1
|
de Albuquerque Dias R, Balbinot KM, da Silva KD, Gomes APN, Mosconi C, de Mendonça EF, Tarquinio SBC, Alves Junior SDM, de Aguiar MCF, Viana Pinheiro JDJ. Are hypoxia-related proteins associated with the invasiveness of glandular odontogenic cysts? A multicenter study. Arch Oral Biol 2025; 171:106151. [PMID: 39644628 DOI: 10.1016/j.archoralbio.2024.106151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE The study aimed to investigate the expression of hypoxia markers associated with invadopodia in glandular odontogenic cysts and to explore an association between this expression with the aggressive biological behaviour of this odontogenic cyst. DESIGN Immunohistochemistry was employed to assess the expression of hypoxia-inducible factor 1 alpha (HIF-1α), notch homologous protein of the neurogenic locus 1 (NOTCH-1), disintegrin and metalloproteinase-12 (ADAM-12), and heparin-binding epidermal growth factor (HB-EGF) in 17 samples of glandular odontogenic cysts, 10 samples of calcifying odontogenic cysts, and 10 samples of dental follicles. RESULTS The glandular odontogenic cyst samples exhibited increased expression of HIF-1α, NOTCH-1, ADAM-12 and HBEGF proteins compared with calcifying odontogenic cyst and dental follicle samples. HIF-1α demonstrated localization primarily within the nuclei of cystic epithelial cells of the glandular odontogenic cyst. NOTCH-1 and ADAM-12 exhibited expression in the cytoplasm and nuclei of epithelial and mucous cells of the glandular odontogenic cyst, of whereas HB-EGF was predominantly expressed in the cytoplasm. Weak labeling of these proteins was observed in the odontogenic epithelium of the calcifying odontogenic cyst and dental follicle samples. CONCLUSIONS The hypoxia-related signaling proteins are overexpressed in glandular odontogenic cyst when compared with calcifying odontogenic cyst and dental follicle. The reported aggressiveness of glandular odontogenic cyst can be partially explained by the expression of these proteins.
Collapse
Affiliation(s)
- Rafaela de Albuquerque Dias
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Universidade Federal do Pará, Belém, Pará, Brazil.
| | - Karolyny Martins Balbinot
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Universidade Federal do Pará, Belém, Pará, Brazil.
| | - Karine Duarte da Silva
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Ana Paula Neutzling Gomes
- Department of Semiology and Clinics, School of Dentistry, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| | - Carla Mosconi
- Department of Oral Pathology, School of Dentistry, Universidade Federal de Goiás, Goiás, Goiânia, Brazil.
| | | | - Sandra Beatriz Chaves Tarquinio
- Department of Semiology and Clinics, School of Dentistry, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| | - Sérgio de Melo Alves Junior
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Universidade Federal do Pará, Belém, Pará, Brazil.
| | - Maria Cássia Ferreira de Aguiar
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - João de Jesus Viana Pinheiro
- Laboratory of Histopathology and Immunohistochemistry, School of Dentistry, Universidade Federal do Pará, Belém, Pará, Brazil.
| |
Collapse
|
2
|
Wang G, Romero Y, Thevarajan I, Zolkiewska A. ADAM12 abrogation alters immune cell infiltration and improves response to checkpoint blockade therapy in the T11 murine model of triple-negative breast cancer. Oncoimmunology 2022; 12:2158006. [PMID: 36545255 PMCID: PMC9762783 DOI: 10.1080/2162402x.2022.2158006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Immunosuppressive tumor microenvironment (TME) impedes anti-tumor immune responses and contributes to immunotherapy resistance in triple-negative breast cancer (TNBC). ADAM12, a member of cell surface metalloproteases, is selectively upregulated in mesenchymal/claudin-low TNBCs, where its expression is largely restricted to tumor cells. The role of cancer cell-expressed ADAM12 in modulating the immune TME is not known. We show that Adam12 knockout in the T11 mouse syngeneic transplantation model of claudin-low TNBC leads to decreased numbers of tumor-infiltrating neutrophils (TINs)/polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and increased numbers of tumor-infiltrating B cells and T cells. ADAM12 loss in cancer cells increases chemotaxis of B cells in vitro and this effect is eliminated by inhibition of CXCR4, a receptor for CXCL12, or anti-CXCL12 blocking antibody. Importantly, ADAM12 loss in T11 cancer cells sensitizes tumors to anti-PD1/anti-CTLA4 combination therapy, although the initial responsiveness is followed by acquired therapy resistance. Depletion of B cells in mice eliminates the improved response to immune checkpoint blockade of Adam12 knockout T11 tumors. Analysis of gene expression data for claudin-low TNBCs from the METABRIC patient cohort shows significant inverse correlations between ADAM12 and gene expression signatures of several anti-tumor immune cell populations, as well as a significant positive correlation between ADAM12 and gene expression signature of TINs/PMN-MDSCs. Collectively, these results implicate ADAM12 in immunosuppression within the TME in TNBC.
Collapse
Affiliation(s)
- Guanpeng Wang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Yeni Romero
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Indhujah Thevarajan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Anna Zolkiewska
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA,CONTACT Anna Zolkiewska Department of Biochemistry and molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS66506, USA
| |
Collapse
|
3
|
Li S, Bai H, Chen X, Gong S, Xiao J, Li D, Li L, Jiang Y, Li T, Qin X, Yang H, Wu C, You F, Liu Y. Soft Substrate Promotes Osteosarcoma Cell Self-Renewal, Differentiation, and Drug Resistance Through miR-29b and Its Target Protein Spin 1. ACS Biomater Sci Eng 2020; 6:5588-5598. [DOI: 10.1021/acsbiomaterials.0c00816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Hongxia Bai
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Xiangyan Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Shengnan Gong
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Jinman Xiao
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Dan Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Li Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Ying Jiang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, P. R. China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, P. R. China
| |
Collapse
|
4
|
Bernstein HG, Keilhoff G, Dobrowolny H, Lendeckel U, Steiner J. From putative brain tumor marker to high cognitive abilities: Emerging roles of a disintegrin and metalloprotease (ADAM) 12 in the brain. J Chem Neuroanat 2020; 109:101846. [PMID: 32622867 DOI: 10.1016/j.jchemneu.2020.101846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/15/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
ADAM (a disintergin and metalloprotease) 12 is a member of the large family of multidomain metalloprotease-disintegrins, which possess cell-binding and metalloprotease properties. The enzyme is responsible for the shedding of a number of membrane-bound proteins (heparin-binding-EGF, insulin-like growth factor 2-binding proteins 3 and 5, oxytocinase, glycoprotein non-metastatic melanoma protein B and basigin). In rat and human CNS, ADAM12 is predominantly localized in white and gray matter oligodendrocytes. In addition it can be detected in astrocytes, neurons and endothelial cells. Its function in healthy brain is not well established yet, but prominent roles in CNS development, myelination and high cognitive abilities are discussed. There is increasing evidence that ADAM12 is involved in numerous major diseases of the CNS, which are summarized in the present review (brain tumors, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer´s disease, stroke, schizophrenia, autism and bipolar disorder).
Collapse
Affiliation(s)
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Faculty of Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke University, Magdeburg, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, Germany
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
5
|
de Mendonça RP, Chemelo GP, Mitre GP, Branco DC, da Costa NMM, Tuji FM, da Silva Kataoka MS, Mesquita RA, de Melo Alves Júnior S, de Jesus Viana Pinheiro J. Role of hypoxia-related proteins in adenoid cystic carcinoma invasion. Diagn Pathol 2020; 15:47. [PMID: 32386517 PMCID: PMC7210690 DOI: 10.1186/s13000-020-00967-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Among cancers affecting the oral cavity, adenoid cystic carcinoma (ACC) is a relatively common malignant neoplasm. It has high rates of metastasis and recurrence and is associated with significant morbidity. During the progression of ACC, the oxygen concentration is reduced in specific areas of the tumour microenvironment, leading to intratumoural hypoxia. The expression of NOTCH1, a disintegrin and metalloproteinase 12 (ADAM-12), hypoxia-inducible factor 1 alpha (HIF-1α), and heparin-binding epidermal growth factor (HB-EGF) under hypoxic conditions has been implicated in invadopodia formation, tumour invasiveness, and metastasis. The aim of this study was to analyse the expression of these proteins to elucidate the mechanisms underlying ACC invasiveness. METHODS Fifteen ACC samples and 10 normal-looking salivary gland (SG) samples were used to investigate the expression of these proteins by immunohistochemistry. Primary antibodies against NOTCH1, ADAM-12, HIF-1α, and HB-EGF were used. RESULTS The immunoexpression of all proteins was higher in ACC samples than in SG samples (p < 0.05). CONCLUSIONS There was increased expression of proteins associated with hypoxia and tumour invasiveness in ACC samples, which indicates a possible role of these proteins in the biological behaviour of this tumour.
