1
|
McAloon LM, Muller AG, Nay K, Lu EL, Smeuninx B, Means AR, Febbraio MA, Scott JW. CaMKK2: bridging the gap between Ca2+ signaling and energy-sensing. Essays Biochem 2024; 68:309-320. [PMID: 39268917 DOI: 10.1042/ebc20240011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Calcium (Ca2+) ions are ubiquitous and indispensable signaling messengers that regulate virtually every cell function. The unique ability of Ca2+ to regulate so many different processes yet cause stimulus specific changes in cell function requires sensing and decoding of Ca2+ signals. Ca2+-sensing proteins, such as calmodulin, decode Ca2+ signals by binding and modifying the function of a diverse range of effector proteins. These effectors include the Ca2+-calmodulin dependent protein kinase kinase-2 (CaMKK2) enzyme, which is the core component of a signaling cascade that plays a key role in important physiological and pathophysiological processes, including brain function and cancer. In addition to its role as a Ca2+ signal decoder, CaMKK2 also serves as an important junction point that connects Ca2+ signaling with energy metabolism. By activating the metabolic regulator AMP-activated protein kinase (AMPK), CaMKK2 integrates Ca2+ signals with cellular energy status, enabling the synchronization of cellular activities regulated by Ca2+ with energy availability. Here, we review the structure, regulation, and function of CaMKK2 and discuss its potential as a treatment target for neurological disorders, metabolic disease, and cancer.
Collapse
Affiliation(s)
- Luke M McAloon
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - Abbey G Muller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - Kevin Nay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - Eudora L Lu
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - Benoit Smeuninx
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - Anthony R Means
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, U.S.A
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - John W Scott
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| |
Collapse
|
2
|
Gujarati NA, Frimpong BO, Zaidi M, Bronstein R, Revelo MP, Haley JD, Kravets I, Guo Y, Mallipattu SK. Podocyte-specific KLF6 primes proximal tubule CaMK1D signaling to attenuate diabetic kidney disease. Nat Commun 2024; 15:8038. [PMID: 39271683 PMCID: PMC11399446 DOI: 10.1038/s41467-024-52306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Diabetic kidney disease (DKD) is the main cause of chronic kidney disease worldwide. While injury to the podocytes, visceral epithelial cells that comprise the glomerular filtration barrier, drives albuminuria, proximal tubule (PT) dysfunction is the critical mediator of DKD progression. Here, we report that the podocyte-specific induction of human KLF6, a zinc-finger binding transcription factor, attenuates podocyte loss, PT dysfunction, and eventual interstitial fibrosis in a male murine model of DKD. Utilizing combination of snRNA-seq, snATAC-seq, and tandem mass spectrometry, we demonstrate that podocyte-specific KLF6 triggers the release of secretory ApoJ to activate calcium/calmodulin dependent protein kinase 1D (CaMK1D) signaling in neighboring PT cells. CaMK1D is enriched in the first segment of the PT, proximal to the podocytes, and is critical to attenuating mitochondrial fission and restoring mitochondrial function under diabetic conditions. Targeting podocyte-PT signaling by enhancing ApoJ-CaMK1D might be a key therapeutic strategy in attenuating the progression of DKD.
Collapse
Affiliation(s)
- Nehaben A Gujarati
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Bismark O Frimpong
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Malaika Zaidi
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Robert Bronstein
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - John D Haley
- Department of Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Igor Kravets
- Division of Endocrinology, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Yiqing Guo
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Sandeep K Mallipattu
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, NY, USA.
- Renal Section, Northport VA Medical Center, Northport, NY, USA.
| |
Collapse
|
3
|
Domínguez-Chavarría JA, García A, Romo-Mancillas A, Reyes-Melo KY, Chávez-Villareal KG, Vázquez-Ramírez AL, Ávalos-Alanís FG, Cabral-Romero C, Hernández-Delgadillo R, García-Cuellar CM, Del Rayo Camacho-Corona M. Cytotoxicity Activity of Some meso-Dihydroguaiaretic Acid Derivatives and Mode of Action of the Most Active Compound. Chem Biodivers 2024; 21:e202301930. [PMID: 38216544 DOI: 10.1002/cbdv.202301930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
The aim of this study was to screen sixteen meso-1 semi-synthetic derivatives bearing ether, esther, carbamate, phosphate or aminoether functional groups against five cancer cell lines: MCF-7 (breast), A549 (lung), HepG2 (liver), HeLa (cervix), and DU145 (prostate) at 25 μM using the MTT assay. Results from the screening showed that two derivatives had the lowest percentage of cell viability at 25 μM, the aminoether derivative meso-11 and the esther derivative meso-20 against A549 (44.15±0.78 %) and MCF-7 (41.60±0.92 %), respectively. Then, it was determined the IC50 value of each compound against their most sensitive cancer cell line. Results showed that aminoether derivative meso-11 showed potent cytotoxicity against A549 (IC50 =17.11±2.11 μM), whereas it resulted more cytotoxic against the LL-47 lung normal cell line (IC50 =9.49±1.19 μM) having a Selective Index (SI) of 0.55. On the other hand, the esther derivative meso-20 exhibited potent activity against MCF-7 (IC50 =18.20±1.98 μM), whereas it displayed moderate cytotoxicity against the MCF-10 breast normal cell line (IC50 =41.22±2.17 μM) with a SI of 2.2. Finally, studies on the mechanism of action of meso-20 indicated disruption of MCF-7 plasma membrane in vitro and the AMPK activation in silico.
Collapse
Affiliation(s)
- José Antonio Domínguez-Chavarría
- Universidad Autónoma de Nuevo León, Facultad de, Ciencias Químicas, Ciudad Universitaria, San Nicolás de los Garza, CP 66455, Nuevo León, México
| | - Abraham García
- Universidad Autónoma de Nuevo León, Facultad de, Ciencias Químicas, Ciudad Universitaria, San Nicolás de los Garza, CP 66455, Nuevo León, México
| | - Antonio Romo-Mancillas
- Universidad Autónoma de Querétaro, Facultad de Química, Centro Universitario, Cerro de las Campanas S/N, CP 76010, Querétaro, Qro., México
| | - Karen Y Reyes-Melo
- Universidad Autónoma de Nuevo León, Facultad de, Ciencias Químicas, Ciudad Universitaria, San Nicolás de los Garza, CP 66455, Nuevo León, México
| | - Karen G Chávez-Villareal
- Universidad Autónoma de Nuevo León, Facultad de, Ciencias Químicas, Ciudad Universitaria, San Nicolás de los Garza, CP 66455, Nuevo León, México
| | - Ana L Vázquez-Ramírez
- Universidad Autónoma de Nuevo León, Facultad de, Ciencias Químicas, Ciudad Universitaria, San Nicolás de los Garza, CP 66455, Nuevo León, México
| | - Francisco G Ávalos-Alanís
- Universidad Autónoma de Nuevo León, Facultad de, Ciencias Químicas, Ciudad Universitaria, San Nicolás de los Garza, CP 66455, Nuevo León, México
| | - Claudio Cabral-Romero
- Universidad Autónoma de Nuevo León, Facultad de Odontología, Laboratorio de Biología Molecular, Dr. Aguirre Pequeño y Silao S/N; Col. Mitras Centro, C.P., 64460, Monterrey, Nuevo León, México
| | - Rene Hernández-Delgadillo
- Universidad Autónoma de Nuevo León, Facultad de Odontología, Laboratorio de Biología Molecular, Dr. Aguirre Pequeño y Silao S/N; Col. Mitras Centro, C.P., 64460, Monterrey, Nuevo León, México
| | - Claudia María García-Cuellar
- Instituto Nacional de Cancerología, Subdirección de Investigación Básica, Av. San Fernando 22, Belisario Domínguez Secc. 16, Tlalpan C.P., 14080, Ciudad de México, CDMX, México
| | - María Del Rayo Camacho-Corona
- Universidad Autónoma de Nuevo León, Facultad de, Ciencias Químicas, Ciudad Universitaria, San Nicolás de los Garza, CP 66455, Nuevo León, México
| |
Collapse
|
4
|
Popov KI, Wellnitz J, Maxfield T, Tropsha A. HIt Discovery using docking ENriched by GEnerative Modeling (HIDDEN GEM): A novel computational workflow for accelerated virtual screening of ultra-large chemical libraries. Mol Inform 2024; 43:e202300207. [PMID: 37802967 PMCID: PMC11156482 DOI: 10.1002/minf.202300207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
Recent rapid expansion of make-on-demand, purchasable, chemical libraries comprising dozens of billions or even trillions of molecules has challenged the efficient application of traditional structure-based virtual screening methods that rely on molecular docking. We present a novel computational methodology termed HIDDEN GEM (HIt Discovery using Docking ENriched by GEnerative Modeling) that greatly accelerates virtual screening. This workflow uniquely integrates machine learning, generative chemistry, massive chemical similarity searching and molecular docking of small, selected libraries in the beginning and the end of the workflow. For each target, HIDDEN GEM nominates a small number of top-scoring virtual hits prioritized from ultra-large chemical libraries. We have benchmarked HIDDEN GEM by conducting virtual screening campaigns for 16 diverse protein targets using Enamine REAL Space library comprising 37 billion molecules. We show that HIDDEN GEM yields the highest enrichment factors as compared to state of the art accelerated virtual screening methods, while requiring the least computational resources. HIDDEN GEM can be executed with any docking software and employed by users with limited computational resources.
