1
|
Venkadakrishnan J, Lahane G, Dhar A, Xiao W, Bhat KM, Pandita TK, Bhat A. Implications of Translesion DNA Synthesis Polymerases on Genomic Stability and Human Health. Mol Cell Biol 2023; 43:401-425. [PMID: 37439479 PMCID: PMC10448981 DOI: 10.1080/10985549.2023.2224199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/03/2023] [Accepted: 06/01/2023] [Indexed: 07/14/2023] Open
Abstract
Replication fork arrest-induced DNA double strand breaks (DSBs) caused by lesions are effectively suppressed in cells due to the presence of a specialized mechanism, commonly referred to as DNA damage tolerance (DDT). In eukaryotic cells, DDT is facilitated through translesion DNA synthesis (TLS) carried out by a set of DNA polymerases known as TLS polymerases. Another parallel mechanism, referred to as homology-directed DDT, is error-free and involves either template switching or fork reversal. The significance of the DDT pathway is well established. Several diseases have been attributed to defects in the TLS pathway, caused either by mutations in the TLS polymerase genes or dysregulation. In the event of a replication fork encountering a DNA lesion, cells switch from high-fidelity replicative polymerases to low-fidelity TLS polymerases, which are associated with genomic instability linked with several human diseases including, cancer. The role of TLS polymerases in chemoresistance has been recognized in recent years. In addition to their roles in the DDT pathway, understanding noncanonical functions of TLS polymerases is also a key to unraveling their importance in maintaining genomic stability. Here we summarize the current understanding of TLS pathway in DDT and its implication for human health.
Collapse
Affiliation(s)
| | - Ganesh Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Hyderabad, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Hyderabad, India
| | - Wei Xiao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Krishna Moorthi Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Audesh Bhat
- Center for Molecular Biology, Central University of Jammu, UT Jammu and Kashmir, India
| |
Collapse
|
2
|
Anand J, Chiou L, Sciandra C, Zhang X, Hong J, Wu D, Zhou P, Vaziri C. Roles of trans-lesion synthesis (TLS) DNA polymerases in tumorigenesis and cancer therapy. NAR Cancer 2023; 5:zcad005. [PMID: 36755961 PMCID: PMC9900426 DOI: 10.1093/narcan/zcad005] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
DNA damage tolerance and mutagenesis are hallmarks and enabling characteristics of neoplastic cells that drive tumorigenesis and allow cancer cells to resist therapy. The 'Y-family' trans-lesion synthesis (TLS) DNA polymerases enable cells to replicate damaged genomes, thereby conferring DNA damage tolerance. Moreover, Y-family DNA polymerases are inherently error-prone and cause mutations. Therefore, TLS DNA polymerases are potential mediators of important tumorigenic phenotypes. The skin cancer-propensity syndrome xeroderma pigmentosum-variant (XPV) results from defects in the Y-family DNA Polymerase Pol eta (Polη) and compensatory deployment of alternative inappropriate DNA polymerases. However, the extent to which dysregulated TLS contributes to the underlying etiology of other human cancers is unclear. Here we consider the broad impact of TLS polymerases on tumorigenesis and cancer therapy. We survey the ways in which TLS DNA polymerases are pathologically altered in cancer. We summarize evidence that TLS polymerases shape cancer genomes, and review studies implicating dysregulated TLS as a driver of carcinogenesis. Because many cancer treatment regimens comprise DNA-damaging agents, pharmacological inhibition of TLS is an attractive strategy for sensitizing tumors to genotoxic therapies. Therefore, we discuss the pharmacological tractability of the TLS pathway and summarize recent progress on development of TLS inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- Jay Anand
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
| | - Lilly Chiou
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Carly Sciandra
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xingyuan Zhang
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Di Wu
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3101 McGavran-Greenberg Hall, Chapel Hill, NC 27599, USA
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Toth R, Halmai M, Gyorfy Z, Balint E, Unk I. The inner side of yeast PCNA contributes to genome stability by mediating interactions with Rad18 and the replicative DNA polymerase δ. Sci Rep 2022; 12:5163. [PMID: 35338218 PMCID: PMC8956578 DOI: 10.1038/s41598-022-09208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
PCNA is a central orchestrator of cellular processes linked to DNA metabolism. It is a binding platform for a plethora of proteins and coordinates and regulates the activity of several pathways. The outer side of PCNA comprises most of the known interacting and regulatory surfaces, whereas the residues at the inner side constitute the sliding surface facing the DNA double helix. Here, by investigating the L154A mutation found at the inner side, we show that the inner surface mediates protein interactions essential for genome stability. It forms part of the binding site of Rad18, a key regulator of DNA damage tolerance, and is required for PCNA sumoylation which prevents unscheduled recombination during replication. In addition, the L154 residue is necessary for stable complex formation between PCNA and the replicative DNA polymerase δ. Hence, its absence increases the mutation burden of yeast cells due to faulty replication. In summary, the essential role of the L154 of PCNA in guarding and maintaining stable replication and promoting DNA damage tolerance reveals a new connection between these processes and assigns a new coordinating function to the central channel of PCNA.
Collapse
Affiliation(s)
- Robert Toth
- The Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged, 6726, Hungary
| | - Miklos Halmai
- The Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged, 6726, Hungary
| | - Zsuzsanna Gyorfy
- The Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged, 6726, Hungary
| | - Eva Balint
- The Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged, 6726, Hungary
| | - Ildiko Unk
- The Institute of Genetics, Biological Research Centre, Szeged, Eotvos Loránd Research Network, Szeged, 6726, Hungary.
| |
Collapse
|
4
|
'PIPs' in DNA polymerase: PCNA interaction affairs. Biochem Soc Trans 2021; 48:2811-2822. [PMID: 33196097 DOI: 10.1042/bst20200678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/15/2023]
Abstract
Interaction of PCNA with DNA polymerase is vital to efficient and processive DNA synthesis. PCNA being a homotrimeric ring possesses three hydrophobic pockets mostly involved in an interaction with its binding partners. PCNA interacting proteins contain a short sequence of eight amino acids, popularly coined as PIP motif, which snuggly fits into the hydrophobic pocket of PCNA to stabilize the interaction. In the last two decades, several PIP motifs have been mapped or predicted in eukaryotic DNA polymerases. In this review, we summarize our understandings of DNA polymerase-PCNA interaction, the function of such interaction during DNA synthesis, and emphasize the lacunae that persist. Because of the presence of multiple ligands in the replisome complex and due to many interaction sites in DNA polymerases, we also propose two modes of DNA polymerase positioning on PCNA required for DNA synthesis to rationalize the tool-belt model of DNA replication.