Collapse
Affiliation(s)
- Raíssa Pinheiro de Mendonça
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belem, Para, 66075-110, Brazil
| | - Giordanna Pereira Chemelo
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belem, Para, 66075-110, Brazil
| | - Geovanni Pereira Mitre
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belem, Para, 66075-110, Brazil
| | - Dimitra Castelo Branco
- Multiprofessional Residency Program, Universidade Estadual do Pará, Rua do Una, 156, Belem, Para, 66050-540, Brazil
| | - Natacha Malu Miranda da Costa
- Department of Periodontology, School of Dentistry, Universidade de São Paulo, Avenida do Café, Subsetor Oeste, 11, Ribeirão Preto, São Paulo, 14040-904, Brazil
| | - Fabrício Mesquita Tuji
- Department of Oral Radiology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belem, Para, 66075-110, Brazil
| | - Maria Sueli da Silva Kataoka
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belem, Para, 66075-110, Brazil
| | - Ricardo Alves Mesquita
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sérgio de Melo Alves Júnior
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belem, Para, 66075-110, Brazil
| | - João de Jesus Viana Pinheiro
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Pará, Avenida Augusto Correa, 01, Belem, Para, 66075-110, Brazil. .,School of Dentistry, Cell Culture Laboratory, Universidade Federal do Pará (UFPA), Institute of Health Sciences, Avenida Augusto Correa, 01, Belem, PA, 66075-110, Brazil.
| |
Collapse
|
6
|
Wang Y, Zhang L, Pang Y, Song L, Shang H, Li Z, Liu Q, Zhang Y, Wang X, Li Q, Zhang Q, Liu C, Li F. MicroRNA-29 family inhibits rhabdomyosarcoma formation and progression by regulating GEFT function. Am J Transl Res 2020; 12:1136-1154. [PMID: 32269740 PMCID: PMC7137044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
The microRNA-29 family, which contains mir-29a, mir-29b, and mir-29c, can promote or resist the development of several types of tumors. However, its role in rhabdomyosarcoma (RMS) has not been determined. In this work, we detected the expression of mir-29a/b/c in RMS. Results showed that the tissues and cell lines in RMS were significantly lower than those in muscle and human skeletal muscle cells, and that these cell lines could also inhibit the proliferation, migration, and invasion and induce apoptosis of RMS cells. Dual-luciferase reporter assay and RNA immunoprecipitation verified the direct binding site between mir-29a/b/c and GEFT. Under the combined actions of mir-29a/b/c and GEFT, the former weakened the promoting effect of GEFT on RMS cells. Finally, mir-29a inhibited the tumorigenesis of subcutaneous xenografts in nude mice and inhibited the mRNA and protein expression levels of GEFT in transplanted tumors. These findings proved that mir-29 inhibits the occurrence of RMS and may be a potential molecular target.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Liang Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100730, China
| | - Yuweng Pang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Lingxie Song
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing 100020, China
| | - Hao Shang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Zhenzhen Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Qianqian Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Yangyang Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Xiaomeng Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Qianru Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Qiaochu Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Chunxia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing 100020, China
| |
Collapse
|
7
|
Abolghasemi M, Tehrani SS, Yousefi T, Karimian A, Mahmoodpoor A, Ghamari A, Jadidi-Niaragh F, Yousefi M, Kafil HS, Bastami M, Edalati M, Eyvazi S, Naghizadeh M, Targhazeh N, Yousefi B, Safa A, Majidinia M, Rameshknia V. MicroRNAs in breast cancer: Roles, functions, and mechanism of actions. J Cell Physiol 2019; 235:5008-5029. [PMID: 31724738 DOI: 10.1002/jcp.29396] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022]
Abstract
Breast cancer is one of the most lethal malignancies in women in the world. Various factors are involved in the development and promotion of the malignancy; most of them involve changes in the expression of certain genes, such as microRNAs (miRNAs). MiRNAs can regulate signaling pathways negatively or positively, thereby affecting tumorigenesis and various aspects of cancer progression, particularly breast cancer. Besides, accumulating data demonstrated that miRNAs are a novel tool for prognosis and diagnosis of breast cancer patients. Herein, we will review the roles of these RNA molecules in several important signaling pathways, such as transforming growth factor, Wnt, Notch, nuclear factor-κ B, phosphoinositide-3-kinase/Akt, and extracellular-signal-regulated kinase/mitogen activated protein kinase signaling pathways in breast cancer.
Collapse
Affiliation(s)
- Maryam Abolghasemi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Sadra Samavarchi Tehrani
- Departmant of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ata Mahmoodpoor
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Ghamari
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Department of Laboratory Sciences, Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Naghizadeh
- Departmant of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Babol University Of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Rameshknia
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
8
|
Kivelä R, Hemanthakumar KA, Vaparanta K, Robciuc M, Izumiya Y, Kidoya H, Takakura N, Peng X, Sawyer DB, Elenius K, Walsh K, Alitalo K. Endothelial Cells Regulate Physiological Cardiomyocyte Growth via VEGFR2-Mediated Paracrine Signaling. Circulation 2019; 139:2570-2584. [PMID: 30922063 PMCID: PMC6553980 DOI: 10.1161/circulationaha.118.036099] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Heart failure, which is a major global health problem, is often preceded by pathological cardiac hypertrophy. The expansion of the cardiac vasculature, to maintain adequate supply of oxygen and nutrients, is a key determinant of whether the heart grows in a physiological compensated manner or a pathological decompensated manner. Bidirectional endothelial cell (EC)–cardiomyocyte (CMC) cross talk via cardiokine and angiocrine signaling plays an essential role in the regulation of cardiac growth and homeostasis. Currently, the mechanisms involved in the EC-CMC interaction are not fully understood, and very little is known about the EC-derived signals involved. Understanding how an excess of angiogenesis induces cardiac hypertrophy and how ECs regulate CMC homeostasis could provide novel therapeutic targets for heart failure. Methods: Genetic mouse models were used to delete vascular endothelial growth factor (VEGF) receptors, adeno-associated viral vectors to transduce the myocardium, and pharmacological inhibitors to block VEGF and ErbB signaling in vivo. Cell culture experiments were used for mechanistic studies, and quantitative polymerase chain reaction, microarrays, ELISA, and immunohistochemistry were used to analyze the cardiac phenotypes. Results: Both EC deletion of VEGF receptor (VEGFR)-1 and adeno-associated viral vector–mediated delivery of the VEGFR1-specific ligands VEGF-B or placental growth factor into the myocardium increased the coronary vasculature and induced CMC hypertrophy in adult mice. The resulting cardiac hypertrophy was physiological, as indicated by preserved cardiac function and exercise capacity and lack of pathological gene activation. These changes were mediated by increased VEGF signaling via endothelial VEGFR2, because the effects of VEGF-B and placental growth factor on both angiogenesis and CMC growth were fully inhibited by treatment with antibodies blocking VEGFR2 or by endothelial deletion of VEGFR2. To identify activated pathways downstream of VEGFR2, whole-genome transcriptomics and secretome analyses were performed, and the Notch and ErbB pathways were shown to be involved in transducing signals for EC-CMC cross talk in response to angiogenesis. Pharmacological or genetic blocking of ErbB signaling also inhibited part of the VEGF-B–induced effects in the heart. Conclusions: This study reveals that cross talk between the EC VEGFR2 and CMC ErbB signaling pathways coordinates CMC hypertrophy with angiogenesis, contributing to physiological cardiac growth.
