1
|
Lella RK, Malarkannan S. IQGAP1 promotes early B cell development, is essential for the development of marginal zone (MZ) B cells, and is critical for both T-dependent and T-independent antibody responses. Cell Mol Life Sci 2024; 81:462. [PMID: 39585462 PMCID: PMC11589066 DOI: 10.1007/s00018-024-05509-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
IQGAP1 is a multi-functional scaffold protein. However, its role in B cell development and function is unknown. Here, we show IQGAP1 as an essential scaffold that regulates early B cell development and function. Iqgap1-/- mice contained significantly increased numbers of B220+ B, B220+IgM- pro/pre-B, and B220LowIgM+ immature-B cells in the bone marrow. In the spleens of the Iqgap1-/- mice, newly formed and follicular B cell numbers were increased, while the marginal zone B cell numbers were significantly reduced. Lack of IQGAP1 reduced T-dependent and T-independent humoral responses. Mechanistically, the lack of IQGAP1 considerably decreased the phosphorylation of Mek1/2, Erk1/2, and Jnk1/2. B cells from Iqgap1-/- mice failed to suppress IL-7R-mediated activation of Stat5a/b, an essential step for cell-cycle exit and initiate light-chain recombination, reducing RS rearrangement frequency. Our study provides the first evidence that IQGAP1-based signalosome is necessary for the development and functions of B cells.
Collapse
Affiliation(s)
- Ravi K Lella
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
- Abdi Bio, Abdi Ibrahim Pharmaceuticals, Orhan Gazi Mahallesi Tunc Caddesi No. 3, Esenyurt, Istanbul, Turkey
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.
- Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
- Departments of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
2
|
Iyer VJ, Donahue JE, Osman MA. Role of scaffold proteins in the heterogeneity of glioblastoma. Cell Commun Signal 2024; 22:477. [PMID: 39375741 PMCID: PMC11457365 DOI: 10.1186/s12964-024-01809-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/24/2024] [Indexed: 10/09/2024] Open
Abstract
Glioblastoma (GB) is a highly heterogeneous type of incurable brain cancer with a low survival rate. Intensive ongoing research has identified several potential targets; however, GB is marred by the activation of multiple pathways, and thus common targets are highly sought. The signal regulatory scaffold IQGAP1 is an oncoprotein implicated in GB. IQGAP1 nucleates a myriad of pathways in a contextual manner and modulates many of the targets altered in GB like MAPK, NF-κB, and mTOR/PI3K/Akt1, thus positioning it as a plausible common therapeutic target. Here, we review the targets that are subjects of GB treatment clinical trials and the commonly used animal models that facilitate target identification. We propose a model in which the dysfunction of various IQGAP1 pathways can explain to a larger extent some of the GB heterogeneity and offer a platform for personalized medicine.
Collapse
Affiliation(s)
- Varun J Iyer
- Department of Medicine, Division of Hematology and Oncology, College of Medicine and Life Sciences, Health Sciences Campus, The University of Toledo, 352A Health Science Building, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - John E Donahue
- Division of Neuropathology, Department of Pathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Mahasin A Osman
- Department of Medicine, Division of Hematology and Oncology, College of Medicine and Life Sciences, Health Sciences Campus, The University of Toledo, 352A Health Science Building, 3000 Transverse Drive, Toledo, OH, 43614, USA.
| |
Collapse
|
3
|
Yerramilli VS, Lin G, Reisinger JL, Hemmerlin RM, Lindberg SK, Plante K, Ross AH, Gericke A, Scarlata S. The scaffolding protein IQGAP1 enhances EGFR signaling by promoting oligomerization and preventing degradation. J Biol Chem 2024; 300:107844. [PMID: 39357822 PMCID: PMC11555339 DOI: 10.1016/j.jbc.2024.107844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
IQGAP1 is a large, multi-domain scaffold that connects and modulates different signaling networks including the one initiated by epidermal growth factor (EGF). In this study, we have used live cell fluorescence imaging methods along with other biochemical techniques to follow the mechanisms used by IQGAP1 to enhance EGF signaling. We show that IQGAP1 enhances EGF signaling by promoting the oligomerization of its receptor, EGFR, upon EGF addition along with concurrent IQGAP oligomerization. Using cellular markers, we find that IQGAP1 promotes the plasma membrane localization of EGFR and promotes association to one of its phosphoinositide lipid pathway ligands, PI(3,4,5)P3. Additionally, we find that binding of EGFR to IQGAP1 protects EGFR from lysosomal degradation. Taken together, our results show that IQGAP1 enhances EGF-mediated pathway progression through mechanisms that augment simple scaffolding activities.
Collapse
Affiliation(s)
- V Siddartha Yerramilli
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Guanyu Lin
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Jessica L Reisinger
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Rachel M Hemmerlin
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Samantha K Lindberg
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Karin Plante
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Alonzo H Ross
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.
| |
Collapse
|
4
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 203] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
5
|
Martin-Vega A, Cobb MH. Navigating the ERK1/2 MAPK Cascade. Biomolecules 2023; 13:1555. [PMID: 37892237 PMCID: PMC10605237 DOI: 10.3390/biom13101555] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The RAS-ERK pathway is a fundamental signaling cascade crucial for many biological processes including proliferation, cell cycle control, growth, and survival; common across all cell types. Notably, ERK1/2 are implicated in specific processes in a context-dependent manner as in stem cells and pancreatic β-cells. Alterations in the different components of this cascade result in dysregulation of the effector kinases ERK1/2 which communicate with hundreds of substrates. Aberrant activation of the pathway contributes to a range of disorders, including cancer. This review provides an overview of the structure, activation, regulation, and mutational frequency of the different tiers of the cascade; with a particular focus on ERK1/2. We highlight the importance of scaffold proteins that contribute to kinase localization and coordinate interaction dynamics of the kinases with substrates, activators, and inhibitors. Additionally, we explore innovative therapeutic approaches emphasizing promising avenues in this field.
Collapse
Affiliation(s)
- Ana Martin-Vega
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
| | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA;
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 6001 Forest Park Rd., Dallas, TX 75390, USA
| |
Collapse
|
6
|
Bardwell AJ, Paul M, Yoneda KC, Andrade-Ludeña MD, Nguyen OT, Fruman DA, Bardwell L. The WW domain of IQGAP1 binds directly to the p110α catalytic subunit of PI 3-kinase. Biochem J 2023; 480:BCJ20220493. [PMID: 37145016 PMCID: PMC10625650 DOI: 10.1042/bcj20220493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/06/2023]
Abstract
IQGAP1 is a multi-domain cancer-associated protein that serves as a scaffold protein for multiple signaling pathways. Numerous binding partners have been found for the calponin homology, IQ and GAP-related domains in IQGAP1. Identification of a binding partner for its WW domain has proven elusive, however, even though a cell-penetrating peptide derived from this domain has marked anti-tumor activity. Here, using in vitro binding assays with human proteins and co-precipitation from human cells, we show that the WW domain of human IQGAP1 binds directly to the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K). In contrast, the WW domain does not bind to ERK1/2, MEK1/2, or the p85α regulatory subunit of PI3K when p85α is expressed alone. However, the WW domain is able to bind to the p110α/p85α heterodimer when both subunits are co-expressed, as well as to the mutationally activated p110α/p65α heterodimer. We present a model of the structure of the IQGAP1 WW domain, and experimentally identify key residues in the hydrophobic core and beta strands of the WW domain that are required for binding to p110α. These findings contribute to a more precise understanding of IQGAP1-mediated scaffolding, and of how IQGAP1-derived therapeutic peptides might inhibit tumorigenesis.
Collapse
Affiliation(s)
- A. Jane Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| | - Madhuri Paul
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, U.S.A
| | - Kiku C. Yoneda
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| | | | - Oanh T. Nguyen
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| | - David A. Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, U.S.A
| | - Lee Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| |
Collapse
|
7
|
Villalobo A. Regulation of ErbB Receptors by the Ca2+ Sensor Protein Calmodulin in Cancer. Biomedicines 2023; 11:biomedicines11030661. [PMID: 36979639 PMCID: PMC10045772 DOI: 10.3390/biomedicines11030661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Overexpression and mutations of the epidermal growth factor receptor (EGFR/ErbB1/HER1) and other tyrosine kinase receptors of the ErbB family (ErbB2/HER2, ErbB3/HER3 and ErbB4/HER4) play an essential role in enhancing the proliferation, the migratory capacity and invasiveness of many tumor cells, leading to cancer progression and increased malignancy. To understand these cellular processes in detail is essential to understand at a molecular level the signaling pathways and regulatory mechanisms controlling these receptors. In this regard, calmodulin (CaM) is a Ca2+-sensor protein that directly interacts with and regulates ErbB receptors, as well as some CaM-dependent kinases that also regulate these receptors, particularly EGFR and ErbB2, adding an additional layer of CaM-dependent regulation to this system. In this short review, an update of recent advances in this area is presented, covering the direct action of Ca2+/CaM on the four ErbB family members mostly in tumor cells and the indirect action of Ca2+/CaM on the receptors via CaM-regulated kinases. It is expected that further understanding of the CaM-dependent mechanisms regulating the ErbB receptors in future studies could identify new therapeutic targets in these systems that could help to control or delay cancer progression.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area-Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
| |
Collapse
|
8
|
IQGAP1 Is a Phosphotyrosine-Regulated Scaffold for SH2-Containing Proteins. Cells 2023; 12:cells12030483. [PMID: 36766826 PMCID: PMC9913818 DOI: 10.3390/cells12030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The scaffold protein IQGAP1 associates with over 150 interactors to influence multiple biological processes. The molecular mechanisms that underly spatial and temporal regulation of these interactions, which are crucial for proper cell functions, remain poorly understood. The receptor tyrosine kinase MET phosphorylates IQGAP1 on Tyr1510. Separately, Src homology 2 (SH2) domains mediate protein-protein interactions by binding specific phosphotyrosine residues. Here, we investigate whether MET-catalyzed phosphorylation of Tyr1510 of IQGAP1 regulates the docking of SH2-containing proteins. Using a peptide array, we identified SH2 domains from several proteins, including the non-receptor tyrosine kinases Abl1 and Abl2, that bind to the Tyr1510 of IQGAP1 in a phosphorylation-dependent manner. Using pure proteins, we validated that full-length Abl1 and Abl2 bind directly to phosphorylated Tyr1510 of IQGAP1. In cells, MET inhibition decreases endogenous IQGAP1 phosphorylation and interaction with endogenous Abl1 and Abl2, indicating that binding is regulated by MET-catalyzed phosphorylation of IQGAP1. Functionally, IQGAP1 modulates basal and HGF-stimulated Abl signaling. Moreover, IQGAP1 binds directly to MET, inhibiting its activation and signaling. Collectively, our study demonstrates that IQGAP1 is a phosphotyrosine-regulated scaffold for SH2-containing proteins, thereby uncovering a previously unidentified mechanism by which IQGAP1 coordinates intracellular signaling.
