1
|
Ruffolo F, Conciatori S, Merici G, Dinhof T, Chin JP, Rivetti C, Secchi A, Pallitsch K, Peracchi A. Genomic context analysis enables the discovery of an unusual NAD-dependent racemase in phosphonate catabolism. FEBS J 2025. [PMID: 40384479 DOI: 10.1111/febs.70130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/16/2025] [Accepted: 04/04/2025] [Indexed: 05/20/2025]
Abstract
Phosphonates are organic molecules containing a direct carbon-phosphorus (C-P) bond. They are chemically sturdy compounds that can, however, be degraded by environmental microorganisms. In the frame of bacterial phosphonate catabolism, we recently reported the discovery of (R)-1-hydroxy-2-aminoethylphosphonate ammonia-lyase (PbfA), a lyase acting on the natural compound (R)-2-amino-1-hydroxyethylphosphonate (R-HAEP). PbfA converts R-HAEP into phosphonoacetaldehyde (PAA), which can be subsequently processed and cleaved by further enzymes. However, PbfA is not active toward S-HAEP (the enantiomer of R-HAEP), whose metabolic fate remained unknown. We now describe the identification of a racemase, discovered through genomic context analysis, which converts S-HAEP into R-HAEP, thereby enabling degradation of S-HAEP. We propose for this enzyme the official name 2-amino-1-hydroxyethylphosphonate racemase (shorthand PbfF). To our knowledge, PbfF is the first NAD-dependent racemase ever described and is structurally unrelated to other known NAD-dependent isomerases. The enzyme uses NAD+ as a cofactor, is inhibited by NADH, and shows catalytic parameters comparable to those of other racemases acting on similar substrates. The presence of a pathway for the breakdown of S-HAEP in numerous bacteria suggests that this compound may be more common in the environment than currently appreciated. Notably, the route for S-HAEP degradation appears to have developed through a mechanism of retrograde metabolic evolution.
Collapse
Affiliation(s)
- Francesca Ruffolo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy
| | - Silvia Conciatori
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy
| | - Giovanni Merici
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy
| | - Tamara Dinhof
- Institute of Organic Chemistry, University of Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Austria
| | - Jason P Chin
- School of Biological Sciences and Institute for Global Food Security, Queen's University Belfast, UK
| | - Claudio Rivetti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy
| | - Andrea Secchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy
| | | | - Alessio Peracchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy
| |
Collapse
|
2
|
Lidbury IDEA, Hitchcock A, Groenhof SRM, Connolly AN, Moushtaq L. New insights in bacterial organophosphorus cycling: From human pathogens to environmental bacteria. Adv Microb Physiol 2024; 84:1-49. [PMID: 38821631 DOI: 10.1016/bs.ampbs.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
In terrestrial and aquatic ecosystems, phosphorus (P) availability controls primary production, with consequences for climate regulation and global food security. Understanding the microbial controls on the global P cycle is a prerequisite for minimising our reliance on non-renewable phosphate rock reserves and reducing pollution associated with excessive P fertiliser use. This recognised importance has reinvigorated research into microbial P cycling, which was pioneered over 75 years ago through the study of human pathogenic bacteria-host interactions. Immobilised organic P represents a significant fraction of the total P pool. Hence, microbes have evolved a plethora of mechanisms to transform this fraction into labile inorganic phosphate, the building block for numerous biological molecules. The 'genomics era' has revealed an extraordinary diversity of organic P cycling genes exist in the environment and studies going 'back to the lab' are determining how this diversity relates to function. Through this integrated approach, many hitherto unknown genes and proteins that are involved in microbial P cycling have been discovered. Not only do these fundamental discoveries push the frontier of our knowledge, but several examples also provide exciting opportunities for biotechnology and present possible solutions for improving the sustainability of how we grow our food, both locally and globally. In this review, we provide a comprehensive overview of bacterial organic P cycling, covering studies on human pathogens and how this knowledge is informing new discoveries in environmental microbiology.
Collapse
Affiliation(s)
- Ian D E A Lidbury
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom.
| | - Andrew Hitchcock
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom; Plants, Photosynthesis, and Soil, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Sophie R M Groenhof
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Alex N Connolly
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Laila Moushtaq
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
Ruffolo F, Dinhof T, Murray L, Zangelmi E, Chin JP, Pallitsch K, Peracchi A. The Microbial Degradation of Natural and Anthropogenic Phosphonates. Molecules 2023; 28:6863. [PMID: 37836707 PMCID: PMC10574752 DOI: 10.3390/molecules28196863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Phosphonates are compounds containing a direct carbon-phosphorus (C-P) bond, which is particularly resistant to chemical and enzymatic degradation. They are environmentally ubiquitous: some of them are produced by microorganisms and invertebrates, whereas others derive from anthropogenic activities. Because of their chemical stability and potential toxicity, man-made phosphonates pose pollution problems, and many studies have tried to identify biocompatible systems for their elimination. On the other hand, phosphonates are a resource for microorganisms living in environments where the availability of phosphate is limited; thus, bacteria in particular have evolved systems to uptake and catabolize phosphonates. Such systems can be either selective for a narrow subset of compounds or show a broader specificity. The role, distribution, and evolution of microbial genes and enzymes dedicated to phosphonate degradation, as well as their regulation, have been the subjects of substantial studies. At least three enzyme systems have been identified so far, schematically distinguished based on the mechanism by which the C-P bond is ultimately cleaved-i.e., through either a hydrolytic, radical, or oxidative reaction. This review summarizes our current understanding of the molecular systems and pathways that serve to catabolize phosphonates, as well as the regulatory mechanisms that govern their activity.
Collapse
Affiliation(s)
- Francesca Ruffolo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy (E.Z.)
| | - Tamara Dinhof
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Vienna, Austria;
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, A-1090 Vienna, Austria
| | - Leanne Murray
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Erika Zangelmi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy (E.Z.)
| | - Jason P. Chin
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Katharina Pallitsch
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Vienna, Austria;
| | - Alessio Peracchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy (E.Z.)
| |
Collapse
|
4
|
The functional importance of bacterial oxidative phosphonate pathways. Biochem Soc Trans 2023; 51:487-499. [PMID: 36892197 DOI: 10.1042/bst20220479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
Organophosphonates (Pns) are a unique class of natural products characterized by a highly stable C-P bond. Pns exhibit a wide array of interesting structures as well as useful bioactivities ranging from antibacterial to herbicidal. More structurally simple Pns are scavenged and catabolized by bacteria as a source of phosphorus. Despite their environmental and industrial importance, the pathways involved in the metabolism of Pns are far from being fully elucidated. Pathways that have been characterized often reveal unusual chemical transformations and new enzyme mechanisms. Among these, oxidative enzymes play an outstanding role during the biosynthesis and degradation of Pns. They are to a high extent responsible for the structural diversity of Pn secondary metabolites and for the break-down of both man-made and biogenic Pns. Here, we review our current understanding of the importance of oxidative enzymes for microbial Pn metabolism, discuss the underlying mechanistic principles, similarities, and differences between pathways. This review illustrates Pn biochemistry to involve a mix of classical redox biochemistry and unique oxidative reactions, including ring formations, rearrangements, and desaturations. Many of these reactions are mediated by specialized iron-dependent oxygenases and oxidases. Such enzymes are the key to both early pathway diversification and late-stage functionalization of complex Pns.