Collapse
Affiliation(s)
- Riikka Kivelä
- Wihuri Research Institute, Helsinki, Finland and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., M.R., K.A.)
| | - Karthik Amudhala Hemanthakumar
- Wihuri Research Institute, Helsinki, Finland and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., M.R., K.A.)
| | - Katri Vaparanta
- MediCity Research Laboratories and Institute of Biomedicine, Faculty of Medicine, University of Turku, Finland (K.V., K.E.).,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Finland (K.V., K.E.)
| | - Marius Robciuc
- Wihuri Research Institute, Helsinki, Finland and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., M.R., K.A.)
| | - Yasuhiro Izumiya
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Japan (Y.I.)
| | - Hiroyasu Kidoya
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Japan (H.K., N.T.)
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Japan (H.K., N.T.)
| | - Xuyang Peng
- Maine Medical Center, Portland (X.P., D.B.S.)
| | | | - Klaus Elenius
- MediCity Research Laboratories and Institute of Biomedicine, Faculty of Medicine, University of Turku, Finland (K.V., K.E.).,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Finland (K.V., K.E.).,Department of Oncology and Radiotherapy, University of Turku and Turku University Hospital, Finland (K.E.)
| | - Kenneth Walsh
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville (K.W.)
| | - Kari Alitalo
- Wihuri Research Institute, Helsinki, Finland and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., M.R., K.A.)
| |
Collapse
|
9
|
Liao Y, Ouyang L, Ci L, Chen B, Lv D, Li Q, Sun Y, Fei J, Bao S, Liu X, Li L. Pravastatin regulates host foreign-body reaction to polyetheretherketone implants via miR-29ab1-mediated SLIT3 upregulation. Biomaterials 2019; 203:12-22. [PMID: 30851489 DOI: 10.1016/j.biomaterials.2019.02.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022]
Abstract
Host rejection to biomaterials can induce uncontrolled foreign-body reactions (FBR), resulting in a dense fibrous encapsulation that blocks mass transport and/or communication between the host and the implant. Adequate angiogenesis between the body and the implant has been implicated as a key regulator for overcoming FBR. Thus, approaches for stimulating neovascularization and/or suppressing FBR are under investigation. In this study, pravastatin (Pra) was loaded onto a 3D network surface of sulfonated polyetheretherketone (SP) to achieve superior local drug effects. The SP loaded with Pra (SP-Pra) promoted angiogenesis and mitigated FBR via miR-29 dependent SLIT3 upregulation in wild-type (WT) mice. miR-29a and miR-29b1 were significantly downregulated in the SP-Pra capsule compared to levels in the SP capsule, while SLIT3 and neovascularization were substantially upregulated in WT mice. However, the above effects presented in the WT mice were not detected in miR-29ab1 knockout mice which was generated by the CRISPR/Cas9 approach. Overall, the results suggest that miR-29 plays a critical role in reducing FBR to these implants by targeting SLIT3. Suppression of FBR by SP-Pra implants offers the potential to improve the performance of current medical devices.
Collapse
Affiliation(s)
- Yun Liao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Liping Ouyang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Ci
- Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC., Shanghai 201203, China
| | - Baohui Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Lv
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Qin Li
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yingxiao Sun
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shisan Bao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Discipline of Pathology, Charles Perkin Centre, Bosch Institute and School of Medical Sciences, The University of Sydney, Australia.
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Ling Li
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| |
Collapse
|
10
|
HIF-1α, NOTCH1, ADAM12, and HB-EGF are overexpressed in mucoepidermoid carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 127:e8-e17. [PMID: 30415904 DOI: 10.1016/j.oooo.2018.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/14/2018] [Accepted: 09/23/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Intratumoral hypoxia (IH) occurs during cellular proliferation of malignant tumors. This phenomenon is characterized by a decrease in oxygen levels in the neoplastic microenvironment. Throughout this condition, the proteins HIF-1α, NOTCH1, ADAM12, and HB-EGF can be activated, triggering signaling pathways associated with tumor invasiveness through invadopodia formation. This study aimed to evaluate the immunostaining of HIF-1α, NOTCH1, ADAM12, and HBEGF in 19 cases of mucoepidermoid carcinoma (MEC) and 10 samples of salivary glands (control group). STUDY DESIGN The immunoperoxidase technique was employed to detect the proteins of interest. The Student t test was used to compare immunoexpression between MEC samples and the control group. RESULTS Protein immunostaining was statistically significantly higher in MEC samples than in the control group (P < .01), and the proteins were especially overexpressed in epidermoid cells of MEC. CONCLUSIONS We suggest that there is an association between the NOTCH1 signaling pathway activated by IH and the biologic behavior of MEC.
Collapse
|
11
|
Leontovich AA, Jalalirad M, Salisbury JL, Mills L, Haddox C, Schroeder M, Tuma A, Guicciardi ME, Zammataro L, Gambino MW, Amato A, Di Leonardo A, McCubrey J, Lange CA, Liu M, Haddad T, Goetz M, Boughey J, Sarkaria J, Wang L, Ingle JN, Galanis E, D'Assoro AB. NOTCH3 expression is linked to breast cancer seeding and distant metastasis. Breast Cancer Res 2018; 20:105. [PMID: 30180881 PMCID: PMC6123953 DOI: 10.1186/s13058-018-1020-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/12/2018] [Indexed: 02/08/2023] Open
Abstract
Background Development of distant metastases involves a complex multistep biological process termed the invasion-metastasis cascade, which includes dissemination of cancer cells from the primary tumor to secondary organs. NOTCH developmental signaling plays a critical role in promoting epithelial-to-mesenchymal transition, tumor stemness, and metastasis. Although all four NOTCH receptors show oncogenic properties, the unique role of each of these receptors in the sequential stepwise events that typify the invasion-metastasis cascade remains elusive. Methods We have established metastatic xenografts expressing high endogenous levels of NOTCH3 using estrogen receptor alpha-positive (ERα+) MCF-7 breast cancer cells with constitutive active Raf-1/mitogen-associated protein kinase (MAPK) signaling (vMCF-7Raf-1) and MDA-MB-231 triple-negative breast cancer (TNBC) cells. The critical role of NOTCH3 in inducing an invasive phenotype and poor outcome was corroborated in unique TNBC cells resulting from a patient-derived brain metastasis (TNBC-M25) and in publicly available claudin-low breast tumor specimens collected from participants in the Molecular Taxonomy of Breast Cancer International Consortium database. Results In this study, we identified an association between NOTCH3 expression and development of metastases in ERα+ and TNBC models. ERα+ breast tumor xenografts with a constitutive active Raf-1/MAPK signaling developed spontaneous lung metastases through the clonal expansion of cancer cells expressing a NOTCH3 reprogramming network. Abrogation of NOTCH3 expression significantly reduced the self-renewal and invasive capacity of ex vivo breast cancer cells, restoring a luminal CD44low/CD24high/ERαhigh phenotype. Forced expression of the mitotic Aurora kinase A (AURKA), which promotes breast cancer metastases, failed to restore the invasive capacity of NOTCH3-null cells, demonstrating that NOTCH3 expression is required for an invasive phenotype. Likewise, pharmacologic inhibition of NOTCH signaling also impaired TNBC cell seeding and metastatic growth. Significantly, the role of aberrant NOTCH3 expression in promoting tumor self-renewal, invasiveness, and poor outcome was corroborated in unique TNBC cells from a patient-derived brain metastasis and in publicly available claudin-low breast tumor specimens. Conclusions These findings demonstrate the key role of NOTCH3 oncogenic signaling in the genesis of breast cancer metastasis and provide a compelling preclinical rationale for the design of novel therapeutic strategies that will selectively target NOTCH3 to halt metastatic seeding and to improve the clinical outcomes of patients with breast cancer. Electronic supplementary material The online version of this article (10.1186/s13058-018-1020-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexey A Leontovich
- Department of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Mohammad Jalalirad
- Department of Medical Oncology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Jeffrey L Salisbury
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Lisa Mills
- Department of Molecular Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Candace Haddox
- Department of Medical Oncology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Mark Schroeder
- Department of Medical Oncology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Ann Tuma
- Department of Medical Oncology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Maria E Guicciardi
- Department of Internal Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Luca Zammataro
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Mario W Gambino
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Angela Amato
- Department of Cellular and Developmental Biology, University of Palermo, Palermo, Italy
| | - Aldo Di Leonardo
- Department of Cellular and Developmental Biology, University of Palermo, Palermo, Italy
| | - James McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Carol A Lange
- Department of Medicine and Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Minetta Liu
- Department of Medical Oncology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Tufia Haddad
- Department of Medical Oncology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Matthew Goetz
- Department of Medical Oncology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Judy Boughey
- Department of Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Jann Sarkaria
- Department of Medical Oncology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Liewei Wang
- Department of Medical Oncology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - James N Ingle
- Department of Medical Oncology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Evanthia Galanis
- Department of Medical Oncology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA.,Department of Molecular Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Antonino B D'Assoro
- Department of Medical Oncology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA. .,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA.