Collapse
|
9
|
N-Linked Glycosylation in Chinese Hamster Ovary Cells Is Critical for Insulin-like Growth Factor 1 Signaling. Int J Mol Sci 2022; 23:ijms232314952. [PMID: 36499281 PMCID: PMC9735751 DOI: 10.3390/ijms232314952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 12/03/2022] Open
Abstract
Cell surface proteins carrying N-glycans play important roles in inter- and intracellular processes including cell adhesion, development, and cellular recognition. Dysregulation of the glycosylation machinery has been implicated in various diseases, and investigation of global differential cell surface proteome effects due to the loss of N-glycosylation will provide comprehensive insights into their pathogenesis. Cell surface proteins isolated from Parent Pro-5 CHO cells (W5 cells), two CHO mutants with loss of N-glycosylation function derived from Pro-5 CHO (Lec1 and Lec4 cells), were subjected to proteome analysis via high-resolution LCMS. We identified 44 and 43 differentially expressed membrane proteins in Lec1 and Lec4 cells, respectively, as compared to W5 cells. The defective N-glycosylation mutants showed increased abundance of integrin subunits in Lec1 and Lec4 cells at the cell surface. We also found significantly reduced levels of IGF-1R (Insulin like growth factor-1 receptor); a receptor tyrosine kinase; and the GTPase activating protein IQGAP1 (IQ motif-containing GTPase activating protein), a highly conserved cytoplasmic scaffold protein) in Lec1 and Lec4 cells. In silico docking studies showed that the IQ domain of IQGAP1 interacts with the kinase domain of IGF-1R. The integrin signaling and insulin growth factor receptor signaling were also enriched according to GSEA analysis and pathway analysis of differentially expressed proteins. Significant reductions of phosphorylation of ERK1 and ERK2 in Lec1 and Lec4 cells were observed upon IGF-1R ligand (IGF-1 LR3) stimulation. IGF-1 LR3, known as Long arginine3-IGF-1, is a synthetic protein and lengthened analog of insulin-like growth factor 1. The work suggests a novel mechanism for the activation of IGF-1 dependent ERK signaling in CHO cells, wherein IQGAP1 plausibly functions as an IGF-1R-associated scaffold protein. Appropriate glycosylation by the enzymes MGAT1 and MGAT5 is thus essential for processing of cell surface receptor IGF-1R, a potential binding partner in IQGAP1 and ERK signaling, the integral components of the IGF pathway.
Collapse
|
10
|
Chen Y, Mei J, Zhang P, Liu J, Chen L, Wu L, Zhang Y. IQGAP1 is positively correlated with PD-L1 and regulates its expression via mediating STAT proteins phosphorylation. Int Immunopharmacol 2022; 108:108897. [DOI: 10.1016/j.intimp.2022.108897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022]
|
11
|
Dai Q, Ain Q, Rooney M, Song F, Zipprich A. Role of IQ Motif-Containing GTPase-Activating Proteins in Hepatocellular Carcinoma. Front Oncol 2022; 12:920652. [PMID: 35785216 PMCID: PMC9243542 DOI: 10.3389/fonc.2022.920652] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
IQ motif-containing GTPase-activating proteins (IQGAPs) are a class of scaffolding proteins, including IQGAP1, IQGAP2, and IQGAP3, which govern multiple cellular activities by facilitating cytoskeletal remodeling and cellular signal transduction. The role of IQGAPs in cancer initiation and progression has received increasing attention in recent years, especially in hepatocellular carcinoma (HCC), where the aberrant expression of IQGAPs is closely related to patient prognosis. IQGAP1 and 3 are upregulated and are considered oncogenes in HCC, while IQGAP2 is downregulated and functions as a tumor suppressor. This review details the three IQGAP isoforms and their respective structures. The expression and role of each protein in different liver diseases and mainly in HCC, as well as the underlying mechanisms, are also presented. This review also provides a reference for further studies on IQGAPs in HCC.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
- Else Kröner Graduate School for Medical Students “Jena School for Ageing Medicine (JSAM)”, Jena University Hospital, Jena, Germany
| | - Quratul Ain
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Michael Rooney
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Fei Song
- Department of Urology, Jena University Hospital, Jena, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
- *Correspondence: Alexander Zipprich,
| |
Collapse
|
12
|
Zhang Z, Wei Y, Li X, Zhao R, Wang X, Yang Z, Li T, Wang X, Li X, Wang X. IQGAP1 enhances cell invasion and matrix metalloproteinase-2 expression through upregulating NF-κB activity in esophageal squamous cell carcinoma cells. Gene 2022; 824:146406. [PMID: 35276237 DOI: 10.1016/j.gene.2022.146406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one type of the most common malignancies, yet the overall survival rate is still not ideal. IQ motif containing GTPase activating protein 1 (IQGAP1) participates in cell biological functions of various tumors as an oncogene. However, the mechanisms of IQGAP1 affecting malignant development of ESCC are still unclear. In this study, the expression and correlation of IQGAP1 and MMP2 in esophageal cancer tissues were evaluated by online databases and immunohistochemistry. Stably transfected cell lines with IQGAP1 overexpression and knockdown were constructed. Cell growth, migration and invasion ability, the expression of MMP2 and NF-κB expression were examined in ESCC cells. Furthermore, the cellular malignant phenotypes of ESCC and MMP2 expression in IQGAP1 overexpressing cells after treatment with the NF-κB inhibitor pyrrolidinecarbodithioic acid (PDTC) or JSH-23 were detected. We found that the expression of IQGAP1 and MMP2 were up-regulated and positively correlated in ESCC tissues. IQGAP1 overexpression promoted the growth, migration and invasion of ESCC cells, and up-regulated the expression of MMP2, and increased the expression and the nuclear localization level of NF-κB. Treating with PDTC or JSH-23 reversed IQGAP1-mediated cell migration and invasion ability, as well as the expression of MMP2. In summary, IQGAP1 plays a tumor promotion role to regulate the migration and invasion of ESCC cells and the expression of MMP2 through upregulating NF-κB activity, supporting a promising therapeutic target against ESCC.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Yuan Wei
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Xinting Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Rong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Xiuli Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Ziyi Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Ting Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Xuewei Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China
| | - Xiaozhong Li
- Department of Infection, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Xiaoxia Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, Taiyuan, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China; Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
13
|
Yerramilli VS, Ross AH, Scarlata S, Gericke A. IQGAP1 scaffolding links phosphoinositide kinases to cytoskeletal reorganization. Biophys J 2022; 121:793-807. [PMID: 35077666 PMCID: PMC8943696 DOI: 10.1016/j.bpj.2022.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/24/2021] [Accepted: 01/21/2022] [Indexed: 11/02/2022] Open
Abstract
IQGAP1 is a multidomain scaffold protein that coordinates the direction and impact of multiple signaling pathways by scaffolding its various binding partners. However, the spatial and temporal resolution of IQGAP1 scaffolding remains unclear. Here, we use fluorescence imaging and correlation methods that allow for real-time live-cell changes in IQGAP1 localization and complex formation during signaling. We find that IQGAP1 and PIPKIγ interact on both the plasma membrane and in cytosol. Epidermal growth factor (EGF) stimulation, which can initiate cytoskeletal changes, drives the movement of the cytosolic pool toward the plasma membrane to promote cytoskeletal changes. We also observe that a significant population of cytosolic IQGAP1-PIPKIγ complexes localize to early endosomes, and in some instances form aggregated clusters which become highly mobile upon EGF stimulation. Our imaging studies show that PIPKIγ and PI3K bind simultaneously to IQGAP1, which may accelerate conversion of PI4P to PI(3,4,5)P3 that is required for cytoskeletal changes. Additionally, we find that IQGAP1 is responsible for PIPKIγ association with two proteins associated with cytoskeletal changes, talin and Cdc42, during EGF stimulation. These results directly show that IQGAP1 provides a physical link between phosphoinositides (through PIPKIγ), focal adhesion formation (through talin), and cytoskeletal reorganization (through Cdc42) upon EGF stimulation. Taken together, our results support the importance of IQGAP1 in regulating cell migration by linking phosphoinositide lipid signaling with cytoskeletal reorganization.
Collapse
Affiliation(s)
- V. Siddartha Yerramilli
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Alonzo H. Ross
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts.
| |
Collapse
|
14
|
Zarei Ghobadi M, Emamzadeh R, Teymoori-Rad M, Mozhgani SH. Decoding pathogenesis factors involved in the progression of ATLL or HAM/TSP after infection by HTLV-1 through a systems virology study. Virol J 2021; 18:175. [PMID: 34446027 PMCID: PMC8393454 DOI: 10.1186/s12985-021-01643-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022] Open
Abstract
Background Human T-cell Leukemia Virus type-1 (HTLV-1) is a retrovirus that causes two diseases including Adult T-cell Leukemia/Lymphoma (ATLL cancer) and HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP, a neurodegenerative disease) after a long latency period as an asymptomatic carrier (AC). There are no obvious explanations about how each of the mentioned diseases develops in the AC carriers. Finding the discriminative molecular factors and pathways may clarify the destiny of the infection. Methods To shed light on the involved molecular players and activated pathways in each state, differentially co-expressed modules (DiffCoEx) algorithm was employed to identify the highly correlated genes which were co-expressed differently between normal and ACs, ACs and ATLL, as well as ACs and HAM/TSP samples. Through differential pathway analysis, the dysregulated pathways and the specific disease-genes-pathways were figured out. Moreover, the common genes between the member of DiffCoEx and differentially expressed genes were found and the specific genes in ATLL and HAM/TSP were introduced as possible biomarkers. Results The dysregulated genes in the ATLL were mostly enriched in immune and cancer-related pathways while the ones in the HAM/TSP were enriched in immune, inflammation, and neurological pathways. The differential pathway analysis clarified the differences between the gene players in the common activated pathways. Eventually, the final analysis revealed the involvement of specific dysregulated genes including KIRREL2, RAB36, and KANK1 in HAM/TSP as well as LTB4R2, HCN4, FZD9, GRIK5, CREB3L4, TACR2, FRMD1, LHB, FGF3, TEAD3, GRIN2D, GNRH2, PRLH, GPR156, and CRHR2 in ATLL. Conclusion The identified potential prognostic biomarkers and therapeutic targets are proposed as the most important platers in developing ATLL or HAM/TSP. Moreover, the proposed signaling network clarifies the differences between the functional players in the activated pathways in ACs, ATLL, and HAM/TSP. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01643-8.