Collapse
|
5
|
Transcriptomic-Guided Phosphonate Utilization Analysis Unveils Evidence of Clathrin-Mediated Endocytosis and Phospholipid Synthesis in the Model Diatom, Phaeodactylum tricornutum. mSystems 2022; 7:e0056322. [PMID: 36317887 PMCID: PMC9765203 DOI: 10.1128/msystems.00563-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Phosphonates are important components of marine organic phosphorus, but their bioavailability and catabolism by eukaryotic phytoplankton remain enigmatic. Here, diatom Phaeodactylum tricornutum was used to investigate the bioavailability of phosphonates and describe the underlying molecular mechanism. The results showed that 2-aminoethylphosphonic acid (2-AEP) can be utilized as an alternative phosphorus source. Comparative transcriptomics revealed that the utilization of 2-AEP comprised 2 steps, including molecular uptake through clathrin-mediated endocytosis and incorporation into the membrane phospholipids in the form of diacylglyceryl-2-AEP (DAG-2-AEP). In the global ocean, we found the prevalence and dynamic expression pattern of key genes that are responsible for vesicle formation (CLTC, AP-2) and DAG-AEP synthesis (PCYT2, EPT1) in diatom assemblages. This study elucidates a distinctive mechanism of phosphonate utilization by diatoms, and discusses the ecological implications. IMPORTANCE Phosphonates contribute ~25% of total dissolved organic phosphorus in the ocean, and are found to be important for marine phosphorus biogeochemical cycle. As a type of biogenic phosphonate produced by microorganisms, 2-aminoethylphosphonic acid (2-AEP) widely exists in the ocean. It is well known that 2-AEP can be cleaved and utilized by prokaryotes, but its ability to support the growth of eukaryotic phytoplankton remains unclear. Our research identified the bioavailability of 2-AEP for the diatom Phaeodactylum tricornutum, and proposed a distinctive metabolic pathway of 2-AEP utilization. Different from the enzymatic hydrolysis of phosphonates, the results suggested that P. tricornutum utilizes 2-AEP by incorporating it into phospholipid instead of cleaving the C-P bond. Moreover, the ubiquitous distribution of associated representative gene transcripts in the environmental assemblages and the higher gene transcript abundance in the cold regions were observed, which suggests the possible environmental adaption of 2-AEP utilization by diatoms.
Collapse
|
6
|
Rafei R, Koong J, Osman M, Al Atrouni A, Hamze M, Hamidian M. Analysis of pCl107 a large plasmid carried by an ST25 Acinetobacter baumannii strain reveals a complex evolutionary history and links to multiple antibiotic resistance and metabolic pathways. FEMS MICROBES 2022; 3:xtac027. [PMID: 37332503 PMCID: PMC10117892 DOI: 10.1093/femsmc/xtac027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 09/14/2023] Open
Abstract
Acinetobacter baumannii has successfully spread during the last decades as one of the main critically important pathogens. However, many aspects including plasmids, are still under-investigated. Here, we report the complete sequence of an Acinetobacter baumannii strain, belonging to the ST25IP (Institut Pasteur) sequence type recovered in 2012 in Lebanon, using a combination of Illumina MiSeq and Oxford Nanopore sequencing and a hybrid assembly approach. This strain (Cl107) carries a 198 kb plasmid called pCl107 that encodes the MPFI conjugative transfer system. The plasmid carries the aacA1, aacC2, sul2, strAB, and tetA(B) antibiotic resistance genes. pCl107 region encompassing the sul2, strAB, tetA(B) is closely related to AbGRI1 chromosomal resistance islands, which are widespread in A. baumannii strains belonging to Global Clone 2. The resistance region found in pCl107 is one of the missing links in the evolutionary history of the AbGRI1 islands. pCl107 also contains a BREX Type 1 region and represents one of the two main evolution patterns observed in BREX clusters found in plasmids related to pCl107. pCl107 also harbours a ptx phosphonate metabolism module, which plays an ancestral structure compared to other large plasmids in ST25 strains. While the uric acid metabolic module found in pCl107 is incomplete, we identified possible ancestors from plasmids and chromosomes of Acinetobacter spp. Our analyses indicate a complex evolutionary history of plasmids related to pCl107 with many links to multiple antibiotic resistance and metabolic pathways.
Collapse
Affiliation(s)
- Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science & Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
| | - Jonathan Koong
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Marwan Osman
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY 14853, United States
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - Ahmad Al Atrouni
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science & Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science & Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon
| | - Mehrad Hamidian
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo NSW 2007, Australia
| |
Collapse
|
7
|
Shu H, Wang S, Liu B, Ma J. Effects of salt matrices on the determination of glyphosate, glufosinate, aminomethylphosphonic acid and 2-aminoethylphosphonic acid using reversed-phase liquid chromatography after fluorescence derivatization. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Murphy ARJ, Scanlan DJ, Chen Y, Bending GD, Hammond JP, Wellington EMH, Lidbury IDEA. 2-aminoethylphosphonate utilisation in Pseudomonas putida BIRD-1 is controlled by multiple master regulators. Environ Microbiol 2022; 24:1902-1917. [PMID: 35229442 PMCID: PMC9311074 DOI: 10.1111/1462-2920.15959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Abstract
Bacteria possess various regulatory mechanisms to detect and coordinate a response to elemental nutrient limitation. In pseudomonads, the two‐component system regulators CbrAB, NtrBC and PhoBR, are responsible for regulating cellular response to carbon (C), nitrogen (N) and phosphorus (P) respectively. Phosphonates are reduced organophosphorus compounds produced by a broad range of biota and typified by a direct C‐P bond. Numerous pseudomonads can use the environmentally abundant phosphonate species 2‐aminoethylphosphonate (2AEP) as a source of C, N, or P, but only PhoBR has been shown to play a role in 2AEP utilization. On the other hand, utilization of 2AEP as a C and N source is considered substrate inducible. Here, using the plant‐growth‐promoting rhizobacterium Pseudomonas putida BIRD‐1 we present evidence that 2AEP utilization is under dual regulation and only occurs upon depletion of C, N, or P, controlled by CbrAB, NtrBC, or PhoBR respectively. However, the presence of 2AEP was necessary for full gene expression, i.e. expression was substrate inducible. Mutation of a LysR‐type regulator, termed AepR, upstream of the 2AEP transaminase‐phosphonatase system (PhnWX), confirmed this dual regulatory mechanism. To our knowledge, this is the first study identifying coordination between global stress response and substrate‐specific regulators in phosphonate metabolism.
Collapse
Affiliation(s)
- Andrew R J Murphy
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Yin Chen
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Gary D Bending
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - John P Hammond
- School of Agriculture, Policy, and Development, University of Reading, Earley Gate, Whiteknights, Reading, UK
| | | | - Ian D E A Lidbury
- Plants, Photosynthesis and Soil Research Cluster, School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
9
|
Highly Stable, Cold-Active Aldehyde Dehydrogenase from the Marine Antarctic Flavobacterium sp. PL002. FERMENTATION 2021. [DOI: 10.3390/fermentation8010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Stable aldehyde dehydrogenases (ALDH) from extremophilic microorganisms constitute efficient catalysts in biotechnologies. In search of active ALDHs at low temperatures and of these enzymes from cold-adapted microorganisms, we cloned and characterized a novel recombinant ALDH from the psychrotrophic Flavobacterium PL002 isolated from Antarctic seawater. The recombinant enzyme (F-ALDH) from this cold-adapted strain was obtained by cloning and expressing of the PL002 aldH gene (1506 bp) in Escherichia coli BL21(DE3). Phylogeny and structural analyses showed a high amino acid sequence identity (89%) with Flavobacterium frigidimaris ALDH and conservation of all active site residues. The purified F-ALDH by affinity chromatography was homotetrameric, preserving 80% activity at 4 °C for 18 days. F-ALDH used both NAD+ and NADP+ and a broad range of aliphatic and aromatic substrates, showing cofactor-dependent compensatory KM and kcat values and the highest catalytic efficiency (0.50 µM−1 s−1) for isovaleraldehyde. The enzyme was active in the 4–60 °C-temperature interval, with an optimal pH of 9.5, and a preference for NAD+-dependent reactions. Arrhenius plots of both NAD(P)+-dependent reactions indicated conformational changes occurring at 30 °C, with four(five)-fold lower activation energy at high temperatures. The high thermal stability and substrate-specific catalytic efficiency of this novel cold-active ALDH favoring aliphatic catalysis provided a promising catalyst for biotechnological and biosensing applications.