| |
Collapse
|
12
|
Garcia-Concejo A, Jimenez-Gonzalez A, Rodriguez RE. Opioid and Notch signaling pathways are reciprocally regulated through miR- 29a and miR-212 expression. Biochim Biophys Acta Gen Subj 2018; 1862:2605-2612. [PMID: 30251655 DOI: 10.1016/j.bbagen.2018.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND The abuse of opioids, such as morphine and phentanyl or other drugs as heroin is a social and health problem that affects an increasing number of people each year. The activation of the mu opioid receptor triggers several molecular changes that alter the expression of diverse genes, including miRNAs. The dysregulation of these molecules could explain some of the developmental alterations that are induced after drug intake. In addition, the Notch signaling cascade has also been related to alterations on these processes. METHODS Zebrafish embryos and SH-SY5Y cells were used to assess the effects of opioid and Notch signaling on the expression on miR-29a and miR-212/132 by qPCR and ChIP-qPCR. Notch1 expression was analyzed using in situ hybridization on 24 hpf zebrafish embryos. In addition, OPRM1 and NICD levels were measured using western blot on the cultured cells to determine the cross-talk between the two pathways. RESULTS We have observed changes in the levels of miR-212/132 after administrating DAPT to zebrafish embryos indicating that this pathway could be regulating mu opioid receptor expression. In addition, the ISH experiment showed changes in Notch1 expression after morphine and DAPT administration. Moreover, morphine affects the expression of miR-29a through NF-κB, therefore controlling the cleavage and activation of Notch through ADAM12 expression. CONCLUSIONS This study shows that these two pathways are closely related, and could explain the alterations triggered in the early stages of the development of addiction. GENERAL SIGNIFICANCE Opioid and Notch pathway are reciprocally regulated by the miRNAs 212/132 and 29a.
Collapse
Affiliation(s)
- Adrian Garcia-Concejo
- Institute of Neurosciences of Castilla y Leon (INCyL), C/Pintor Fernando Gallego, 1, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Edificio Virgen de la Vega. Décima Planta, P° de San Vicente 58-182, 37007 Salamanca, Spain
| | - Ada Jimenez-Gonzalez
- Institute of Neurosciences of Castilla y Leon (INCyL), C/Pintor Fernando Gallego, 1, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Edificio Virgen de la Vega. Décima Planta, P° de San Vicente 58-182, 37007 Salamanca, Spain
| | - Raquel E Rodriguez
- Institute of Neurosciences of Castilla y Leon (INCyL), C/Pintor Fernando Gallego, 1, 37007 Salamanca, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Salamanca, C/Alfonso X El Sabio, 0 S-N Campus Miguel De Unamuno, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Edificio Virgen de la Vega. Décima Planta, P° de San Vicente 58-182, 37007 Salamanca, Spain.
| |
Collapse
|
13
|
Okeke E, Dokun AO. Role of genetics in peripheral arterial disease outcomes; significance of limb-salvage quantitative locus-1 genes. Exp Biol Med (Maywood) 2017; 243:190-197. [PMID: 29199462 DOI: 10.1177/1535370217743460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Peripheral artery disease is a major health care problem with significant morbidity and mortality. Humans with peripheral artery disease exhibit two major and differential clinical manifestations - intermittent claudication and critical limb ischemia. Individuals with intermittent claudication or critical limb ischemia have overlapping risk factors and objective measures of blood flow. Hence, we hypothesized that variation in genetic make-up may be an important determinant in the severity of peripheral artery disease. Previous studies have identified polymorphism in genes, contributing to extent of atherosclerosis but much less is known about polymorphisms associated with genes that can influence peripheral artery disease severity. This review outlines some of the progress made up-to-date to unravel the molecular mechanisms underlining differential peripheral artery disease severity. By exploring the recovery phenotype of different mouse strains following experimental peripheral artery disease, our group identified the limb salvage-associated quantitative trait locus 1 on mouse chromosome 7 as the first genetic modifier of perfusion recovery and tissue necrosis phenotypes. Furthermore, a number of genes within LSq-1, such as ADAM12, IL-21Rα, and BAG3 were identified as genetic modifiers of peripheral artery disease severity that function through preservation of endothelial and skeletal muscle cells during ischemia. Taken together, these studies suggest manipulation of limb salvage-associated quantitative trait locus 1 genes show great promise as therapeutic targets in the management of peripheral artery disease. Impact statement Peripheral artery disease (PAD) is a major health care problem with significant morbidity and mortality. Individuals with similar atherosclerosis burden do display different severity of disease. This review outlines some of the progress made up-to-date in unraveling the molecular mechanisms underlining differential PAD severity with a focus on the role of the Limb Salvage-associated Quantitative trait locus 1 (LSq-1), a key locus in adaptation to ischemia in PAD.
Collapse
Affiliation(s)
- Emmanuel Okeke
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, 12325 University of Tennessee Health Sciences Center , Memphis, TN 38163, USA
| | - Ayotunde O Dokun
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, 12325 University of Tennessee Health Sciences Center , Memphis, TN 38163, USA
| |
Collapse
|
14
|
Chen L, Okeke E, Ayalew D, Wang D, Shahid L, Dokun AO. Modulation of miR29a improves impaired post-ischemic angiogenesis in hyperglycemia. Exp Biol Med (Maywood) 2017. [PMID: 28637396 DOI: 10.1177/1535370217716424] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Individuals with diabetes mellitus suffer from impaired angiogenesis and this contributes to poorer peripheral arterial disease outcomes. In experimental peripheral arterial disease, angiogenesis and perfusion recovery are impaired in mice with diabetes. We recently showed that a disintegrin and metalloproteinase domain-containing protein 12 (ADAM12) is upregulated in ischemic endothelial cells and plays a key role in post-ischemic angiogenesis and perfusion recovery following experimental peripheral arterial disease. Here we investigated the role of miR29a in the regulation of endothelial cell ADAM12 expression in ischemia and how hyperglycemia negatively affects this regulation. We also explored whether modulating miR29a can improve impaired post-ischemic angiogenesis associated with hyperglycemia. Additionally, we tested whether miR29a modulation could improve post ischemic angiogenesis in the setting of impaired vascular endothelial growth factor signaling. We forced miR29a expression in ischemic endothelial cells and assessed ADAM12 expression. We also evaluated whether hyperglycemia in vivo and in vitro impair ischemia-induced ADAM12 upregulation and miR29a downregulation. Lastly, we determined whether modulating endothelial cell miR29a expression in ischemia and hyperglycemia could improve impaired endothelial cell functions. We found under ischemic conditions where ADAM12 is upregulated in endothelial cells, miR29a is downregulated. Forced expression of miR29a in ischemic endothelial cell prevented ADAM12 upregulation . In ischemic hind limbs of mice with type 1 diabetes and in endothelial cells exposed to simulated ischemia plus hyperglycemia, ADAM12 upregulation and miR29a downregulation were blunted while angiogenesis was impaired. Knocking down miR29a with an miR29a inhibitor was sufficient to improve ADAM12 upregulation and angiogenesis in simulated ischemia plus hyperglycemia. It was also sufficient to improve perfusion recovery in type 1 diabetes mellitus mice in vivo and angiogenesis in vitro even when vascular endothelial growth factor signaling was impaired with blocking antibodies. In conclusion, MiR29a regulates endothelial cell ADAM12 upregulation in ischemia and this is impaired in hyperglycemia. Modulating miR29a improves impaired post-ischemic angiogenesis associated with hyperglycemia. Impact statement Individuals with diabetes are more likely to develop peripheral arterial disease (PAD), and when PAD is present, in those with diabetes, it is more severe and there is currently no effective medical treatment for impaired blood flow which occurs in diabetics with PAD. The current work advances the field by providing an understanding of a molecular mechanism involved in impaired post ischemic angiogenesis in diabetes. It shows for the first time that failure to downregulate miR29a in ischemic diabetic tissues is a major contributing factor to poor perfusion recovery in experimental PAD, and miR29a is elevated in skeletal muscle samples from human diabetics compared with levels in those without diabetes. Knocking down the elevated miR29a in ischemic diabetic mouse hind limbs improved perfusion recovery following experimental PAD. This shows miR29a modulation as a novel therapeutic target for improving blood flow in diabetics with PAD.