Collapse
Affiliation(s)
- Mohadeseh Zarei Ghobadi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Non‑Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
15
|
Wei T, Lambert PF. Role of IQGAP1 in Carcinogenesis. Cancers (Basel) 2021; 13:3940. [PMID: 34439095 PMCID: PMC8391515 DOI: 10.3390/cancers13163940] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/31/2022] Open
Abstract
Scaffolding proteins can play important roles in cell signaling transduction. IQ motif-containing GTPase-activating protein 1 (IQGAP1) influences many cellular activities by scaffolding multiple key signaling pathways, including ones involved in carcinogenesis. Two decades of studies provide evidence that IQGAP1 plays an essential role in promoting cancer development. IQGAP1 is overexpressed in many types of cancer, and its overexpression in cancer is associated with lower survival of the cancer patient. Here, we provide a comprehensive review of the literature regarding the oncogenic roles of IQGAP1. We start by describing the major cancer-related signaling pathways scaffolded by IQGAP1 and their associated cellular activities. We then describe clinical and molecular evidence for the contribution of IQGAP1 in different types of cancers. In the end, we review recent evidence implicating IQGAP1 in tumor-related immune responses. Given the critical role of IQGAP1 in carcinoma development, anti-tumor therapies targeting IQGAP1 or its associated signaling pathways could be beneficial for patients with many types of cancer.
Collapse
Affiliation(s)
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| |
Collapse
|
16
|
Pudewell S, Wittich C, Kazemein Jasemi NS, Bazgir F, Ahmadian MR. Accessory proteins of the RAS-MAPK pathway: moving from the side line to the front line. Commun Biol 2021; 4:696. [PMID: 34103645 PMCID: PMC8187363 DOI: 10.1038/s42003-021-02149-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Health and disease are directly related to the RTK-RAS-MAPK signalling cascade. After more than three decades of intensive research, understanding its spatiotemporal features is afflicted with major conceptual shortcomings. Here we consider how the compilation of a vast array of accessory proteins may resolve some parts of the puzzles in this field, as they safeguard the strength, efficiency and specificity of signal transduction. Targeting such modulators, rather than the constituent components of the RTK-RAS-MAPK signalling cascade may attenuate rather than inhibit disease-relevant signalling pathways.
Collapse
Affiliation(s)
- Silke Pudewell
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Christoph Wittich
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Neda S. Kazemein Jasemi
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Farhad Bazgir
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Mohammad R. Ahmadian
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
17
|
Peng X, Wang T, Gao H, Yue X, Bian W, Mei J, Zhang Y. The interplay between IQGAP1 and small GTPases in cancer metastasis. Biomed Pharmacother 2021; 135:111243. [PMID: 33434854 DOI: 10.1016/j.biopha.2021.111243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 01/07/2023] Open
Abstract
The metastatic spread of tumor cells to distant anatomical locations is a critical cause for disease progression and leads to more than 90 % of cancer-related deaths. IQ motif-containing GTPase-activating protein 1 (IQGAP1), a prominent regulator in the cancer metastasis process, is a scaffold protein that interacts with components of the cytoskeleton. As a critical node within the small GTPase network, IQGAP1 acts as a binding partner of several small GTPases, which in turn function as molecular switches to control most cellular processes, including cell migration and invasion. Given the significant interaction between IQGAP1 and small GTPases in cancer metastasis, we briefly elucidate the role of IQGAP1 in regulating cancer metastasis and the varied interactions existing between IQGAP1 and small GTPases. In addition, the potential regulators for IQGAP1 activity and its interaction with small GTPases are also incorporated in this review. Overall, we comprehensively summarize the role of IQGAP1 in cancer tumorigenicity and metastasis, which may be a potential anti-tumor target to restrain cancer progression.
Collapse
Affiliation(s)
- Xiafeng Peng
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China; First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Tiejun Wang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China.
| | - Han Gao
- School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Xin Yue
- First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Weiqi Bian
- First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Jie Mei
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China; Wuxi Clinical Medical College, Nanjing Medical University, Wuxi, 214023, China.
| | - Yan Zhang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
18
|
Hedman AC, McNulty DE, Li Z, Gorisse L, Annan RS, Sacks DB. Tyrosine phosphorylation of the scaffold protein IQGAP1 in the MET pathway alters function. J Biol Chem 2020; 295:18105-18121. [PMID: 33087447 PMCID: PMC11843583 DOI: 10.1074/jbc.ra120.015891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
IQGAP1 is a key scaffold protein that regulates numerous cellular processes and signaling pathways. Analogous to many other cellular proteins, IQGAP1 undergoes post-translational modifications, including phosphorylation. Nevertheless, very little is known about the specific sites of phosphorylation or the effects on IQGAP1 function. Here, using several approaches, including MS, site-directed mutagenesis, siRNA-mediated gene silencing, and chemical inhibitors, we identified the specific tyrosine residues that are phosphorylated on IQGAP1 and evaluated the effect on function. Tyr-172, Tyr-654, Tyr-855, and Tyr-1510 were phosphorylated on IQGAP1 when phosphotyrosine phosphatase activity was inhibited in cells. IQGAP1 was phosphorylated exclusively on Tyr-1510 under conditions with enhanced MET or c-Src signaling, including in human lung cancer cell lines. This phosphorylation was significantly reduced by chemical inhibitors of MET or c-Src or by siRNA-mediated knockdown of MET. To investigate the biological sequelae of phosphorylation, we generated a nonphosphorylatable IQGAP1 construct by replacing Tyr-1510 with alanine. The ability of hepatocyte growth factor, the ligand for MET, to promote AKT activation and cell migration was significantly greater when IQGAP1-null cells were reconstituted with IQGAP1 Y1510A than when cells were reconstituted with WT IQGAP1. Collectively, our data suggest that phosphorylation of Tyr-1510 of IQGAP1 alters cell function. Because increased MET signaling is implicated in the development and progression of several types of carcinoma, IQGAP1 may be a potential therapeutic target in selected malignancies.
Collapse
Affiliation(s)
- Andrew C Hedman
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Dean E McNulty
- Discovery Analytical, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Laëtitia Gorisse
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Roland S Annan
- Discovery Analytical, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
19
|
Hedman AC, Li Z, Gorisse L, Parvathaneni S, Morgan CJ, Sacks DB. IQGAP1 binds AMPK and is required for maximum AMPK activation. J Biol Chem 2020; 296:100075. [PMID: 33191271 PMCID: PMC7948462 DOI: 10.1074/jbc.ra120.016193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/15/2020] [Indexed: 12/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a fundamental component of a protein kinase cascade that is an energy sensor. AMPK maintains energy homeostasis in the cell by promoting catabolic and inhibiting anabolic pathways. Activation of AMPK requires phosphorylation by the liver kinase B1 or by the Ca2+/calmodulin-dependent protein kinase 2 (CaMKK2). The scaffold protein IQGAP1 regulates intracellular signaling pathways, such as the mitogen-activated protein kinase and AKT signaling cascades. Recent work implicates the participation of IQGAP1 in metabolic function, but the molecular mechanisms underlying these effects are poorly understood. Here, using several approaches including binding analysis with fusion proteins, siRNA-mediated gene silencing, RT-PCR, and knockout mice, we investigated whether IQGAP1 modulates AMPK signaling. In vitro analysis reveals that IQGAP1 binds directly to the α1 subunit of AMPK. In addition, we observed a direct interaction between IQGAP1 and CaMKK2, which is mediated by the IQ domain of IQGAP1. Both CaMKK2 and AMPK associate with IQGAP1 in cells. The ability of metformin and increased intracellular free Ca2+ concentrations to activate AMPK is reduced in cells lacking IQGAP1. Importantly, Ca2+-stimulated AMPK phosphorylation was rescued by re-expression of IQGAP1 in IQGAP1-null cell lines. Comparison of the fasting response in wild-type and IQGAP1-null mice revealed that transcriptional regulation of the gluconeogenesis genes PCK1 and G6PC and the fatty acid synthesis genes FASN and ACC1 is impaired in IQGAP1-null mice. Our data disclose a previously unidentified functional interaction between IQGAP1 and AMPK and suggest that IQGAP1 modulates AMPK signaling.