Collapse
|
10
|
Haloi N, Vasan AK, Geddes EJ, Prasanna A, Wen PC, Metcalf WW, Hergenrother PJ, Tajkhorshid E. Rationalizing the generation of broad spectrum antibiotics with the addition of a positive charge. Chem Sci 2021; 12:15028-15044. [PMID: 34909143 PMCID: PMC8612397 DOI: 10.1039/d1sc04445a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022] Open
Abstract
Antibiotic resistance of Gram-negative bacteria is largely attributed to the low permeability of their outer membrane (OM). Recently, we disclosed the eNTRy rules, a key lesson of which is that the introduction of a primary amine enhances OM permeation in certain contexts. To understand the molecular basis for this finding, we perform an extensive set of molecular dynamics (MD) simulations and free energy calculations comparing the permeation of aminated and amine-free antibiotic derivatives through the most abundant OM porin of E. coli, OmpF. To improve sampling of conformationally flexible drugs in MD simulations, we developed a novel, Monte Carlo and graph theory based algorithm to probe more efficiently the rotational and translational degrees of freedom visited during the permeation of the antibiotic molecule through OmpF. The resulting pathways were then used for free-energy calculations, revealing a lower barrier against the permeation of the aminated compound, substantiating its greater OM permeability. Further analysis revealed that the amine facilitates permeation by enabling the antibiotic to align its dipole to the luminal electric field of the porin and form favorable electrostatic interactions with specific, highly-conserved charged residues. The importance of these interactions in permeation was further validated with experimental mutagenesis and whole cell accumulation assays. Overall, this study provides insights on the importance of the primary amine for antibiotic permeation into Gram-negative pathogens that could help the design of future antibiotics. We also offer a new computational approach for calculating free-energy of processes where relevant molecular conformations cannot be efficiently captured.
Collapse
Affiliation(s)
- Nandan Haloi
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Archit Kumar Vasan
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Emily J Geddes
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Arjun Prasanna
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Department of Microbiology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Po-Chao Wen
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - William W Metcalf
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Department of Microbiology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
11
|
Murphy ARJ, Scanlan DJ, Chen Y, Adams NBP, Cadman WA, Bottrill A, Bending G, Hammond JP, Hitchcock A, Wellington EMH, Lidbury IDEA. Transporter characterisation reveals aminoethylphosphonate mineralisation as a key step in the marine phosphorus redox cycle. Nat Commun 2021; 12:4554. [PMID: 34315891 PMCID: PMC8316502 DOI: 10.1038/s41467-021-24646-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
The planktonic synthesis of reduced organophosphorus molecules, such as alkylphosphonates and aminophosphonates, represents one half of a vast global oceanic phosphorus redox cycle. Whilst alkylphosphonates tend to accumulate in recalcitrant dissolved organic matter, aminophosphonates do not. Here, we identify three bacterial 2-aminoethylphosphonate (2AEP) transporters, named AepXVW, AepP and AepSTU, whose synthesis is independent of phosphate concentrations (phosphate-insensitive). AepXVW is found in diverse marine heterotrophs and is ubiquitously distributed in mesopelagic and epipelagic waters. Unlike the archetypal phosphonate binding protein, PhnD, AepX has high affinity and high specificity for 2AEP (Stappia stellulata AepX Kd 23 ± 4 nM; methylphosphonate Kd 3.4 ± 0.3 mM). In the global ocean, aepX is heavily transcribed (~100-fold>phnD) independently of phosphate and nitrogen concentrations. Collectively, our data identifies a mechanism responsible for a major oxidation process in the marine phosphorus redox cycle and suggests 2AEP may be an important source of regenerated phosphate and ammonium, which are required for oceanic primary production.
Collapse
Affiliation(s)
- Andrew R J Murphy
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Yin Chen
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Nathan B P Adams
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
- Nanotemper Technologies GmbH, Flößergasse 4, Munich, Germany
| | - William A Cadman
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Andrew Bottrill
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Gary Bending
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - John P Hammond
- School of Agriculture, Policy, and Development, University of Reading, Earley Gate, Whiteknights, Reading, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | | | - Ian D E A Lidbury
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
12
|
Zangelmi E, Stanković T, Malatesta M, Acquotti D, Pallitsch K, Peracchi A. Discovery of a New, Recurrent Enzyme in Bacterial Phosphonate Degradation: ( R)-1-Hydroxy-2-aminoethylphosphonate Ammonia-lyase. Biochemistry 2021; 60:1214-1225. [PMID: 33830741 PMCID: PMC8154272 DOI: 10.1021/acs.biochem.1c00092] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/26/2021] [Indexed: 01/09/2023]
Abstract
Phosphonates represent an important source of bioavailable phosphorus in certain environments. Accordingly, many microorganisms (particularly marine bacteria) possess catabolic pathways to degrade these molecules. One example is the widespread hydrolytic route for the breakdown of 2-aminoethylphosphonate (AEP, the most common biogenic phosphonate). In this pathway, the aminotransferase PhnW initially converts AEP into phosphonoacetaldehyde (PAA), which is then cleaved by the hydrolase PhnX to yield acetaldehyde and phosphate. This work focuses on a pyridoxal 5'-phosphate-dependent enzyme that is encoded in >13% of the bacterial gene clusters containing the phnW-phnX combination. This enzyme (which we termed PbfA) is annotated as a transaminase, but there is no obvious need for an additional transamination reaction in the established AEP degradation pathway. We report here that PbfA from the marine bacterium Vibrio splendidus catalyzes an elimination reaction on the naturally occurring compound (R)-1-hydroxy-2-aminoethylphosphonate (R-HAEP). The reaction releases ammonia and generates PAA, which can be then hydrolyzed by PhnX. In contrast, PbfA is not active toward the S enantiomer of HAEP or other HAEP-related compounds such as ethanolamine and d,l-isoserine, indicating a very high substrate specificity. We also show that R-HAEP (despite being structurally similar to AEP) is not processed efficiently by the PhnW-PhnX couple in the absence of PbfA. In summary, the reaction catalyzed by PbfA serves to funnel R-HAEP into the hydrolytic pathway for AEP degradation, expanding the scope and the usefulness of the pathway itself.
