated against Mycobacterium tuberculosis H37Rv (M. tb) grown either in broth medium or inside macrophages. Our compounds displayed a diversity of action by acting either on extracellular M. tb bacterial growth only, or both intracellularly on infected macrophages as well as extracellularly on bacterial growth with very low toxicity towards host macrophages. Among the eight potential CyCs identified, CyC17 exhibited the best extracellular antitubercular activity (MIC50 = 500 nM). This compound was selected and further used in a competitive labelling/enrichment assay against the activity-based probe Desthiobiotin-FP in order to identify its putative target(s). This approach, combined with mass spectrometry, identified 23 potential candidates, most of them being serine or cysteine enzymes involved in M. tb lipid metabolism and/or in cell wall biosynthesis. Among them, Ag85A, CaeA and HsaD, have previously been reported as essential for in vitro growth of M. tb and/or survival and persistence in macrophages. Overall, our findings support the assumption that CyC17 may thus represent a novel class of multi-target inhibitor leading to the arrest of M. tb growth through a cumulative inhibition of a large number of Ser- and Cys-containing enzymes participating in important physiological processes.
Collapse
|
22
|
Identification of the bioactive and consensus peptide motif from Momordica charantia insulin receptor-binding protein. Food Chem 2016; 204:298-305. [DOI: 10.1016/j.foodchem.2016.02.135] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/29/2016] [Accepted: 02/22/2016] [Indexed: 12/26/2022]
|
23
|
Grover S, Gupta P, Kahlon PS, Goyal S, Grover A, Dalal K, Sabeeha, Ehtesham NZ, Hasnain SE. Analyses of methyltransferases across the pathogenicity spectrum of different mycobacterial species point to an extremophile connection. MOLECULAR BIOSYSTEMS 2016; 12:1615-25. [PMID: 26983646 DOI: 10.1039/c5mb00810g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tuberculosis is a devastating disease, taking one human life every 20 seconds globally. We hypothesize that professional pathogens such as M.tb have acquired specific features that might assist in causing infection, persistence and transmissible pathology in their host. We have identified 121 methyltransferases (MTases) in the M.tb proteome, which use a variety of substrates - DNA, RNA, protein, intermediates of mycolic acid biosynthesis and other fatty acids - that are involved in cellular maintenance within the host. A comparative analysis of the proteome of the virulent strain H37Rv and the avirulent strain H37Ra identified 3 MTases, which displayed significant variations in terms of N-terminal extension/deletion and point mutations, possibly impacting various physicochemical properties. The cross-proteomic comparison of MTases of M.tb H37Rv with 15 different Mycobacterium species revealed the acquisition of novel MTases in a MTB complex as a function of evolution. Phylogenetic analysis revealed that these newly acquired MTases showed common roots with certain extremophiles such as halophilic and acidophilic organisms. Our results establish an evolutionary relationship of M.tb with halotolerant organisms and also the role of MTases of M.tb in withstanding the host osmotic stress, thereby pointing to their likely role in pathogenesis, virulence and niche adaptation.
Collapse
Affiliation(s)
- Sonam Grover
- Molecular Infection and Functional Biology Lab, Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chatterjee T, Mukherjee D, Banerjee M, Chatterjee BK, Chakrabarti P. Crystal structure and activity of protein L-isoaspartyl-O-methyltransferase from Vibrio cholerae, and the effect of AdoHcy binding. Arch Biochem Biophys 2015; 583:140-9. [PMID: 26255776 DOI: 10.1016/j.abb.2015.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 11/17/2022]
Abstract
The repair enzyme Protein L-isoaspartyl-O-methyltransferase (PIMT) is widely distributed in various organisms. PIMT catalyzes S-adenosylmethionine (AdoMet) dependent methylation of abnormal L-isoaspartyl residues, formed by the deamidation of asparagines and isomerization of aspartates. We report the crystal structure of PIMT of Vibrio cholerae (VcPIMT), the aetiological agent for cholera, complexed with the demethylated cofactor S-adenosyl-L-homocysteine (AdoHcy) to 2.05 Å resolution. A stretch of residues (39-58), lining the substrate-binding site, is disordered. Urea-induced unfolding free energy for apo and VcPIMT-AdoHcy complex reveals greater stability for the cofactor-bound protein. The kinetic parameters for the methyltransferase activity of the recombinant VcPIMT was determined using a continuous spectrophotometric color-based assay using the peptide substrate [VYP(L-isoD)HA]. The enzyme exhibited activity higher than the Escherichia coli enzyme and closer to those from thermophilic bacteria and the mammalian source. The association constant for substrate binding is 2.29 × 10(6) M(-1), quite similar to that for AdoHcy. The crystal structure and the model of the peptide-bound structure indicate that the majority of the interactions used for cofactor/substrate binding are provided by the main-chain atoms. Evolutionary relationships derived based on a phylogenetic tree constructed using the PIMT sequences are in conformity with the crystal structures of nine AdoHcy-bound PIMTs.