Collapse
Affiliation(s)
- Konstantin I. Popov
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- These authors contributed equally: Konstantin I. Popov, James Wellnitz, Travis Maxfield
| | - James Wellnitz
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- These authors contributed equally: Konstantin I. Popov, James Wellnitz, Travis Maxfield
| | - Travis Maxfield
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- These authors contributed equally: Konstantin I. Popov, James Wellnitz, Travis Maxfield
| | - Alexander Tropsha
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Kaneshige R, Ohtsuka S, Harada Y, Kawamata I, Magari M, Kanayama N, Hatano N, Sakagami H, Tokumitsu H. Substrate recognition by Arg/Pro-rich insert domain in calcium/calmodulin-dependent protein kinase kinase for target protein kinases. FEBS J 2022; 289:5971-5984. [PMID: 35490408 DOI: 10.1111/febs.16467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023]
Abstract
Calcium/calmodulin-dependent protein kinase kinases (CaMKKs) activate CaMKI, CaMKIV, protein kinase B/Akt, and AMP-activated protein kinase (AMPK) by phosphorylating Thr residues in activation loops to mediate various Ca2+ -signaling pathways. Mammalian cells expressing CaMKKα and CaMKKβ lacking Arg/Pro-rich insert domain (RP-domain) sequences showed impaired phosphorylation of AMPKα, CaMKIα, and CaMKIV, whereas the autophosphorylation activities of CaMKK mutants remained intact and were similar to those of wild-type CaMKKs. Liver kinase B1 (LKB1, an AMPK kinase) complexed with STRAD and MO25 and was unable to phosphorylate CaMKIα and CaMKIV; however, mutant LKB1 with the RP-domain sequences of CaMKKα and CaMKKβ inserted between kinase subdomains II and III acquired CaMKIα and CaMKIV phosphorylating activity in vitro and in transfected cultured cells. Furthermore, ionomycin-induced phosphorylation of hemagglutinin (HA)-CaMKIα at Thr177, HA-CaMKIV at Thr196, and HA-AMPKα at Thr172 in transfected cells was significantly suppressed by cotransfection of kinase-dead mutants of CaMKK isoforms, but these dominant-negative effects were abrogated with RP-deletion mutants, suggesting that sequestration of substrate kinases by loss-of-function CaMKK mutants requires the RP-domain. This was confirmed by pulldown experiments that showed that dominant-negative mutants of CaMKKα and CaMKKβ interact with target kinases but not RP-deletion mutants. Taken together, these results clearly indicate that both CaMKK isoforms require the RP-domain to recognize downstream kinases to interact with and phosphorylate Thr residues in their activation loops. Thus, the RP-domain may be a promising target for specific CaMKK inhibitors.
Collapse
Affiliation(s)
- Riku Kaneshige
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan
| | - Satomi Ohtsuka
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan
| | - Yuhei Harada
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan
| | - Issei Kawamata
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University, Japan
| | - Masaki Magari
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan
| | - Naoki Kanayama
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan
| | - Naoya Hatano
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hiroshi Tokumitsu
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan
| |
Collapse
|
6
|
Molecular Mechanisms Underlying Ca2+/Calmodulin-Dependent Protein Kinase Kinase Signal Transduction. Int J Mol Sci 2022; 23:ijms231911025. [PMID: 36232320 PMCID: PMC9570080 DOI: 10.3390/ijms231911025] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 12/03/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) is the activating kinase for multiple downstream kinases, including CaM-kinase I (CaMKI), CaM-kinase IV (CaMKIV), protein kinase B (PKB/Akt), and 5′AMP-kinase (AMPK), through the phosphorylation of their activation-loop Thr residues in response to increasing the intracellular Ca2+ concentration, as CaMKK itself is a Ca2+/CaM-dependent enzyme. The CaMKK-mediated kinase cascade plays important roles in a number of Ca2+-dependent pathways, such as neuronal morphogenesis and plasticity, transcriptional activation, autophagy, and metabolic regulation, as well as in pathophysiological pathways, including cancer progression, metabolic syndrome, and mental disorders. This review focuses on the molecular mechanism underlying CaMKK-mediated signal transduction in normal and pathophysiological conditions. We summarize the current knowledge of the structural, functional, and physiological properties of the regulatory kinase, CaMKK, and the development and application of its pharmacological inhibitors.
Collapse
|
7
|
Ohtsuka S, Okumura T, Τabuchi Y, Miyagawa T, Kanayama N, Magari M, Hatano N, Sakagami H, Suizu F, Ishikawa T, Tokumitsu H. Conformation-Dependent Reversible Interaction of Ca 2+/Calmodulin-Dependent Protein Kinase Kinase with an Inhibitor, TIM-063. Biochemistry 2022; 61:545-553. [PMID: 35274528 DOI: 10.1021/acs.biochem.1c00796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase kinase (CaMKK), a Ca2+/CaM-dependent enzyme that phosphorylates and activates multifunctional kinases, including CaMKI, CaMKIV, protein kinase B/Akt, and 5'AMP-activated protein kinase, is involved in various Ca2+-signaling pathways in cells. Recently, we developed an ATP-competitive CaMKK inhibitor, TIM-063 (2-hydroxy-3-nitro-7H-benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one, Ohtsuka et al. Biochemistry 2020, 59, 1701-1710). To gain mechanistic insights into the interaction of CaMKK with TIM-063, we prepared TIM-063-coupled sepharose (TIM-127-sepharose) for association/dissociation analysis of the enzyme/inhibitor complex. CaMKKα/β in transfected COS-7 cells and in mouse brain extracts specifically bound to TIM-127-sepharose and dissociated following the addition of TIM-063 in a manner similar to that of recombinant GST-CaMKKα/β, which could bind to TIM-127-sepharose in a Ca2+/CaM-dependent fashion and dissociate from the sepharose following the addition of TIM-063 in a dose-dependent manner. In contrast to GST-CaMKKα, GST-CaMKKβ was able to weakly bind to TIM-127-sepharose in the presence of EGTA, probably due to the partially active conformation of recombinant GST-CaMKKβ without Ca2+/CaM-binding. These results suggested that the regulatory domain of CaMKKα prevented the inhibitor from interacting with the catalytic domain as the GST-CaMKKα mutant (residues 126-434) lacking the regulatory domain (residues 438-463) interacted with TIM-127-sepharose regardless of the presence or absence of Ca2+/CaM. Furthermore, CaMKKα bound to TIM-127-sepharose in the presence of Ca2+/CaM completely dissociated from TIM-127-sepharose following the addition of excess EGTA. These results indicated that TIM-063 interacted with and inhibited CaMKK in its active state but not in its autoinhibited state and that this interaction is likely reversible, depending on the concentration of intracellular Ca2+.