Collapse
Affiliation(s)
- Erika Zangelmi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy
| | - Toda Stanković
- Institute
of Organic Chemistry, University of Vienna, Währingerstrasse 38, A-1090 Vienna, Austria
| | - Marco Malatesta
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy
| | - Domenico Acquotti
- Centro
di Servizi e Misure “Giuseppe Casnati”, University of Parma, I-43124 Parma, Italy
| | - Katharina Pallitsch
- Institute
of Organic Chemistry, University of Vienna, Währingerstrasse 38, A-1090 Vienna, Austria
| | - Alessio Peracchi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy
| |
Collapse
|
13
|
Xie E, Su Y, Deng S, Kontopyrgou M, Zhang D. Significant influence of phosphorus resources on the growth and alkaline phosphatase activities of Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115807. [PMID: 33096390 DOI: 10.1016/j.envpol.2020.115807] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
It is well-accepted that phosphorus, particularly orthophosphate, is a determinant factor in aquatic eutrophication. However, numerous kinds of phosphorus sources exist in real world scenario, and limited studies have characterized the pairwise relationships among abundant different phosphorus sources and the physiological behaviour of algae. The present study developed a high-throughput assay to investigate the effects of 59 different phosphorus sources (equal initial concentration of total phosphorus) on the growth and alkaline phosphatase (AKP) activities of Microcystis aeruginosa, a model cyanobacteria whose predominance holds sway in lake eutrophication. M. aeruginosa cultivated with nucleoside monophosphates (NMPs) had higher growth, relative AKP activities and residual orthophosphate, which were positively intercorrelated. Oppositely, non-NMPs cultivation of M. aeruginosa led to negative relationships between the relative AKP activities and their growth or residual orthophosphate. These results indicated distinct mechanisms for M. aeruginosa to utilize different phosphorus sources in real-world scenario, and both phosphorus source and content are determinant factors on the growth and physiological behaviour of M. aeruginosa. Given the complicated and vast phosphorus pool in the natural environment, phosphorus resources might significantly alter the abundance and physiological behaviour of M. aeruginosa and other bloom-forming algae, then influence the phytoplanktonic community structure and affect the possibility and intensity of algal bloom. Our work hints the underestimation of the restriction factors in lake eutrophication and provides a new tool to study the driven forces of phytoplanktonic community dynamics as phosphorus from both internal and external sources.
Collapse
Affiliation(s)
- En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuping Su
- Environmental Science and Engineering College, Fujian Normal University, Fuzhou, 350007, PR China
| | - Songqiang Deng
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, PR China
| | - Maria Kontopyrgou
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 2YW, United Kingdom
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
14
|
Zheng L, Ren M, Xie E, Ding A, Liu Y, Deng S, Zhang D. Roles of Phosphorus Sources in Microbial Community Assembly for the Removal of Organic Matters and Ammonia in Activated Sludge. Front Microbiol 2019; 10:1023. [PMID: 31156575 PMCID: PMC6532738 DOI: 10.3389/fmicb.2019.01023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Abstract
Various phosphorus sources are utilized by microbes in WWTPs, eventually affecting microbial assembly and functions. This study identified the effects of phosphorus source on microbial communities and functions in the activated sludge. By cultivation with 59 phosphorus sources, including inorganic phosphates (IP), nucleoside-monophosphates (NMP), cyclic-nucleoside-monophosphates (cNMP), and other organophosphates (OP), we evaluated the change in removal efficiencies of total organic carbon (TOC) and ammonia, microbial biomass, alkaline phosphatase (AKP) activity, microbial community structure, and AKP-associated genes. TOC and ammonia removal efficiency was highest in IP (64.8%) and cNMP (52.3%) treatments. Microbial community structure changed significantly across phosphorus sources that IP and cNMP encouraged Enterobacter and Aeromonas, respectively. The abundance of phoA and phoU genes was higher in IP treatments, whereas phoD and phoX genes dominated OP treatments. Our findings suggested that the performance of WWTPs was dependent on phosphorus sources and provided new insights into effective WWTP management.
Collapse
Affiliation(s)
- Lei Zheng
- College of Water Science, Beijing Normal University, Beijing, China
| | - Mengli Ren
- College of Water Science, Beijing Normal University, Beijing, China
| | - En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
| | - Aizhong Ding
- College of Water Science, Beijing Normal University, Beijing, China
| | - Yan Liu
- Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Songqiang Deng
- Research Institute for Environmental Innovation (Tsinghua-Suzhou), Suzhou, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
Dong C, Zhang H, Yang Y, He X, Liu L, Fu J, Shi J, Wu Z. Physiological and transcriptomic analyses to determine the responses to phosphorus utilization in Nostoc sp. HARMFUL ALGAE 2019; 84:10-18. [PMID: 31128794 DOI: 10.1016/j.hal.2019.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 05/05/2023]
Abstract
Phosphorus (P) is an important factor driving algal growth in aquatic ecosystems. In the present study, the growth, P uptake and utilization, photosynthesis, and transcriptome profile of Nostoc sp. were measured when Nostoc sp. cultured in media containing β-glycerol phosphate (β-gly, containing COP bonds), 2-aminoethylphosphonic acid (2-amin, containing CP bonds), or orthophosphate (K2HPO4), and in P-free (NP) medium. The results revealed that NP treatment adversely affected the growth and photosynthesis of Nostoc sp. and significantly down-regulated the expression of genes related to nutrient transport and material metabolism. Furthermore, 2-amin treatment reduced the growth of Nostoc sp. but did not significantly reduce photosynthesis, and the treatments of NP and 2-amin up-regulated the expressions of genes related antioxidation and stress. Additionally, there were no obvious differences in growth, photosynthesis, and phosphorus utilization between the β-gly and K2HPO4 treatments. These results suggested that Nostoc had a flexible ability to utilize P, which might play an important role in its widespread distribution in the environment.
Collapse
Affiliation(s)
- Congcong Dong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Hongbo Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Yanjun Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Xinyu He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Li Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Junke Fu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Junqiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Zhongxing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
16
|
Modulation of CrbS-Dependent Activation of the Acetate Switch in Vibrio cholerae. J Bacteriol 2018; 200:JB.00380-18. [PMID: 30224439 DOI: 10.1128/jb.00380-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
Vibrio cholerae controls the pathogenicity of interactions with arthropod hosts via the activity of the CrbS/R two-component system. This signaling pathway regulates the consumption of acetate, which in turn alters the relative virulence of interactions with arthropods, including Drosophila melanogaster CrbS is a histidine kinase that links a transporter-like domain to its signaling apparatus via putative STAC and PAS domains. CrbS and its cognate response regulator are required for the expression of acetyl coenzyme A (acetyl-CoA) synthetase (product of acs), which converts acetate to acetyl-CoA. We demonstrate that the STAC domain of CrbS is required for signaling in culture; without it, acs transcription is reduced in LB medium, and V. cholerae cannot grow on acetate minimal media. However, the strain remains virulent toward Drosophila and expresses acs similarly to the wild type during infection. This suggests that there is a unique signal or environmental variable that modulates CrbS in the gastrointestinal tract of Drosophila Second, we present evidence in support of CrbR, the response regulator that interacts with CrbS, binding directly to the acs promoter, and we identify a region of the promoter that CrbR may target. We further demonstrate that nutrient signals, together with the cAMP receptor protein (CRP)-cAMP system, control acs transcription, but regulation may occur indirectly, as CRP-cAMP activates the expression of the crbS and crbR genes. Finally, we define the role of the Pta-AckA system in V. cholerae and identify redundancy built into acetate excretion pathways in this pathogen.IMPORTANCE CrbS is a member of a unique family of sensor histidine kinases, as its structure suggests that it may link signaling to the transport of a molecule. However, mechanisms through which CrbS senses and communicates information about the outside world are unknown. In the Vibrionaceae, orthologs of CrbS regulate acetate metabolism, which can, in turn, affect interactions with host organisms. Here, we situate CrbS within a larger regulatory framework, demonstrating that crbS is regulated by nutrient-sensing systems. Furthermore, CrbS domains may play various roles in signaling during infection and growth in culture, suggesting a unique mechanism of host recognition. Finally, we define the roles of additional pathways in acetate flux, as a foundation for further studies of this metabolic nexus point.