Collapse
|
5
|
Guilliam TA. Mechanisms for Maintaining Eukaryotic Replisome Progression in the Presence of DNA Damage. Front Mol Biosci 2021; 8:712971. [PMID: 34295925 PMCID: PMC8290200 DOI: 10.3389/fmolb.2021.712971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 12/04/2022] Open
Abstract
The eukaryotic replisome coordinates template unwinding and nascent-strand synthesis to drive DNA replication fork progression and complete efficient genome duplication. During its advancement along the parental template, each replisome may encounter an array of obstacles including damaged and structured DNA that impede its progression and threaten genome stability. A number of mechanisms exist to permit replisomes to overcome such obstacles, maintain their progression, and prevent fork collapse. A combination of recent advances in structural, biochemical, and single-molecule approaches have illuminated the architecture of the replisome during unperturbed replication, rationalised the impact of impediments to fork progression, and enhanced our understanding of DNA damage tolerance mechanisms and their regulation. This review focusses on these studies to provide an updated overview of the mechanisms that support replisomes to maintain their progression on an imperfect template.
Collapse
Affiliation(s)
- Thomas A. Guilliam
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
6
|
Sobolewska A, Halas A, Plachta M, McIntyre J, Sledziewska-Gojska E. Regulation of the abundance of Y-family polymerases in the cell cycle of budding yeast in response to DNA damage. Curr Genet 2020; 66:749-763. [PMID: 32076806 PMCID: PMC7363672 DOI: 10.1007/s00294-020-01061-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/21/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
Y-family DNA polymerases mediate DNA damage tolerance via translesion synthesis (TLS). Because of the intrinsically error-prone nature of these enzymes, their activities are regulated at several levels. Here, we demonstrate the common regulation of the cellular abundance of Y-family polymerases, polymerase eta (Pol eta), and Rev1, in response to DNA damage at various stages of the cell cycle. UV radiation influenced polymerase abundance more when cells were exposed in S-phase than in G1- or G2-phases. We noticed two opposing effects of UV radiation in S-phase. On one hand, exposure to increasing doses of UV radiation at the beginning of this phase increasingly delayed S-phase progression. As a result, the accumulation of Pol eta and Rev1, which in nonirradiated yeast is initiated at the S/G2-phase boundary, was gradually shifted into the prolonged S-phase. On the other hand, the extent of polymerase accumulation was inversely proportional to the dose of irradiation, such that the accumulation was significantly lower after exposure to 80 J/m2 in S-phase than after exposure to 50 J/m2 or 10 J/m2. The limitation of polymerase accumulation in S-phase-arrested cells in response to high UV dose was suppressed upon RAD9 (but not MRC1) deletion. Additionally, hydroxyurea, which activates mainly the Mrc1-dependent checkpoint, did not limit Pol eta or Rev1 accumulation in S-phase-arrested cells. The results show that the accumulation of Y-family TLS polymerases is limited in S-phase-arrested cells due to high levels of DNA damage and suggest a role of the Rad9 checkpoint protein in this process.
Collapse
Affiliation(s)
- Aleksandra Sobolewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Agnieszka Halas
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Michal Plachta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Ewa Sledziewska-Gojska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
7
|
Martin SK, Wood RD. DNA polymerase ζ in DNA replication and repair. Nucleic Acids Res 2019; 47:8348-8361. [PMID: 31410467 PMCID: PMC6895278 DOI: 10.1093/nar/gkz705] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/24/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022] Open
Abstract
Here, we survey the diverse functions of DNA polymerase ζ (pol ζ) in eukaryotes. In mammalian cells, REV3L (3130 residues) is the largest catalytic subunit of the DNA polymerases. The orthologous subunit in yeast is Rev3p. Pol ζ also includes REV7 subunits (encoded by Rev7 in yeast and MAD2L2 in mammalian cells) and two subunits shared with the replicative DNA polymerase, pol δ. Pol ζ is used in response to circumstances that stall DNA replication forks in both yeast and mammalian cells. The best-examined situation is translesion synthesis at sites of covalent DNA lesions such as UV radiation-induced photoproducts. We also highlight recent evidence that uncovers various roles of pol ζ that extend beyond translesion synthesis. For instance, pol ζ is also employed when the replisome operates sub-optimally or at difficult-to-replicate DNA sequences. Pol ζ also participates in repair by microhomology mediated break-induced replication. A rev3 deletion is tolerated in yeast but Rev3l disruption results in embryonic lethality in mice. Inactivation of mammalian Rev3l results in genomic instability and invokes cell death and senescence programs. Targeting of pol ζ function may be a useful strategy in cancer therapy, although chromosomal instability associated with pol ζ deficiency must be considered.
Collapse
Affiliation(s)
- Sara K Martin
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA and The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences
| |
Collapse
|
8
|
Leung W, Baxley RM, Moldovan GL, Bielinsky AK. Mechanisms of DNA Damage Tolerance: Post-Translational Regulation of PCNA. Genes (Basel) 2018; 10:genes10010010. [PMID: 30586904 PMCID: PMC6356670 DOI: 10.3390/genes10010010] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
DNA damage is a constant source of stress challenging genomic integrity. To ensure faithful duplication of our genomes, mechanisms have evolved to deal with damage encountered during replication. One such mechanism is referred to as DNA damage tolerance (DDT). DDT allows for replication to continue in the presence of a DNA lesion by promoting damage bypass. Two major DDT pathways exist: error-prone translesion synthesis (TLS) and error-free template switching (TS). TLS recruits low-fidelity DNA polymerases to directly replicate across the damaged template, whereas TS uses the nascent sister chromatid as a template for bypass. Both pathways must be tightly controlled to prevent the accumulation of mutations that can occur from the dysregulation of DDT proteins. A key regulator of error-prone versus error-free DDT is the replication clamp, proliferating cell nuclear antigen (PCNA). Post-translational modifications (PTMs) of PCNA, mainly by ubiquitin and SUMO (small ubiquitin-like modifier), play a critical role in DDT. In this review, we will discuss the different types of PTMs of PCNA and how they regulate DDT in response to replication stress. We will also cover the roles of PCNA PTMs in lagging strand synthesis, meiotic recombination, as well as somatic hypermutation and class switch recombination.
Collapse
Affiliation(s)
- Wendy Leung
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Ryan M Baxley
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
9
|
Abstract
Accurate transmission of the genetic information requires complete duplication of the chromosomal DNA each cell division cycle. However, the idea that replication forks would form at origins of DNA replication and proceed without impairment to copy the chromosomes has proven naive. It is now clear that replication forks stall frequently as a result of encounters between the replication machinery and template damage, slow-moving or paused transcription complexes, unrelieved positive superhelical tension, covalent protein-DNA complexes, and as a result of cellular stress responses. These stalled forks are a major source of genome instability. The cell has developed many strategies for ensuring that these obstructions to DNA replication do not result in loss of genetic information, including DNA damage tolerance mechanisms such as lesion skipping, whereby the replisome jumps the lesion and continues downstream; template switching both behind template damage and at the stalled fork; and the error-prone pathway of translesion synthesis.