Collapse
Affiliation(s)
- Satomi Ohtsuka
- Applied Cell Biology, Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Taisei Okumura
- Department of Science Education, Graduate School of Education, Okayama University, Okayama 700-8530, Japan
| | - Yuna Τabuchi
- Department of Science Education, Graduate School of Education, Okayama University, Okayama 700-8530, Japan
| | - Tomoyuki Miyagawa
- Department of Science Education, Graduate School of Education, Okayama University, Okayama 700-8530, Japan
| | - Naoki Kanayama
- Applied Cell Biology, Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Masaki Magari
- Applied Cell Biology, Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Naoya Hatano
- Applied Cell Biology, Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Futoshi Suizu
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Teruhiko Ishikawa
- Department of Science Education, Graduate School of Education, Okayama University, Okayama 700-8530, Japan
| | - Hiroshi Tokumitsu
- Applied Cell Biology, Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
8
|
Mével E, Shutter JA, Ding X, Mattingly BT, Williams JN, Li Y, Huls A, Kambrath AV, Trippel SB, Wagner D, Allen MR, O'Keefe R, Thompson WR, Burr DB, Sankar U. Systemic inhibition or global deletion of CaMKK2 protects against post-traumatic osteoarthritis. Osteoarthritis Cartilage 2022; 30:124-136. [PMID: 34506942 PMCID: PMC8712369 DOI: 10.1016/j.joca.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/17/2021] [Accepted: 09/01/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the role of Ca2+/calmodulin-dependent protein kinase 2 (CaMKK2) in post-traumatic osteoarthritis (PTOA). METHODS Destabilization of the medial meniscus (DMM) or sham surgeries were performed on 10-week-old male wild-type (WT) and Camkk2-/- mice. Half of the DMM-WT mice and all other cohorts (n = 6/group) received tri-weekly intraperitoneal (i.p.) injections of saline whereas the remaining DMM-WT mice (n = 6/group) received i.p. injections of the CaMKK2 inhibitor STO-609 (0.033 mg/kg body weight) thrice a week. Study was terminated at 8- or 12-weeks post-surgery, and knee joints processed for microcomputed tomography imaging followed by histology and immunohistochemistry. Primary articular chondrocytes were isolated from knee joints of 4-6-day-old WT and Camkk2-/- mice, and treated with 10 ng/ml interleukin-1β (IL)-1β for 24 or 48 h to investigate gene and protein expression. RESULTS CaMKK2 levels and activity became elevated in articular chondrocytes following IL-1β treatment or DMM surgery. Inhibition or absence of CaMKK2 protected against DMM-associated destruction of the cartilage, subchondral bone alterations and synovial inflammation. When challenged with IL-1β, chondrocytes lacking CaMKK2 displayed attenuated inflammation, cartilage catabolism, and resistance to suppression of matrix synthesis. IL-1β-treated CaMKK2-null chondrocytes displayed decreased IL-6 production, activation of signal transducer and activator of transcription 3 (Stat3) and matrix metalloproteinase 13 (MMP13), indicating a potential mechanism for the regulation of inflammatory responses in chondrocytes by CaMKK2. CONCLUSIONS Our findings reveal a novel function for CaMKK2 in chondrocytes and highlight the potential for its inhibition as an innovative therapeutic strategy in the prevention of PTOA.
Collapse
Affiliation(s)
- E Mével
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - J A Shutter
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - X Ding
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - B T Mattingly
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - J N Williams
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Y Li
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - A Huls
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - A V Kambrath
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - S B Trippel
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - D Wagner
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Department of Mechanical and Energy Engineering, School of Engineering and Technology, Indianapolis, IN, 46202, USA.
| | - M R Allen
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - R O'Keefe
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - W R Thompson
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indianapolis, IN, 46202, USA.
| | - D B Burr
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - U Sankar
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
9
|
Saikia R, Joseph J. AMPK: a key regulator of energy stress and calcium-induced autophagy. J Mol Med (Berl) 2021; 99:1539-1551. [PMID: 34398293 DOI: 10.1007/s00109-021-02125-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Autophagy is a well-known cell-survival strategy orchestrated by a conserved set of proteins. It equips the cells with mechanisms to attain homeostasis during unfavorable conditions such as stress by breaking down the cellular components and reusing them for energy as well as for building new components required for survival. A basal level of autophagy is required for achieving homeostasis under normal conditions through regular turnover of macromolecules and organelles. Initiation of autophagy is regulated by two key components of the nutrient/energy sensor pathways; mammalian target of rapamycin 1 (mTORC1) and AMP-activated kinase (AMPK). Under energy-deprived conditions, AMPK is activated triggering autophagy, whereas, in nutrient-rich conditions, the growth-promoting kinase mTORC1 is activated inhibiting autophagy. Thus, the reciprocal regulation of autophagy by AMPK and mTORC1 defines a fundamental mechanism by which cells respond to nutrient availability. Interestingly, cytoplasmic calcium is also found to be an activator of AMPK and autophagy through a calmodulin/CaMKKβ pathway. However, the physiological significance of the regulation of autophagy by cytoplasmic calcium is currently unclear. This review focuses on the current understanding of the mechanism of autophagy and its regulation by AMPK.
Collapse
Affiliation(s)
- Rimpi Saikia
- National Centre for Cell Science, S. P. Pune University Campus, Pune, 411007, Maharashtra State, India
| | - Jomon Joseph
- National Centre for Cell Science, S. P. Pune University Campus, Pune, 411007, Maharashtra State, India.
| |
Collapse
|
10
|
Eduful B, O’Byrne SN, Temme L, Asquith CR, Liang Y, Picado A, Pilotte JR, Hossain MA, Wells CI, Zuercher WJ, Catta-Preta CMC, Zonzini Ramos P, Santiago AD, Couñago RM, Langendorf CG, Nay K, Oakhill JS, Pulliam TL, Lin C, Awad D, Willson TM, Frigo DE, Scott JW, Drewry DH. Hinge Binder Scaffold Hopping Identifies Potent Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CAMKK2) Inhibitor Chemotypes. J Med Chem 2021; 64:10849-10877. [PMID: 34264658 PMCID: PMC8365604 DOI: 10.1021/acs.jmedchem.0c02274] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Indexed: 12/18/2022]
Abstract
CAMKK2 is a serine/threonine kinase and an activator of AMPK whose dysregulation is linked with multiple diseases. Unfortunately, STO-609, the tool inhibitor commonly used to probe CAMKK2 signaling, has limitations. To identify promising scaffolds as starting points for the development of high-quality CAMKK2 chemical probes, we utilized a hinge-binding scaffold hopping strategy to design new CAMKK2 inhibitors. Starting from the potent but promiscuous disubstituted 7-azaindole GSK650934, a total of 32 compounds, composed of single-ring, 5,6-, and 6,6-fused heteroaromatic cores, were synthesized. The compound set was specifically designed to probe interactions with the kinase hinge-binding residues. Compared to GSK650394 and STO-609, 13 compounds displayed similar or better CAMKK2 inhibitory potency in vitro, while compounds 13g and 45 had improved selectivity for CAMKK2 across the kinome. Our systematic survey of hinge-binding chemotypes identified several potent and selective inhibitors of CAMKK2 to serve as starting points for medicinal chemistry programs.
Collapse
Affiliation(s)
- Benjamin
J. Eduful
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sean N. O’Byrne
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Louisa Temme
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christopher R.
M. Asquith
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Pharmacology, School of Medicine, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yi Liang
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alfredo Picado
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joseph R. Pilotte
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mohammad Anwar Hossain
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Carrow I. Wells
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William J. Zuercher
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Carolina M. C. Catta-Preta
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, São Paulo 13083-886, Brazil
| | - Priscila Zonzini Ramos
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, São Paulo 13083-886, Brazil
| | - André de
S. Santiago
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, São Paulo 13083-886, Brazil
| | - Rafael M. Couñago
- Centro
de Química Medicinal (CQMED), Centro de Biologia Molecular
e Engenharia Genética (CBMEG), Universidade
Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-875, Brazil
- Structural
Genomics Consortium, Departamento de Genética e Evolução,
Instituto de Biologia, UNICAMP, Campinas, São Paulo 13083-886, Brazil
| | - Christopher G. Langendorf
- St
Vincent’s Institute and Department of Medicine, The University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia
| | - Kévin Nay
- St
Vincent’s Institute and Department of Medicine, The University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia
- Mary MacKillop
Institute for Health Research, Australian
Catholic University, 215 Spring Street, Melbourne 3000, Australia
| | - Jonathan S. Oakhill
- St
Vincent’s Institute and Department of Medicine, The University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia
- Mary MacKillop
Institute for Health Research, Australian
Catholic University, 215 Spring Street, Melbourne 3000, Australia
| | - Thomas L. Pulliam
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Center
for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas 77204, United States
- Department
of Biology and Biochemistry, University
of Houston, Houston, Texas 77204, United
States
| | - Chenchu Lin
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- The University of Texas MD Anderson Cancer Center UTHealth
Graduate
School of Biomedical Sciences, Houston, Texas 77030, United States
| | - Dominik Awad
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- The University of Texas MD Anderson Cancer Center UTHealth
Graduate
School of Biomedical Sciences, Houston, Texas 77030, United States
| | - Timothy M. Willson
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Daniel E. Frigo
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
- Center
for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas 77204, United States
- Department
of Biology and Biochemistry, University
of Houston, Houston, Texas 77204, United
States
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- The Methodist Hospital Research Institute, Houston, Texas 77030, United States
| | - John W. Scott
- St
Vincent’s Institute and Department of Medicine, The University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia
- Mary MacKillop
Institute for Health Research, Australian
Catholic University, 215 Spring Street, Melbourne 3000, Australia
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville 3052, Australia
| | - David H. Drewry
- Structural
Genomics Consortium and Division of Chemical Biology and Medicinal
Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC Lineberger Comprehensive Cancer Center,
UNC Eshelman School of
Pharmacy, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
11
|
Lin C, Blessing AM, Pulliam TL, Shi Y, Wilkenfeld SR, Han JJ, Murray MM, Pham AH, Duong K, Brun SN, Shaw RJ, Ittmann MM, Frigo DE. Inhibition of CAMKK2 impairs autophagy and castration-resistant prostate cancer via suppression of AMPK-ULK1 signaling. Oncogene 2021; 40:1690-1705. [PMID: 33531625 PMCID: PMC7935762 DOI: 10.1038/s41388-021-01658-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/18/2020] [Accepted: 01/14/2021] [Indexed: 01/30/2023]
Abstract
Previous work has suggested androgen receptor (AR) signaling mediates prostate cancer progression in part through the modulation of autophagy. However, clinical trials testing autophagy inhibition using chloroquine derivatives in men with castration-resistant prostate cancer (CRPC) have yet to yield promising results, potentially due to the side effects of this class of compounds. We hypothesized that identification of the upstream activators of autophagy in prostate cancer could highlight alternative, context-dependent targets for blocking this important cellular process during disease progression. Here, we used molecular, genetic, and pharmacological approaches to elucidate an AR-mediated autophagy cascade involving Ca2+/calmodulin-dependent protein kinase kinase 2 (CAMKK2; a kinase with a restricted expression profile), 5'-AMP-activated protein kinase (AMPK), and Unc-51 like autophagy activating kinase 1 (ULK1), but independent of canonical mechanistic target of rapamycin (mTOR) activity. Increased CAMKK2-AMPK-ULK1 signaling correlated with disease progression in genetic mouse models and patient tumor samples. Importantly, CAMKK2 disruption impaired tumor growth and prolonged survival in multiple CRPC preclinical mouse models. Similarly, an inhibitor of AMPK-ULK1 blocked autophagy, cell growth, and colony formation in prostate cancer cells. Collectively, our findings converge to demonstrate that AR can co-opt the CAMKK2-AMPK-ULK1 signaling cascade to promote prostate cancer by increasing autophagy. Thus, this pathway may represent an alternative autophagic target in CRPC.