Collapse
|
17
|
A Putative Acetylation System in Vibrio cholerae Modulates Virulence in Arthropod Hosts. Appl Environ Microbiol 2018; 84:AEM.01113-18. [PMID: 30143508 DOI: 10.1128/aem.01113-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/19/2018] [Indexed: 12/16/2022] Open
Abstract
Acetylation is a broadly conserved mechanism of covalently modifying the proteome to precisely control protein activity. In bacteria, central metabolic enzymes and regulatory proteins, including those involved in virulence, can be targeted for acetylation. In this study, we directly link a putative acetylation system to metabolite-dependent virulence in the pathogen Vibrio cholerae We demonstrate that the cobB and yfiQ genes, which encode homologs of a deacetylase and an acetyltransferase, respectively, modulate V. cholerae metabolism of acetate, a bacterially derived short-chain fatty acid with important physiological roles in a diversity of host organisms. In Drosophila melanogaster, a model arthropod host for V. cholerae infection, the pathogen consumes acetate within the gastrointestinal tract, which contributes to fly mortality. We show that deletion of cobB impairs growth on acetate minimal medium, delays the consumption of acetate from rich medium, and reduces virulence of V. cholerae toward Drosophila These impacts can be reversed by complementing cobB or by introducing a deletion of yfiQ into the ΔcobB background. We further show that cobB controls the accumulation of triglycerides in the Drosophila midgut, which suggests that cobB directly modulates metabolite levels in vivo In Escherichia coli K-12, yfiQ is upregulated by cAMP-cAMP receptor protein (CRP), and we identified a similar pattern of regulation in V. cholerae, arguing that the system is activated in response to similar environmental cues. In summary, we demonstrate that proteins likely involved in acetylation can modulate the outcome of infection by regulating metabolite exchange between pathogens and their colonized hosts.IMPORTANCE The bacterium Vibrio cholerae causes severe disease in humans, and strains can persist in the environment in association with a wide diversity of host species. By investigating the molecular mechanisms that underlie these interactions, we can better understand constraints affecting the ecology and evolution of this global pathogen. The Drosophila model of Vibrio cholerae infection has revealed that bacterial regulation of acetate and other small metabolites from within the fly gastrointestinal tract is crucial for its virulence. Here, we demonstrate that genes that may modify the proteome of V. cholerae affect virulence toward Drosophila, most likely by modulating central metabolic pathways that control the consumption of acetate as well as other small molecules. These findings further highlight the many layers of regulation that tune bacterial metabolism to alter the trajectory of interactions between bacteria and their hosts.
Collapse
|
18
|
Phosphate insensitive aminophosphonate mineralisation within oceanic nutrient cycles. ISME JOURNAL 2018; 12:973-980. [PMID: 29339823 DOI: 10.1038/s41396-017-0031-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/25/2017] [Accepted: 11/29/2017] [Indexed: 11/08/2022]
Abstract
Many areas of the ocean are nutrient-poor yet support large microbial populations, leading to intense competition for and recycling of nutrients. Organic phosphonates are frequently found in marine waters, but require specialist enzymes for catabolism. Previous studies have shown that the genes that encode these enzymes in marine systems are under Pho regulon control and so are repressed by inorganic phosphate. This has led to the conclusion that phosphonates are recalcitrant in much of the ocean, where phosphorus is not limiting despite the degradative genes being common throughout the marine environment. Here we challenge this paradigm and show, for the first time, that bacteria isolated from marine samples have the ability to mineralise 2-aminoethylphosphonate, the most common biogenic marine aminophosphonate, via substrate-inducible gene regulation rather than via Pho-regulated metabolism. Substrate-inducible, Pho-independent 2-aminoethylphosphonate catabolism therefore represents a previously unrecognised component of the oceanic carbon, nitrogen and phosphorus cycles.
Collapse
|
19
|
Panmanee W, Charoenlap N, Atichartpongkul S, Mahavihakanont A, Whiteside MD, Winsor G, Brinkman FSL, Mongkolsuk S, Hassett DJ. The OxyR-regulated phnW gene encoding 2-aminoethylphosphonate:pyruvate aminotransferase helps protect Pseudomonas aeruginosa from tert-butyl hydroperoxide. PLoS One 2017; 12:e0189066. [PMID: 29216242 PMCID: PMC5720770 DOI: 10.1371/journal.pone.0189066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/17/2017] [Indexed: 11/18/2022] Open
Abstract
The LysR member of bacterial transactivators, OxyR, governs transcription of genes involved in the response to H2O2 and organic (alkyl) hydroperoxides (AHP) in the Gram-negative pathogen, Pseudomonas aeruginosa. We have previously shown that organisms lacking OxyR are rapidly killed by <2 or 500 mM H2O2 in planktonic and biofilm bacteria, respectively. In this study, we first employed a bioinformatic approach to elucidate the potential regulatory breadth of OxyR by scanning the entire P. aeruginosa PAO1 genome for canonical OxyR promoter recognition sequences (ATAG-N7-CTAT-N7-ATAG-N7-CTAT). Of >100 potential OxyR-controlled genes, 40 were strategically selected that were not predicted to be involved in the direct response to oxidative stress (e.g., catalase, peroxidase, etc.) and screened such genes by RT-PCR analysis for potentially positive or negative control by OxyR. Differences were found in 7 of 40 genes when comparing an oxyR mutant vs. PAO1 expression that was confirmed by ß-galactosidase reporter assays. Among these, phnW, encoding 2-aminoethylphosphonate:pyruvate aminotransferase, exhibited reduced expression in the oxyR mutant compared to wild-type bacteria. Electrophoretic mobility shift assays indicated binding of OxyR to the phnW promoter and DNase I footprinting analysis also revealed the sequences to which OxyR bound. Interestingly, a phnW mutant was more susceptible to t-butyl-hydroperoxide (t-BOOH) treatment than wild-type bacteria. Although we were unable to define the direct mechanism underlying this phenomenon, we believe that this may be due to a reduced efficiency for this strain to degrade t-BOOH relative to wild-type organisms because of modulation of AHP gene transcription in the phnW mutant.
Collapse
Affiliation(s)
- Warunya Panmanee
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Nisanart Charoenlap
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand
| | | | - Aekkapol Mahavihakanont
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Matthew D. Whiteside
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Geoff Winsor
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Fiona S. L. Brinkman
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Daniel J. Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH
- * E-mail:
| |
Collapse
|
20
|
Regulation of acetyl-CoA synthetase transcription by the CrbS/R two-component system is conserved in genetically diverse environmental pathogens. PLoS One 2017; 12:e0177825. [PMID: 28542616 PMCID: PMC5436829 DOI: 10.1371/journal.pone.0177825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/03/2017] [Indexed: 12/04/2022] Open
Abstract
The CrbS/R two-component signal transduction system is a conserved regulatory mechanism through which specific Gram-negative bacteria control acetate flux into primary metabolic pathways. CrbS/R governs expression of acetyl-CoA synthase (acsA), an enzyme that converts acetate to acetyl-CoA, a metabolite at the nexus of the cell’s most important energy-harvesting and biosynthetic reactions. During infection, bacteria can utilize this system to hijack host acetate metabolism and alter the course of colonization and pathogenesis. In toxigenic strains of Vibrio cholerae, CrbS/R-dependent expression of acsA is required for virulence in an arthropod model. Here, we investigate the function of the CrbS/R system in Pseudomonas aeruginosa, Pseudomonas entomophila, and non-toxigenic V. cholerae strains. We demonstrate that its role in acetate metabolism is conserved; this system regulates expression of the acsA gene and is required for growth on acetate as a sole carbon source. As a first step towards describing the mechanism of signaling through this pathway, we identify residues and domains that may be critical for phosphotransfer. We further demonstrate that although CrbS, the putative hybrid sensor kinase, carries both a histidine kinase domain and a receiver domain, the latter is not required for acsA transcription. In order to determine whether our findings are relevant to pathogenesis, we tested our strains in a Drosophila model of oral infection previously employed for the study of acetate-dependent virulence by V. cholerae. We show that non-toxigenic V. cholerae strains lacking CrbS or CrbR are significantly less virulent than are wild-type strains, while P. aeruginosa and P. entomophila lacking CrbS or CrbR are fully pathogenic. Together, the data suggest that the CrbS/R system plays a central role in acetate metabolism in V. cholerae, P. aeruginosa, and P. entomophila. However, each microbe’s unique environmental adaptations and pathogenesis strategies may dictate conditions under which CrbS/R-mediated acs expression is most critical.