Collapse
Affiliation(s)
- Kenneth J Marians
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA;
| |
Collapse
|
10
|
Cui G, Botuyan MV, Mer G. Structural Basis for the Interaction of Mutasome Assembly Factor REV1 with Ubiquitin. J Mol Biol 2018; 430:2042-2050. [PMID: 29778604 DOI: 10.1016/j.jmb.2018.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 11/24/2022]
Abstract
REV1 is an evolutionarily conserved translesion synthesis (TLS) DNA polymerase and an assembly factor key for the recruitment of other TLS polymerases to DNA damage sites. REV1-mediated recognition of ubiquitin in the proliferative cell nuclear antigen is thought to be the trigger for TLS activation. Here we report the solution NMR structure of a 108-residue fragment of human REV1 encompassing the two putative ubiquitin-binding motifs UBM1 and UBM2 in complex with ubiquitin. While in mammals UBM1 and UBM2 are both required for optimal association of REV1 with replication factories after DNA damage, we show that only REV1 UBM2 binds ubiquitin. Structure-guided mutagenesis in Saccharomyces cerevisiae further highlights the importance of UBM2 for REV1-mediated mutagenesis and DNA damage tolerance.
Collapse
Affiliation(s)
- Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Maria Victoria Botuyan
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
11
|
Vanarotti M, Evison BJ, Actis ML, Inoue A, McDonald ET, Shao Y, Heath RJ, Fujii N. Small-molecules that bind to the ubiquitin-binding motif of REV1 inhibit REV1 interaction with K164-monoubiquitinated PCNA and suppress DNA damage tolerance. Bioorg Med Chem 2018; 26:2345-2353. [PMID: 29598900 DOI: 10.1016/j.bmc.2018.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/09/2018] [Accepted: 03/17/2018] [Indexed: 11/27/2022]
Abstract
REV1 protein is a mutagenic DNA damage tolerance (DDT) mediator and encodes two ubiquitin-binding motifs (i.e., UBM1 and UBM2) that are essential for the DDT function. REV1 interacts with K164-monoubiquitinated PCNA (UbPCNA) in cells upon DNA-damaging stress. By using AlphaScreen assays to detect inhibition of REV1 and UbPCNA protein interactions along with an NMR-based strategy, we identified small-molecule compounds that inhibit the REV1/UbPCNA interaction and that directly bind to REV1 UBM2. In cells, one of the compound prevented recruitment of REV1 to PCNA foci on chromatin upon cisplatin treatment, delayed removal of UV-induced cyclopyrimidine dimers from nuclei, prevented UV-induced mutation of HPRT gene, and diminished clonogenic survival of cells that were challenged by cyclophosphamide or cisplatin. This study demonstrates the potential utility of a small-molecule REV1 UBM2 inhibitor for preventing DDT.
Collapse
Affiliation(s)
- Murugendra Vanarotti
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Benjamin J Evison
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Marcelo L Actis
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Akira Inoue
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ezelle T McDonald
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Youming Shao
- Protein Production Facility, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard J Heath
- Protein Production Facility, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
12
|
Hashimoto H, Hishiki A, Hara K, Kikuchi S. Structural basis for the molecular interactions in DNA damage tolerances. Biophys Physicobiol 2017; 14:199-205. [PMID: 29362705 PMCID: PMC5773155 DOI: 10.2142/biophysico.14.0_199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/18/2017] [Indexed: 01/01/2023] Open
Abstract
DNA damage tolerance (DDT) is a cell function to avoid replication arrest by DNA damage during DNA replication. DDT includes two pathways, translesion DNA synthesis (TLS) and template-switched DNA synthesis (TS). DDT is regulated by ubiquitination of proliferating cell nuclear antigen that binds to double-stranded DNA and functions as scaffold protein for DNA metabolism. TLS is transient DNA synthesis using damaged DNA as a template by error-prone DNA polymerases termed TLS polymerases specialized for DNA damage. TS, in which one newly synthesized strand is utilized as an undamaged template for replication by replicative polymerases, is error-free process. Thus, DDT is not inherently a repair pathway. DDT is a mechanism to tolerate DNA damage, giving priority to DNA synthesis and enabling finish of DNA replication for cell survival and genome stability. DDT is associated with cancer development and thus is of great interest in drug discovery for cancer therapy. This review article describes recent progress in structural studies on protein-protein and protein-DNA complexes involved in TLS and TS, providing the molecular mechanisms of interactions in DDT.
Collapse
Affiliation(s)
- Hiroshi Hashimoto
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8002, Japan
| | - Asami Hishiki
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8002, Japan
| | - Kodai Hara
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8002, Japan
| | - Sotaro Kikuchi
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8002, Japan.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
13
|
Kochenova OV, Bezalel-Buch R, Tran P, Makarova AV, Chabes A, Burgers PMJ, Shcherbakova PV. Yeast DNA polymerase ζ maintains consistent activity and mutagenicity across a wide range of physiological dNTP concentrations. Nucleic Acids Res 2017; 45:1200-1218. [PMID: 28180291 PMCID: PMC5388397 DOI: 10.1093/nar/gkw1149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 11/12/2022] Open
Abstract
In yeast, dNTP pools expand drastically during DNA damage response. We show that similar dNTP elevation occurs in strains, in which intrinsic replisome defects promote the participation of error-prone DNA polymerase ζ (Polζ) in replication of undamaged DNA. To understand the significance of dNTP pools increase for Polζ function, we studied the activity and fidelity of four-subunit Polζ (Polζ4) and Polζ4-Rev1 (Polζ5) complexes in vitro at ‘normal S-phase’ and ‘damage-response’ dNTP concentrations. The presence of Rev1 inhibited the activity of Polζ and greatly increased the rate of all three ‘X-dCTP’ mispairs, which Polζ4 alone made extremely inefficiently. Both Polζ4 and Polζ5 were most promiscuous at G nucleotides and frequently generated multiple closely spaced sequence changes. Surprisingly, the shift from ‘S-phase’ to ‘damage-response’ dNTP levels only minimally affected the activity, fidelity and error specificity of Polζ complexes. Moreover, Polζ-dependent mutagenesis triggered by replisome defects or UV irradiation in vivo was not decreased when dNTP synthesis was suppressed by hydroxyurea, indicating that Polζ function does not require high dNTP levels. The results support a model wherein dNTP elevation is needed to facilitate non-mutagenic tolerance pathways, while Polζ synthesis represents a unique mechanism of rescuing stalled replication when dNTP supply is low.
