1
|
Varlı M, Bhosle SR, Kim E, Yang Y, Taş İ, Zhou R, Pulat S, Gamage CDB, Park SY, Ha HH, Kim H. Usnic Acid Targets 14-3-3 Proteins and Suppresses Cancer Progression by Blocking Substrate Interaction. JACS AU 2024; 4:1521-1537. [PMID: 38665668 PMCID: PMC11040559 DOI: 10.1021/jacsau.3c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
The anticancer therapeutic effects of usnic acid (UA), a lichen secondary metabolite, have been demonstrated in vitro and in vivo. However, the mechanism underlying the anticancer effect of UA remains to be clarified. In this study, the target protein of UA was identified using a UA-linker-Affi-Gel molecule, which showed that UA binds to the 14-3-3 protein. UA binds to 14-3-3, causing the degradation of proteasomal and autophagosomal proteins. The interaction of UA with 14-3-3 isoforms modulated cell invasion, cell cycle progression, aerobic glycolysis, mitochondrial biogenesis, and the Akt/mTOR, JNK, STAT3, NF-κB, and AP-1 signaling pathways in colorectal cancer. A peptide inhibitor of 14-3-3 blocked or regressed the activity of UA and inhibited its effects. The results suggest that UA binds to 14-3-3 isoforms and suppresses cancer progression by affecting 14-3-3 targets and phosphorylated proteins.
Collapse
Affiliation(s)
- Mücahit Varlı
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Suresh R. Bhosle
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Eunae Kim
- College
of Pharmacy, Chosun University, 146 Chosundae-gil, Gwangju 61452, Republic of Korea
| | - Yi Yang
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - İsa Taş
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Rui Zhou
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Sultan Pulat
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Chathurika D. B. Gamage
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - So-Yeon Park
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Hyung-Ho Ha
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Hangun Kim
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| |
Collapse
|
2
|
Wongviriya A, Shelton RM, Cooper PR, Milward MR, Landini G. The relationship between sphingosine-1-phosphate receptor 2 and epidermal growth factor in migration and invasion of oral squamous cell carcinoma. Cancer Cell Int 2023; 23:65. [PMID: 37038210 PMCID: PMC10088162 DOI: 10.1186/s12935-023-02906-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a lipid mediator and its binding to the S1P receptor 2 (S1PR2) is reported to regulate cytoskeletal organization. Epidermal growth factor (EGF) has been shown to induce migration and invasion in tumour cells. Since binding of S1P to S1PR2 and EGF to the EGF receptors exhibit some overlapping functionality, this study aimed to determine whether S1PR2 was involved in EGF-induced migration and invasion of oral squamous cell carcinoma (OSCC) lines and to identify any potential crosstalk between the two pathways. Migration was investigated using the scratch wound assay while invasion was studied using the transwell invasion and multicellular tumour spheroid (MCTS) assays. Activity of Rac1, a RhoGTPase, was measured using G-LISA (small GTPase activation assays) while S1P production was indirectly measured via the expression of sphingosine kinase (Sphk). S1PR2 inhibition with 10 µM JTE013 reduced EGF-induced migration, invasion and Rac1 activity, however, stimulation of S1PR2 with 10 µM CYM5478 did not enhance the effect of EGF on migration, invasion or Rac1 activity. The data demonstrated a crosstalk between EGF/EGFR and S1P/S1PR2 pathways at the metabolic level. S1PR2 was not involved in EGF production, but EGF promoted S1P production through the upregulation of Sphk1. In conclusion, OSCC lines could not migrate and invade without S1PR2 regulation, even with EGF stimulation. EGF also activated S1PR2 by stimulating S1P production via Sphk1. The potential for S1PR2 to control cellular motility may lead to promising treatments for OSCC patients and potentially prevent or reduce metastasis.