Collapse
|
21
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
22
|
Lidbury IDEA, Murphy ARJ, Scanlan DJ, Bending GD, Jones AME, Moore JD, Goodall A, Hammond JP, Wellington EMH. Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria. Environ Microbiol 2016; 18:3535-3549. [PMID: 27233093 PMCID: PMC5082522 DOI: 10.1111/1462-2920.13390] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteria that inhabit the rhizosphere of agricultural crops can have a beneficial effect on crop growth. One such mechanism is the microbial-driven solubilization and remineralization of complex forms of phosphorus (P). It is known that bacteria secrete various phosphatases in response to low P conditions. However, our understanding of their global proteomic response to P stress is limited. Here, exoproteomic analysis of Pseudomonas putida BIRD-1 (BIRD-1), Pseudomonas fluorescens SBW25 and Pseudomonas stutzeri DSM4166 was performed in unison with whole-cell proteomic analysis of BIRD-1 grown under phosphate (Pi) replete and Pi deplete conditions. Comparative exoproteomics revealed marked heterogeneity in the exoproteomes of each Pseudomonas strain in response to Pi depletion. In addition to well-characterized members of the PHO regulon such as alkaline phosphatases, several proteins, previously not associated with the response to Pi depletion, were also identified. These included putative nucleases, phosphotriesterases, putative phosphonate transporters and outer membrane proteins. Moreover, in BIRD-1, mutagenesis of the master regulator, phoBR, led us to confirm the addition of several novel PHO-dependent proteins. Our data expands knowledge of the Pseudomonas PHO regulon, including species that are frequently used as bioinoculants, opening up the potential for more efficient and complete use of soil complexed P.
Collapse
Affiliation(s)
- Ian D E A Lidbury
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, UK.
| | - Andrew R J Murphy
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, UK
| | - Gary D Bending
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, UK
| | - Alexandra M E Jones
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, UK
| | - Jonathan D Moore
- The Genome Analysis Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Andrew Goodall
- School of Agriculture, Policy, and Development, University of Reading, Earley Gate, Whiteknights, Reading, RG6 6AR, UK
| | - John P Hammond
- School of Agriculture, Policy, and Development, University of Reading, Earley Gate, Whiteknights, Reading, RG6 6AR, UK
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | - Elizabeth M H Wellington
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, UK
| |
Collapse
|
23
|
Wang S, Seiwert B, Kästner M, Miltner A, Schäffer A, Reemtsma T, Yang Q, Nowak KM. (Bio)degradation of glyphosate in water-sediment microcosms - A stable isotope co-labeling approach. WATER RESEARCH 2016; 99:91-100. [PMID: 27140906 DOI: 10.1016/j.watres.2016.04.041] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 06/05/2023]
Abstract
Glyphosate and its metabolite aminomethylphosphonic acid (AMPA) are frequently detected in water and sediments. Up to date, there are no comprehensive studies on the fate of glyphosate in water-sediment microcosms according to OECD 308 guideline. Stable isotope co-labeled (13)C3(15)N-glyphosate was used to determine the turnover mass balance, formation of metabolites, and formation of residues over a period of 80 days. In the water-sediment system, 56% of the initial (13)C3-glyphosate equivalents was ultimately mineralized, whereas the mineralization in the water system (without sediment) was low, reaching only 2% of (13)C-glyphosate equivalents. This finding demonstrates the key role of sediments in its degradation. Glyphosate was detected below detection limit in the water compartment on day 40, but could still be detected in the sediments, ultimately reaching 5% of (13)C3(15)N-glyphosate equivalents. A rapid increase in (13)C(15)N-AMPA was noted after 10 days, and these transformation products ultimately constituted 26% of the (13)C3-glyphosate equivalents and 79% of the (15)N-glyphosate equivalents. In total, 10% of the (13)C label and 12% of the (15)N label were incorporated into amino acids, indicating no risk bearing biogenic residue formation from (13)C3(15)N-glyphosate. Initially, glyphosate was biodegraded via the sarcosine pathway related to microbial growth, as shown by co-labeled (13)C(15)N-glycine and biogenic residue formation. Later, degradation via AMPA dominated under starvation conditions, as shown by the contents of (13)C-glycine. The presented data provide the first evidence of the speciation of the non-extractable residues as well as the utilization of glyphosate as a carbon and nitrogen source in the water-sediment system. This study also highlights the contribution of both the sarcosine and the AMPA degradation pathways under these conditions.
Collapse
Affiliation(s)
- Shizong Wang
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China; Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Biotechnology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Bettina Seiwert
- Helmholtz-Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Matthias Kästner
- Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Biotechnology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Anja Miltner
- Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Biotechnology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Andreas Schäffer
- RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| | - Thorsten Reemtsma
- Helmholtz-Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Qi Yang
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Karolina M Nowak
- Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Biotechnology, Permoserstrasse 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
24
|
Poehlein A, Freese H, Daniel R, Simeonova DD. Genome sequence of Shinella sp. strain DD12, isolated from homogenized guts of starved Daphnia magna. Stand Genomic Sci 2016; 11:14. [PMID: 26865909 PMCID: PMC4748535 DOI: 10.1186/s40793-015-0129-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 12/30/2015] [Indexed: 11/10/2022] Open
Abstract
Shinella sp. strain DD12, a novel phosphite assimilating bacterium, has been isolated from homogenized guts of 4 days starved zooplankton Daphnia magna. Here we report the draft genome of this bacterium, which comprises 7,677,812 bp and 7505 predicted protein-coding genes.
Collapse
Affiliation(s)
- Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, D-37077 Göttingen, Germany
| | - Heike Freese
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, 38124 Braunschweig, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, D-37077 Göttingen, Germany
| | - Diliana D Simeonova
- Laboratory of Microbial Ecology, University of Konstanz, D-78457 Constance, Germany ; Current Address: Laboratory of Microbial Biochemistry, Department of General Microbiology, Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev str., 1113 Sofia, Bulgaria
| |
Collapse
|
25
|
Gómez-Lunar Z, Hernández-González I, Rodríguez-Torres MD, Souza V, Olmedo-Álvarez G. Microevolution Analysis of Bacillus coahuilensis Unveils Differences in Phosphorus Acquisition Strategies and Their Regulation. Front Microbiol 2016; 7:58. [PMID: 26903955 PMCID: PMC4744853 DOI: 10.3389/fmicb.2016.00058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/13/2016] [Indexed: 11/27/2022] Open
Abstract
Bacterial genomes undergo numerous events of gene losses and gains that generate genome variability among strains of the same species (microevolution). Our aim was to compare the genomes and relevant phenotypes of three Bacillus coahuilensis strains from two oligotrophic hydrological systems in the Cuatro Ciénegas Basin (México), to unveil the environmental challenges that this species cope with, and the microevolutionary differences in these genotypes. Since the strains were isolated from a low P environment, we placed emphasis on the search of different phosphorus acquisition strategies. The three B. coahuilensis strains exhibited similar numbers of coding DNA sequences, of which 82% (2,893) constituted the core genome, and 18% corresponded to accessory genes. Most of the genes in this last group were associated with mobile genetic elements (MGEs) or were annotated as hypothetical proteins. Ten percent of the pangenome consisted of strain-specific genes. Alignment of the three B. coahuilensis genomes indicated a high level of synteny and revealed the presence of several genomic islands. Unexpectedly, one of these islands contained genes that encode the 2-keto-3-deoxymannooctulosonic acid (Kdo) biosynthesis enzymes, a feature associated to cell walls of Gram-negative bacteria. Some microevolutionary changes were clearly associated with MGEs. Our analysis revealed inconsistencies between phenotype and genotype, which we suggest result from the impossibility to map regulatory features to genome analysis. Experimental results revealed variability in the types and numbers of auxotrophies between the strains that could not consistently be explained by in silico metabolic models. Several intraspecific differences in preferences for carbohydrate and phosphorus utilization were observed. Regarding phosphorus recycling, scavenging, and storage, variations were found between the three genomes. The three strains exhibited differences regarding alkaline phosphatase that revealed that in addition to gene gain and loss, regulation adjustment of gene expression also has contributed to the intraspecific diversity of B. coahuilensis.