Collapse
Affiliation(s)
- Olga V Kochenova
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rachel Bezalel-Buch
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Phong Tran
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Alena V Makarova
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Peter M J Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
14
|
Hoopes JI, Hughes AL, Hobson LA, Cortez LM, Brown AJ, Roberts SA. Avoidance of APOBEC3B-induced mutation by error-free lesion bypass. Nucleic Acids Res 2017; 45:5243-5254. [PMID: 28334887 PMCID: PMC5605239 DOI: 10.1093/nar/gkx169] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/06/2017] [Indexed: 12/17/2022] Open
Abstract
APOBEC cytidine deaminases mutate cancer genomes by converting cytidines into uridines within ssDNA during replication. Although uracil DNA glycosylases limit APOBEC-induced mutation, it is unknown if subsequent base excision repair (BER) steps function on replication-associated ssDNA. Hence, we measured APOBEC3B-induced CAN1 mutation frequencies in yeast deficient in BER endonucleases or DNA damage tolerance proteins. Strains lacking Apn1, Apn2, Ntg1, Ntg2 or Rev3 displayed wild-type frequencies of APOBEC3B-induced canavanine resistance (CanR). However, strains without error-free lesion bypass proteins Ubc13, Mms2 and Mph1 displayed respective 4.9-, 2.8- and 7.8-fold higher frequency of APOBEC3B-induced CanR. These results indicate that mutations resulting from APOBEC activity are avoided by deoxyuridine conversion to abasic sites ahead of nascent lagging strand DNA synthesis and subsequent bypass by error-free template switching. We found this mechanism also functions during telomere re-synthesis, but with a diminished requirement for Ubc13. Interestingly, reduction of G to C substitutions in Ubc13-deficient strains uncovered a previously unknown role of Ubc13 in controlling the activity of the translesion synthesis polymerase, Rev1. Our results highlight a novel mechanism for error-free bypass of deoxyuridines generated within ssDNA and suggest that the APOBEC mutation signature observed in cancer genomes may under-represent the genomic damage these enzymes induce.
Collapse
Affiliation(s)
- James I Hoopes
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Amber L Hughes
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Lauren A Hobson
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Luis M Cortez
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Alexander J Brown
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Steven A Roberts
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
15
|
Zhao L, Washington MT. Translesion Synthesis: Insights into the Selection and Switching of DNA Polymerases. Genes (Basel) 2017; 8:genes8010024. [PMID: 28075396 PMCID: PMC5295019 DOI: 10.3390/genes8010024] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 01/05/2023] Open
Abstract
DNA replication is constantly challenged by DNA lesions, noncanonical DNA structures and difficult-to-replicate DNA sequences. Two major strategies to rescue a stalled replication fork and to ensure continuous DNA synthesis are: (1) template switching and recombination-dependent DNA synthesis; and (2) translesion synthesis (TLS) using specialized DNA polymerases to perform nucleotide incorporation opposite DNA lesions. The former pathway is mainly error-free, and the latter is error-prone and a major source of mutagenesis. An accepted model of translesion synthesis involves DNA polymerase switching steps between a replicative DNA polymerase and one or more TLS DNA polymerases. The mechanisms that govern the selection and exchange of specialized DNA polymerases for a given DNA lesion are not well understood. In this review, recent studies concerning the mechanisms of selection and switching of DNA polymerases in eukaryotic systems are summarized.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - M Todd Washington
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
16
|
Halmai M, Frittmann O, Szabo Z, Daraba A, Gali VK, Balint E, Unk I. Mutations at the Subunit Interface of Yeast Proliferating Cell Nuclear Antigen Reveal a Versatile Regulatory Domain. PLoS One 2016; 11:e0161307. [PMID: 27537501 PMCID: PMC4990258 DOI: 10.1371/journal.pone.0161307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/03/2016] [Indexed: 11/19/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) plays a key role in many cellular processes and due to that it interacts with a plethora of proteins. The main interacting surfaces of Saccharomyces cerevisiae PCNA have been mapped to the interdomain connecting loop and to the carboxy-terminal domain. Here we report that the subunit interface of yeast PCNA also has regulatory roles in the function of several DNA damage response pathways. Using site-directed mutagenesis we engineered mutations at both sides of the interface and investigated the effect of these alleles on DNA damage response. Genetic experiments with strains bearing the mutant alleles revealed that mutagenic translesion synthesis, nucleotide excision repair, and homologous recombination are all regulated through residues at the subunit interface. Moreover, genetic characterization of one of our mutants identifies a new sub-branch of nucleotide excision repair. Based on these results we conclude that residues at the subunit boundary of PCNA are not only important for the formation of the trimer structure of PCNA, but they constitute a regulatory protein domain that mediates different DNA damage response pathways, as well.
Collapse
Affiliation(s)
- Miklos Halmai
- The Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Orsolya Frittmann
- The Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zoltan Szabo
- The Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Andreea Daraba
- The Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Vamsi K. Gali
- The Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Eva Balint
- The Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ildiko Unk
- The Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail:
| |
Collapse
|
17
|
Quinet A, Martins DJ, Vessoni AT, Biard D, Sarasin A, Stary A, Menck CFM. Translesion synthesis mechanisms depend on the nature of DNA damage in UV-irradiated human cells. Nucleic Acids Res 2016; 44:5717-31. [PMID: 27095204 PMCID: PMC4937316 DOI: 10.1093/nar/gkw280] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 04/06/2016] [Indexed: 12/17/2022] Open
Abstract
Ultraviolet-induced 6-4 photoproducts (6-4PP) and cyclobutane pyrimidine dimers (CPD) can be tolerated by translesion DNA polymerases (TLS Pols) at stalled replication forks or by gap-filling. Here, we investigated the involvement of Polη, Rev1 and Rev3L (Polζ catalytic subunit) in the specific bypass of 6-4PP and CPD in repair-deficient XP-C human cells. We combined DNA fiber assay and novel methodologies for detection and quantification of single-stranded DNA (ssDNA) gaps on ongoing replication forks and postreplication repair (PRR) tracts in the human genome. We demonstrated that Rev3L, but not Rev1, is required for postreplicative gap-filling, while Polη and Rev1 are responsible for TLS at stalled replication forks. Moreover, specific photolyases were employed to show that in XP-C cells, CPD arrest replication forks, while 6-4PP are responsible for the generation of ssDNA gaps and PRR tracts. On the other hand, in the absence of Polη or Rev1, both types of lesion block replication forks progression. Altogether, the data directly show that, in the human genome, Polη and Rev1 bypass CPD and 6-4PP at replication forks, while only 6-4PP are also tolerated by a Polζ-dependent gap-filling mechanism, independent of S phase.