Collapse
Affiliation(s)
- Adjabhak Wongviriya
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Richard M Shelton
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Paul R Cooper
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Michael R Milward
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Gabriel Landini
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
3
|
Interactions between 14-3-3 Proteins and Actin Cytoskeleton and Its Regulation by microRNAs and Long Non-Coding RNAs in Cancer. ENDOCRINES 2022. [DOI: 10.3390/endocrines3040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
14-3-3s are a family of structurally similar proteins that bind to phosphoserine or phosphothreonine residues, forming the central signaling hub that coordinates or integrates various cellular functions, thereby controlling many pathways important in cancer, cell motility, cell death, cytoskeletal remodeling, neuro-degenerative disorders and many more. Their targets are present in all cellular compartments, and when they bind to proteins they alter their subcellular localization, stability, and molecular interactions with other proteins. Changes in environmental conditions that result in altered homeostasis trigger the interaction between 14-3-3 and other proteins to retrieve or rescue homeostasis. In circumstances where these regulatory proteins are dysregulated, it leads to pathological conditions. Therefore, deeper understanding is needed on how 14-3-3 proteins bind, and how these proteins are regulated or modified. This will help to detect disease in early stages or design inhibitors to block certain pathways. Recently, more research has been devoted to identifying the role of MicroRNAs, and long non-coding RNAs, which play an important role in regulating gene expression. Although there are many reviews on the role of 14-3-3 proteins in cancer, they do not provide a holistic view of the changes in the cell, which is the focus of this review. The unique feature of the review is that it not only focuses on how the 14-3-3 subunits associate and dissociate with their binding and regulatory proteins, but also includes the role of micro-RNAs and long non-coding RNAs and how they regulate 14-3-3 isoforms. The highlight of the review is that it focuses on the role of 14-3-3, actin, actin binding proteins and Rho GTPases in cancer, and how this complex is important for cell migration and invasion. Finally, the reader is provided with super-resolution high-clarity images of each subunit of the 14-3-3 protein family, further depicting their distribution in HeLa cells to illustrate their interactions in a cancer cell.
Collapse
|
4
|
Liang S, Zhao Q, Ye Y, Zhu S, Dong H, Yu Y, Huang B, Han H. Characteristics analyses of Eimeria tenella 14-3-3 protein and verification of its interaction with calcium-dependent protein kinase 4. Eur J Protistol 2022; 85:125895. [DOI: 10.1016/j.ejop.2022.125895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/23/2022] [Accepted: 05/11/2022] [Indexed: 11/27/2022]
|
5
|
Ogura Y, Kobayashi H, Imoto M, Watanabe H, Takikawa H. Unified synthesis and assessment of tumor cell migration inhibitory activity of optically active UTKO1, originally designed moverastin analog. Biosci Biotechnol Biochem 2021; 85:160-167. [PMID: 33577660 DOI: 10.1093/bbb/zbaa062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/05/2020] [Indexed: 11/14/2022]
Abstract
UTKO1 is a synthetic analog of a natural tumor cell migration inhibitor, moverastin, isolated from microbial extracts of Aspergillus sp. 7720. UTKO1 was initially developed as a mixture of the stereoisomers. In this study, a concise and unified synthesis of the 4 optically active stereoisomers of UTKO1 was achieved from a known optically pure dihydro-α-ionone through a 5-step sequence. The key transformation in the synthesis was a Nozaki-Hiyama-Kishi (NHK) reaction between an optically active enoltriflate and a known aldehyde to install the chiral allylic hydroxy group at C2'. Simple chromatographic separation of the 2 diastereomers with regard to the allylic hydroxy group was possible by the derivatization into the corresponding acetals with Nemoto's optical resolution reagent, (S)- or (R)-5-allyl-2-oxabicyclo[3.3.0]octene (ALBO). All 4 synthetic stereoisomers of UTKO1 exhibited comparable tumor cell migration inhibitory activity.