Collapse
Affiliation(s)
- Lingdan Chen
- 1 Division of Endocrinology, Department of Medicine and The Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22910, USA
| | - Emmanuel Okeke
- 2 Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Dawit Ayalew
- 1 Division of Endocrinology, Department of Medicine and The Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22910, USA
| | - Danny Wang
- 1 Division of Endocrinology, Department of Medicine and The Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22910, USA
| | - Lyeba Shahid
- 1 Division of Endocrinology, Department of Medicine and The Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22910, USA
| | - Ayotunde O Dokun
- 2 Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| |
Collapse
|
15
|
Wu SY, Yan MD, Wu AT, Yuan KSP, Liu SH. Brown Seaweed Fucoidan Inhibits Cancer Progression by Dual Regulation of mir-29c/ADAM12 and miR-17-5p/PTEN Axes in Human Breast Cancer Cells. J Cancer 2016; 7:2408-2419. [PMID: 27994679 PMCID: PMC5166552 DOI: 10.7150/jca.15703] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/17/2016] [Indexed: 12/19/2022] Open
Abstract
In this study, we observed that brown seaweed fucoidan inhibited human breast cancer progression by upregulating microRNA (miR)-29c and downregulating miR-17-5p, thereby suppressing their target genes, a disintegrin and metalloproteinase 12 (ADAM12) and phosphatase and tensin homolog (PTEN), respectively. Moreover, fucoidan reduced the luciferase activity of 3'-untranslated region reporter; treatment of cells with the miR-29c mimic or miR-17-5p inhibitor also produced similar results. These effects of fucoidan inhibited the epithelial-mesenchymal transition in breast cancer cells, as evidenced by an increase in E-cadherin and a drop in N-cadherin, and inhibited breast cancer cell survival, as evidenced by the activation of the phosphoinositide 3-kinase/Akt pathway. Taken together, these findings demonstrate that fucoidan inhibits breast cancer progression by regulating the miR-29c/ADAM12 and miR-17-5p/PTEN axes. Fucoidan is a potential chemopreventive/chemotherapeutic agent for breast cancer.
Collapse
Affiliation(s)
- Szu-Yuan Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biotechnology, Hungkuang University, Taichung, Taiwan
| | - Ming-De Yan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei
| | - Alexander T.H. Wu
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kevin Sheng-Po Yuan
- Department of Otorhinolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shing Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
16
|
Li Z, Wang Y, Kong L, Yue Z, Ma Y, Chen X. Expression of ADAM12 is regulated by E2F1 in small cell lung cancer. Oncol Rep 2016; 34:3231-7. [PMID: 26503019 DOI: 10.3892/or.2015.4317] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
Abstract
Our previous study reported that ADAM12 was highly expressed in small cell lung cancer (SCLC) and could be an effective marker for diagnosis and prognosis. Yet, the reason for the high expression of ADAM12 in SCLC requires further elucidation. Transcription factor E2F1 has been receiving increasing attention due to the complexity and diversity of its function in cancer. In the present study, the expression of ADAM12 was significantly decreased following silencing of E2F1 expression by siRNA, thus indicating that E2F1 may regulate the expression of ADAM12 at the level of transcription. Chromatin immunoprecipitation-to-sequence analysis identified three binding sites for E2F1 in the locus for ADAM12. They were Chr10: 128010444-128011026, located in the intron of ADAM12, named seq0; Chr10: 128076927‑128078127, located in the promoter of ADAM12, named seq1; and Chr10: 128086195‑128086876, located in the upstream 20 kb from the transcription start site of ADAM12, named: seq2. Dual‑luciferase reporter experiments revealed that seq1 not seq0 and seq2 was able to promote the expression of luciferase. Notably, co-transfection of E2F1 significantly increased the activity of seq1 not seq0 and seq2, but quantitative polymerase chain reaction results showed that seq0, seq1 and seq2 could recruit E2F1, indicating that the influence of E2F1 in regulating the expression of ADAM12 was complex. Sequence analysis clarified that seq1 was a part of the ADAM12 promoter, yet the functions of seq0 and seq2 were unknown. Fusion fragments containing seq0-seq1 or seq2-seq1 were analyzed in luciferase constructs. Compared with seq1 alone, the activities of these fusion fragments were non-significantly reduced. The activities of fusion fragments were significantly decreased following co-transfection with E2F1. Thus, the present findings support the conclusion that the E2F1 transcription factor regulates the expression of ADAM12 by binding differential cis-acting elements.
Collapse
|
17
|
Chen LH, Hsu WL, Tseng YJ, Liu DW, Weng CF. Involvement of DNMT 3B promotes epithelial-mesenchymal transition and gene expression profile of invasive head and neck squamous cell carcinomas cell lines. BMC Cancer 2016; 16:431. [PMID: 27391030 PMCID: PMC4938990 DOI: 10.1186/s12885-016-2468-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 06/29/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The 5-year overall survival rates for head and neck cancer (HNC) relies on distant metastasis. Importantly, the epithelial-mesenchymal transition (EMT) is believed to be an initial step of metastasis. However, the relationship of epigenetic with EMT formation is still unexplored in HNC. This study focuses on invasive subclones of HNC cell lines through the simulation of invasion in vitro; and underlying mechanisms were analyzed including DNA methylation and gene expression profile. METHODS Invasive subclones of NHC cell lines were successfully obtained using transwell coated with Matrixgel. Cells invaded through 8 μm pore several times were subcultured and examined with EMT features including morphology, EMT marker genes expression, and invasive ability. Moreover, compared the profile of genes expression in parental and invasive cells was analyzed using mRNA expression array. RESULTS DNA methyltransferase 3B (DNMT 3B) was upregulated in invasive subclones and might control the 5' region of E-cadherin (E-cad) methylation and further inhibited E-cad protein expression. Interference of DNMT 3B by siRNA or miRNA 29b could reduce EMT and cell invasion. Expression array analysis revealed the most possible involved pathways in cell invasion including arginine and proline metabolism, TGF-beta, and focal adhesion. CONCLUSIONS DNMT 3B might control EMT by DNA methylation manner in invasive HNC cell lines. Moreover, miR-29b mimic downregulated DNMT 3B and inhibited EMT and cell invasion indicated the role of therapeutic agent for invasive HNC. Genes identified from array data and new molecules are involved in metastasis of HNC need further validation.