Collapse
Affiliation(s)
- Andrew C Hedman
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Laëtitia Gorisse
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Swetha Parvathaneni
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Chase J Morgan
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
20
|
Zhang X, Bandyopadhyay S, Araujo LP, Tong K, Flores J, Laubitz D, Zhao Y, Yap G, Wang J, Zou Q, Ferraris R, Zhang L, Hu W, Bonder EM, Kiela PR, Coffey R, Verzi MP, Ivanov II, Gao N. Elevating EGFR-MAPK program by a nonconventional Cdc42 enhances intestinal epithelial survival and regeneration. JCI Insight 2020; 5:135923. [PMID: 32686657 PMCID: PMC7455142 DOI: 10.1172/jci.insight.135923] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/09/2020] [Indexed: 01/05/2023] Open
Abstract
The regulatory mechanisms enabling the intestinal epithelium to maintain a high degree of regenerative capacity during mucosal injury remain unclear. Ex vivo survival and clonogenicity of intestinal stem cells (ISCs) strictly required growth response mediated by cell division control 42 (Cdc42) and Cdc42-deficient enteroids to undergo rapid apoptosis. Mechanistically, Cdc42 engaging with EGFR was required for EGF-stimulated, receptor-mediated endocytosis and sufficient to promote MAPK signaling. Proteomics and kinase analysis revealed that a physiologically, but nonconventionally, spliced Cdc42 variant 2 (V2) exhibited stronger MAPK-activating capability. Human CDC42-V2 is transcriptionally elevated in some colon tumor tissues. Accordingly, mice engineered to overexpress Cdc42-V2 in intestinal epithelium showed elevated MAPK signaling, enhanced regeneration, and reduced mucosal damage in response to irradiation. Overproducing Cdc42-V2 specifically in mouse ISCs enhanced intestinal regeneration following injury. Thus, the intrinsic Cdc42-MAPK program is required for intestinal epithelial regeneration, and elevating this signaling cascade is capable of initiating protection from genotoxic injury.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Biological Sciences, Division of Life Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Sheila Bandyopadhyay
- Department of Biological Sciences, Division of Life Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Leandro Pires Araujo
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Kevin Tong
- Department of Genetics, Division of Life Sciences, School of Arts and Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Juan Flores
- Department of Biological Sciences, Division of Life Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Daniel Laubitz
- Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | - Yanlin Zhao
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - George Yap
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jingren Wang
- Department of Mechanical and Aerospace Engineering, School of Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Qingze Zou
- Department of Mechanical and Aerospace Engineering, School of Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Ronaldo Ferraris
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Lanjing Zhang
- Department of Biological Sciences, Division of Life Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
- Department of Pathology, University Medical Center of Princeton, Plainsboro, New Jersey, USA
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Edward M. Bonder
- Department of Biological Sciences, Division of Life Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
| | - Pawel R. Kiela
- Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | - Robert Coffey
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael P. Verzi
- Department of Genetics, Division of Life Sciences, School of Arts and Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Ivaylo I. Ivanov
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Nan Gao
- Department of Biological Sciences, Division of Life Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
21
|
Wei T, Lambert PF. A highway to carcinogenesis: the role of IQGAP1, a signaling scaffolding protein, in head and neck cancer development. Oncoscience 2020; 7:49-51. [PMID: 32923516 PMCID: PMC7458336 DOI: 10.18632/oncoscience.511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most frequent cancer worldwide. One of the most critical signaling pathways in HNSCC is the Epidermal Growth Factor Receptor/ Phosphatidylinositol 3-Kinase (EGFR/PI3K) pathway. IQ motif-containing GTPase- activating protein 1 (IQGAP1), a protein upregulated in multiple types of cancer, acts as a scaffold for this pathway and others implicated in cancer. IQGAP1 is overexpressed in HNSCCs, and its overexpression correlates with poorer prognosis in HNSCC patients, indicating that IQGAP1 might be important in HNSCC development. Here, we summarized our recent demonstrating a role of IQGAP1 in promoting HNSCC, at least in part, by scaffolding the EGFR/PI3K signaling pathway.
Collapse
Affiliation(s)
- Tao Wei
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
22
|
Miningou N, Blackwell KT. The road to ERK activation: Do neurons take alternate routes? Cell Signal 2020; 68:109541. [PMID: 31945453 PMCID: PMC7127974 DOI: 10.1016/j.cellsig.2020.109541] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 01/29/2023]
Abstract
The ERK cascade is a central signaling pathway that regulates a wide variety of cellular processes including proliferation, differentiation, learning and memory, development, and synaptic plasticity. A wide range of inputs travel from the membrane through different signaling pathway routes to reach activation of one set of output kinases, ERK1&2. The classical ERK activation pathway beings with growth factor activation of receptor tyrosine kinases. Numerous G-protein coupled receptors and ionotropic receptors also lead to ERK through increases in the second messengers calcium and cAMP. Though both types of pathways are present in diverse cell types, a key difference is that most stimuli to neurons, e.g. synaptic inputs, are transient, on the order of milliseconds to seconds, whereas many stimuli acting on non-neural tissue, e.g. growth factors, are longer duration. The ability to consolidate these inputs to regulate the activation of ERK in response to diverse signals raises the question of which factors influence the difference in ERK activation pathways. This review presents both experimental studies and computational models aimed at understanding the control of ERK activation and whether there are fundamental differences between neurons and other cells. Our main conclusion is that differences between cell types are quite subtle, often related to differences in expression pattern and quantity of some molecules such as Raf isoforms. In addition, the spatial location of ERK is critical, with regulation by scaffolding proteins producing differences due to colocalization of upstream molecules that may differ between neurons and other cells.
Collapse
Affiliation(s)
- Nadiatou Miningou
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030, United States of America
| | - Kim T Blackwell
- Interdisciplinary Program in Neuroscience and Bioengineering Department, George Mason University, Fairfax, VA 22030, United States of America.
| |
Collapse
|
23
|
Sheen YS, Lin MH, Tzeng WC, Chu CY. Purpuric drug eruptions induced by EGFR tyrosine kinase inhibitors are associated with IQGAP1-mediated increase in vascular permeability. J Pathol 2020; 250:452-463. [PMID: 32030757 DOI: 10.1002/path.5393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 12/31/2019] [Accepted: 02/03/2020] [Indexed: 01/19/2023]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are used as a treatment for non-small-cell lung cancer. There have been some reports of EGFR-TKIs being associated with vascular adverse events. We found that EGFR-TKIs decreased the proliferation of HMEC-1s (immortalized human dermal microvascular endothelial cells) and HMVECs (human dermal microvascular endothelial cells), and also inhibited the phosphorylation of EGFR and ERK. We examined the mRNA expression profile of erlotinib-treated HMEC-1s and identified IQ motif containing GTPase activating protein 1 (IQGAP1) as the most consistently up-regulated transcript and protein. IQGAP1 was also overexpressed and co-localized with endothelial cells in the lesional skin. Notably, increased IQGAP1 expression was associated with decreased transendothelial electrical resistance and increased vascular permeability in vitro. Erlotinib treatment enriched the staining of IQGAP1 and reduced the intensities of α-catenin at the sites of cell-cell contact. In conclusion, erlotinib induces adherens junction dysfunction by modulating the expression of IQGAP1 in dermal endothelial cells. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yi-Shuan Sheen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Hsien Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hisn-Chu, Taiwan
| | - Wen-Chia Tzeng
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
24
|
Chekalin EV, Zolotarenko AD, Bruskin SA. IQGAP Genes in Psoriasis. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Gorisse L, Li Z, Wagner CD, Worthylake DK, Zappacosta F, Hedman AC, Annan RS, Sacks DB. Ubiquitination of the scaffold protein IQGAP1 diminishes its interaction with and activation of the Rho GTPase CDC42. J Biol Chem 2020; 295:4822-4835. [PMID: 32094223 DOI: 10.1074/jbc.ra119.011491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
IQ motif-containing GTPase-activating protein 1 (IQGAP1) is a scaffold protein that interacts with numerous binding partners and thereby regulates fundamental biological processes. The functions of IQGAP1 are modulated by several mechanisms, including protein binding, self-association, subcellular localization, and phosphorylation. Proteome-wide screens have indicated that IQGAP1 is ubiquitinated, but the possible effects of this post-translational modification on its function are unknown. Here we characterized and evaluated the function of IQGAP1 ubiquitination. Using MS-based analysis in HEK293 cells, we identified six lysine residues (Lys-556, -1155, -1230, -1465, -1475, and -1528) as ubiquitination sites in IQGAP1. To elucidate the biological consequences of IQGAP1 ubiquitination, we converted each of these lysines to arginine and found that replacing two of these residues, Lys-1155 and Lys-1230, in the GAP-related domain of IQGAP1 (termed IQGAP1 GRD-2K) reduces its ubiquitination. Moreover, IQGAP1 GRD-2K bound a significantly greater proportion of the two Rho GTPases cell division cycle 42 (CDC42) and Rac family small GTPase 1 (RAC1) than did WT IQGAP1. Consistent with this observation, reconstitution of IQGAP1-null cells with IQGAP1 GRD-2K significantly increased the amount of active CDC42 and enhanced cell migration significantly more than WT IQGAP1. Our results reveal that ubiquitination of the CDC42 regulator IQGAP1 alters its ability to bind to and activate this GTPase, leading to physiological effects. Collectively, these findings expand our view of the role of ubiquitination in cell signaling and provide additional insight into CDC42 regulation.
Collapse
Affiliation(s)
- Laëtitia Gorisse
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - Craig D Wagner
- Discovery Analytical, GlaxoSmithKline, Collegeville, Pennsylvania 19426
| | - David K Worthylake
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences, New Orleans, Louisiana 70112
| | | | - Andrew C Hedman
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - Roland S Annan
- Discovery Analytical, GlaxoSmithKline, Collegeville, Pennsylvania 19426
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
26
|
The scaffold protein IQGAP1 is crucial for extravasation and metastasis. Sci Rep 2020; 10:2439. [PMID: 32051509 PMCID: PMC7015931 DOI: 10.1038/s41598-020-59438-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/29/2020] [Indexed: 12/21/2022] Open
Abstract
IQGAP1 is a scaffold protein involved in a range of cellular activities, including migration, invasion, adhesion and proliferation. It is also oncogenic in a variety of cancers, promoting primary tumor growth and invasiveness. However, the role of IQGAP1 in tumor progression and metastasis remains unclear. In this study, we use both knockdown and knockout of IQGAP1 to investigate its role in the metastatic cascade of both melanoma and breast cancer cells in vivo. We find that reduction of IQGAP1 expression decreases the formation of both spontaneous and experimental metastases, without limiting primary or metastatic tumor growth. Furthermore, IQGAP1 knockout significantly inhibits extravasation of tumor cells from circulation, possibly involving invadopodial function. By expressing mutant forms of IQGAP1 in a knockout context, we also determine that IQGAP1’s pro-metastatic functions are dependent on multiple domains and functions. These data demonstrate that IQGAP1 is crucial for metastasis in vivo through regulation of extravasation and suggest that it may represent a valid therapeutic target for inhibiting metastasis.