Collapse
Affiliation(s)
- Yusuke Ogura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hiroki Kobayashi
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University , Hiyoshi, Kohoku-ku, Yokohama, Japan
| | - Masaya Imoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University , Hiyoshi, Kohoku-ku, Yokohama, Japan
| | - Hidenori Watanabe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hirosato Takikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
6
|
Abstract
The Rho GTPase Cdc42 is a central regulator of cell polarity in diverse cell types. The activity of Cdc42 is dynamically controlled in time and space to enable distinct polarization events, which generally occur along a single axis in response to spatial cues. Our understanding of the mechanisms underlying Cdc42 polarization has benefited largely from studies of the budding yeast Saccharomyces cerevisiae, a genetically tractable model organism. In budding yeast, Cdc42 activation occurs in two temporal steps in the G1 phase of the cell cycle to establish a proper growth site. Here, we review findings in budding yeast that reveal an intricate crosstalk among polarity proteins for biphasic Cdc42 regulation. The first step of Cdc42 activation may determine the axis of cell polarity, while the second step ensures robust Cdc42 polarization for growth. Biphasic Cdc42 polarization is likely to ensure the proper timing of events including the assembly and recognition of spatial landmarks and stepwise assembly of a new ring of septins, cytoskeletal GTP-binding proteins, at the incipient bud site. Biphasic activation of GTPases has also been observed in mammalian cells, suggesting that biphasic activation could be a general mechanism for signal-responsive cell polarization. Cdc42 activity is necessary for polarity establishment during normal cell division and development, but its activity has also been implicated in the promotion of aging. We also discuss negative polarity signaling and emerging concepts of Cdc42 signaling in cellular aging.
Collapse
Affiliation(s)
- Kristi E Miller
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Present address: Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Pil Jung Kang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
7
|
Abdrabou A, Wang Z. Post-Translational Modification and Subcellular Distribution of Rac1: An Update. Cells 2018; 7:cells7120263. [PMID: 30544910 PMCID: PMC6316090 DOI: 10.3390/cells7120263] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/27/2022] Open
Abstract
Rac1 is a small GTPase that belongs to the Rho family. The Rho family of small GTPases is a subfamily of the Ras superfamily. The Rho family of GTPases mediate a plethora of cellular effects, including regulation of cytoarchitecture, cell size, cell adhesion, cell polarity, cell motility, proliferation, apoptosis/survival, and membrane trafficking. The cycling of Rac1 between the GTP (guanosine triphosphate)- and GDP (guanosine diphosphate)-bound states is essential for effective signal flow to elicit downstream biological functions. The cycle between inactive and active forms is controlled by three classes of regulatory proteins: Guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). Other modifications include RNA splicing and microRNAs; various post-translational modifications have also been shown to regulate the activity and function of Rac1. The reported post-translational modifications include lipidation, ubiquitination, phosphorylation, and adenylylation, which have all been shown to play important roles in the regulation of Rac1 and other Rho GTPases. Moreover, the Rac1 activity and function are regulated by its subcellular distribution and translocation. This review focused on the most recent progress in Rac1 research, especially in the area of post-translational modification and subcellular distribution and translocation.
Collapse
Affiliation(s)
- Abdalla Abdrabou
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
8
|
Wen-Jian Y, Song T, Jun T, Kai-Ying X, Jian-Jun W, Si-Hua W. NF45 promotes esophageal squamous carcinoma cell invasion by increasing Rac1 activity through 14-3-3ε protein. Arch Biochem Biophys 2018; 663:101-108. [PMID: 30550728 DOI: 10.1016/j.abb.2018.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
Nuclear factor 45 (NF-45) has been found to be markedly upregulated in several cancers, including esophageal squamous cell carcinoma (ESCC). However, the molecular mechanisms underlying its functions remain unclear. In this study, we confirm that overexpression of NF45 was frequently detected in ESCC tissues and was associated with poor outcome. Overexpression studies revealed that NF-45 promoted cell growth and invasion and upregulated Rac1/Tiam1 signalling via 14-3-3ε protein in ESCC cell lines. This novel mechanism linking upregulated NF45 expression to increased 14-3-3ε/Rac1/Tiam1 signalling and subsequent growth and invasion in ESCC may aid in identification of new therapeutic targets for this disease.