Collapse
Affiliation(s)
- Chenchu Lin
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Alicia M Blessing
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Thomas L Pulliam
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Yan Shi
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
| | - Sandi R Wilkenfeld
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jenny J Han
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mollianne M Murray
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander H Pham
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
| | - Kevin Duong
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sonja N Brun
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Reuben J Shaw
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael M Ittmann
- Departments of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
12
|
Xy Ling N, Langendorf CG, Hoque A, Galic S, Loh K, Kemp BE, Gundlach AL, Oakhill JS, Scott JW. Functional analysis of an R311C variant of Ca 2+ -calmodulin-dependent protein kinase kinase-2 (CaMKK2) found as a de novo mutation in a patient with bipolar disorder. Bipolar Disord 2020; 22:841-848. [PMID: 32216002 DOI: 10.1111/bdi.12901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Loss-of-function mutations in the gene encoding the calcium-calmodulin (Ca2+ -CaM)-dependent protein kinase kinase-2 (CaMKK2) enzyme are linked to bipolar disorder. Recently, a de novo arginine to cysteine (R311C) mutation in CaMKK2 was identified from a whole exome sequencing study of bipolar patients and their unaffected parents. The aim of the present study was to determine the functional consequences of the R311C mutation on CaMKK2 activity and regulation by Ca2+ -CaM. METHODS The effects of the R311C mutation on CaMKK2 activity and Ca2+ -CaM activation were examined using a radiolabeled adenosine triphosphate (ATP) kinase assay. We performed immunoblot analysis to determine whether the R311C mutation impacts threonine-85 (T85) autophosphorylation, an activating phosphorylation site on CaMKK2 that has also been implicated in bipolar disorder. We also expressed the R311C mutant in CaMKK2 knockout HAP1 cells and used immunoblot analysis and an MTS reduction assay to study its effects on Ca2+ -dependent downstream signaling and cell viability, respectively. RESULTS The R311C mutation maps to the conserved HRD motif within the catalytic loop of CaMKK2 and caused a marked reduction in kinase activity and Ca2+ -CaM activation. The R311C mutation virtually abolished T85 autophosphorylation in response to Ca2+ -CaM and exerted a dominant-negative effect in cells as it impaired the ability of wild-type CaMKK2 to initiate downstream signaling and maintain cell viability. CONCLUSIONS The highly disruptive, loss-of-function impact of the de novo R311C mutation in human CaMKK2 provides a compelling functional rationale for being considered a potential rare monogenic cause of bipolar disorder.
Collapse
Affiliation(s)
- Naomi Xy Ling
- St Vincent's Institute and Department of Medicine, The University of Melbourne, Fitzroy, Australia
| | - Christopher G Langendorf
- St Vincent's Institute and Department of Medicine, The University of Melbourne, Fitzroy, Australia
| | - Ashfaqul Hoque
- St Vincent's Institute and Department of Medicine, The University of Melbourne, Fitzroy, Australia
| | - Sandra Galic
- St Vincent's Institute and Department of Medicine, The University of Melbourne, Fitzroy, Australia
| | - Kim Loh
- St Vincent's Institute and Department of Medicine, The University of Melbourne, Fitzroy, Australia
| | - Bruce E Kemp
- St Vincent's Institute and Department of Medicine, The University of Melbourne, Fitzroy, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Jonathan S Oakhill
- St Vincent's Institute and Department of Medicine, The University of Melbourne, Fitzroy, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - John W Scott
- St Vincent's Institute and Department of Medicine, The University of Melbourne, Fitzroy, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| |
Collapse
|
13
|
Lentini Santo D, Petrvalska O, Obsilova V, Ottmann C, Obsil T. Stabilization of Protein-Protein Interactions between CaMKK2 and 14-3-3 by Fusicoccins. ACS Chem Biol 2020; 15:3060-3071. [PMID: 33146997 DOI: 10.1021/acschembio.0c00821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) regulates several key physiological and pathophysiological processes, and its dysregulation has been implicated in obesity, diabetes, and cancer. CaMKK2 is inhibited through phosphorylation in a process involving binding to the scaffolding 14-3-3 protein, which maintains CaMKK2 in the phosphorylation-mediated inhibited state. The previously reported structure of the N-terminal CaMKK2 14-3-3-binding motif bound to 14-3-3 suggested that the interaction between 14-3-3 and CaMKK2 could be stabilized by small-molecule compounds. Thus, we investigated the stabilization of interactions between CaMKK2 and 14-3-3γ by Fusicoccin A and other fusicoccanes-diterpene glycosides that bind at the interface between the 14-3-3 ligand binding groove and the 14-3-3 binding motif of the client protein. Our data reveal that two of five tested fusicoccanes considerably increase the binding of phosphopeptide representing the 14-3-3 binding motif of CaMKK2 to 14-3-3γ. Crystal structures of two ternary complexes suggest that the steric contacts between the C-terminal part of the CaMKK2 14-3-3 binding motif and the adjacent fusicoccane molecule are responsible for differences in stabilization potency between the study compounds. Moreover, our data also show that fusicoccanes enhance the binding affinity of phosphorylated full-length CaMKK2 to 14-3-3γ, which in turn slows down CaMKK2 dephosphorylation, thus keeping this protein in its phosphorylation-mediated inhibited state. Therefore, targeting the fusicoccin binding cavity of 14-3-3 by small-molecule compounds may offer an alternative strategy to suppress CaMKK2 activity by stabilizing its phosphorylation-mediated inhibited state.
Collapse
Affiliation(s)
- Domenico Lentini Santo
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Olivia Petrvalska
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Veronika Obsilova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Christian Ottmann
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| |
Collapse
|
14
|
Wu B, Jiang S, Wang X, Zhong S, Bi Y, Yi D, Liu G, Hu F, Dou G, Chen Y, Wu Y, Dong J. Identification of driver genes and key pathways of non-functional pituitary adenomas predicts the therapeutic effect of STO-609. PLoS One 2020; 15:e0240230. [PMID: 33119597 PMCID: PMC7595405 DOI: 10.1371/journal.pone.0240230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 09/22/2020] [Indexed: 12/24/2022] Open
Abstract
Objective Our study is to identify DEGs (Differentially Expressed Genes), comprehensively investigate hub genes, annotate enrichment functions and key pathways of Non-functional pituitary adenomas (NFPAs), and also to verify STO-609 therapeutic effect. Methods The gene expression level of NFPA and normal tissues were compared to identify the DEGs (Differential expressed genes) based on gene expression profiles (GSE2175, GSE26966 and GSE51618). Enrichment functions, pathways and key genes were identified by carrying out GO (Gene Ontology), KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis and PPI (Protein-Protein Interation) network analysis. Moreover, experiments in vitro were conducted to verify the anti-NFPAs effects of STO-609. Results 169 over-expression genes and 182 low expression genes were identified among 3 datasets. Dopaminergic synapse and vibrio cholerae infection pathways have distinctly changed in NFPA tissues. The Ca2+/CaM pathway played important roles in NFPA. Four hub proteins encoded by genes CALM1, PRDM10, RIPK4 and MAD2L1 were recognized as hub proteins. In vitro, assays showed that STO-609 induced apoptosis of NFPA cells to inhibit the hypophysoma cellular viability, diffusion and migration. Conclusion Four hub proteins, encoded by gene CALM1, PRDM10, RIPK4 and MAD2L1, played important roles in NFPA development. The Ca2+/CaM signaling pathway had significant alternations during NFPA forming process, the STO-609, a selective CaM-KK inhibitor, inhibited NFPA cellular viability, proliferation and migration. Meanwhile, NFPA was closely related to parkinson’s disease (PD) in many aspects.