Collapse
|
27
|
Zhang M, Li Z, Jang H, Hedman AC, Sacks DB, Nussinov R. Ca 2+-Dependent Switch of Calmodulin Interaction Mode with Tandem IQ Motifs in the Scaffolding Protein IQGAP1. Biochemistry 2019; 58:4903-4911. [PMID: 31724397 PMCID: PMC8195445 DOI: 10.1021/acs.biochem.9b00854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
IQ domain GTPase-activating scaffolding protein 1 (IQGAP1) mediates cytoskeleton, cell migration, proliferation, and apoptosis events. Calmodulin (CaM) modulates IQGAP1 functions by binding to its four tandem IQ motifs. Exactly how CaM binds the IQ motifs and which functions of IQGAP1 CaM regulates and how are fundamental mechanistic questions. We combine experimental pull-down assays, mutational data, and molecular dynamics simulations to understand the IQ-CaM complexes with and without Ca2+ at the atomic level. Apo-CaM favors the IQ3 and IQ4 motifs but not the IQ1 and IQ2 motifs that lack two hydrophobic residues for interactions with apo-CaM's hydrophobic pocket. Ca2+-CaM binds all four IQ motifs, with both N- and C-lobes tightly wrapped around each motif. Ca2+ promotes IQ-CaM interactions and increases the amount of IQGAP1-loaded CaM for IQGAP1-mediated signaling. Collectively, we describe IQ-CaM binding in atomistic detail and feature the emergence of Ca2+ as a key modulator of the CaM-IQGAP1 interactions.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 20892, United States
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hyunbum Jang
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Andrew C. Hedman
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ruth Nussinov
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 20892, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
28
|
Okuyama Y, Nagashima H, Ushio-Fukai M, Croft M, Ishii N, So T. IQGAP1 restrains T-cell cosignaling mediated by OX40. FASEB J 2019; 34:540-554. [PMID: 31914585 DOI: 10.1096/fj.201900879rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
Abstract
A costimulatory signal from the tumor necrosis factor receptor (TNFR) family molecule OX40 (CD134), which is induced on activated T cells, is important for T-cell immunity. Aberrant OX40 cosignaling has been implicated in autoimmune and inflammatory disorders. However, the molecular mechanism by which the OX40 cosignaling regulates the T-cell response remains obscure. We found that OX40 associated with a scaffold protein, IQ motif-containing GTPase-activating protein 1 (IQGAP1) after ligation by its ligand OX40L. Naïve CD4+ T cells from Iqgap1-/- mice displayed enhanced proliferation and cytokine secretion upon receiving OX40 cosignaling. A C-terminal IQGAP1 region was responsible for its association with OX40, and TNFR-associated factor 2 (TRAF2) bridged these two proteins. The enhanced cytokine response in Iqgap1-/- T cells was restored by the expression of the C-terminal IQGAP1. Thus, the IQGAP1 binding limits the OX40 cosignaling. Disease severity of experimental autoimmune encephalomyelitis (EAE) was significantly exacerbated in Iqgap1-/- mice as compared to wild-type mice. Additionally, recipient mice with Iqgap1-/- donor CD4+ T cells exhibited significantly higher EAE scores than those with their wild-type counterparts, and OX40 blockade led to a significant reduction in the EAE severity. Thus, our study defines an important component of the OX40 cosignaling that restricts inflammation driven by antigen-activated T cells.
Collapse
Affiliation(s)
- Yuko Okuyama
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Nagashima
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori So
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
29
|
Wei T, Choi S, Buehler D, Anderson RA, Lambert PF. A PI3K/AKT Scaffolding Protein, IQ Motif-Containing GTPase Associating Protein 1 (IQGAP1), Promotes Head and Neck Carcinogenesis. Clin Cancer Res 2019; 26:301-311. [PMID: 31597661 DOI: 10.1158/1078-0432.ccr-19-1063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/15/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Head and neck cancer (HNC) is the sixth most common cancer worldwide with a 5-year survival rate of less than 50%. The PI3K/AKT/mTOR signaling pathway is frequently implicated in HNC. Recently, IQ motif-containing GTPase-activating protein 1 (IQGAP1) was discovered to scaffold the PI3K/AKT signaling pathway. IQGAP1 gene expression is increased in HNC, raising the hypothesis that IQGAP1 contributes to HNC. EXPERIMENTAL DESIGN We performed a combination of in vitro studies using human cancer cell lines treated with a cell-permeable peptide that interferes with IQGAP1's ability to bind to PI3K, and in vivo studies utilizing mice genetically knocked out for the Iqgap1 (Iqgap1 -/-). In vivo EGF stimulation assays were used to evaluate PI3K signaling. To study the role of IQGAP1 in HNC, we used a well-validated mouse model that drives HNC via a synthetic oral carcinogen, 4-nitroquinoline 1-oxide (4NQO). RESULTS IQGAP1 is necessary for efficient PI3K signaling in vitro and in vivo. Disruption of IQGAP1-scaffolded PI3K/AKT signaling reduced HNC cell survival. Iqgap1 -/- mice had significantly lower cancer incidences, lesser disease severity, and fewer cancer foci. IQGAP1 protein levels were increased in HNC arising in Iqgap1+/+ mice. The level of PI3K signaling in 4NQO-induced HNC arising in Iqgap1 -/- mice was significantly reduced, consistent with the hypothesis that IQGAP1 contributes to HNC at least partly through PI3K signaling. High IQGAP1 expression correlated with reduced survival, and high pS6 levels correlated with high IQGAP1 levels in patients with HNC. CONCLUSIONS These data demonstrate that IQGAP1 contributes to head and neck carcinogenesis.
Collapse
Affiliation(s)
- Tao Wei
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Suyong Choi
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Richard A Anderson
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin. .,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
30
|
Morgan CJ, Hedman AC, Li Z, Sacks DB. Endogenous IQGAP1 and IQGAP3 do not functionally interact with Ras. Sci Rep 2019; 9:11057. [PMID: 31363101 PMCID: PMC6667474 DOI: 10.1038/s41598-019-46677-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023] Open
Abstract
The Ras family of small GTPases modulates numerous essential processes. Activating Ras mutations result in hyper-activation of selected signaling cascades, which leads to human diseases. The high frequency of Ras mutations in human malignant neoplasms has led to Ras being a desirable chemotherapeutic target. The IQGAP family of scaffold proteins binds to and regulates multiple signaling molecules, including the Rho family GTPases Rac1 and Cdc42. There are conflicting data in the published literature regarding interactions between IQGAP and Ras proteins. Initial reports showed no binding, but subsequent studies claim associations of IQGAP1 and IQGAP3 with K-Ras and H-Ras, respectively. Therefore, we set out to resolve this controversy. Here we demonstrate that neither endogenous IQGAP1 nor endogenous IQGAP3 binds to the major Ras isoforms, namely H-, K-, and N-Ras. Importantly, Ras activation by epidermal growth factor is not altered when IQGAP1 or IQGAP3 proteins are depleted from cells. These data strongly suggest that IQGAP proteins are not functional interactors of H-, K-, or N-Ras and challenge the rationale for targeting the interaction of Ras with IQGAP for the development of therapeutic agents.
Collapse
Affiliation(s)
- Chase J Morgan
- From the Department of Laboratory Medicine, National Institutes of Health, 10 Center Drive, Bethesda, Maryland, 20892, USA
| | - Andrew C Hedman
- From the Department of Laboratory Medicine, National Institutes of Health, 10 Center Drive, Bethesda, Maryland, 20892, USA
| | - Zhigang Li
- From the Department of Laboratory Medicine, National Institutes of Health, 10 Center Drive, Bethesda, Maryland, 20892, USA
| | - David B Sacks
- From the Department of Laboratory Medicine, National Institutes of Health, 10 Center Drive, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
31
|
Chen M, Choi S, Jung O, Wen T, Baum C, Thapa N, Lambert PF, Rapraeger AC, Anderson RA. The Specificity of EGF-Stimulated IQGAP1 Scaffold Towards the PI3K-Akt Pathway is Defined by the IQ3 motif. Sci Rep 2019; 9:9126. [PMID: 31235839 PMCID: PMC6591252 DOI: 10.1038/s41598-019-45671-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and its downstream phosphoinositide 3-kinase (PI3K) pathway are commonly deregulated in cancer. Recently, we have shown that the IQ motif-containing GTPase-activating protein 1 (IQGAP1) provides a molecular platform to scaffold all the components of the PI3K-Akt pathway and results in the sequential generation of phosphatidylinositol-3,4,5-trisphosphate (PI3,4,5P3). In addition to the PI3K-Akt pathway, IQGAP1 also scaffolds the Ras-ERK pathway. To define the specificity of IQGAP1 for the control of PI3K signaling, we have focused on the IQ3 motif in IQGAP1 as PIPKIα and PI3K enzymes bind this region. An IQ3 deletion mutant loses interactions with the PI3K-Akt components but retains binding to ERK and EGFR. Consistently, blocking the IQ3 motif of IQGAP1 using an IQ3 motif-derived peptide mirrors the effect of IQ3 deletion mutant by reducing Akt activation but has no impact on ERK activation. Also, the peptide disrupts the binding of IQGAP1 with PI3K-Akt pathway components, while IQGAP1 interactions with ERK and EGFR are not affected. Functionally, deleting or blocking the IQ3 motif inhibits cell proliferation, invasion, and migration in a non-additive manner to a PIPKIα inhibitor, establishing the functional specificity of IQ3 motif towards the PI3K-Akt pathway. Taken together, the IQ3 motif is a specific target for suppressing activation of the PI3K-Akt but not the Ras-ERK pathway. Although EGFR stimulates the IQGAP1-PI3K and -ERK pathways, here we show that IQGAP1-PI3K controls migration, invasion, and proliferation independent of ERK. These data illustrate that the IQ3 region of IQGAP1 is a promising therapeutic target for PI3K-driven cancer.
Collapse
Affiliation(s)
- Mo Chen
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Suyong Choi
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Oisun Jung
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Tianmu Wen
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Christina Baum
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Narendra Thapa
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Paul F Lambert
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Alan C Rapraeger
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Richard A Anderson
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
32
|
Zhang Z, Zhai W, Liang J, Chen Z, Ma M, Zhao Y, Liang Y, Li X, Teng CB. Mutual inhibitions between epidermal growth factor receptor signaling and miR-124a control pancreatic progenitor proliferation. J Cell Physiol 2018; 234:12978-12988. [PMID: 30537082 DOI: 10.1002/jcp.27967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Pancreatic stem/progenitor cells convert from a proliferative to a differentiated fate passing through proliferation cease to a resting state. However, the molecular mechanisms of cell cycle arrest are poorly understood. In this study, we demonstrated that the microRNA-124a (miR-124a) inhibited the proliferation of pancreatic progenitor cells both in vitro and ex vivo and promoted a quiescent state. The miR-124a directly targeted SOS Ras/Rac guanine nucleotide exchange factor 1 (SOS1), IQ motif-containing GTPase-activating protein 1 (IQGAP1), signal transducer and activator of transcription 3 (STAT3), and cyclin D2 (CCND2), thereby inactivating epidermal growth factor receptor (EGFR) downstream signaling pathways including mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK), phosphatidylinositol 3-kinase-protein kinase B (PI3K/AKT) and Janus kinase (JAK)/STAT3. miR-124a blocked cell proliferation mainly through targeting STAT3 to inhibit PI3K/AKT and JAK/STAT3 signaling. Moreover, miR-124a expression was negatively regulated by EGFR downstream PI3K/AKT signaling. These results indicated that miR-124a and EGFR signaling mutually interact to form a regulating circuit that determines the proliferation of pancreatic progenitor cells.