Collapse
Affiliation(s)
- Yao Wen-Jian
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tong Song
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tan Jun
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xu Kai-Ying
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wang Jian-Jun
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wang Si-Hua
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Pennington KL, Chan TY, Torres MP, Andersen JL. The dynamic and stress-adaptive signaling hub of 14-3-3: emerging mechanisms of regulation and context-dependent protein-protein interactions. Oncogene 2018; 37:5587-5604. [PMID: 29915393 PMCID: PMC6193947 DOI: 10.1038/s41388-018-0348-3] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
14-3-3 proteins are a family of structurally similar phospho-binding proteins that regulate essentially every major cellular function. Decades of research on 14-3-3s have revealed a remarkable network of interacting proteins that demonstrate how 14-3-3s integrate and control multiple signaling pathways. In particular, these interactions place 14-3-3 at the center of the signaling hub that governs critical processes in cancer, including apoptosis, cell cycle progression, autophagy, glucose metabolism, and cell motility. Historically, the majority of 14-3-3 interactions have been identified and studied under nutrient-replete cell culture conditions, which has revealed important nutrient driven interactions. However, this underestimates the reach of 14-3-3s. Indeed, the loss of nutrients, growth factors, or changes in other environmental conditions (e.g., genotoxic stress) will not only lead to the loss of homeostatic 14-3-3 interactions, but also trigger new interactions, many of which are likely stress adaptive. This dynamic nature of the 14-3-3 interactome is beginning to come into focus as advancements in mass spectrometry are helping to probe deeper and identify context-dependent 14-3-3 interactions-providing a window into adaptive phosphorylation-driven cellular mechanisms that orchestrate the tumor cell's response to a variety of environmental conditions including hypoxia and chemotherapy. In this review, we discuss emerging 14-3-3 regulatory mechanisms with a focus on post-translational regulation of 14-3-3 and dynamic protein-protein interactions that illustrate 14-3-3's role as a stress-adaptive signaling hub in cancer.
Collapse
Affiliation(s)
- K L Pennington
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - T Y Chan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - M P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - J L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
10
|
Imoto M. Chemistry and biology for the small molecules targeting characteristics of cancer cells. Biosci Biotechnol Biochem 2018; 83:1-10. [PMID: 30247093 DOI: 10.1080/09168451.2018.1518704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/22/2018] [Indexed: 10/28/2022]
Abstract
Despite the marked progress of cancer research, cancer is the predominant cause of death in Japan, and therefore development of effective therapeutic drugs is expected. Chemical biology is a research field utilizing small molecules to investigate biological phenomena. One of the most important aims of chemical biology is to find the small molecules, and natural products are ideal screening sources due to their structural diversity. Therefore, natural product screening based on the progress of chemical biology prompted us to find small molecules targeting cancer characteristics. Another contribution of chemical biology is to facilitate the target identification of small molecule. Therefore, among a variety of methods to uncover protein function, chemical biology is a remarkable approach in which small molecules are used as probes to elucidate protein functions related to cancer development. ABBREVIATIONS EGF: Epidermal growth factor; PDGF: Platelet-derived growth factor; CRPC: Castration-resistant prostate cancer; AR: Androgen receptor; FTase: Farnesyl transferase; 5-LOX: 5-Lipoxygenase; LT: Leukotriene; CysLT1: Cysteinyl leukotriene receptor 1; GPA: Glucopiericidin A; PA: Piericidin A; XN: Xanthohumol; VCP: Valosin-containing protein; ACACA: Acetyl-CoA carboxylase-α.
Collapse
Affiliation(s)
- Masaya Imoto
- a Department of Biosciences and Informatics, Faculty of Science and Technology , Keio University , Kohoku-ku, Yokohama , Japan
| |
Collapse
|
11
|