Collapse
Affiliation(s)
- Annabel Quinet
- Institute of Biomedical Sciences, University of São Paulo, SP, 05508-000, Brazil
| | - Davi Jardim Martins
- Institute of Biomedical Sciences, University of São Paulo, SP, 05508-000, Brazil
| | | | - Denis Biard
- CEA, IMETI, SEPIA, Team Cellular Engineering and Human Syndromes, F-92265 Fontenay-aux-Roses, France
| | - Alain Sarasin
- CNRS-UMR8200, Université Paris Sud, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | - Anne Stary
- CNRS-UMR8200, Université Paris Sud, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | | |
Collapse
|
18
|
Pustovalova Y, Magalhães MTQ, D'Souza S, Rizzo AA, Korza G, Walker GC, Korzhnev DM. Interaction between the Rev1 C-Terminal Domain and the PolD3 Subunit of Polζ Suggests a Mechanism of Polymerase Exchange upon Rev1/Polζ-Dependent Translesion Synthesis. Biochemistry 2016; 55:2043-53. [PMID: 26982350 DOI: 10.1021/acs.biochem.5b01282] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Translesion synthesis (TLS) is a mutagenic branch of cellular DNA damage tolerance that enables bypass replication over DNA lesions carried out by specialized low-fidelity DNA polymerases. The replicative bypass of most types of DNA damage is performed in a two-step process of Rev1/Polζ-dependent TLS. In the first step, a Y-family TLS enzyme, typically Polη, Polι, or Polκ, inserts a nucleotide across a DNA lesion. In the second step, a four-subunit B-family DNA polymerase Polζ (Rev3/Rev7/PolD2/PolD3 complex) extends the distorted DNA primer-template. The coordinated action of error-prone TLS enzymes is regulated through their interactions with the two scaffold proteins, the sliding clamp PCNA and the TLS polymerase Rev1. Rev1 interactions with all other TLS enzymes are mediated by its C-terminal domain (Rev1-CT), which can simultaneously bind the Rev7 subunit of Polζ and Rev1-interacting regions (RIRs) from Polη, Polι, or Polκ. In this work, we identified a previously unknown RIR motif in the C-terminal part of PolD3 subunit of Polζ whose interaction with the Rev1-CT is among the tightest mediated by RIR motifs. Three-dimensional structure of the Rev1-CT/PolD3-RIR complex determined by NMR spectroscopy revealed a structural basis for the relatively high affinity of this interaction. The unexpected discovery of PolD3-RIR motif suggests a mechanism of "inserter" to "extender" DNA polymerase switch upon Rev1/Polζ-dependent TLS, in which the PolD3-RIR binding to the Rev1-CT (i) helps displace the "inserter" Polη, Polι, or Polκ from its complex with Rev1, and (ii) facilitates assembly of the four-subunit "extender" Polζ through simultaneous interaction of Rev1-CT with Rev7 and PolD3 subunits.
Collapse
Affiliation(s)
- Yulia Pustovalova
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center , Farmington, Connecticut 06030, United States
| | - Mariana T Q Magalhães
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center , Farmington, Connecticut 06030, United States
| | - Sanjay D'Souza
- Department of Biology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Alessandro A Rizzo
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center , Farmington, Connecticut 06030, United States
| | - George Korza
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center , Farmington, Connecticut 06030, United States
| | - Graham C Walker
- Department of Biology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center , Farmington, Connecticut 06030, United States
| |
Collapse
|
19
|
Makarova AV, Burgers PM. Eukaryotic DNA polymerase ζ. DNA Repair (Amst) 2015; 29:47-55. [PMID: 25737057 DOI: 10.1016/j.dnarep.2015.02.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/16/2022]
Abstract
This review focuses on eukaryotic DNA polymerase ζ (Pol ζ), the enzyme responsible for the bulk of mutagenesis in eukaryotic cells in response to DNA damage. Pol ζ is also responsible for a large portion of mutagenesis during normal cell growth, in response to spontaneous damage or to certain DNA structures and other blocks that stall DNA replication forks. Novel insights in mutagenesis have been derived from recent advances in the elucidation of the subunit structure of Pol ζ. The lagging strand DNA polymerase δ shares the small Pol31 and Pol32 subunits with the Rev3-Rev7 core assembly giving a four subunit Pol ζ complex that is the active form in mutagenesis. Furthermore, Pol ζ forms essential interactions with the mutasome assembly factor Rev1 and with proliferating cell nuclear antigen (PCNA). These interactions are modulated by posttranslational modifications such as ubiquitination and phosphorylation that enhance translesion synthesis (TLS) and mutagenesis.
Collapse
Affiliation(s)
- Alena V Makarova
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Institute of Molecular Genetics, Russian Academy of Sciences (IMG RAS), Kurchatov Sq. 2, Moscow 123182, Russia
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Inoue A, Kikuchi S, Hishiki A, Shao Y, Heath R, Evison BJ, Actis M, Canman CE, Hashimoto H, Fujii N. A small molecule inhibitor of monoubiquitinated Proliferating Cell Nuclear Antigen (PCNA) inhibits repair of interstrand DNA cross-link, enhances DNA double strand break, and sensitizes cancer cells to cisplatin. J Biol Chem 2014; 289:7109-7120. [PMID: 24474685 DOI: 10.1074/jbc.m113.520429] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Small molecule inhibitors of proliferating cell nuclear antigen (PCNA)/PCNA interacting protein box (PIP-Box) interactions, including T2 amino alcohol (T2AA), inhibit translesion DNA synthesis. The crystal structure of PCNA in complex with T2AA revealed that T2AA bound to the surface adjacent to the subunit interface of the homotrimer of PCNA in addition to the PIP-box binding cavity. Because this site is close to Lys-164, which is monoubiquitinated by RAD18, we postulated that T2AA would affect monoubiquitinated PCNA interactions. Binding of monoubiquitinated PCNA and a purified pol η fragment containing the UBZ and PIP-box was inhibited by T2AA in vitro. T2AA decreased PCNA/pol η and PCNA/REV1 chromatin colocalization but did not inhibit PCNA monoubiquitination, suggesting that T2AA hinders interactions of pol η and REV1 with monoubiquitinated PCNA. Interstrand DNA cross-links (ICLs) are repaired by mechanisms using translesion DNA synthesis that is regulated by monoubiquitinated PCNA. T2AA significantly delayed reactivation of a reporter plasmid containing an ICL. Neutral comet analysis of cells receiving T2AA in addition to cisplatin revealed that T2AA significantly enhanced formation of DNA double strand breaks (DSBs) by cisplatin. T2AA promoted colocalized foci formation of phospho-ATM and 53BP1 and up-regulated phospho-BRCA1 in cisplatin-treated cells, suggesting that T2AA increases DSBs. When cells were treated by cisplatin and T2AA, their clonogenic survival was significantly less than that of those treated by cisplatin only. These findings show that the inhibitors of monoubiquitinated PCNA chemosensitize cells by inhibiting repair of ICLs and DSBs.