Collapse
Affiliation(s)
- Zhenwu Zhang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenjun Zhai
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Jie Liang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Zhenbao Chen
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Mingjun Ma
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | | | - Yang Liang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xuyan Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China.,School of Life Science and Technology, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Chun-Bo Teng
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| |
Collapse
|
33
|
IQGAP1 binds the Axl receptor kinase and inhibits its signaling. Biochem J 2018; 475:3073-3086. [PMID: 30185434 DOI: 10.1042/bcj20180594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023]
Abstract
Axl is a tyrosine kinase receptor that is important for hematopoiesis, the innate immune response, platelet aggregation, engulfment of apoptotic cells and cell survival. Binding of growth arrest-specific protein 6 (Gas6) activates Axl signaling, but the mechanism of inactivation of the Axl receptor is poorly understood. In the present study, we show that IQGAP1 modulates Axl signaling. IQGAP1 is a scaffold protein that integrates cell signaling pathways by binding several growth factor receptors and intracellular signaling molecules. Our in vitro analysis revealed a direct interaction between the IQ domain of IQGAP1 and Axl. Analysis by both immunoprecipitation and proximity ligation assays demonstrated an association between Axl and IQGAP1 in cells and this interaction was decreased by Gas6. Unexpectedly, reducing IQGAP1 levels in cells significantly enhanced the ability of Gas6 to stimulate both Axl phosphorylation and activation of Akt. Moreover, IQGAP1 regulates the interaction of Axl with the epidermal growth factor receptor. Our data identify IQGAP1 as a previously undescribed suppressor of Axl and provide insight into regulation of Axl function.
Collapse
|
34
|
Nussinov R, Zhang M, Tsai CJ, Jang H. Calmodulin and IQGAP1 activation of PI3Kα and Akt in KRAS, HRAS and NRAS-driven cancers. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2304-2314. [DOI: 10.1016/j.bbadis.2017.10.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023]
|
35
|
Xu H, Xia H, Tang Q, Bi F. [A β-catenin/IQGAP1 regulatory feedback loop and its effects on the proliferation of colon cancer cells]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2018; 35:81-86. [PMID: 29745605 PMCID: PMC10307550 DOI: 10.7507/1001-5515.201701041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Indexed: 02/05/2023]
Abstract
The aim of this article is to study the regulatory feedback loop between β-catenin and IQ motif containing GTPase activating protein 1 (IQGAP1), as well as the effect of this regulation loop in colon cancer cell proliferation. Western blot was used to detect the expression of IQGAP1 and β-catenin after changing their expression respectively by transfection in SW1116 cells. CCK-8 cell proliferation assay was used to detect the effect of IQGAP1 involved in the proliferation of SW1116 cells promoted by β-catenin. The results of Western blot indicated that β-catenin could positively regulate IQGAP1, while IQGAP1 silencing could up-regulate β-catenin, forming a negative feedback loop. The results of CCK-8 showed that IQGAP1 silencing inhibited β-catenin-mediated proliferation in SW1116 cells. In conclusion, our research reveals a negative regulatory feedback loop between β-catenin and IQGAP1 which has a remarkable effect on the proliferation ability of colon cancer cells.
Collapse
Affiliation(s)
- Huanji Xu
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R.China;Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - Hongwei Xia
- Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - Qiulin Tang
- Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - Feng Bi
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R.China;Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu 610041,
| |
Collapse
|
36
|
Wang H, Baladandayuthapani V, Wang Z, Lin H, Berkova Z, Davis RE, Yang L, Orlowski RZ. Truncated protein tyrosine phosphatase receptor type O suppresses AKT signaling through IQ motif containing GTPase activating protein 1 and confers sensitivity to bortezomib in multiple myeloma. Oncotarget 2017; 8:113858-113873. [PMID: 29371952 PMCID: PMC5768369 DOI: 10.18632/oncotarget.23017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/20/2017] [Indexed: 11/25/2022] Open
Abstract
Proteasome inhibitors are an important part of our chemotherapeutic armamentarium against multiple myeloma, but the vast majority of patients eventually develop drug-resistant disease through incompletely understood mechanisms. Comparison of gene expression profiles (GEPs) of bortezomib-resistant (BR) myeloma cell lines with their drug-naïve counterparts revealed decreased expression of truncated Protein tyrosine phosphatase receptor-type O (PTPROt) in BR cells. Over-expression of wild-type PTPROt in drug-naïve and BR cells reduced myeloma cell proliferation, induced apoptosis, and sensitized cells to bortezomib and to alkylating agents. PTPROt expression reduced AKT phosphorylation and activity, and sensitized to pharmacologic AKT pathway inhibitors, but this was not the case for a substrate-trapping catalytic domain-inactivating mutant. Co-immunoprecipitation and mass spectrometry studies identified IQ motif containing GTPase activating protein 1 (IQGAP1) as a PTPROt binding partner, and PTPROt reduced tyrosine phosphorylation of IQGAP1, providing a link to AKT activity. Analysis of clinically annotated GEP databases identified high PTPROt expression as being related to an increased likelihood of achieving complete remission with bortezomib therapy, while low expression was linked to a greater likelihood of disease progression. Finally, high PTPROt expression associated with prolonged median overall survival in patients receiving bortezomib-based therapy in the front-line or relapsed and/or refractory settings. Taken together, these data identify PTPROt suppression as a novel mechanism of myeloma resistance to bortezomib in myeloma cell lines, and also support the possibility that PTPROt expression could be used as a biomarker to predict outcomes with bortezomib, and by which to select patients for therapy with AKT inhibitors.
Collapse
Affiliation(s)
- Hua Wang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Zhiqiang Wang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heather Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zuzana Berkova
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard E. Davis
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Yang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Robert Z. Orlowski
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
37
|
Reimer M, Denby E, Zustiak SP, Schober JM. Ras GAP-related and C-terminal domain-dependent localization and tumorigenic activities of IQGAP1 in melanoma cells. PLoS One 2017; 12:e0189589. [PMID: 29240845 PMCID: PMC5730206 DOI: 10.1371/journal.pone.0189589] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
IQGAP1 interacts with a number of binding partners through a calponin homology domain (CHD), a WW motif, IQ repeats, a Ras GAP-related domain (GRD), and a conserved C-terminal (CT) domain. Among various biological and cellular functions, IQGAP1 is known to play a role in actin cytoskeleton dynamics during membrane ruffling and lamellipodium protrusion. In addition, phosphorylation near the CT domain is thought to control IQGAP1 activity through regulation of intramolecular interaction. In a previous study, we discovered that IQGAP1 preferentially localizes to retracting areas in B16F10 mouse melanoma cells, not areas of membrane ruffling and lamellipodium protrusion. Nothing is known of the domains needed for retraction localization and very little is known of IQGAP1 function in the actin cytoskeleton of melanoma cells. Thus, we examined localization of IQGAP1 mutants to retracting areas, and characterized knock down phenotypes on tissue culture plastic and physiologic-stiffness hydrogels. Localization of IQGAP1 mutants (S1441E/S1443D, S1441A/S1443A, ΔCHD, ΔGRD or ΔCT) to retracting and protruding cell edges were measured. In retracting areas there was a decrease in S1441A/S1443A, ΔGRD and ΔCT localization, a minor decrease in ΔCHD localization, and normal localization of the S1441E/S1443D mutant. In areas of cell protrusion just behind the lamellipodium leading edge, we surprisingly observed both ΔGRD and ΔCT localization, and increased number of microtubules. IQGAP1 knock down caused loss of cell polarity on laminin-coated glass, decreased proliferation on tissue culture polystyrene, and abnormal spheroid growth on laminin-coated hydrogels. We propose that the GRD and CT domains regulate IQGAP1 localization to retracting actin networks to promote a tumorigenic role in melanoma cells.
Collapse
Affiliation(s)
- Michael Reimer
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Elisabeth Denby
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Silviya P. Zustiak
- Department of Biomedical Engineering, Saint Louis University, Saint Louis, Missouri, United States of America
| | - Joseph M. Schober
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
- * E-mail:
| |
Collapse
|
38
|
Villalobo A, Ishida H, Vogel HJ, Berchtold MW. Calmodulin as a protein linker and a regulator of adaptor/scaffold proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:507-521. [PMID: 29247668 DOI: 10.1016/j.bbamcr.2017.12.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 01/29/2023]
Abstract
Calmodulin (CaM) is a universal regulator for a huge number of proteins in all eukaryotic cells. Best known is its function as a calcium-dependent modulator of the activity of enzymes, such as protein kinases and phosphatases, as well as other signaling proteins including membrane receptors, channels and structural proteins. However, less well known is the fact that CaM can also function as a Ca2+-dependent adaptor protein, either by bridging between different domains of the same protein or by linking two identical or different target proteins together. These activities are possible due to the fact that CaM contains two independently-folded Ca2+ binding lobes that are able to interact differentially and to some degree separately with targets proteins. In addition, CaM can interact with and regulates several proteins that function exclusively as adaptors. This review provides an overview over our present knowledge concerning the structural and functional aspects of the role of CaM as an adaptor protein and as a regulator of known adaptor/scaffold proteins.
Collapse
Affiliation(s)
- Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, E-28029 Madrid, Spain.
| | - Hiroaki Ishida
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta T2N 1N4, Canada
| | - Hans J Vogel
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta T2N 1N4, Canada.