Collapse
Affiliation(s)
- Bo Wu
- Clinical College, Jilin University, Changchun, China
- Department of Orthopedics, Jilin University First Hospital, Changchun, China
| | - Shanshan Jiang
- Institute of Zoology, China Academy of Science, Beijing, China
| | - Xinhui Wang
- Clinical College, Jilin University, Changchun, China
- Department of Oncology, Jilin University First Hospital, Changchun, China
| | - Sheng Zhong
- Department of Neurosurgery, Cancer Hospital of Sun Yat sen University, Guangzhou, China
| | - Yiming Bi
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Dazhuang Yi
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Ge Liu
- College of Pharmacy, Jilin University, Changchun, China
| | - Fangfei Hu
- College of Pharmacy, Jilin University, Changchun, China
| | - Gaojing Dou
- Clinical College, Jilin University, Changchun, China
- Department of Breast Surgery, Jilin University First Hospital, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Yi Wu
- Department of Neurosurgy, Jiangmen Central Hospital, Jiangmen, China
- * E-mail: (YW); (JD)
| | - Jiajun Dong
- Department of Neurosurgy, Jiangmen Central Hospital, Jiangmen, China
- * E-mail: (YW); (JD)
| |
Collapse
|
15
|
Takaya D, Niwa H, Mikuni J, Nakamura K, Handa N, Tanaka A, Yokoyama S, Honma T. Protein ligand interaction analysis against new CaMKK2 inhibitors by use of X-ray crystallography and the fragment molecular orbital (FMO) method. J Mol Graph Model 2020; 99:107599. [DOI: 10.1016/j.jmgm.2020.107599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/30/2023]
|
16
|
Gentile F, Agrawal V, Hsing M, Ton AT, Ban F, Norinder U, Gleave ME, Cherkasov A. Deep Docking: A Deep Learning Platform for Augmentation of Structure Based Drug Discovery. ACS CENTRAL SCIENCE 2020; 6:939-949. [PMID: 32607441 PMCID: PMC7318080 DOI: 10.1021/acscentsci.0c00229] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 05/06/2023]
Abstract
Drug discovery is a rigorous process that requires billion dollars of investments and decades of research to bring a molecule "from bench to a bedside". While virtual docking can significantly accelerate the process of drug discovery, it ultimately lags the current rate of expansion of chemical databases that already exceed billions of molecular records. This recent surge of small molecules availability presents great drug discovery opportunities, but also demands much faster screening protocols. In order to address this challenge, we herein introduce Deep Docking (DD), a novel deep learning platform that is suitable for docking billions of molecular structures in a rapid, yet accurate fashion. The DD approach utilizes quantitative structure-activity relationship (QSAR) deep models trained on docking scores of subsets of a chemical library to approximate the docking outcome for yet unprocessed entries and, therefore, to remove unfavorable molecules in an iterative manner. The use of DD methodology in conjunction with the FRED docking program allowed rapid and accurate calculation of docking scores for 1.36 billion molecules from the ZINC15 library against 12 prominent target proteins and demonstrated up to 100-fold data reduction and 6000-fold enrichment of high scoring molecules (without notable loss of favorably docked entities). The DD protocol can readily be used in conjunction with any docking program and was made publicly available.
Collapse
Affiliation(s)
- Francesco Gentile
- Vancouver
Prostate Centre, University of British Columbia, Vancouver, British Columbia V6H3Z6, Canada
| | - Vibudh Agrawal
- Vancouver
Prostate Centre, University of British Columbia, Vancouver, British Columbia V6H3Z6, Canada
| | - Michael Hsing
- Vancouver
Prostate Centre, University of British Columbia, Vancouver, British Columbia V6H3Z6, Canada
| | - Anh-Tien Ton
- Vancouver
Prostate Centre, University of British Columbia, Vancouver, British Columbia V6H3Z6, Canada
| | - Fuqiang Ban
- Vancouver
Prostate Centre, University of British Columbia, Vancouver, British Columbia V6H3Z6, Canada
| | - Ulf Norinder
- Swetox,
Unit of Toxicology Sciences, Karolinska
Institutet, Forskargatan
20, SE-151 36 Södertalje, Sweden
- Department
of Computer and Systems Sciences, Stockholm
University, Box 7003, SE-164
07 Kista, Sweden
| | - Martin E. Gleave
- Vancouver
Prostate Centre, University of British Columbia, Vancouver, British Columbia V6H3Z6, Canada
| | - Artem Cherkasov
- Vancouver
Prostate Centre, University of British Columbia, Vancouver, British Columbia V6H3Z6, Canada
| |
Collapse
|
17
|
Ohtsuka S, Ozeki Y, Fujiwara M, Miyagawa T, Kanayama N, Magari M, Hatano N, Suizu F, Ishikawa T, Tokumitsu H. Development and Characterization of Novel Molecular Probes for Ca 2+/Calmodulin-Dependent Protein Kinase Kinase, Derived from STO-609. Biochemistry 2020; 59:1701-1710. [PMID: 32298102 DOI: 10.1021/acs.biochem.0c00149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) activates particular multifunctional kinases, including CaMKI, CaMKIV, and 5'AMP-activated protein kinase (AMPK), resulting in the regulation of various Ca2+-dependent cellular processes, including neuronal, metabolic, and pathophysiological pathways. We developed and characterized a novel pan-CaMKK inhibitor, TIM-063 (2-hydroxy-3-nitro-7H-benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one) derived from STO-609 (7H-benzimidazo[2,1-a]benz[de]isoquinoline-7-one-3-carboxylic acid), and an inactive analogue (TIM-062) as molecular probes for the analysis of CaMKK-mediated cellular responses. Unlike STO-609, TIM-063 had an inhibitory activity against CaMKK isoforms (CaMKKα and CaMKKβ) with a similar potency (Ki = 0.35 μM for CaMKKα, and Ki = 0.2 μM for CaMKKβ) in vitro. Two TIM-063 analogues lacking a nitro group (TIM-062) or a hydroxy group (TIM-064) completely impaired CaMKK inhibitory activities, indicating that both substituents are necessary for the CaMKK inhibitory activity of TIM-063. Enzymatic analysis revealed that TIM-063 is an ATP-competitive inhibitor that directly targets the catalytic domain of CaMKK, similar to STO-609. TIM-063 suppressed the ionomycin-induced phosphorylation of exogenously expressed CaMKI, CaMKIV, and endogenous AMPKα in HeLa cells with an IC50 of ∼0.3 μM, and it suppressed CaMKK isoform-mediated CaMKIV phosphorylation in transfected COS-7 cells. Thus, TIM-063, but not the inactive analogue (TIM-062), displayed cell permeability and the ability to inhibit CaMKK activity in cells. Taken together, these results indicate that TIM-063 could be a useful tool for the precise analysis of CaMKK-mediated signaling pathways and may be a promising lead compound for the development of therapeutic agents for the treatment of CaMKK-related diseases.
Collapse
Affiliation(s)
- Satomi Ohtsuka
- Applied Cell Biology, Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | | | | | | | - Naoki Kanayama
- Applied Cell Biology, Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Masaki Magari
- Applied Cell Biology, Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Naoya Hatano
- Applied Cell Biology, Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Futoshi Suizu
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | | | - Hiroshi Tokumitsu
- Applied Cell Biology, Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
18
|
O’Byrne SN, Scott JW, Pilotte JR, Santiago ADS, Langendorf CG, Oakhill JS, Eduful BJ, Couñago RM, Wells CI, Zuercher WJ, Willson TM, Drewry DH. In Depth Analysis of Kinase Cross Screening Data to Identify CAMKK2 Inhibitory Scaffolds. Molecules 2020; 25:E325. [PMID: 31941153 PMCID: PMC7024175 DOI: 10.3390/molecules25020325] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/25/2022] Open
Abstract
The calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) activates CAMK1, CAMK4, AMPK, and AKT, leading to numerous physiological responses. The deregulation of CAMKK2 is linked to several diseases, suggesting the utility of CAMKK2 inhibitors for oncological, metabolic and inflammatory indications. In this work, we demonstrate that STO-609, frequently described as a selective inhibitor for CAMKK2, potently inhibits a significant number of other kinases. Through an analysis of literature and public databases, we have identified other potent CAMKK2 inhibitors and verified their activities in differential scanning fluorimetry and enzyme inhibition assays. These inhibitors are potential starting points for the development of selective CAMKK2 inhibitors and will lead to tools that delineate the roles of this kinase in disease biology.