Collapse
Affiliation(s)
- Tanaya Chatterjee
- Department of Biochemistry, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Debadrita Mukherjee
- Bioinformatics Centre, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Mousumi Banerjee
- Department of Biotechnology, West Bengal University of Technology, Kolkata 700064, India
| | - Barun K Chatterjee
- Department of Physics, Bose Institute, 93/1APC Road, Kolkata 700009, India
| | - Pinak Chakrabarti
- Department of Biochemistry, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, India; Bioinformatics Centre, Bose Institute, P1/12, CIT Scheme VIIM, Kolkata 700054, India.
| |
Collapse
|
25
|
Sharma G, Upadhyay S, Srilalitha M, Nandicoori VK, Khosla S. The interaction of mycobacterial protein Rv2966c with host chromatin is mediated through non-CpG methylation and histone H3/H4 binding. Nucleic Acids Res 2015; 43:3922-37. [PMID: 25824946 PMCID: PMC4417171 DOI: 10.1093/nar/gkv261] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 12/15/2022] Open
Abstract
To effectively modulate the gene expression within an infected mammalian cell, the pathogen Mycobacterium tuberculosis would need to bring about epigenetic modifications at appropriate genomic loci. Working on this hypothesis, we show in this study that the mycobacterial protein Rv2966c is a 5-methylcytosine-specific DNA methyltransferase that is secreted out from the mycobacterium and gets localized to the nucleus in addition to the cytoplasm inside the host cell. Importantly, Rv2966c binds to specific DNA sequences, methylates cytosines predominantly in a non-CpG context and its methylation activity is positively influenced by phosphorylation. Interestingly, like the mammalian DNA methyltransferase, DNMT3L, Rv2966c can also interact with histone proteins. Ours is the first study that identifies a protein from a pathogenic bacteria with potential to influence host DNA methylation in a non-canonical manner providing the pathogen with a novel mechanism to alter the host epigenetic machinery. This contention is supported by repression of host genes upon M. tuberculosis infection correlated with Rv2966c binding and non-CpG methylation.
Collapse
Affiliation(s)
- Garima Sharma
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500001, India Graduate Studies, Manipal University, Manipal 576104, India
| | | | - M Srilalitha
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500001, India
| | | | - Sanjeev Khosla
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500001, India
| |
Collapse
|
26
|
Sergeeva OV, Bogdanov AA, Sergiev PV. What do we know about ribosomal RNA methylation in Escherichia coli? Biochimie 2014; 117:110-8. [PMID: 25511423 DOI: 10.1016/j.biochi.2014.11.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 11/20/2014] [Indexed: 11/18/2022]
Abstract
A ribosome is a ribonucleoprotein that performs the synthesis of proteins. Ribosomal RNA of all organisms includes a number of modified nucleotides, such as base or ribose methylated and pseudouridines. Methylated nucleotides are highly conserved in bacteria and some even universally. In this review we discuss available data on a set of modification sites in the most studied bacteria, Escherichia coli. While most rRNA modification enzymes are known for this organism, the function of the modified nucleotides is rarely identified.