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
39
|
Carmon KS, Gong X, Yi J, Wu L, Thomas A, Moore CM, Masuho I, Timson DJ, Martemyanov KA, Liu QJ. LGR5 receptor promotes cell-cell adhesion in stem cells and colon cancer cells via the IQGAP1-Rac1 pathway. J Biol Chem 2017; 292:14989-15001. [PMID: 28739799 PMCID: PMC5592675 DOI: 10.1074/jbc.m117.786798] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/21/2017] [Indexed: 12/18/2022] Open
Abstract
Leucine-rich repeat-containing G protein–coupled receptor 5 (LGR5) is a bona fide marker of adult stem cells in several epithelial tissues, most notably in the intestinal crypts, and is highly up-regulated in many colorectal, hepatocellular, and ovarian cancers. LGR5 activation by R-spondin (RSPO) ligands potentiates Wnt/β-catenin signaling in vitro; however, deletion of LGR5 in stem cells has little or no effect on Wnt/β-catenin signaling or cell proliferation in vivo. Remarkably, modulation of LGR5 expression has a major impact on the actin cytoskeletal structure and cell adhesion in the absence of RSPO stimulation, but the molecular mechanism is unclear. Here, we show that LGR5 interacts with IQ motif-containing GTPase-activating protein 1 (IQGAP1), an effector of Rac1/CDC42 GTPases, in the regulation of actin cytoskeleton dynamics and cell–cell adhesion. Specifically, LGR5 decreased levels of IQGAP1 phosphorylation at Ser-1441/1443, leading to increased binding of Rac1 to IQGAP1 and thus higher levels of cortical F-actin and enhanced cell–cell adhesion. LGR5 ablation in colon cancer cells and crypt stem cells resulted in loss of cortical F-actin, reduced cell–cell adhesion, and disrupted localization of adhesion-associated proteins. No evidence of LGR5 coupling to any of the four major subtypes of heterotrimeric G proteins was found. These findings suggest that LGR5 primarily functions via the IQGAP1–Rac1 pathway to strengthen cell–cell adhesion in normal adult crypt stem cells and colon cancer cells.
Collapse
Affiliation(s)
- Kendra S Carmon
- From the Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030
| | - Xing Gong
- From the Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030
| | - Jing Yi
- From the Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030.,Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Ling Wu
- From the Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030
| | - Anthony Thomas
- From the Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030
| | - Catherine M Moore
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Ireland, United Kingdom
| | - Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, and
| | - David J Timson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Ireland, United Kingdom.,School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, United Kingdom
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, and
| | - Qingyun J Liu
- From the Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030,
| |
Collapse
|
40
|
Bardwell AJ, Lagunes L, Zebarjedi R, Bardwell L. The WW domain of the scaffolding protein IQGAP1 is neither necessary nor sufficient for binding to the MAPKs ERK1 and ERK2. J Biol Chem 2017; 292:8750-8761. [PMID: 28396345 DOI: 10.1074/jbc.m116.767087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/07/2017] [Indexed: 01/09/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) scaffold proteins, such as IQ motif containing GTPase activating protein 1 (IQGAP1), are promising targets for novel therapies against cancer and other diseases. Such approaches require accurate information about which domains on the scaffold protein bind to the kinases in the MAPK cascade. Results from previous studies have suggested that the WW domain of IQGAP1 binds to the cancer-associated MAPKs ERK1 and ERK2, and that this domain might thus offer a new tool to selectively inhibit MAPK activation in cancer cells. The goal of this work was therefore to critically evaluate which IQGAP1 domains bind to ERK1/2. Here, using quantitative in vitro binding assays, we show that the IQ domain of IQGAP1 is both necessary and sufficient for binding to ERK1 and ERK2, as well as to the MAPK kinases MEK1 and MEK2. Furthermore, we show that the WW domain is not required for ERK-IQGAP1 binding, and contributes little or no binding energy to this interaction, challenging previous models of how WW-based peptides might inhibit tumorigenesis. Finally, we show that the ERK2-IQGAP1 interaction does not require ERK2 phosphorylation or catalytic activity and does not involve known docking recruitment sites on ERK2, and we obtain an estimate of the dissociation constant (Kd ) for this interaction of 8 μm These results prompt a re-evaluation of published findings and a refined model of IQGAP scaffolding.
Collapse
Affiliation(s)
- A Jane Bardwell
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| | - Leonila Lagunes
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| | - Ronak Zebarjedi
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| | - Lee Bardwell
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| |
Collapse
|
41
|
Cui Y, Li Q, Li H, Wang Y, Wang H, Chen W, Zhang S, Cao J, Liu T. Asparaginyl endopeptidase improves the resistance of microtubule-targeting drugs in gastric cancer through IQGAP1 modulating the EGFR/JNK/ERK signaling pathway. Onco Targets Ther 2017; 10:627-643. [PMID: 28223821 PMCID: PMC5304996 DOI: 10.2147/ott.s125579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE In recent years, understanding of the role of asparaginyl endopeptidase (AEP) in tumorigenesis has steadily increased. In this study, we investigated whether AEP expression correlates with sensitivity to chemotherapeutic drugs in gastric cancer and explored the mechanism. PATIENTS AND METHODS AEP expression in the serum of patients' peripheral blood was measured by enzyme-linked immunosorbent assay. Patient survival time was evaluated using univariate and multivariate analyses. Mass spectrometry and co-immunoprecipitation assays were utilized to discover proteins that interact with AEP. Gastric cancer cell lines were established, in which AEP was overexpressed or knocked out using lentiviral CRISPR. The proliferative abilities of these cell lines in response to chemotherapy agents were evaluated using the Cell Counting Kit-8 method. Gene expression changes in these lines were assessed by real-time polymerase chain reaction and Western blot. RESULTS Patients with low expression of AEP were significantly more likely to have a good prognosis and experience complete response or partial response after treatment with docetaxel/S-1 regimen. Mass spectrum analysis showed that several proteins in the focal adhesion and mitogen-activated protein kinase signaling pathways interacted with AEP. IQGAP1 was confirmed to be one of the proteins interacting with AEP, and its protein level increased when AEP was knocked out. AEP knockout decreased resistance to microtubule inhibitors, including paclitaxel, docetaxel, and T-DM1. The expression levels of MDR1, p-EGFR, p-JNK, p-ERK, and p-Rac1/cdc42 were decreased in AEP knockout gastric cancer cell lines, and inhibitors of both JNK and ERK could block AEP-induced expression of MDR1. CONCLUSION AEP was not only a prognostic factor but also a predictive marker. AEP knockout could inhibit the activity of the EGFR/JNK/ERK signaling pathway and improve sensitivity to microtubule inhibitors through interacting with IQGAP1.
Collapse
Affiliation(s)
| | | | | | | | - Hongshan Wang
- General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Weidong Chen
- General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Shangmin Zhang
- Pathology Department, Yale School of Medicine, New Haven, CT, USA
| | - Jian Cao
- Pathology Department, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
42
|
Kaur S, Elkahloun AG, Singh SP, Chen QR, Meerzaman DM, Song T, Manu N, Wu W, Mannan P, Garfield SH, Roberts DD. A function-blocking CD47 antibody suppresses stem cell and EGF signaling in triple-negative breast cancer. Oncotarget 2017; 7:10133-52. [PMID: 26840086 PMCID: PMC4891109 DOI: 10.18632/oncotarget.7100] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 12/18/2022] Open
Abstract
CD47 is a signaling receptor for thrombospondin-1 and the counter-receptor for signal-regulatory protein-α (SIRPα). By inducing inhibitory SIRPα signaling, elevated CD47 expression by some cancers prevents macrophage phagocytosis. The anti-human CD47 antibody B6H12 inhibits tumor growth in several xenograft models, presumably by preventing SIRPα engagement. However, CD47 signaling in nontransformed and some malignant cells regulates self-renewal, suggesting that CD47 antibodies may therapeutically target cancer stem cells (CSCs). Treatment of MDA-MB-231 breast CSCs with B6H12 decreased proliferation and asymmetric cell division. Similar effects were observed in T47D CSCs but not in MCF7 breast carcinoma or MCF10A breast epithelial cells. Gene expression analysis in breast CSCs treated with B6H12 showed decreased expression of epidermal growth factor receptor (EGFR) and the stem cell transcription factor KLF4. EGFR and KLF4 mRNAs are known targets of microRNA-7, and B6H12 treatment correspondingly enhanced microRNA-7 expression in breast CSCs. B6H12 treatment also acutely inhibited EGF-induced EGFR tyrosine phosphorylation. Expression of B6H12-responsive genes correlated with CD47 mRNA expression in human breast cancers, suggesting that the CD47 signaling pathways identified in breast CSCs are functional in vivo. These data reveal a novel SIRPα-independent mechanism by which therapeutic CD47 antibodies could control tumor growth by autonomously forcing differentiation of CSC.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Abdel G Elkahloun
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Satya P Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qing-Rong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daoud M Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Timothy Song
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nidhi Manu
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Weiwei Wu
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Poonam Mannan
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susan H Garfield
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
43
|
Chawla B, Hedman AC, Sayedyahossein S, Erdemir HH, Li Z, Sacks DB. Absence of IQGAP1 Protein Leads to Insulin Resistance. J Biol Chem 2017; 292:3273-3289. [PMID: 28082684 DOI: 10.1074/jbc.m116.752642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/10/2017] [Indexed: 11/06/2022] Open
Abstract
Insulin binds to the insulin receptor (IR) and induces tyrosine phosphorylation of the receptor and insulin receptor substrate-1 (IRS-1), leading to activation of the PKB/Akt and MAPK/ERK pathways. IQGAP1 is a scaffold protein that interacts with multiple binding partners and integrates diverse signaling cascades. Here we show that IQGAP1 associates with both IR and IRS-1 and influences insulin action. In vitro analysis with pure proteins revealed that the IQ region of IQGAP1 binds directly to the intracellular domain of IR. Similarly, the phosphotyrosine-binding domain of IRS-1 mediates a direct interaction with the C-terminal tail of IQGAP1. Consistent with these observations, both IR and IRS-1 co-immunoprecipitated with IQGAP1 from cells. Investigation of the functional effects of the interactions revealed that in the absence of IQGAP1, insulin-stimulated phosphorylation of Akt and ERK, as well as the association of phosphatidylinositol 3-kinase with IRS-1, were significantly decreased. Importantly, loss of IQGAP1 results in impaired insulin signaling and glucose homeostasis in vivo Collectively, these data reveal that IQGAP1 is a scaffold for IR and IRS-1 and implicate IQGAP1 as a participant in insulin signaling.
Collapse
Affiliation(s)
- Bhavna Chawla
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrew C Hedman
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - Samar Sayedyahossein
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - Huseyin H Erdemir
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
44
|
Abstract
IQGAP1 is a scaffold protein involved in the assembly of adherens junctions. Our work has recently revealed a novel role for IQGAP1 in the regulation of tight junctions (TJ) through differential recruitment of claudins to the nascent TJ. Here, we discuss the potential mechanisms of this regulation, including IQGAP1 effects on CDC42, and IQGAP1 interactions with sorting/trafficking molecules (e.g. Exo70). Given the many roles of IQGAP1 and the large number of interacting partners, we focus our discussion of these functions in the context of junction formation, trafficking, growth factor signaling and cancer. We also propose a potential role for IQGAP1 in regulating epithelial integrity and compartmentalized signaling in epithelia.