Collapse
Affiliation(s)
- Akira Inoue
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38138
| | - Sotaro Kikuchi
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Asami Hishiki
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Youming Shao
- Protein Production Facility, St. Jude Children's Research Hospital, Memphis, Tennessee 38138
| | - Richard Heath
- Protein Production Facility, St. Jude Children's Research Hospital, Memphis, Tennessee 38138
| | - Benjamin J Evison
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38138
| | - Marcelo Actis
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38138
| | - Christine E Canman
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Hiroshi Hashimoto
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38138.
| |
Collapse
|
21
|
Daraba A, Gali VK, Halmai M, Haracska L, Unk I. Def1 promotes the degradation of Pol3 for polymerase exchange to occur during DNA-damage--induced mutagenesis in Saccharomyces cerevisiae. PLoS Biol 2014; 12:e1001771. [PMID: 24465179 PMCID: PMC3897375 DOI: 10.1371/journal.pbio.1001771] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/09/2013] [Indexed: 01/19/2023] Open
Abstract
DNA damages hinder the advance of replication forks because of the inability of the replicative polymerases to synthesize across most DNA lesions. Because stalled replication forks are prone to undergo DNA breakage and recombination that can lead to chromosomal rearrangements and cell death, cells possess different mechanisms to ensure the continuity of replication on damaged templates. Specialized, translesion synthesis (TLS) polymerases can take over synthesis at DNA damage sites. TLS polymerases synthesize DNA with a high error rate and are responsible for damage-induced mutagenesis, so their activity must be strictly regulated. However, the mechanism that allows their replacement of the replicative polymerase is unknown. Here, using protein complex purification and yeast genetic tools, we identify Def1 as a key factor for damage-induced mutagenesis in yeast. In in vivo experiments we demonstrate that upon DNA damage, Def1 promotes the ubiquitylation and subsequent proteasomal degradation of Pol3, the catalytic subunit of the replicative polymerase δ, whereas Pol31 and Pol32, the other two subunits of polymerase δ, are not affected. We also show that purified Pol31 and Pol32 can form a complex with the TLS polymerase Rev1. Our results imply that TLS polymerases carry out DNA lesion bypass only after the Def1-assisted removal of Pol3 from the stalled replication fork.
Collapse
Affiliation(s)
- Andreea Daraba
- The Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Vamsi K. Gali
- The Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Miklós Halmai
- The Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Lajos Haracska
- The Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ildiko Unk
- The Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail:
| |
Collapse
|
22
|
Northam MR, Moore EA, Mertz TM, Binz SK, Stith CM, Stepchenkova EI, Wendt KL, Burgers PMJ, Shcherbakova PV. DNA polymerases ζ and Rev1 mediate error-prone bypass of non-B DNA structures. Nucleic Acids Res 2013; 42:290-306. [PMID: 24049079 PMCID: PMC3874155 DOI: 10.1093/nar/gkt830] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA polymerase ζ (Pol ζ) and Rev1 are key players in translesion DNA synthesis. The error-prone Pol ζ can also participate in replication of undamaged DNA when the normal replisome is impaired. Here we define the nature of the replication disturbances that trigger the recruitment of error-prone polymerases in the absence of DNA damage and describe the specific roles of Rev1 and Pol ζ in handling these disturbances. We show that Pol ζ/Rev1-dependent mutations occur at sites of replication stalling at short repeated sequences capable of forming hairpin structures. The Rev1 deoxycytidyl transferase can take over the stalled replicative polymerase and incorporate an additional 'C' at the hairpin base. Full hairpin bypass often involves template-switching DNA synthesis, subsequent realignment generating multiply mismatched primer termini and extension of these termini by Pol ζ. The postreplicative pathway dependent on polyubiquitylation of proliferating cell nuclear antigen provides a backup mechanism for accurate bypass of these sequences that is primarily used when the Pol ζ/Rev1-dependent pathway is inactive. The results emphasize the pivotal role of noncanonical DNA structures in mutagenesis and reveal the long-sought-after mechanism of complex mutations that represent a unique signature of Pol ζ.
Collapse
Affiliation(s)
- Matthew R Northam
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68118, USA and Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Qin Z, Lu M, Xu X, Hanna M, Shiomi N, Xiao W. DNA-damage tolerance mediated by PCNA*Ub fusions in human cells is dependent on Rev1 but not Polη. Nucleic Acids Res 2013; 41:7356-69. [PMID: 23761444 PMCID: PMC3753651 DOI: 10.1093/nar/gkt542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In response to replication-blocking lesions, proliferating cell nuclear antigen (PCNA) can be sequentially ubiquitinated at the K164 residue, leading to two modes of DNA-damage tolerance, namely, translesion DNA synthesis (TLS) and error-free lesion bypass. Although the majority of reported data support a model whereby monoubiquitinated PCNA enhances its affinity for TLS polymerases and hence recruits them to the damage sites, this model has also been challenged by several observations. In this study, we expressed the PCNA-164R and ubiquitin (UB) fusion genes in an inducible manner in an attempt to mimic PCNA monoubiquitination in cultured human cells. It was found that expression of both N- and C-terminal PCNA•Ub fusions conferred significant tolerance to ultraviolet (UV)-induced DNA damage. Surprisingly, depletion of Polη, a TLS polymerase dedicated to bypassing UV-induced pyrimidine dimers, did not alter tolerance conferred by PCNA•Ub. In contrast, depletion of Rev1, another TLS polymerase serving as a scaffold for the assembly of the TLS complex, completely abolished PCNA•Ub-mediated damage tolerance. Similar genetic interactions were confirmed when UV-induced monoubiquitination of endogenous PCNA is abolished by RAD18 deletion. Hence, PCNA•Ub fusions bypass the requirement for PCNA monoubiquitination, and UV damage tolerance conferred by these fusions is dependent on Rev1 but independent of Polη.