Collapse
MESH Headings
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/metabolism
- Methylation
- Methyltransferases/chemistry
- Methyltransferases/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- O V Sergeeva
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Moscow 143025, Russia.
| | - A A Bogdanov
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - P V Sergiev
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
27
|
Nixon MR, Saionz KW, Koo MS, Szymonifka MJ, Jung H, Roberts JP, Nandakumar M, Kumar A, Liao R, Rustad T, Sacchettini JC, Rhee KY, Freundlich JS, Sherman DR. Folate pathway disruption leads to critical disruption of methionine derivatives in Mycobacterium tuberculosis. ACTA ACUST UNITED AC 2014; 21:819-30. [PMID: 24954008 DOI: 10.1016/j.chembiol.2014.04.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 04/11/2014] [Accepted: 04/23/2014] [Indexed: 01/08/2023]
Abstract
In this study, we identified antifolates with potent, targeted activity against whole-cell Mycobacterium tuberculosis (MTB). Liquid chromatography-mass spectrometry analysis of antifolate-treated cultures revealed metabolic disruption, including decreased pools of methionine and S-adenosylmethionine. Transcriptomic analysis highlighted altered regulation of genes involved in the biosynthesis and utilization of these two compounds. Supplementation with amino acids or S-adenosylmethionine was sufficient to rescue cultures from antifolate treatment. Instead of the "thymineless death" that characterizes folate pathway inhibition in a wide variety of organisms, these data suggest that MTB is vulnerable to a critical disruption of the reactions centered around S-adenosylmethionione, the activated methyl cycle.
Collapse
Affiliation(s)
- Molly R Nixon
- Interdisciplinary Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA 98195, USA; Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | - Kurt W Saionz
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Mi-Sun Koo
- Department of Pharmacology and Physiology and Medicine, Center for Emerging and Reemerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
| | - Michael J Szymonifka
- Department of Pharmacology and Physiology and Medicine, Center for Emerging and Reemerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
| | - Hunmin Jung
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Justin P Roberts
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Madhumita Nandakumar
- Departments of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Anuradha Kumar
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | - Reiling Liao
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | - Tige Rustad
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Kyu Y Rhee
- Departments of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Joel S Freundlich
- Department of Pharmacology and Physiology and Medicine, Center for Emerging and Reemerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
| | - David R Sherman
- Interdisciplinary Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA 98195, USA; Seattle Biomedical Research Institute, Seattle, WA 98109, USA.
| |
Collapse
|
28
|
Srivastav R, Kumar D, Grover A, Singh A, Manjasetty BA, Sharma R, Taneja B. Unique subunit packing in mycobacterial nanoRNase leads to alternate substrate recognitions in DHH phosphodiesterases. Nucleic Acids Res 2014; 42:7894-910. [PMID: 24878921 PMCID: PMC4081065 DOI: 10.1093/nar/gku425] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
DHH superfamily includes RecJ, nanoRNases (NrnA), cyclic nucleotide phosphodiesterases and pyrophosphatases. In this study, we have carried out in vitro and in vivo investigations on the bifunctional NrnA-homolog from Mycobacterium smegmatis, MSMEG_2630. The crystal structure of MSMEG_2630 was determined to 2.2-Å resolution and reveals a dimer consisting of two identical subunits with each subunit folding into an N-terminal DHH domain and a C-terminal DHHA1 domain. The overall structure and fold of the individual domains is similar to other members of DHH superfamily. However, MSMEG_2630 exhibits a distinct quaternary structure in contrast to other DHH phosphodiesterases. This novel mode of subunit packing and variations in the linker region that enlarge the domain interface are responsible for alternate recognitions of substrates in the bifunctional nanoRNases. MSMEG_2630 exhibits bifunctional 3′-5′ exonuclease [on both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) substrates] as well as CysQ-like phosphatase activity (on pAp) in vitro with a preference for nanoRNA substrates over single-stranded DNA of equivalent lengths. A transposon disruption of MSMEG_2630 in M. smegmatis causes growth impairment in the presence of various DNA-damaging agents. Further phylogenetic analysis and genome organization reveals clustering of bacterial nanoRNases into two distinct subfamilies with possible role in transcriptional and translational events during stress.