Collapse
Affiliation(s)
- Sean N. O’Byrne
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.N.O.); (J.R.P.); (B.J.E.); (C.I.W.); (W.J.Z.); (T.M.W.)
| | - John W. Scott
- St Vincent’s Institute and Department of Medicine, The University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia; (J.W.S.); (C.G.L.); (J.S.O.)
- Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring Street, Melbourne 3000, Australia
- The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville 3052, Australia
| | - Joseph R. Pilotte
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.N.O.); (J.R.P.); (B.J.E.); (C.I.W.); (W.J.Z.); (T.M.W.)
| | - André da S. Santiago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas SP 13083-875, Brazil; (A.d.S.S.); (R.M.C.)
- Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas SP 13083-886, Brazil
| | - Christopher G. Langendorf
- St Vincent’s Institute and Department of Medicine, The University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia; (J.W.S.); (C.G.L.); (J.S.O.)
| | - Jonathan S. Oakhill
- St Vincent’s Institute and Department of Medicine, The University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia; (J.W.S.); (C.G.L.); (J.S.O.)
- Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring Street, Melbourne 3000, Australia
| | - Benjamin J. Eduful
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.N.O.); (J.R.P.); (B.J.E.); (C.I.W.); (W.J.Z.); (T.M.W.)
| | - Rafael M. Couñago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas SP 13083-875, Brazil; (A.d.S.S.); (R.M.C.)
- Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas SP 13083-886, Brazil
| | - Carrow I. Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.N.O.); (J.R.P.); (B.J.E.); (C.I.W.); (W.J.Z.); (T.M.W.)
| | - William J. Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.N.O.); (J.R.P.); (B.J.E.); (C.I.W.); (W.J.Z.); (T.M.W.)
| | - Timothy M. Willson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.N.O.); (J.R.P.); (B.J.E.); (C.I.W.); (W.J.Z.); (T.M.W.)
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.N.O.); (J.R.P.); (B.J.E.); (C.I.W.); (W.J.Z.); (T.M.W.)
| |
Collapse
|
19
|
Binding and structural analyses of potent inhibitors of the human Ca 2+/calmodulin dependent protein kinase kinase 2 (CAMKK2) identified from a collection of commercially-available kinase inhibitors. Sci Rep 2019; 9:16452. [PMID: 31712618 PMCID: PMC6848146 DOI: 10.1038/s41598-019-52795-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 10/21/2019] [Indexed: 11/30/2022] Open
Abstract
Calcium/Calmodulin-dependent Protein Kinase Kinase 2 (CAMKK2) acts as a signaling hub, receiving signals from various regulatory pathways and decoding them via phosphorylation of downstream protein kinases - such as AMPK (AMP-activated protein kinase) and CAMK types I and IV. CAMKK2 relevance is highlighted by its constitutive activity being implicated in several human pathologies. However, at present, there are no selective small-molecule inhibitors available for this protein kinase. Moreover, CAMKK2 and its closest human homolog, CAMKK1, are thought to have overlapping biological roles. Here we present six new co-structures of potent ligands bound to CAMKK2 identified from a library of commercially-available kinase inhibitors. Enzyme assays confirmed that most of these compounds are equipotent inhibitors of both human CAMKKs and isothermal titration calorimetry (ITC) revealed that binding to some of these molecules to CAMKK2 is enthalpy driven. We expect our results to advance current efforts to discover small molecule kinase inhibitors selective to each human CAMKK.
Collapse
|
20
|
Prediction of Toxoplasma gondii virulence factor ROP18 competitive inhibitors by virtual screening. Parasit Vectors 2019; 12:98. [PMID: 30867024 PMCID: PMC6416898 DOI: 10.1186/s13071-019-3341-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/26/2019] [Indexed: 02/06/2023] Open
Abstract
Background Rhoptry protein 18 (ROP18) is a key virulence factor of Toxoplasma gondii. The host’s immune responses mediated by immune-related GTPases (IRGs) could be blocked by ROP18’s kinase activity. ROP18 also interacts with various substrates, such as activating transcription factor 6 beta (ATF6β) and affects multiple physiological functions within host cells, thereby inducing intense virulence. In this study, competitive inhibitors targeted to ROP18 were subjected to virtual screening based on the principle of structure-based drug design (SBDD). Methods The preparation of the ROP18 structure was conducted using the “Structure Prepare” function of Molecular Operating Environment (MOE) software. The ATP-binding pocket was selected as the starting point for virtual screening. Construction of the pharmacophore model used Extended Hückel Theory (EHT) half-quantitative measurement and construction, as well as the characteristics of Type I kinase inhibitors. The pharmacophore model of ROP18 was imported into the Specs database for small molecule similarity screening using EHT pharmacophore measurement. Hit compounds were selected using the functions of London dG and generalized-born volume integral/weighted surface area (GBVI/WSA) scoring. The top 100 hits were analyzed by molecular docking and structure activity relationships (SAR) analysis. Results The final pharmacophore comprised three typical characteristics: three hydrogen bond acceptors/donors, two ring aromatic features occupying the hydrophobic core, and one cation group feature targeted to the terminus of ATP. A total of 1314 hit compounds analogous to ROP18 pharmacophore were passed through the Specs. After two rounds of docking, 25 out of 100 hits were identified as belonging to two main scaffold types: phthalimide ring structure, thiazole ring and styrene structure. Additionally, the screen also identified 13 inhibitors with distinct scaffold types. The docking models and SAR analysis demonstrated that these hits could engage in multiple hydrogen bonds, salt bridges halogen bonds, and hydrophobic interactions with ROP18, and para-position halo substituents on the benzene ring may enhance their affinity scoring. Conclusions A pharmacophore against the ROP18 ATP-binding pocket was successfully constructed, and 25 representative inhibitors from 15 scaffold clusters were screened using the Specs database. Our results provide useful scaffold types for the chemical inhibition of ROP18 or alternative conformations to develop new anti-toxoplasmosis drug leads. Electronic supplementary material The online version of this article (10.1186/s13071-019-3341-y) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Santiago ADS, Couñago RM, Ramos PZ, Godoi PHC, Massirer KB, Gileadi O, Elkins JM. Structural Analysis of Inhibitor Binding to CAMKK1 Identifies Features Necessary for Design of Specific Inhibitors. Sci Rep 2018; 8:14800. [PMID: 30287839 PMCID: PMC6172212 DOI: 10.1038/s41598-018-33043-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/18/2018] [Indexed: 11/10/2022] Open
Abstract
The calcium/calmodulin-dependent protein kinases (CAMKKs) are upstream activators of CAMK1 and CAMK4 signalling and have important functions in neural development, maintenance and signalling, as well as in other aspects of biology such as Ca2+ signalling in the cardiovascular system. To support the development of specific inhibitors of CAMKKs we have determined the crystal structure of CAMKK1 with two ATP-competitive inhibitors. The structures reveal small but exploitable differences between CAMKK1 and CAMKK2, despite the high sequence identity, which could be used in the generation of specific inhibitors. Screening of a kinase inhibitor library revealed molecules that bind potently to CAMKK1. Isothermal titration calorimetry revealed that the most potent inhibitors had binding energies largely dependent on favourable enthalpy. Together, the data provide a foundation for future inhibitor development activities.