Collapse
Affiliation(s)
- Zhoushuai Qin
- College of Life Sciences, Capital Normal University, Beijing 100048, China, Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon S7N 5E5, Canada and Project for Environmental Dynamics and Radiation Effects, Fukushima Project Headquarters, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | | | | | | | | | | |
Collapse
|
24
|
NMR mapping of PCNA interaction with translesion synthesis DNA polymerase Rev1 mediated by Rev1-BRCT domain. J Mol Biol 2013; 425:3091-105. [PMID: 23747975 DOI: 10.1016/j.jmb.2013.05.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/13/2013] [Accepted: 05/30/2013] [Indexed: 01/13/2023]
Abstract
Rev1 is a Y-family translesion synthesis (TLS) DNA polymerase involved in bypass replication across sites of DNA damage and postreplicational gap filling. In the process of TLS, high-fidelity replicative DNA polymerases stalled by DNA damage are replaced by error-prone TLS enzymes responsible for the majority of mutagenesis in eukaryotic cells. The polymerase exchange that gains low-fidelity TLS polymerases access to DNA is mediated by their interactions with proliferating cell nuclear antigen (PCNA). Rev1 stands alone from other Y-family TLS enzymes since it lacks the consensus PCNA-interacting protein box (PIP-box) motif, instead utilizing other modular domains for PCNA binding. Here we report solution NMR structure of an 11-kDa BRCA1 C-terminus (BRCT) domain from Saccharomyces cerevisiae Rev1 and demonstrate with the use of transverse relaxation optimized spectroscopy (TROSY) NMR methods that Rev1-BRCT domain directly interacts with an 87-kDa PCNA in solution. The domain adopts α/β fold (β1-α1-β2-β3-α2-β4-α3-α4) typical for BRCT domain superfamily. PCNA-binding interface of the Rev1-BRCT domain comprises conserved residues of the outer surface of the α1-helix and the α1-β1, β2-β3 and β3-α2 loops. On the other hand, Rev1-BRCT binds to the inter-domain region of PCNA that overlaps with the binding site for the PIP-box motif. Furthermore, Rev1-BRCT domain bound to PCNA can be displaced by increasing amounts of the PIP-box peptide from TLS DNA polymerase polη, suggesting that Rev1-BRCT and polη PIP-box interactions with the same PCNA monomer are mutually exclusive. These results provide structural insights into PCNA recognition by TLS DNA polymerases that help better understand TLS regulation in eukaryotes.
Collapse
|
25
|
Ulrich HD, Takahashi DT. Readers of PCNA modifications. Chromosoma 2013; 122:259-74. [PMID: 23580141 PMCID: PMC3714560 DOI: 10.1007/s00412-013-0410-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 01/29/2023]
Abstract
The eukaryotic sliding clamp, proliferating cell nuclear antigen (PCNA), acts as a central coordinator of DNA transactions by providing a multivalent interaction surface for factors involved in DNA replication, repair, chromatin dynamics and cell cycle regulation. Posttranslational modifications (PTMs), such as mono- and polyubiquitylation, sumoylation, phosphorylation and acetylation, further expand the repertoire of PCNA’s binding partners. These modifications affect PCNA’s activity in the bypass of lesions during DNA replication, the regulation of alternative damage processing pathways such as homologous recombination and DNA interstrand cross-link repair, or impact on the stability of PCNA itself. In this review, we summarise our current knowledge about how the PTMs are “read” by downstream effector proteins that mediate the appropriate action. Given the variety of interaction partners responding to PCNA’s modified forms, the ensemble of PCNA modifications serves as an instructive model for the study of biological signalling through PTMs in general.
Collapse
Affiliation(s)
- Helle D Ulrich
- Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms EN6 3LD, UK.
| | | |
Collapse
|
26
|
Actis M, Inoue A, Evison B, Perry S, Punchihewa C, Fujii N. Small molecule inhibitors of PCNA/PIP-box interaction suppress translesion DNA synthesis. Bioorg Med Chem 2013; 21:1972-7. [DOI: 10.1016/j.bmc.2013.01.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/02/2013] [Accepted: 01/11/2013] [Indexed: 12/19/2022]
|
27
|
Dieckman LM, Washington MT. PCNA trimer instability inhibits translesion synthesis by DNA polymerase η and by DNA polymerase δ. DNA Repair (Amst) 2013; 12:367-76. [PMID: 23506842 DOI: 10.1016/j.dnarep.2013.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/29/2022]
Abstract
Translesion synthesis (TLS), the process by which DNA polymerases replicate through DNA lesions, is the source of most DNA damage-induced mutations. Sometimes TLS is carried out by replicative polymerases that have evolved to synthesize DNA on non-damaged templates. Most of the time, however, TLS is carried out by specialized translesion polymerases that have evolved to synthesize DNA on damaged templates. TLS requires the mono-ubiquitylation of the replication accessory factor proliferating cell nuclear antigen (PCNA). PCNA and ubiquitin-modified PCNA (UbPCNA) stimulate TLS by replicative and translesion polymerases. Two mutant forms of PCNA, one with an E113G substitution and one with a G178S substitution, support normal cell growth but inhibit TLS thereby reducing mutagenesis in yeast. A re-examination of the structures of both mutant PCNA proteins revealed substantial disruptions of the subunit interface that forms the PCNA trimer. Both mutant proteins have reduced trimer stability with the G178S substitution causing a more severe defect. The mutant forms of PCNA and UbPCNA do not stimulate TLS of an abasic site by either replicative Pol δ or translesion Pol η. Normal replication by Pol η was also impacted, but normal replication by Pol δ was much less affected. These findings support a model in which reduced trimer stability causes these mutant PCNA proteins to occasionally undergo conformational changes that compromise their ability to stimulate TLS by both replicative and translesion polymerases.
Collapse
Affiliation(s)
- Lynne M Dieckman
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, United States
| | | |
Collapse
|
28
|
Waisertreiger ISR, Liston VG, Menezes MR, Kim HM, Lobachev KS, Stepchenkova EI, Tahirov TH, Rogozin IB, Pavlov YI. Modulation of mutagenesis in eukaryotes by DNA replication fork dynamics and quality of nucleotide pools. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:699-724. [PMID: 23055184 PMCID: PMC3893020 DOI: 10.1002/em.21735] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 06/01/2023]
Abstract
The rate of mutations in eukaryotes depends on a plethora of factors and is not immediately derived from the fidelity of DNA polymerases (Pols). Replication of chromosomes containing the anti-parallel strands of duplex DNA occurs through the copying of leading and lagging strand templates by a trio of Pols α, δ and ϵ, with the assistance of Pol ζ and Y-family Pols at difficult DNA template structures or sites of DNA damage. The parameters of the synthesis at a given location are dictated by the quality and quantity of nucleotides in the pools, replication fork architecture, transcription status, regulation of Pol switches, and structure of chromatin. The result of these transactions is a subject of survey and editing by DNA repair.