Collapse
Affiliation(s)
- Li-Hsuen Chen
- />Department of Life Science and the Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
- />Department of Radiation Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Wen-Lin Hsu
- />Department of Radiation Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- />School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yen-Ju Tseng
- />Department of Life Science and the Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
- />Department of Radiation Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Dai-Wei Liu
- />Department of Radiation Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- />School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ching-Feng Weng
- />Department of Life Science and the Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
18
|
da Costa NMM, Fialho ADV, Proietti CC, da Silva Kataoka MS, Jaeger RG, de Alves-Júnior SM, de Jesus Viana Pinheiro J. Role of hypoxia-related proteins in invasion of ameloblastoma cells: crosstalk between NOTCH1, hypoxia-inducible factor 1α, a disintegrin and metalloproteinase 12, and heparin-binding epidermal growth factor. Histopathology 2016; 69:99-106. [PMID: 26707922 DOI: 10.1111/his.12922] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/20/2015] [Indexed: 12/17/2022]
Abstract
AIMS Ameloblastoma AME is a benign tumour characterized by local invasiveness, high recurrence rates, and diverse histological patterns. The oxygen concentration is reduced in specific areas of the tumour microenvironment, which leads to intratumoral hypoxia. Crosstalk between NOTCH1, a disintegrin and metalloproteinase 12 (ADAM-12), hypoxia-inducible factor 1α (HIF-1α) and heparin-binding epidermal growth factor (HB-EGF) under hypoxic conditions has been implicated in invadopodia formation, tumour invasiveness, and metastasis development. The aim of this study was to analyse the expression of these proteins, in order to further elucidate the mechanisms underlying AME invasiveness. METHODS AND RESULTS Twenty cases of AME, eight calcifying cystic odontogenic tumours CCOTs and 10 samples of dental follicle were used to investigate the expression of these proteins by immunohistochemistry with the primary antibodies anti-NOTCH1, anti-ADAM-12, anti-HIF-1α, and anti-HB-EGF. Immunostaining results were expressed as the percentage of stained area in images acquired in an AxioScope microscope equipped with an AxioCamHRc camera and a × 40 objective. The results showed that immunoexpression of all proteins was higher in the AME samples than in the CCOT and dental follicle samples (P < 0.05). CONCLUSIONS AME showed an increased presence of proteins associated with tumour invasiveness, which indicates a possible role of these proteins in the biological behaviour of this tumour.
Collapse
Affiliation(s)
| | | | | | | | - Ruy Gastaldoni Jaeger
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
19
|
Sandhu GK, Milevskiy MJG, Wilson W, Shewan AM, Brown MA. Non-coding RNAs in Mammary Gland Development and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:121-153. [PMID: 26659490 DOI: 10.1007/978-94-017-7417-8_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) are untranslated RNA molecules that function to regulate the expression of numerous genes and associated biochemical pathways and cellular functions. NcRNAs include small interfering RNAs (siRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs). They participate in the regulation of all developmental processes and are frequently aberrantly expressed or functionally defective in disease. This Chapter will focus on the role of ncRNAs, in particular miRNAs and lncRNAs, in mammary gland development and disease.
Collapse
Affiliation(s)
- Gurveen K Sandhu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Michael J G Milevskiy
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Wesley Wilson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Annette M Shewan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Melissa A Brown
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia.
| |
Collapse
|
20
|
Moreno-Sánchez R, Saavedra E, Gallardo-Pérez JC, Rumjanek FD, Rodríguez-Enríquez S. Understanding the cancer cell phenotype beyond the limitations of current omics analyses. FEBS J 2015; 283:54-73. [DOI: 10.1111/febs.13535] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/24/2015] [Accepted: 09/25/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Rafael Moreno-Sánchez
- Departamento de Bioquímica; Instituto Nacional de Cardiología Ignacio Chávez; Tlalpan Mexico
| | - Emma Saavedra
- Departamento de Bioquímica; Instituto Nacional de Cardiología Ignacio Chávez; Tlalpan Mexico
| | | | | | - Sara Rodríguez-Enríquez
- Departamento de Bioquímica; Instituto Nacional de Cardiología Ignacio Chávez; Tlalpan Mexico
| |
Collapse
|
21
|
Christians JK, Beristain AG. ADAM12 and PAPP-A: Candidate regulators of trophoblast invasion and first trimester markers of healthy trophoblasts. Cell Adh Migr 2015; 10:147-53. [PMID: 26417939 DOI: 10.1080/19336918.2015.1083668] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Proper placental development and function is crucial for a healthy pregnancy, and there has been substantial research to identify markers of placental dysfunction for the early detection of pregnancy complications. Low first-trimester levels of a disintegrin and metalloproteinase 12 (ADAM12) and pregnancy-associated plasma protein-A (PAPP-A) have been consistently associated with the subsequent development of preeclampsia and fetal growth restriction. These molecules are both metalloproteinases secreted by the placenta that cleave insulin-like growth factor binding proteins (IGFBPs), although ADAM12 also has numerous other substrates. Recent work has identified ADAM12, and particularly its shorter variant, ADAM12S, as a regulator of the migration and invasion of trophoblasts into the lining of the uterus, a critical step in normal placental development. While the mechanisms underlying this regulation are not yet clear, they may involve the liberation of heparin-binding EGF-like growth factor (HB-EGF) and/or IGFs from IGFBPs. In contrast, there has been relatively little functional work examining PAPP-A or the IGFBP substrates of ADAM12 and PAPP-A. Understanding the functions of these markers and the mechanisms underlying their association with disease could improve screening strategies and enable the development of new therapeutic interventions.
Collapse
Affiliation(s)
| | - Alexander G Beristain
- b Department of Obstetrics and Gynecology , The University of British Columbia , Vancouver , Canada.,c The Child and Family Research Institute , Vancouver , Canada
| |
Collapse
|
22
|
Lendeckel U, Wolke C, Bernstein HG, Keilhoff G. Effects of nitric oxide synthase deficiency on a disintegrin and metalloproteinase domain-containing protein 12 expression in mouse brain samples. Mol Med Rep 2015; 12:2253-62. [PMID: 25892053 DOI: 10.3892/mmr.2015.3643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 03/03/2015] [Indexed: 11/06/2022] Open
Abstract
A disintegrin and metalloproteinase domain-containing protein 12 (ADAM12) belongs to the ADAM family of transmembrane proteins. Via proteolysis, cell adhesion, cell-cell fusion, cell-matrix interaction and membrane protein shedding, ADAM proteins are involved in normal brain development, and also in cancer genesis and progression, and in inflammation. Therefore, neurobiological research focusing on this protein is increasing. Nitric oxide (NO), which is endogenously produced by NO synthases (NOS), is associated with glial tumors. However, knock-out of NOS produces only limited antitumor effects. The present study analyzed the expression of ADAM12 in the cortex and hippocampus of C57/BL6 wild-type mice, and endothelial NOS-, neuronal NOS-(nNOS) or inducible NOS (iNOS)-deficient (-/-) mice, at different stages of development. Expression of ADAM12 was quantified using immunoblot analysis of cortical and hippocampal tissue samples from fetal, neonatal (5 days postnatal), adult (12 weeks old) or >1 year old mice. Using reverse transcription-quantitative polymerase chain reaction, ADAM12 expression was analyzed in cultured N9, OLN93, C6 and PC12 cells, representing the four main cell types in the brain, following NOS inhibition. ADAM12 expression was low in all mouse genotypes and regions of the brain, and in fetal and neonatal mice, an increase in expression was observed with increasing age. The highest levels of expression were observed in the cortex of adult mice, iNOS(-/-) mice of >1 year and wild-type mice, and in the hippocampus of adult and iNOS(-/-) mice of >1 year. By contrast, ADAM12 expression was lowest in adult nNOS(-/-) mice. Inhibition of NOS using N(ω)-Nitro-L-arginine methyl ester hydrochloride, induced ADAM12 mRNA expression in N9 and PC12 cell lines. Inhibition of NOS using L-N(6)-(1-Iminoethyl)lysine dihydrochloride, induced ADAM12 mRNA expression in N9 and C6 cell lines. No change in ADAM12 expression was observed in OLN93 cells following NOS inhibition. ADAM12 expression in mouse hippocampus and cortex samples demonstrated considerable variation during development, with a marked increase observed in adult and >1 year old mice, compared with that in fetal and neonatal mice.