Collapse
Affiliation(s)
- Barbara E Tanos
- a Division of Cancer Therapeutics, The Institute of Cancer Research , London , UK
| | - Charles Yeaman
- b Department of Anatomy and Cell Biology , The University of Iowa , Iowa City , IA , USA
| | - Enrique Rodriguez-Boulan
- c Department of Ophthalmology , Margaret Dyson Vision Research Institute, Weill Cornell Medical College , New York , NY , USA.,d Department of Cell and Developmental Biology , Weill Cornell Medical College , New York , NY , USA
| |
Collapse
|
45
|
Agonist-stimulated phosphatidylinositol-3,4,5-trisphosphate generation by scaffolded phosphoinositide kinases. Nat Cell Biol 2016; 18:1324-1335. [PMID: 27870828 DOI: 10.1038/ncb3441] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/20/2016] [Indexed: 12/11/2022]
Abstract
Generation of the lipid messenger phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) is crucial for development, cell growth and survival, and motility, and it becomes dysfunctional in many diseases including cancers. Here we reveal a mechanism for PtdIns(3,4,5)P3 generation by scaffolded phosphoinositide kinases. In this pathway, class I phosphatidylinositol-3-OH kinase (PI(3)K) is assembled by IQGAP1 with PI(4)KIIIα and PIPKIα, which sequentially generate PtdIns(3,4,5)P3 from phosphatidylinositol. By scaffolding these kinases into functional proximity, the PtdIns(4,5)P2 generated is selectively used by PI(3)K for PtdIns(3,4,5)P3 generation, which then signals to PDK1 and Akt that are also in the complex. Moreover, multiple receptor types stimulate the assembly of this IQGAP1-PI(3)K signalling complex. Blockade of IQGAP1 interaction with PIPKIα or PI(3)K inhibited PtdIns(3,4,5)P3 generation and signalling, and selectively diminished cancer cell survival, revealing a target for cancer chemotherapy.
Collapse
|
46
|
Sayedyahossein S, Li Z, Hedman AC, Morgan CJ, Sacks DB. IQGAP1 Binds to Yes-associated Protein (YAP) and Modulates Its Transcriptional Activity. J Biol Chem 2016; 291:19261-73. [PMID: 27440047 DOI: 10.1074/jbc.m116.732529] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 01/09/2023] Open
Abstract
During development, the Hippo signaling pathway regulates key physiological processes, such as control of organ size, regeneration, and stem cell biology. Yes-associated protein (YAP) is a major transcriptional co-activator of the Hippo pathway. The scaffold protein IQGAP1 interacts with more than 100 binding partners to integrate diverse signaling pathways. In this study, we report that IQGAP1 binds to YAP and modulates its activity. IQGAP1 and YAP co-immunoprecipitated from cells. In vitro analysis with pure proteins demonstrated a direct interaction between IQGAP1 and YAP. Analysis with multiple fragments of each protein showed that the interaction occurs via the IQ domain of IQGAP1 and the TEAD-binding domain of YAP. The interaction between IQGAP1 and YAP has functional effects. Knock-out of endogenous IQGAP1 significantly increased the formation of nuclear YAP-TEAD complexes. Transcription assays were performed with IQGAP1-null mouse embryonic fibroblasts and HEK293 cells with IQGAP1 knockdown by CRISPR/Cas9. Quantification demonstrated that YAP-TEAD-mediated transcription in cells lacking IQGAP1 was significantly greater than in control cells. These data reveal that IQGAP1 binds to YAP and modulates its co-transcriptional function, suggesting that IQGAP1 participates in Hippo signaling.
Collapse
Affiliation(s)
- Samar Sayedyahossein
- From the Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - Zhigang Li
- From the Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrew C Hedman
- From the Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - Chase J Morgan
- From the Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - David B Sacks
- From the Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
47
|
Fang X, Zhang B, Thisse B, Bloom GS, Thisse C. IQGAP3 is essential for cell proliferation and motility during zebrafish embryonic development. Cytoskeleton (Hoboken) 2015; 72:422-33. [PMID: 26286209 DOI: 10.1002/cm.21237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
Abstract
IQGAPs are scaffolding proteins that regulate actin assembly, exocyst function, cell motility, morphogenesis, adhesion and division. Vertebrates express 3 family members: IQGAP1, IQGAP2, and IQGAP3. IQGAP1 is known to stimulate nucleation of branched actin filaments through N-WASP and the Arp2/3 complex following direct binding to cytoplasmic tails of ligand-activated growth factor receptors, including EGFR, VEGFR2 and FGFR1. By contrast, little is known about functions of IQGAP2 or IQGAP3. Using in situ hybridization on whole mount zebrafish (Danio rerio) embryos, we show that IQGAP1 and IQGAP2 are associated with discrete tissues and organs, while IQGAP3 is mainly expressed in proliferative cells throughout embryonic and larval development. Morpholino knockdowns of IQGAP1 and IQGAP2 have little effect on embryo morphology while loss of function of IQGAP3 affects both cell proliferation and cell motility. IQGAP3 morphant phenotypes are similar to those resulting from overexpression of dominant negative forms of Ras or of Fibroblast Growth Factor Receptor 1 (FGFR1), suggesting that IQGAP3 plays a role in FGFR1-Ras-ERK signaling. In support of this hypothesis, dominant negative forms of FGFR1 or Ras could be rescued by co-injection of zebrafish IQGAP3 mRNA, strongly suggesting that IQGAP3 acts as a downstream regulator of the FGFR1-Ras signaling pathway.
Collapse
Affiliation(s)
- Xiaolan Fang
- Department of Biology, University of Virginia, Charlottesville, Virginia
| | - Bianhong Zhang
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia.,Institute of Biomedical Science, School of Science, East China Normal University, Shanghai, China
| | - Bernard Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - George S Bloom
- Department of Biology, University of Virginia, Charlottesville, Virginia.,Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Christine Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
48
|
Watanabe T, Wang S, Kaibuchi K. IQGAPs as Key Regulators of Actin-cytoskeleton Dynamics. Cell Struct Funct 2015; 40:69-77. [PMID: 26051604 DOI: 10.1247/csf.15003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The actin-cytoskeleton plays a critical role in various biological processes, including cell migration, development, tissue remodeling, and memory formation. Both extracellular and intracellular signals regulate reorganization of the actin-cytoskeleton to modulate tissue architecture and cellular morphology in a spatiotemporal manner. Since the discovery that activation of Rho family GTPases induces actin-cytoskeleton reorganization, the mode of action of Rho family GTPases has been extensively studied and individual effectors have been characterized. The actin-binding protein IQGAP1 was identified as an effector of Rac and Cdc42 and is the founding member of the IQGAP family with two additional isoforms. The IQGAP family shows conserved domain organization, and each member displays a specific expression pattern in mammalian tissues. IQGAPs regulate the actin-cytoskeleton alone and with their binding partners, thereby controlling diverse cellular processes, such as cell migration and adhesion. Here, we introduce IQGAPs as an actin-cytoskeleton regulator.
Collapse
Affiliation(s)
- Takashi Watanabe
- Department of Cell Pharmacology, Nagoya University, Graduate School of Medicine
| | | | | |
Collapse
|
49
|
IQGAP1 and IQGAP3 Serve Individually Essential Roles in Normal Epidermal Homeostasis and Tumor Progression. J Invest Dermatol 2015; 135:2258-2265. [PMID: 25848980 PMCID: PMC4537348 DOI: 10.1038/jid.2015.140] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/20/2015] [Accepted: 03/26/2015] [Indexed: 01/11/2023]
Abstract
IQGAP scaffolding proteins regulate many essential cellular processes including growth factor receptor signaling, cytoskeletal rearrangement, adhesion and proliferation, and are highly expressed in many cancers. Using genetically engineered human skin tissue in vivo, we demonstrate that diminished, sub-physiologic expression of IQGAP1 or IQGAP3 is sufficient to maintain normal epidermal homeostasis, while significantly higher levels are required to support tumorigenesis. To target this tumor-specific IQGAP requirement in vivo, we engineered epidermal keratinocytes to express individual IQGAP protein domains designed to compete with endogenous IQGAPs for effector protein binding. Expression of the IQGAP1-IQM decoy domain in epidermal tissue in vivo inhibits oncogenic Ras-driven MAPK signaling and antagonizes tumorigenesis, without disrupting normal epidermal proliferation or differentiation. These findings define essential non-redundant roles for IQGAP1 and IQGAP3 in epidermis, and demonstrate the potential of IQGAP antagonism for cancer therapy.
Collapse
|
50
|
Abel AM, Schuldt KM, Rajasekaran K, Hwang D, Riese MJ, Rao S, Thakar MS, Malarkannan S. IQGAP1: insights into the function of a molecular puppeteer. Mol Immunol 2015; 65:336-49. [PMID: 25733387 DOI: 10.1016/j.molimm.2015.02.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 02/06/2023]
Abstract
The intracellular spatiotemporal organization of signaling events is critical for normal cellular function. In response to environmental stimuli, cells utilize highly organized signaling pathways that are subject to multiple layers of regulation. However, the molecular mechanisms that coordinate these complex processes remain an enigma. Scaffolding proteins (scaffolins) have emerged as critical regulators of signaling pathways, many of which have well-described functions in immune cells. IQGAP1, a highly conserved cytoplasmic scaffold protein, is able to curb, compartmentalize, and coordinate multiple signaling pathways in a variety of cell types. IQGAP1 plays a central role in cell-cell interaction, cell adherence, and movement via actin/tubulin-based cytoskeletal reorganization. Evidence also implicates IQGAP1 as an essential regulator of the MAPK and Wnt/β-catenin signaling pathways. Here, we summarize the recent advances on the cellular and molecular biology of IQGAP1. We also describe how this pleiotropic scaffolin acts as a true molecular puppeteer, and highlight the significance of future research regarding the role of IQGAP1 in immune cells.
Collapse
Affiliation(s)
- Alex M Abel
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kristina M Schuldt
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kamalakannan Rajasekaran
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - David Hwang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew J Riese
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sridhar Rao
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|