Collapse
Affiliation(s)
- André da Silva Santiago
- Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP, 13083-886, Brazil
| | - Rafael M Couñago
- Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP, 13083-886, Brazil.,Center for Molecular Biology and Genetic Engineering, CBMEG, University of Campinas, Av Candido Rondon, 400, Barao Geraldo, Campinas, SP, 13083-875, Brazil
| | - Priscila Zonzini Ramos
- Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP, 13083-886, Brazil
| | - Paulo H C Godoi
- Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP, 13083-886, Brazil
| | - Katlin B Massirer
- Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP, 13083-886, Brazil.,Center for Molecular Biology and Genetic Engineering, CBMEG, University of Campinas, Av Candido Rondon, 400, Barao Geraldo, Campinas, SP, 13083-875, Brazil
| | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Jonathan M Elkins
- Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP, 13083-886, Brazil. .,Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
22
|
Kylarova S, Psenakova K, Herman P, Obsilova V, Obsil T. CaMKK2 kinase domain interacts with the autoinhibitory region through the N-terminal lobe including the RP insert. Biochim Biophys Acta Gen Subj 2018; 1862:2304-2313. [PMID: 30053538 DOI: 10.1016/j.bbagen.2018.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/18/2018] [Accepted: 07/22/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), a member of the Ca2+/calmodulin-dependent kinase (CaMK) family, functions as an upstream activator of CaMKI, CaMKIV and AMP-activated protein kinase. Thus, CaMKK2 is involved in the regulation of several key physiological and pathophysiological processes. Previous studies have suggested that Ca2+/CaM binding may cause unique conformational changes in the CaMKKs compared with other CaMKs. However, the underlying mechanistic details remain unclear. METHODS In this study, hydrogen-deuterium exchange coupled to mass spectrometry, time-resolved fluorescence spectroscopy, small-angle x-ray scattering and chemical cross-linking were used to characterize Ca2+/CaM binding-induced structural changes in CaMKK2. RESULTS Our data suggest that: (i) the CaMKK2 kinase domain interacts with the autoinhibitory region (AID) through the N-terminal lobe of the kinase domain including the RP insert, a segment important for targeting downstream substrate kinases; (ii) Ca2+/CaM binding affects the structure of several regions surrounding the ATP-binding pocket, including the activation segment; (iii) although the CaMKK2:Ca2+/CaM complex shows high conformational flexibility, most of its molecules are rather compact; and (iv) AID-bound Ca2+/CaM transiently interacts with the CaMKK2 kinase domain. CONCLUSIONS Interactions between the CaMKK2 kinase domain and the AID differ from those of other CaMKs. In the absence of Ca2+/CaM binding the autoinhibitory region inhibits CaMKK2 by both blocking access to the RP insert and by affecting the structure of the ATP-binding pocket. GENERAL SIGNIFICANCE Our results corroborate the hypothesis that Ca2+/CaM binding causes unique conformational changes in the CaMKKs relative to other CaMKs.
Collapse
Affiliation(s)
- Salome Kylarova
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic; BioCeV - Institute of Physiology, The Czech Academy of Sciences, Vestec, Czech Republic
| | - Katarina Psenakova
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic; BioCeV - Institute of Physiology, The Czech Academy of Sciences, Vestec, Czech Republic
| | - Petr Herman
- Institute of Physics, Charles University, Prague, Czech Republic
| | - Veronika Obsilova
- BioCeV - Institute of Physiology, The Czech Academy of Sciences, Vestec, Czech Republic.
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic; BioCeV - Institute of Physiology, The Czech Academy of Sciences, Vestec, Czech Republic.
| |
Collapse
|
23
|
14-3-3 protein directly interacts with the kinase domain of calcium/calmodulin-dependent protein kinase kinase (CaMKK2). Biochim Biophys Acta Gen Subj 2018; 1862:1612-1625. [DOI: 10.1016/j.bbagen.2018.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023]
|
24
|
Asquith CRM, Godoi PH, Couñago RM, Laitinen T, Scott JW, Langendorf CG, Oakhill JS, Drewry DH, Zuercher WJ, Koutentis PA, Willson TM, Kalogirou AS. 1,2,6-Thiadiazinones as Novel Narrow Spectrum Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CaMKK2) Inhibitors. Molecules 2018; 23:molecules23051221. [PMID: 29783765 PMCID: PMC6019134 DOI: 10.3390/molecules23051221] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/31/2022] Open
Abstract
We demonstrate for the first time that 4H-1,2,6-thiadiazin-4-one (TDZ) can function as a chemotype for the design of ATP-competitive kinase inhibitors. Using insights from a co-crystal structure of a 3,5-bis(arylamino)-4H-1,2,6-thiadiazin-4-one bound to calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), several analogues were identified with micromolar activity through targeted displacement of bound water molecules in the active site. Since the TDZ analogues showed reduced promiscuity compared to their 2,4-dianilinopyrimidine counter parts, they represent starting points for development of highly selective kinase inhibitors.
Collapse
Affiliation(s)
- Christopher R M Asquith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA.
| | - Paulo H Godoi
- Structural Genomics Consortium, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo 13083-886, Brazil.
| | - Rafael M Couñago
- Structural Genomics Consortium, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo 13083-886, Brazil.
- Center for Molecular and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Avenida Cândido Rondon 400, P. O. Box 6010, 13083-875 Campinas, São Paulo 13083-886, Brazil.
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland.
| | - John W Scott
- St Vincent's Institute and Department of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia.
- Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring Street, Melbourne 3000, Australia.
- The Florey Institute of Neuroscience and Mental Health, Parkville 3052, Australia.
| | - Christopher G Langendorf
- St Vincent's Institute and Department of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia.
| | - Jonathan S Oakhill
- St Vincent's Institute and Department of Medicine, University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Australia.
- Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring Street, Melbourne 3000, Australia.
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - William J Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | - Timothy M Willson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Andreas S Kalogirou
- Department of Chemistry, University of Cyprus, P. O. Box 20537, 1678 Nicosia, Cyprus.
- Department of Life Sciences, School of Sciences, European University Cyprus, 6 Diogenis Str., Engomi, P. O. Box 22006, 1516 Nicosia, Cyprus.
| |
Collapse
|
25
|
Williams JN, Kambrath AV, Patel RB, Kang KS, Mével E, Li Y, Cheng YH, Pucylowski AJ, Hassert MA, Voor MJ, Kacena MA, Thompson WR, Warden SJ, Burr DB, Allen MR, Robling AG, Sankar U. Inhibition of CaMKK2 Enhances Fracture Healing by Stimulating Indian Hedgehog Signaling and Accelerating Endochondral Ossification. J Bone Miner Res 2018; 33:930-944. [PMID: 29314250 PMCID: PMC6549722 DOI: 10.1002/jbmr.3379] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/18/2017] [Accepted: 12/29/2017] [Indexed: 01/15/2023]
Abstract
Approximately 10% of all bone fractures do not heal, resulting in patient morbidity and healthcare costs. However, no pharmacological treatments are currently available to promote efficient bone healing. Inhibition of Ca2+ /calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) reverses age-associated loss of trabecular and cortical bone volume and strength in mice. In the current study, we investigated the role of CaMKK2 in bone fracture healing and show that its pharmacological inhibition using STO-609 accelerates early cellular and molecular events associated with endochondral ossification, resulting in a more rapid and efficient healing of the fracture. Within 7 days postfracture, treatment with STO-609 resulted in enhanced Indian hedgehog signaling, paired-related homeobox (PRX1)-positive mesenchymal stem cell (MSC) recruitment, and chondrocyte differentiation and hypertrophy, along with elevated expression of osterix, vascular endothelial growth factor, and type 1 collagen at the fracture callus. Early deposition of primary bone by osteoblasts resulted in STO-609-treated mice possessing significantly higher callus bone volume by 14 days following fracture. Subsequent rapid maturation of the bone matrix bestowed fractured bones in STO-609-treated animals with significantly higher torsional strength and stiffness by 28 days postinjury, indicating accelerated healing of the fracture. Previous studies indicate that fixed and closed femoral fractures in the mice take 35 days to fully heal without treatment. Therefore, our data suggest that STO-609 potentiates a 20% acceleration of the bone healing process. Moreover, inhibiting CaMKK2 also imparted higher mechanical strength and stiffness at the contralateral cortical bone within 4 weeks of treatment. Taken together, the data presented here underscore the therapeutic potential of targeting CaMKK2 to promote efficacious and rapid healing of bone fractures and as a mechanism to strengthen normal bones. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Justin N. Williams
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | | | - Roshni B. Patel
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Kyung Shin Kang
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Elsa Mével
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Yong Li
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Ying-Hua Cheng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Austin J Pucylowski
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Mariah A. Hassert
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - Michael J. Voor
- Department of Orthopaedic Surgery, University of Louisville School of Medicine, Louisville, KY
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY
| | - Melissa A. Kacena
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - William R. Thompson
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN
| | - Stuart J. Warden
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN
| | - David B. Burr
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Matthew R. Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Uma Sankar
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
26
|
Pharmacological inhibition of CaMKK2 with the selective antagonist STO-609 regresses NAFLD. Sci Rep 2017; 7:11793. [PMID: 28924233 PMCID: PMC5603587 DOI: 10.1038/s41598-017-12139-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/04/2017] [Indexed: 12/12/2022] Open
Abstract
Binding of calcium to its intracellular receptor calmodulin (CaM) activates a family of Ca2+/CaM-dependent protein kinases. CaMKK2 (Ca2+/CaM-dependent protein kinase kinase 2) is a central member of this kinase family as it controls the actions of a CaMK cascade involving CaMKI, CaMKIV or AMPK. CaMKK2 controls insulin signaling, metabolic homeostasis, inflammation and cancer cell growth highlighting its potential as a therapeutic target for a variety of diseases. STO-609 is a selective, small molecule inhibitor of CaMKK2. Although STO-609 has been used extensively in vitro and in cells to characterize and define new mechanistic functions of CaMKK2, only a few studies have reported the in vivo use of STO-609. We synthesized functional STO-609 and assessed its pharmacological properties through in vitro (kinase assay), ex vivo (human liver microsomes) and in vivo (mouse) model systems. We describe the metabolic processing of STO-609, its toxicity, pharmacokinetics and bioavailability in a variety of mouse tissues. Utilizing these data, we show STO-609 treatment to inhibit CaMKK2 function confers protection against non-alcoholic fatty liver disease. These data provide a valuable resource by establishing criteria for use of STO-609 to inhibit the in vivo functions of CaMKK2 and demonstrate its utility for treating metabolically-related hepatic disease.