Collapse
Affiliation(s)
- Rajpal Srivastav
- CSIR-IGIB, Institute of Genomics and Integrative Biology, South Campus Mathura Road, New Delhi 110020, India
| | - Dilip Kumar
- CSIR-IGIB, Institute of Genomics and Integrative Biology, South Campus Mathura Road, New Delhi 110020, India
| | - Amit Grover
- CSIR-IGIB, Institute of Genomics and Integrative Biology, South Campus Mathura Road, New Delhi 110020, India
| | - Ajit Singh
- CSIR-IGIB, Institute of Genomics and Integrative Biology, South Campus Mathura Road, New Delhi 110020, India
| | - Babu A Manjasetty
- European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, Grenoble 38042, France Unit for Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, Grenoble 38042, France
| | - Rakesh Sharma
- CSIR-IGIB, Institute of Genomics and Integrative Biology, South Campus Mathura Road, New Delhi 110020, India
| | - Bhupesh Taneja
- CSIR-IGIB, Institute of Genomics and Integrative Biology, South Campus Mathura Road, New Delhi 110020, India
| |
Collapse
|
29
|
Perdigão J, Macedo R, Machado D, Silva C, Jordão L, Couto I, Viveiros M, Portugal I. GidB mutation as a phylogenetic marker for Q1 cluster Mycobacterium tuberculosis isolates and intermediate-level streptomycin resistance determinant in Lisbon, Portugal. Clin Microbiol Infect 2014; 20:O278-84. [DOI: 10.1111/1469-0691.12392] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 11/28/2022]
|
30
|
Park SC, Song WS, Yoon SI. Structural analysis of a putative SAM-dependent methyltransferase, YtqB, from Bacillus subtilis. Biochem Biophys Res Commun 2014; 446:921-6. [PMID: 24637210 DOI: 10.1016/j.bbrc.2014.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/09/2014] [Indexed: 11/29/2022]
Abstract
S-adenosyl-L-methionine (SAM)-dependent methyltransferases (MTases) methylate diverse biological molecules using a SAM cofactor. The ytqB gene of Bacillus subtilis encodes a putative MTase and its biological function has never been characterized. To reveal the structural features and the cofactor binding mode of YtqB, we have determined the crystal structures of YtqB alone and in complex with its cofactor, SAM, at 1.9 Å and 2.2 Å resolutions, respectively. YtqB folds into a β-sheet sandwiched by two α-helical layers, and assembles into a dimeric form. Each YtqB monomer contains one SAM binding site, which shapes SAM into a slightly curved conformation and exposes the reactive methyl group of SAM potentially to a substrate. Our comparative structural analysis of YtqB and its homologues indicates that YtqB is a SAM-dependent class I MTase, and provides insights into the substrate binding site of YtqB.
Collapse
Affiliation(s)
- Sun Cheol Park
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Wan Seok Song
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Sung-il Yoon
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea; Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
31
|
Kumar A, Kumar S, Taneja B. The structure of Rv2372c identifies an RsmE-like methyltransferase fromMycobacterium tuberculosis. ACTA ACUST UNITED AC 2014; 70:821-32. [DOI: 10.1107/s1399004713033555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/11/2013] [Indexed: 12/25/2022]
Abstract
U1498 of 16S rRNA plays an important role in translation fidelity as well as in antibiotic response. U1498 is present in a methylated form in the decoding centre of the ribosome. In this study, Rv2372c fromMycobacterium tuberculosishas been identified as an RsmE-like methyltransferase which specifically methylates U1498 of 16S rRNA at the N3 position and can complement RsmE-deletedEscherichia coli. The crystal structure of Rv2372c has been determined, and reveals that the protein belongs to a distinct class in the SPOUT superfamily and exists as a dimer. The deletion of critical residues at the C-terminus of Rv2372c leads to an inability of the protein to form stable dimers and to abolition of the methyltransferase activity. A ternary model of Rv2372c with its cofactorS-adenosylmethionine (SAM) and the 16S rRNA fragment148716S rRNA1510helps to identify binding pockets for SAM (in the deep trefoil knot) and substrate RNA (at the dimer interface) and suggests an SN2 mechanism for the methylation of N3 of U1498 in 16S rRNA.