Collapse
Affiliation(s)
- Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Ernst‑Moritz‑Arndt University, Greifswald D‑17475, Germany
| | - Carmen Wolke
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Ernst‑Moritz‑Arndt University, Greifswald D‑17475, Germany
| | - Hans-Gert Bernstein
- Clinic of Psychiatry, Psychotherapy and Psychosomatic Medicine, Otto‑von‑Guericke University, Magdeburg D‑39120, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Otto‑von‑Guericke University, Magdeburg D‑39120, Germany
| |
Collapse
|
23
|
Duhachek-Muggy S, Zolkiewska A. ADAM12-L is a direct target of the miR-29 and miR-200 families in breast cancer. BMC Cancer 2015; 15:93. [PMID: 25886595 PMCID: PMC4352249 DOI: 10.1186/s12885-015-1108-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/20/2015] [Indexed: 12/18/2022] Open
Abstract
Background ADAM12-L and ADAM12-S represent two major splice variants of human metalloproteinase-disintegrin 12 mRNA, which differ in their 3′-untranslated regions (3′UTRs). ADAM12-L, but not ADAM12-S, has prognostic and chemopredictive values in breast cancer. Expression levels of the two ADAM12 splice variants in clinical samples are highly discordant, suggesting post-transcriptional regulation of the ADAM12 gene. The miR-29, miR-30, and miR-200 families have potential target sites in the ADAM12-L 3′UTR and they may negatively regulate ADAM12-L expression. Methods miR-29b/c, miR-30b/d, miR-200b/c, or control miRNA mimics were transfected into SUM159PT, BT549, SUM1315MO2, or Hs578T breast cancer cells. ADAM12-L and ADAM12-S mRNA levels were measured by qRT-PCR, and ADAM12-L protein was detected by Western blotting. Direct targeting of the ADAM12-L 3′UTR by miRNAs was tested using an ADAM12-L 3′UTR luciferase reporter. The rate of ADAM12-L translation was evaluated by metabolic labeling of cells with 35S cysteine/methionine. The roles of endogenous miR-29b and miR-200c were tested by transfecting cells with miRNA hairpin inhibitors. Results Transfection of miR-29b/c mimics strongly decreased ADAM12-L mRNA levels in SUM159PT and BT549 cells, whereas ADAM12-S levels were not changed. ADAM12-L, but not ADAM12-S, levels were also significantly diminished by miR-200b/c in SUM1315MO2 cells. In Hs578T cells, miR-200b/c mimics impeded translation of ADAM12-L mRNA. Importantly, both miR-29b/c and miR-200b/c strongly decreased steady state levels of ADAM12-L protein in all breast cancer cell lines tested. miR-29b/c and miR-200b/c also significantly decreased the activity of an ADAM12-L 3′UTR reporter, and this effect was abolished when miR-29b/c and miR-200b/c target sequences were mutated. In contrast, miR-30b/d did not elicit consistent and significant effects on ADAM12-L expression. Analysis of a publicly available gene expression dataset for 100 breast tumors revealed a statistically significant negative correlation between ADAM12-L and both miR-29b and miR-200c. Inhibition of endogenous miR-29b and miR-200c in SUM149PT and SUM102PT cells led to increased ADAM12-L expression. Conclusions The ADAM12-L 3′UTR is a direct target of miR-29 and miR-200 family members. Since the miR-29 and miR-200 families play important roles in breast cancer progression, these results may help explain the different prognostic and chemopredictive values of ADAM12-L and ADAM12-S in breast cancer.
Collapse
Affiliation(s)
- Sara Duhachek-Muggy
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA.
| | - Anna Zolkiewska
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
24
|
Sun F, Wan M, Xu X, Gao B, Zhou Y, Sun J, Cheng L, Klein OD, Zhou X, Zheng L. Crosstalk between miR-34a and Notch Signaling Promotes Differentiation in Apical Papilla Stem Cells (SCAPs). J Dent Res 2014; 93:589-95. [PMID: 24710391 DOI: 10.1177/0022034514531146] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 03/19/2014] [Indexed: 02/05/2023] Open
Abstract
Stem cells from the apical papilla (SCAPs) are important for the formation and regeneration of root dentin. Here, we examined the expression of Notch signaling components in SCAPs and investigated crosstalk between microRNA miR-34aand Notch signaling during cell differentiation. We found that human SCAPs express NOTCH2, NOTCH3, JAG2, DLL3, and HES1, and we tested the relationship between Notch signaling and both cell differentiation and miR-34a expression. NOTCH activation in SCAPs inhibited cell differentiation and up-regulated the expression of miR-34a, whereas miR-34a inhibited Notch signaling in SCAPs by directly targeting the 3'UTR of NOTCH2 and HES1 mRNA and suppressing the expression of NOTCH2, N2ICD, and HES1. DSPP, RUNX2, OSX, and OCN expression was consequently up-regulated. Thus, Notch signaling in human SCAPs plays a vital role in maintenance of these cells. miR-34a interacts with Notch signaling and promotes both odontogenic and osteogenic differentiation of SCAPs.
Collapse
Affiliation(s)
- F Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041 West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041
| | - M Wan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041 West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041 Program in Craniofacial and Mesenchymal Biology and Departments of Orofacial Sciences and Pediatrics, University of California, San Francisco, CA 94143, USA
| | - X Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041
| | - B Gao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041
| | - Y Zhou
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041
| | - J Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041 West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041
| | - L Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041 West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041
| | - O D Klein
- Program in Craniofacial and Mesenchymal Biology and Departments of Orofacial Sciences and Pediatrics, University of California, San Francisco, CA 94143, USA
| | - X Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041 West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041
| | - L Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041 West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China, 610041
| |
Collapse
|
25
|
Wu Y, Huang A, Li T, Su X, Ding H, Li H, Qin X, Hou L, Zhao Q, Ge X, Fang T, Wang R, Gao C, Li J, Shao N. MiR-152 reduces human umbilical vein endothelial cell proliferation and migration by targeting ADAM17. FEBS Lett 2014; 588:2063-9. [DOI: 10.1016/j.febslet.2014.04.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
|
26
|
Jiang H, Zhang G, Wu JH, Jiang CP. Diverse roles of miR-29 in cancer (review). Oncol Rep 2014; 31:1509-16. [PMID: 24573597 DOI: 10.3892/or.2014.3036] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/17/2014] [Indexed: 01/10/2023] Open
Abstract
microRNAs (miRNAs) are non-coding RNAs which have the capacity to regulate gene expression at the post-transcriptional level, and have emerging as key factors involved in cancer at all stages ranging from initiation to metastasis. In the present review, we summmarize the diverse roles of the microRNA-29 (miR-29) family in cancer. First, we present a concise introduction to the miR-29 family and the expression profile of miR-29 in various cancer types. We next highlight the upstream regulatory pathway of miR-29 and describe the relationship between miR-29 and cancer in detail. As a tumor suppressor, miR-29 restrains cancer progression by promoting tumor cell apoptosis, by suppressing DNA methylation of tumor-suppressor genes, by reducing proliferation of tumors and by increasing chemosensitivity. However, as a tumor promoter, miR-29 mediates epithelial-mesenchymal transition (EMT) and promotes metastasis in breast cancer and colon cancer. Finally, we suggest that miR-29 represents a novel diagnostic and prognostic biomarker or a therapeutic target for cancer. Our review highlights the diverse relationship between miR-29 and cancer (particularly digestive system neoplasms). Further research of miR-29 in cancer is warranted.