Collapse
|
27
|
Gerner L, Munack S, Temmerman K, Lawrence-Dörner AM, Besir H, Wilmanns M, Jensen JK, Thiede B, Mills IG, Morth JP. Using the fluorescent properties of STO-609 as a tool to assist structure-function analyses of recombinant CaMKK2. Biochem Biophys Res Commun 2016; 476:102-7. [PMID: 27178209 DOI: 10.1016/j.bbrc.2016.05.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 01/20/2023]
Abstract
Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) has been implicated in the regulation of metabolic activity in cancer and immune cells, and affects whole-body metabolism by regulating ghrelin-signalling in the hypothalamus. This has led to efforts to develop specific CaMKK2 inhibitors, and STO-609 is the standardly used CaMKK2 inhibitor to date. We have developed a novel fluorescence-based assay by exploiting the intrinsic fluorescence properties of STO-609. Here, we report an in vitro binding constant of KD ∼17 nM between STO-609 and purified CaMKK2 or CaMKK2:Calmodulin complex. Whereas high concentrations of ATP were able to displace STO-609 from the kinase, GTP was unable to achieve this confirming the specificity of this association. Recent structural studies on the kinase domain of CaMKK2 had implicated a number of amino acids involved in the binding of STO-609. Our fluorescent assay enabled us to confirm that Phe(267) is critically important for this association since mutation of this residue to a glycine abolished the binding of STO-609. An ATP replacement assay, as well as the mutation of the 'gatekeeper' amino acid Phe(267)Gly, confirmed the specificity of the assay and once more confirmed the strong binding of STO-609 to the kinase. In further characterising the purified kinase and kinase-calmodulin complex we identified a number of phosphorylation sites some of which corroborated previously reported CaMKK2 phosphorylation and some of which, particularly in the activation segment, were novel phosphorylation events. In conclusion, the intrinsic fluorescent properties of STO-609 provide a great opportunity to utilise this drug to label the ATP-binding pocket and probe the impact of mutations and other regulatory modifications and interactions on the pocket. It is however clear that the number of phosphorylation sites on CaMKK2 will pose a challenge in studying the impact of phosphorylation on the pocket unless the field can develop approaches to control the spectrum of modifications that occur during recombinant protein expression in Escherichia coli.
Collapse
Affiliation(s)
- Lisa Gerner
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Forskningsparken, University of Oslo, Oslo University Hospitals, 0349 Oslo, Norway
| | - Steffi Munack
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Forskningsparken, University of Oslo, Oslo University Hospitals, 0349 Oslo, Norway
| | - Koen Temmerman
- European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22603 Hamburg, Germany; European Molecular Biology Laboratory Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | - Hüseyin Besir
- European Molecular Biology Laboratory Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22603 Hamburg, Germany
| | - Jan Kristian Jensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, Norway
| | - Ian G Mills
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Forskningsparken, University of Oslo, Oslo University Hospitals, 0349 Oslo, Norway.
| | - Jens Preben Morth
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Forskningsparken, University of Oslo, Oslo University Hospitals, 0349 Oslo, Norway.
| |
Collapse
|
28
|
Fujiwara Y, Hiraoka Y, Fujimoto T, Kanayama N, Magari M, Tokumitsu H. Analysis of Distinct Roles of CaMKK Isoforms Using STO-609-Resistant Mutants in Living Cells. Biochemistry 2015; 54:3969-77. [DOI: 10.1021/acs.biochem.5b00149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuya Fujiwara
- Division
of Medical Bioengineering, Graduate School of Natural Science and
Technology, Okayama University, Okayama 700-8530, Japan
| | - Yuri Hiraoka
- Division
of Medical Bioengineering, Graduate School of Natural Science and
Technology, Okayama University, Okayama 700-8530, Japan
| | | | - Naoki Kanayama
- Division
of Medical Bioengineering, Graduate School of Natural Science and
Technology, Okayama University, Okayama 700-8530, Japan
| | - Masaki Magari
- Division
of Medical Bioengineering, Graduate School of Natural Science and
Technology, Okayama University, Okayama 700-8530, Japan
| | - Hiroshi Tokumitsu
- Division
of Medical Bioengineering, Graduate School of Natural Science and
Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
29
|
Simon B, Huart AS, Wilmanns M. Molecular mechanisms of protein kinase regulation by calcium/calmodulin. Bioorg Med Chem 2015; 23:2749-60. [PMID: 25963826 DOI: 10.1016/j.bmc.2015.04.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 01/02/2023]
Abstract
Many human protein kinases are regulated by the calcium-sensor protein calmodulin, which binds to a short flexible segment C-terminal to the enzyme's catalytic kinase domain. Our understanding of the molecular mechanism of kinase activity regulation by calcium/calmodulin has been advanced by the structures of two protein kinases-calmodulin kinase II and death-associated protein kinase 1-bound to calcium/calmodulin. Comparison of these two structures reveals a surprising level of diversity in the overall kinase-calcium/calmodulin arrangement and functional readout of activity, as well as complementary mechanisms of kinase regulation such as phosphorylation.
Collapse
Affiliation(s)
- Bertrand Simon
- EMBL Hamburg, c/o DESY, Building 25A, Notkestraße 85, 22603 Hamburg, Germany
| | - Anne-Sophie Huart
- EMBL Hamburg, c/o DESY, Building 25A, Notkestraße 85, 22603 Hamburg, Germany
| | - Matthias Wilmanns
- EMBL Hamburg, c/o DESY, Building 25A, Notkestraße 85, 22603 Hamburg, Germany.
| |
Collapse
|
30
|
Jurcsisn JG, Pye RL, Ali J, Barr BL, Wyatt CN. The CamKKβ Inhibitor STO609 Causes Artefacts in Calcium Imaging and Selectively Inhibits BKCa in Mouse Carotid Body Type I Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 860:17-24. [DOI: 10.1007/978-3-319-18440-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
31
|
Racioppi L, Means AR. Calcium/calmodulin-dependent protein kinase kinase 2: roles in signaling and pathophysiology. J Biol Chem 2012; 287:31658-65. [PMID: 22778263 DOI: 10.1074/jbc.r112.356485] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many cellular Ca(2+)-dependent signaling cascades utilize calmodulin (CaM) as the intracellular Ca(2+) receptor. Ca(2+)/CaM binds and activates a plethora of enzymes, including CaM kinases (CaMKs). CaMKK2 is one of the most versatile of the CaMKs and will phosphorylate and activate CaMKI, CaMKIV, and AMP-activated protein kinase. Cell expression of CaMKK2 is limited, yet CaMKK2 is involved in regulating many important physiological and pathophysiological processes, including energy balance, adiposity, glucose homeostasis, hematopoiesis, inflammation, and cancer. Here, we explore known functions of CaMKK2 and discuss its potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Luigi Racioppi
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Duke University, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
32
|
Green MF, Anderson KA, Means AR. Characterization of the CaMKKβ-AMPK signaling complex. Cell Signal 2011; 23:2005-12. [PMID: 21807092 DOI: 10.1016/j.cellsig.2011.07.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/12/2011] [Indexed: 11/29/2022]
Abstract
The AMP-activated protein kinase (AMPK) is a critical regulator of energy homeostasis, and is a potential target for treatment of metabolic diseases as well as cancer. AMPK can be phosphorylated and activated by the tumor suppressor LKB1 or the Ca(2+)/CaM-dependent protein kinase kinase β (CaMKKβ). We previously identified a physical complex between CaMKKβ and AMPK (Anderson, K. A., Ribar, T. J., Lin, F., Noeldner, P. K., Green, M. F., Muehlbauer, M. J., Witters, L. A., Kemp, B. E., and Means, A. R. (2008) Cell Metabolism 7, 377-388). Here we expand our analysis of the CaMKKβ-AMPK signaling complex and show that whereas CaMKKβ can form a complex with and activate AMPK, CaMKKα cannot. In addition, we show that CaMKKβ and AMPK associate through their kinase domains, and CaMKKβ must be in an active conformation in order to bind AMPK but not to associate with an alternative substrate, Ca(2+)/Calmodulin-dependent protein kinase IV (CaMKIV). Our results demonstrate that CaMKKβ and AMPK form a unique signaling complex. This raises the possibility that the CaMKKβ-AMPK complex can be specifically targeted by small molecule drugs to treat disease.
Collapse
Affiliation(s)
- Michelle F Green
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27713, USA
| | | | | |
Collapse
|