Collapse
|
32
|
Kumar A, Kumar S, Kumar D, Mishra A, Dewangan RP, Shrivastava P, Ramachandran S, Taneja B. The structure of Rv3717 reveals a novel amidase from Mycobacterium tuberculosis. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2543-54. [PMID: 24311595 PMCID: PMC3852659 DOI: 10.1107/s0907444913026371] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/24/2013] [Indexed: 11/16/2022]
Abstract
Bacterial N-acetylmuramoyl-L-alanine amidases are cell-wall hydrolases that hydrolyze the bond between N-acetylmuramic acid and L-alanine in cell-wall glycopeptides. Rv3717 of Mycobacterium tuberculosis has been identified as a unique autolysin that lacks a cell-wall-binding domain (CBD) and its structure has been determined to 1.7 Å resolution by the Pt-SAD phasing method. Rv3717 possesses an α/β-fold and is a zinc-dependent hydrolase. The structure reveals a short flexible hairpin turn that partially occludes the active site and may be involved in autoregulation. This type of autoregulation of activity of PG hydrolases has been observed in Bartonella henselae amidase (AmiB) and may be a general mechanism used by some of the redundant amidases to regulate cell-wall hydrolase activity in bacteria. Rv3717 utilizes its net positive charge for substrate binding and exhibits activity towards a broad spectrum of substrate cell walls. The enzymatic activity of Rv3717 was confirmed by isolation and identification of its enzymatic products by LC/MS. These studies indicate that Rv3717, an N-acetylmuramoyl-L-alanine amidase from M. tuberculosis, represents a new family of lytic amidases that do not have a separate CBD and are regulated conformationally.
Collapse
Affiliation(s)
- Atul Kumar
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | - Sanjiv Kumar
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | - Dilip Kumar
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | - Arpit Mishra
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | - Rikeshwer P. Dewangan
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | - Priyanka Shrivastava
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| | | | - Bhupesh Taneja
- Structural Biology Unit, CSIR–IGIB, South Campus, Mathura Road, New Delhi 110 025, India
| |
Collapse
|
33
|
Integration host factor of Mycobacterium tuberculosis, mIHF, compacts DNA by a bending mechanism. PLoS One 2013; 8:e69985. [PMID: 23922883 PMCID: PMC3724605 DOI: 10.1371/journal.pone.0069985] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 06/14/2013] [Indexed: 12/03/2022] Open
Abstract
The bacterial chromosomal DNA is folded into a compact structure called as ‘nucleoid’ so that the bacterial genome can be accommodated inside the cell. The shape and size of the nucleoid are determined by several factors including DNA supercoiling, macromolecular crowding and nucleoid associated proteins (NAPs). NAPs bind to different sites of the genome in sequence specific or non-sequence specific manner and play an important role in DNA compaction as well as regulation. Until recently, few NAPs have been discovered in mycobacteria owing to poor sequence similarities with other histone-like proteins of eubacteria. Several putative NAPs have now been identified in Mycobacteria on the basis of enriched basic residues or histone-like “PAKK” motifs. Here, we investigate mycobacterial Integration Host Factor (mIHF) for its architectural roles as a NAP using atomic force microscopy and DNA compaction experiments. We demonstrate that mIHF binds DNA in a non-sequence specific manner and compacts it by a DNA bending mechanism. AFM experiments also indicate a dual architectural role for mIHF in DNA compaction as well as relaxation. These results suggest a convergent evolution in the mechanism of E. coli and mycobacterial IHF in DNA compaction.
Collapse
|
34
|
Molecular characterization of an rsmD-like rRNA methyltransferase from the Wolbachia endosymbiont of Brugia malayi and antifilarial activity of specific inhibitors of the enzyme. Antimicrob Agents Chemother 2013; 57:3843-56. [PMID: 23733469 DOI: 10.1128/aac.02264-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The endosymbiotic organism Wolbachia is an attractive antifilarial drug target. Here we report on the cloning and expression of an rsmD-like rRNA methyltransferase from the Wolbachia endosymbiont of Brugia malayi, its molecular properties, and assays for specific inhibitors. The gene was found to be expressed in all the major life stages of B. malayi. The purified enzyme expressed in Escherichia coli was found to be in monomer form in its native state. The activities of the specific inhibitors (heteroaryl compounds) against the enzyme were tested with B. malayi adult and microfilariae for 7 days in vitro at various concentrations, and NSC-659390 proved to be the most potent compound (50% inhibitory concentration [IC50], 0.32 μM), followed by NSC-658343 (IC50, 4.13 μM) and NSC-657589 (IC50, 7.5 μM). On intraperitoneal administration at 5 mg/kg of body weight for 7 days to adult jirds into which B. malayi had been transplanted intraperitoneally, all the compounds killed a significant proportion of the implanted worms. A very similar result was observed in infected mastomys when inhibitors were administered. Docking studies of enzyme and inhibitors and an in vitro tryptophan quenching experiment were also performed to understand the binding mode and affinity. The specific inhibitors of the enzyme showed a higher affinity for the catalytic site of the enzyme than the nonspecific inhibitors and were found to be potent enough to kill the worm (both adults and microfilariae) in vitro as well as in vivo in a matter of days at micromolar concentrations. The findings suggest that these compounds be evaluated against other pathogens possessing a methyltransferase with a DPPY motif and warrant the design and synthesis of more such inhibitors.