Collapse
Affiliation(s)
- Zulema Gómez-Lunar
- Laboratorio de Biología Molecular y Ecología Microbiana, Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, Mexico
| | - Ismael Hernández-González
- Laboratorio de Biología Molecular y Ecología Microbiana, Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, Mexico
| | - María-Dolores Rodríguez-Torres
- Laboratorio de Biología Molecular y Ecología Microbiana, Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, Mexico
| | - Valeria Souza
- Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México México City, Mexico
| | - Gabriela Olmedo-Álvarez
- Laboratorio de Biología Molecular y Ecología Microbiana, Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Irapuato, Mexico
| |
Collapse
|
26
|
Poehlein A, Daniel R, Simeonova DD. Genome sequence of Pedobacter glucosidilyticus DD6b, isolated from zooplankton Daphnia magna. Stand Genomic Sci 2015; 10:100. [PMID: 26566425 PMCID: PMC4642753 DOI: 10.1186/s40793-015-0086-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 10/19/2015] [Indexed: 11/10/2022] Open
Abstract
The phosphite assimilating bacterium, P. glucosidilyticus DD6b, was isolated from the gut of the zooplankton Daphnia magna. Its 3,872,381 bp high-quality draft genome is arranged into 93 contigs containing 3311 predicted protein-coding and 41 RNA-encoding genes. This genome report presents the specific properties and common features of P. glucosidilyticus DD6b genome in comparison with the genomes of P. glucosidilyticus type strain DSM 23,534, and another five Pedobacter type strains with publicly available completely sequenced genomes. Here, we present the first journal report on P. glucosidilyticus genome sequence and provide information on a new specific physiological determinant of P. glucosidilyticus species.
Collapse
Affiliation(s)
- Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, D-37077 Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, D-37077 Göttingen, Germany
| | - Diliana D Simeonova
- Laboratory of Microbial Ecology, Department of Biology, University of Konstanz, Universitaetsstr. 10, D-78457 Konstanz, Germany ; Current address: Laboratory of Microbial Biochemistry, Department of General Microbiology, Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev str., 1113 Sofia, Bulgaria
| |
Collapse
|
27
|
Loera-Quezada MM, Leyva-González MA, López-Arredondo D, Herrera-Estrella L. Phosphite cannot be used as a phosphorus source but is non-toxic for microalgae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:124-30. [PMID: 25575997 DOI: 10.1016/j.plantsci.2014.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/28/2014] [Accepted: 11/29/2014] [Indexed: 05/16/2023]
Abstract
Phosphorous (P) plays a critical role for all living organisms as a structural component of RNA, DNA and phospholipids. Microalgae are autotrophs organisms that have been reported to only assimilate the fully oxidized phosphate (Pi) as P source. However, there are microorganisms capable of utilizing P reduced compounds (i.e. phosphite (Phi) and hypophosphite) as a sole P source, such as bacteria and cyanobacteria. In this study, we evaluated whether microalgae, such as Chlamydomonas reinhardtii, Botryococcus braunii and Ettlia oleoabundans, are capable of using Phi as a sole P source. Our studies revealed that these three microalgae are unable to use Phi as a sole P source. We also found that when Phi is present at concentrations equal or higher than that of Pi, Phi has an inhibitory effect on C. reinhardtii growth. However, since C. reinhardtii was able to survive for a long period of cultivation in the presence of high concentrations of Phi and to recover cell division capacity after transfer to media containing Pi, we noticed that Phi is not toxic for this microalga. We propose that the inhibitory effect of Phi on C. reinhardtii growth might be caused, at least in part, by a competition between the transport of Pi and Phi.
Collapse
Affiliation(s)
- Maribel M Loera-Quezada
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 carretera Irapuato León, 36500 Irapuato, Guanajuato, Mexico
| | | | - Damar López-Arredondo
- StelaGenomics México, S de RL de CV, Av. Camino Real de Guanajuato s/n, 36821 Irapuato, Guanajuato, Mexico.
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 carretera Irapuato León, 36500 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
28
|
Draft Genome Sequence of Serratia sp. Strain DD3, Isolated from the Guts of Daphnia magna. GENOME ANNOUNCEMENTS 2014; 2:2/5/e00903-14. [PMID: 25212623 PMCID: PMC4161752 DOI: 10.1128/genomea.00903-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the draft genome sequence of Serratia sp. strain DD3, a gammaproteobacterium from the family Enterobacteriaceae. It was isolated from homogenized guts of Daphnia magna. The genome size is 5,274 Mb.
Collapse
|
29
|
Hove-Jensen B, Zechel DL, Jochimsen B. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase. Microbiol Mol Biol Rev 2014; 78:176-97. [PMID: 24600043 PMCID: PMC3957732 DOI: 10.1128/mmbr.00040-13] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses.
Collapse
|
30
|
Agarwal V, Peck SC, Chen JH, Borisova SA, Chekan JR, van der Donk WA, Nair SK. Structure and function of phosphonoacetaldehyde dehydrogenase: the missing link in phosphonoacetate formation. ACTA ACUST UNITED AC 2013; 21:125-35. [PMID: 24361046 DOI: 10.1016/j.chembiol.2013.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/06/2013] [Accepted: 11/14/2013] [Indexed: 10/25/2022]
Abstract
Phosphonates (C-PO₃²⁻) have applications as antibiotics, herbicides, and detergents. In some environments, these molecules represent the predominant source of phosphorus, and several microbes have evolved dedicated enzymatic machineries for phosphonate degradation. For example, most common naturally occurring phosphonates can be catabolized to either phosphonoacetaldehyde or phosphonoacetate, which can then be hydrolyzed to generate inorganic phosphate and acetaldehyde or acetate, respectively. The phosphonoacetaldehyde oxidase gene (phnY) links these two hydrolytic processes and provides a previously unknown catabolic mechanism for phosphonoacetate production in the microbial metabolome. Here, we present biochemical characterization of PhnY and high-resolution crystal structures of the apo state, as well as complexes with substrate, cofactor, and product. Kinetic analysis of active site mutants demonstrates how a highly conserved aldehyde dehydrogenase active site has been modified in nature to generate activity with a phosphonate substrate.