Collapse
Affiliation(s)
- Hesong Jiang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Guang Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Jun-Hua Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Chun-Ping Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
27
|
Canonical transforming growth factor-β signaling regulates disintegrin metalloprotease expression in experimental renal fibrosis via miR-29. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1885-1896. [PMID: 24103556 DOI: 10.1016/j.ajpath.2013.08.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 07/29/2013] [Accepted: 08/21/2013] [Indexed: 01/06/2023]
Abstract
Fibrosis pathophysiology is critically regulated by Smad 2- and Smad 3-mediated transforming growth factor-β (TGF-β) signaling. Disintegrin metalloproteases (Adam) can manipulate the signaling environment, however, the role and regulation of ADAMs in renal fibrosis remain unclear. TGF-β stimulation of renal cells results in a significant up-regulation of Adams 10, 17, 12, and 19. The selective Smad2/3 inhibitor SB 525334 reversed these TGF-β-induced changes. In vivo, using ureteral obstruction to model renal fibrosis, we observed increased Adams gene expression that was blocked by oral administration of SB 525334. Similar increases in Adam gene expression also occurred in preclinical models of hypertension-induced renal damage and glomerulonephritis. miRNAs are a recently discovered second level of regulation of gene expression. Analysis of 3' untranslated regions of Adam12 and Adam19 mRNAs showed multiple binding sites for miR-29a, miR-29b, and miR-29c. We show that miR-29 family expression is decreased after unilateral ureter obstruction and this significant decrease in miR-29 family expression was observed consistently in preclinical models of renal dysfunction and correlated with an increase in Adam12 and Adam19 expression. Exogenous overexpression of the miR-29 family blocked TGF-β-mediated up-regulation of Adam12 and Adam19 gene expression. This study shows that Adams are involved in renal fibrosis and are regulated by canonical TGF-β signaling and miR-29. Therefore, both Adams and the miR-29 family represent therapeutic targets for renal fibrosis.
Collapse
|
28
|
MicroRNA-145 targets the metalloprotease ADAM17 and is suppressed in renal cell carcinoma patients. Neoplasia 2013; 15:218-30. [PMID: 23441135 DOI: 10.1593/neo.121222] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 12/21/2022] Open
Abstract
A disintegrin and metalloproteinase 17 (ADAM17) is a metalloprotease that is overexpressed in many cancer types, including renal cancers. However, the regulatory mechanisms of ADAM17 in cancer development and progression are poorly understood. In the present work, we provide evidence using overexpression and inhibition of microRNA 145 (miR-145) that miR-145 negatively regulates ADAM17 expression. Furthermore, we show that ADAM17 negatively regulates miR-145 through tumor necrosis factor-α, resulting in a reciprocal negative feedback loop. In this study, the expression of ADAM17 and miR-145 correlated negatively in renal cancer tumor tissues and cell lines, suggesting an important regulatory mechanism. Additionally, we showed that the regulation of ADAM17 is partly involved in the effects of miR-145 on proliferation and migration, whereas no involvement in chemosensitivity was observed. Importantly, in the healthy kidney, miR-145 was detected in different cell types including tubular cells, which are considered the origin of renal cancer. In renal cancer cell lines, miR-145 expression was strongly suppressed by methylation. In summary, miR-145 is downregulated in renal cancer patients, which leads to the up-regulation of ADAM17 in renal cancer. Importantly, miR-145 and ADAM17 are regulated in a reciprocal negative feedback loop.
Collapse
|
29
|
Li H, Duhachek-Muggy S, Dubnicka S, Zolkiewska A. Metalloproteinase-disintegrin ADAM12 is associated with a breast tumor-initiating cell phenotype. Breast Cancer Res Treat 2013; 139:691-703. [PMID: 23771733 DOI: 10.1007/s10549-013-2602-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/06/2013] [Indexed: 01/02/2023]
Abstract
Members of the ADAM family of proteases have been associated with mammary tumorigenesis. Gene profiling of human breast tumors identified several intrinsic subtypes of breast cancer, which differ in terms of their basic biology, response to chemotherapy/radiation, preferential sites of metastasis, and overall patient survival. Whether or not the expression of individual ADAM proteases is linked to a particular subtype of breast cancer and whether the functions of these ADAMs are relevant to the cancer subtype have not been investigated. We analyzed several transcriptomic datasets and found that ADAM12L is specifically up-regulated in claudin-low tumors. These tumors are poorly differentiated, exhibit aggressive characteristics, have molecular signatures of epithelial-to-mesenchymal transition (EMT), and are rich in markers of breast tumor-initiating cells (BTICs). Consistently, we find that ADAM12L, but not the alternative splice variant ADAM12S, is a part of stromal, mammosphere, and EMT gene signatures, which are all associated with BTICs. In patients with estrogen receptor-negative tumors, high expression of ADAM12L, but not ADAM12S, is predictive of resistance to neoadjuvant chemotherapy. Using MCF10DCIS.com breast cancer cells, which express the endogenous ADAM12L and efficiently form mammospheres when plated at the density of single cell per well, we show that ADAM12L plays an important role in supporting mammosphere growth. We postulate that ADAM12L may serve as a novel marker and/or a novel therapeutic target in BTICs.
Collapse
Affiliation(s)
- Hui Li
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
30
|
Díaz B, Yuen A, Iizuka S, Higashiyama S, Courtneidge SA. Notch increases the shedding of HB-EGF by ADAM12 to potentiate invadopodia formation in hypoxia. ACTA ACUST UNITED AC 2013; 201:279-92. [PMID: 23589494 PMCID: PMC3628517 DOI: 10.1083/jcb.201209151] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hypoxia increases the levels of ADAM12 in a Notch-dependent manner, leading to increased ectodomain shedding of HB-EGF and subsequent promotion of invadopodia formation. Notch regulates cell–cell contact-dependent signaling and is activated by hypoxia, a microenvironmental condition that promotes cellular invasion during both normal physiology and disease. The mechanisms by which hypoxia and Notch regulate cellular invasion are not fully elucidated. In this paper, we show that, in cancer cells, hypoxia increased the levels and activity of the ADAM12 metalloprotease in a Notch signaling–dependent manner, leading to increased ectodomain shedding of the epidermal growth factor (EGF) receptor (EGFR) ligand heparin-binding EGF-like growth factor. Released HB-EGF induced the formation of invadopodia, cellular structures that aid cancer cell invasion. Thus, we describe a signaling pathway that couples cell contact–dependent signaling with the paracrine activation of the EGFR, indicating cross talk between the Notch and EGFR pathways in promoting cancer cell invasion. This signaling pathway might regulate the coordinated acquisition of invasiveness by neighboring cells and mediate the communication between normoxic and hypoxic areas of tumors to facilitate cancer cell invasion.
Collapse
Affiliation(s)
- Begoña Díaz
- Cancer Center, Tumor Microenvironment Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
31
|
Nyren-Erickson EK, Jones JM, Srivastava DK, Mallik S. A disintegrin and metalloproteinase-12 (ADAM12): function, roles in disease progression, and clinical implications. Biochim Biophys Acta Gen Subj 2013; 1830:4445-55. [PMID: 23680494 DOI: 10.1016/j.bbagen.2013.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND A disintegrin and metalloproteinase-12 (ADAM12) is a member of the greater ADAM family of enzymes: these are multifunctional, generally membrane-bound, zinc proteases for which there are forty genes known (21 of these appearing in humans). ADAM12 has been implicated in the pathogenesis of various cancers, liver fibrogenesis, hypertension, and asthma, and its elevation or decrease in human serum has been linked to these and other physiological/pathological conditions. SCOPE In this review, we begin with a brief overview of the ADAM family of enzymes and protein structure. We then discuss the role of ADAM12 in the progression and/or diagnosis of various disease conditions, and we will conclude with an exploration of currently known natural and synthetic inhibitors. MAJOR CONCLUSION ADAM12 has potential to emerge as a successful drug target, although targeting the metalloproteinase domain with any specificity will be difficult to achieve due to structural similarity between the members of the ADAM and MMP family of enzymes. Overall, more research is required to establish ADAM12 being as a highly desirable biomarker and drug target of different diseases, and their selective inhibitors as potential therapeutic agents. GENERAL SIGNIFICANCE Given the appearance of elevated levels of ADAM12 in various diseases, particularly breast cancer, our understanding of this enzyme both as a biomarker and a potential drug target could help make significant inroads into both early diagnosis and treatment of disease.
Collapse
Affiliation(s)
- Erin K Nyren-Erickson
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | | | | | | |
Collapse
|
32
|
O'Toole SA, Beith JM, Millar EKA, West R, McLean A, Cazet A, Swarbrick A, Oakes SR. Therapeutic targets in triple negative breast cancer. J Clin Pathol 2013; 66:530-42. [DOI: 10.1136/jclinpath-2012-201361] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|