Collapse
|
35
|
Zhang H, Gao ZQ, Wei Y, Wang WJ, Liu GF, Shtykova EV, Xu JH, Dong YH. Structural insights into the function of 23S rRNA methyltransferase RlmG (m²G1835) from Escherichia coli. RNA (NEW YORK, N.Y.) 2012; 18:1500-1509. [PMID: 22753782 PMCID: PMC3404371 DOI: 10.1261/rna.033407.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/22/2012] [Indexed: 06/01/2023]
Abstract
RlmG is a specific AdoMet-dependent methyltransferase (MTase) responsible for N²-methylation of G1835 in 23S rRNA of Escherichia coli. Methylation of m²G1835 specifically enhances association of ribosomal subunits and provides a significant advantage for bacteria in osmotic and oxidative stress. Here, the crystal structure of RlmG in complex with AdoMet and its structure in solution were determined. The structure of RlmG is similar to that of the MTase RsmC, consisting of two homologous domains: the N-terminal domain (NTD) in the recognition and binding of the substrate, and the C-terminal domain (CTD) in AdoMet-binding and the catalytic process. However, there are distinct positively charged protuberances and a distribution of conserved residues contributing to the charged surface patch, especially in the NTD of RlmG for direct binding of protein-free rRNA. The RNA-binding properties of the NTD and CTD characterized by both gel electrophoresis mobility shift assays and isothermal titration calorimetry showed that NTD could bind RNA independently and RNA binding was achieved by the NTD, accomplished by a coordinating role of the CTD. The model of the RlmG-AdoMet-RNA complex suggested that RlmG may unfold its substrate RNA in the positively charged cleft between the NTD and CTD, and then G1835 disengages from its Watson-Crick pairing with C1905 and flips out to insert into the active site. Our structure and biochemical studies provide novel insights into the catalytic mechanism of G1835 methylation.
Collapse
Affiliation(s)
- Heng Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zeng-Qiang Gao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yong Wei
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Wen-Jia Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Guang-Feng Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Eleonora V. Shtykova
- Institute of Crystallography, Russian Academy of Sciences, 117333 Moscow, Russia
| | - Jian-Hua Xu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yu-Hui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
36
|
Sergeeva OV, Prokhorova IV, Ordabaev Y, Tsvetkov PO, Sergiev PV, Bogdanov AA, Makarov AA, Dontsova OA. Properties of small rRNA methyltransferase RsmD: mutational and kinetic study. RNA (NEW YORK, N.Y.) 2012; 18:1178-1185. [PMID: 22535590 PMCID: PMC3358640 DOI: 10.1261/rna.032763.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/06/2012] [Indexed: 05/31/2023]
Abstract
Ribosomal RNA modification is accomplished by a variety of enzymes acting on all stages of ribosome assembly. Among rRNA methyltransferases of Escherichia coli, RsmD deserves special attention. Despite its minimalistic domain architecture, it is able to recognize a single target nucleotide G966 of the 16S rRNA. RsmD acts late in the assembly process and is able to modify a completely assembled 30S subunit. Here, we show that it possesses superior binding properties toward the unmodified 30S subunit but is unable to bind a 30S subunit modified at G966. RsmD is unusual in its ability to withstand multiple amino acid substitutions of the active site. Such efficiency of RsmD may be useful to complete the modification of a 30S subunit ahead of the 30S subunit's involvement in translation.
Collapse
Affiliation(s)
- Olga V. Sergeeva
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Irina V. Prokhorova
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Yerdos Ordabaev
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Philipp O. Tsvetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Petr V. Sergiev
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Alexey A. Bogdanov
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Olga A. Dontsova
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| |
Collapse
|