Collapse
Affiliation(s)
- Irina S.-R. Waisertreiger
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Victoria G. Liston
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Miriam R. Menezes
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Hyun-Min Kim
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A
| | - Kirill S. Lobachev
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A
| | - Elena I. Stepchenkova
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
- Saint Petersburg Branch of Vavilov Institute of General Genetics, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
- Department of Genetics, Saint Petersburg University, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
| | - Tahir H. Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
| | - Igor B. Rogozin
- National Center for Biotechnology Information NLM, National Institutes of Health, Bethesda, MD 20894, U.S.A
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia
| | - Youri. I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, ESH 7009, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, U.S.A
- Department of Genetics, Saint Petersburg University, Universitetskaya emb. 7/9, St Petersburg, 199034, Russia
| |
Collapse
|
29
|
Zan H, White CA, Thomas LM, Mai T, Li G, Xu Z, Zhang J, Casali P. Rev1 recruits ung to switch regions and enhances du glycosylation for immunoglobulin class switch DNA recombination. Cell Rep 2012; 2:1220-32. [PMID: 23140944 DOI: 10.1016/j.celrep.2012.09.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/29/2012] [Accepted: 09/24/2012] [Indexed: 02/03/2023] Open
Abstract
By diversifying the biological effector functions of antibodies, class switch DNA recombination (CSR) plays a critical role in the maturation of the immune response. It is initiated by activation-induced cytidine deaminase (AID)-mediated deoxycytosine deamination, yielding deoxyuridine (dU), and dU glycosylation by uracil DNA glycosylase (Ung) in antibody switch (S) region DNA. Here we showed that the translesion DNA synthesis polymerase Rev1 directly interacted with Ung and targeted in an AID-dependent and Ung-independent fashion the S regions undergoing CSR. Rev1(-/-)Ung(+/+) B cells reduced Ung recruitment to S regions, DNA-dU glycosylation, and CSR. Together with an S region spectrum of mutations similar to that of Rev1(+/+)Ung(-/-) B cells, this suggests that Rev1 operates in the same pathway as Ung, as emphasized by further decreased CSR in Rev1(-/-)Msh2(-/-) B cells. Rescue of CSR in Rev1(-/-) B cells by a catalytically inactive Rev1 mutant shows that the important role of Rev1 in CSR is mediated by Rev1's scaffolding function, not its enzymatic function.
Collapse
Affiliation(s)
- Hong Zan
- Institute for Immunology and School of Medicine, University of California, 3028 Hewitt Hall, Irvine, CA 92697-4120, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Pozhidaeva A, Pustovalova Y, D'Souza S, Bezsonova I, Walker GC, Korzhnev DM. NMR structure and dynamics of the C-terminal domain from human Rev1 and its complex with Rev1 interacting region of DNA polymerase η. Biochemistry 2012; 51:5506-20. [PMID: 22691049 DOI: 10.1021/bi300566z] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Rev1 is a translesion synthesis (TLS) DNA polymerase essential for DNA damage tolerance in eukaryotes. In the process of TLS stalled high-fidelity replicative DNA polymerases are temporarily replaced by specialized TLS enzymes that can bypass sites of DNA damage (lesions), thus allowing replication to continue or postreplicational gaps to be filled. Despite its limited catalytic activity, human Rev1 plays a key role in TLS by serving as a scaffold that provides an access of Y-family TLS polymerases polη, ι, and κ to their cognate DNA lesions and facilitates their subsequent exchange to polζ that extends the distorted DNA primer-template. Rev1 interaction with the other major human TLS polymerases, polη, ι, κ, and the regulatory subunit Rev7 of polζ, is mediated by Rev1 C-terminal domain (Rev1-CT). We used NMR spectroscopy to determine the spatial structure of the Rev1-CT domain (residues 1157-1251) and its complex with Rev1 interacting region (RIR) from polη (residues 524-539). The domain forms a four-helix bundle with a well-structured N-terminal β-hairpin docking against helices 1 and 2, creating a binding pocket for the two conserved Phe residues of the RIR motif that upon binding folds into an α-helix. NMR spin-relaxation and NMR relaxation dispersion measurements suggest that free Rev1-CT and Rev1-CT/polη-RIR complex exhibit μs-ms conformational dynamics encompassing the RIR binding site, which might facilitate selection of the molecular configuration optimal for binding. These results offer new insights into the control of TLS in human cells by providing a structural basis for understanding the recognition of the Rev1-CT by Y-family DNA polymerases.
Collapse
Affiliation(s)
- Alexandra Pozhidaeva
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, 06030, United States
| | | | | | | | | | | |
Collapse
|
31
|
Hashimoto K, Cho Y, Yang IY, Akagi JI, Ohashi E, Tateishi S, de Wind N, Hanaoka F, Ohmori H, Moriya M. The vital role of polymerase ζ and REV1 in mutagenic, but not correct, DNA synthesis across benzo[a]pyrene-dG and recruitment of polymerase ζ by REV1 to replication-stalled site. J Biol Chem 2012; 287:9613-22. [PMID: 22303021 DOI: 10.1074/jbc.m111.331728] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The DNA synthesis across DNA lesions, termed translesion synthesis (TLS), is a complex process influenced by various factors. To investigate this process in mammalian cells, we examined TLS across a benzo[a]pyrene dihydrodiol epoxide-derived dG adduct (BPDE-dG) using a plasmid bearing a single BPDE-dG and genetically engineered mouse embryonic fibroblasts (MEFs). In wild-type MEFs, TLS was extremely miscoding (>90%) with G → T transversions being predominant. Knockout of the Rev1 gene decreased both the TLS efficiency and the miscoding frequency. Knockout of the Rev3L gene, coding for the catalytic subunit of pol ζ, caused even greater decreases in these two TLS parameters; almost all residual TLS were error-free. Thus, REV1 and pol ζ are critical to mutagenic, but not accurate, TLS across BPDE-dG. The introduction of human REV1 cDNA into Rev1(-/-) MEFs restored the mutagenic TLS, but a REV1 mutant lacking the C terminus did not. Yeast and mammalian three-hybrid assays revealed that the REV7 subunit of pol ζ mediated the interaction between REV3 and the REV1 C terminus. These results support the hypothesis that REV1 recruits pol ζ through the interaction with REV7. Our results also predict the existence of a minor REV1-independent pol ζ recruitment pathway. Finally, although mutagenic TLS across BPDE-dG largely depends on RAD18, experiments using Polk(-/-) Polh(-/-) Poli(-/-) triple-gene knockout MEFs unexpectedly revealed that another polymerase(s) could insert a nucleotide opposite BPDE-dG. This indicates that a non-Y family polymerase(s) can insert a nucleotide opposite BPDE-dG, but the subsequent extension from miscoding termini depends on REV1-polζ in a RAD18-dependent manner.
Collapse
Affiliation(s)
- Keiji Hashimoto
- Department of Pharmacological Sciences, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|