Collapse
Affiliation(s)
- Vinayak Agarwal
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Spencer C Peck
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jui-Hui Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Svetlana A Borisova
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jonathan R Chekan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wilfred A van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Satish K Nair
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
31
|
Poehlein A, Daniel R, Schink B, Simeonova DD. Life based on phosphite: a genome-guided analysis of Desulfotignum phosphitoxidans. BMC Genomics 2013; 14:753. [PMID: 24180241 PMCID: PMC4046663 DOI: 10.1186/1471-2164-14-753] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 10/30/2013] [Indexed: 12/02/2022] Open
Abstract
Background The Delta-Proteobacterium Desulfotignum phosphitoxidans is a type strain of the genus Desulfotignum, which comprises to date only three species together with D. balticum and D. toluenicum. D. phosphitoxidans oxidizes phosphite to phosphate as its only source of electrons, with either sulfate or CO2 as electron acceptor to gain its metabolic energy, which is of exclusive interest. Sequencing of the genome of this bacterium was undertaken to elucidate the genomic basis of this so far unique type of energy metabolism. Results The genome contains 4,998,761 base pairs and 4646 genes of which 3609 were assigned to a function, and 1037 are without function prediction. Metabolic reconstruction revealed that most biosynthetic pathways of Gram negative, autotrophic sulfate reducers were present. Autotrophic CO2 assimilation proceeds through the Wood-Ljungdahl pathway. Additionally, we have found and confirmed the ability of the strain to couple phosphite oxidation to dissimilatory nitrate reduction to ammonia, which in itself is a new type of energy metabolism. Surprisingly, only two pathways for uptake, assimilation and utilization of inorganic and organic phosphonates were found in the genome. The unique for D. phosphitoxidans Ptx-Ptd cluster is involved in inorganic phosphite oxidation and an atypical C-P lyase-coding cluster (Phn) is involved in utilization of organophosphonates. Conclusions We present the whole genome sequence of the first bacterium able to gain metabolic energy via phosphite oxidation. The data obtained provide initial information on the composition and architecture of the phosphite–utilizing and energy-transducing systems needed to live with phosphite as an unusual electron donor.
Collapse
Affiliation(s)
| | | | | | - Diliana D Simeonova
- Laboratory of Microbial Ecology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany.
| |
Collapse
|
32
|
Peck SC, van der Donk WA. Phosphonate biosynthesis and catabolism: a treasure trove of unusual enzymology. Curr Opin Chem Biol 2013; 17:580-8. [PMID: 23870698 DOI: 10.1016/j.cbpa.2013.06.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 11/25/2022]
Abstract
Natural product biosynthesis has proven a fertile ground for the discovery of novel chemistry. Herein we review the progress made in elucidating the biosynthetic pathways of phosphonate and phosphinate natural products such as the antibacterial compounds dehydrophos and fosfomycin, the herbicidal phosphinothricin-containing peptides, and the antimalarial compound FR-900098. In each case, investigation of the pathway has yielded unusual, and often unprecedented, biochemistry. Likewise, recent investigations have uncovered novel ways to cleave the CP bond to yield phosphate under phosphorus starvation conditions. These include the discovery of novel oxidative cleavage of the CP bond catalyzed by PhnY and PhnZ as well as phosphonohydrolases that liberate phosphate from phosphonoacetate. Perhaps the crown jewel of phosphonate catabolism has been the recent resolution of the longstanding problem of the C-P lyase responsible for reductively cleaving the CP bond of a number of different phosphonates to release phosphate. Taken together, the strides made on both metabolic and catabolic fronts illustrate an array of fascinating biochemistry.
Collapse
Affiliation(s)
- Spencer C Peck
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | | |
Collapse
|
33
|
McGrath JW, Chin JP, Quinn JP. Organophosphonates revealed: new insights into the microbial metabolism of ancient molecules. Nat Rev Microbiol 2013; 11:412-9. [PMID: 23624813 DOI: 10.1038/nrmicro3011] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Organophosphonates are ancient molecules that contain the chemically stable C-P bond, which is considered a relic of the reducing atmosphere on primitive earth. Synthetic phosphonates now have a wide range of applications in the agricultural, chemical and pharmaceutical industries. However, the existence of C-P compounds as contemporary biogenic molecules was not discovered until 1959, with the identification of 2-aminoethylphosphonic acid in rumen protozoa. Here, we review advances in our understanding of the biochemistry and genetics of microbial phosphonate metabolism, and discuss the role of these compounds and of the organisms engaged in their turnover within the P cycle.
Collapse
Affiliation(s)
- John W McGrath
- School of Biological Sciences and the Institute for Global Food Security, The Queens University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| | | | | |
Collapse
|
34
|
Agarwal V, Borisova SA, Metcalf WW, van der Donk WA, Nair SK. Structural and mechanistic insights into C-P bond hydrolysis by phosphonoacetate hydrolase. ACTA ACUST UNITED AC 2012; 18:1230-40. [PMID: 22035792 DOI: 10.1016/j.chembiol.2011.07.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/24/2011] [Accepted: 07/15/2011] [Indexed: 11/18/2022]
Abstract
Bacteria have evolved pathways to metabolize phosphonates as a nutrient source for phosphorus. In Sinorhizobium meliloti 1021, 2-aminoethylphosphonate is catabolized to phosphonoacetate, which is converted to acetate and inorganic phosphate by phosphonoacetate hydrolase (PhnA). Here we present detailed biochemical and structural characterization of PhnA that provides insights into the mechanism of C-P bond cleavage. The 1.35 Å resolution crystal structure reveals a catalytic core similar to those of alkaline phosphatases and nucleotide pyrophosphatases but with notable differences, such as a longer metal-metal distance. Detailed structure-guided analysis of active site residues and four additional cocrystal structures with phosphonoacetate substrate, acetate, phosphonoformate inhibitor, and a covalently bound transition state mimic provide insight into active site features that may facilitate cleavage of the C-P bond. These studies expand upon the array of reactions that can be catalyzed by enzymes of the alkaline phosphatase superfamily.
Collapse
Affiliation(s)
- Vinayak Agarwal
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
35
|
Villarreal-Chiu JF, Quinn JP, McGrath JW. The genes and enzymes of phosphonate metabolism by bacteria, and their distribution in the marine environment. Front Microbiol 2012; 3:19. [PMID: 22303297 PMCID: PMC3266647 DOI: 10.3389/fmicb.2012.00019] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/10/2012] [Indexed: 11/13/2022] Open
Abstract
Phosphonates are compounds that contain the chemically stable carbon–phosphorus (C–P) bond. They are widely distributed amongst more primitive life forms including many marine invertebrates and constitute a significant component of the dissolved organic phosphorus reservoir in the oceans. Virtually all biogenic C–P compounds are synthesized by a pathway in which the key step is the intramolecular rearrangement of phosphoenolpyruvate to phosphonopyruvate. However C–P bond cleavage by degradative microorganisms is catalyzed by a number of enzymes – C–P lyases, C–P hydrolases, and others of as-yet-uncharacterized mechanism. Expression of some of the pathways of phosphonate catabolism is controlled by ambient levels of inorganic P (Pi) but for others it is Pi-independent. In this report we review the enzymology of C–P bond metabolism in bacteria, and also present the results of an in silico investigation of the distribution of the genes that encode the pathways responsible, in both bacterial genomes and in marine metagenomic libraries, and their likely modes of regulation. Interrogation of currently available whole-genome bacterial sequences indicates that some 10% contain genes encoding putative pathways of phosphonate biosynthesis while ∼40% encode one or more pathways of phosphonate catabolism. Analysis of metagenomic data from the global ocean survey suggests that some 10 and 30%, respectively, of bacterial genomes across the sites sampled encode these pathways. Catabolic routes involving phosphonoacetate hydrolase, C–P lyase(s), and an uncharacterized 2-aminoethylphosphonate degradative sequence were predominant, and it is likely that both substrate-inducible and Pi-repressible mechanisms are involved in their regulation. The data we present indicate the likely importance of phosphonate-P in global biogeochemical P cycling, and by extension its role in marine productivity and in carbon and nitrogen dynamics in the oceans.
Collapse
|