14-3-3εa directs the pulsatile transport of basal factors toward the apical domain for lumen growth in tubulogenesis. Proc Natl Acad Sci U S A 2018; 115:E8873-E8881. [PMID: 30158171 PMCID: PMC6156656 DOI: 10.1073/pnas.1808756115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ascidians have become a powerful model system in which to uncover basic mechanisms that govern body plan specification and elaboration. In particular, the ascidian notochord is a highly tractable model for tubulogenesis. Here, we use chemical genetics to identify roles for 14-3-3εa, and its binding partner ezrin/radixin/moesin (ERM), in tubulogenesis. Combining genetic and chemical perturbations with live cell imaging, we present evidence that 14-3-3εa–ERM interactions are required for tubulogenesis and that they act by promoting a directed cytoplasmic flow, previously uncharacterized, which carries lumen-associated components from the basal domain to the apical domain to feed lumen growth. Because many core components of this system are highly conserved, these results have broad implications for tubulogenesis in many other contexts. The Ciona notochord has emerged as a simple and tractable in vivo model for tubulogenesis. Here, using a chemical genetics approach, we identified UTKO1 as a selective small molecule inhibitor of notochord tubulogenesis. We identified 14-3-3εa protein as a direct binding partner of UTKO1 and showed that 14-3-3εa knockdown leads to failure of notochord tubulogenesis. We found that UTKO1 prevents 14-3-3εa from interacting with ezrin/radixin/moesin (ERM), which is required for notochord tubulogenesis, suggesting that interactions between 14-3-3εa and ERM play a key role in regulating the early steps of tubulogenesis. Using live imaging, we found that, as lumens begin to open between neighboring cells, 14-3-3εa and ERM are highly colocalized at the basal cortex where they undergo cycles of accumulation and disappearance. Interestingly, the disappearance of 14-3-3εa and ERM during each cycle is tightly correlated with a transient flow of 14-3-3εa, ERM, myosin II, and other cytoplasmic elements from the basal surface toward the lumen-facing apical domain, which is often accompanied by visible changes in lumen architecture. Both pulsatile flow and lumen formation are abolished in larvae treated with UTKO1, in larvae depleted of either 14-3-3εa or ERM, or in larvae expressing a truncated form of 14-3-3εa that lacks the ability to interact with ERM. These results suggest that 14-3-3εa and ERM interact at the basal cortex to direct pulsatile basal accumulation and basal–apical transport of factors that are essential for lumen formation. We propose that similar mechanisms may underlie or may contribute to lumen formation in tubulogenesis in other systems.
Collapse
|
12
|
Li FC, Liu Q, Elsheikha HM, Yang WB, Hou JL, Zhu XQ. Identification of two novel host proteins interacting with Toxoplasma gondii 14-3-3 protein by yeast two-hybrid system. Parasitol Res 2018; 117:1291-1296. [DOI: 10.1007/s00436-018-5812-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/15/2018] [Indexed: 11/28/2022]
|
13
|
Tiam1 promotes thyroid carcinoma metastasis by modulating EMT via Wnt/β-catenin signaling. Exp Cell Res 2018; 362:532-540. [DOI: 10.1016/j.yexcr.2017.12.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022]
|
14
|
Interaction between Rho GTPases and 14-3-3 Proteins. Int J Mol Sci 2017; 18:ijms18102148. [PMID: 29036929 PMCID: PMC5666830 DOI: 10.3390/ijms18102148] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/25/2023] Open
Abstract
The Rho GTPase family accounts for as many as 20 members. Among them, the archetypes RhoA, Rac1, and Cdc42 have been the most well-characterized. Like all members of the small GTPases superfamily, Rho proteins act as molecular switches to control cellular processes by cycling between active, GTP-bound and inactive, GDP-bound states. The 14-3-3 family proteins comprise seven isoforms. They exist as dimers (homo- or hetero-dimer) in cells. They function by binding to Ser/Thr phosphorylated intracellular proteins, which alters the conformation, activity, and subcellular localization of their binding partners. Both 14-3-3 proteins and Rho GTPases regulate cell cytoskeleton remodeling and cell migration, which suggests a possible interaction between the signaling pathways regulated by these two groups of proteins. Indeed, more and more emerging evidence indicates the mutual regulation of these two signaling pathways. There have been many documented reviews of 14-3-3 protein and Rac1 separately, but there is no review regarding the interaction and mutual regulation of these two groups of proteins. Thus, in this article we thoroughly review all the reported interactions between the signaling pathways regulated by 14-3-3 proteins and Rho GTPases (mostly Rac1).
Collapse
|
15
|
Molecular insight into specific 14-3-3 modulators: Inhibitors and stabilisers of protein-protein interactions of 14-3-3. Eur J Med Chem 2017; 136:573-584. [PMID: 28549334 DOI: 10.1016/j.ejmech.2017.04.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/17/2022]
Abstract
The 14-3-3 protein family is implicated in several diseases and biological processes. Several recent reviews have summarised knowledge on certain aspects of 14-3-3 proteins, ranging from a historic overview to the structure, function and regulation. This review focuses on the structures and molecular recognition of the modulators by the 14-3-3 proteins, and small modifications of certain modulators are proposed where cocrystal structures have been reported. Our analysis opens up possibilities for the optimisation of the reported compounds. It is very timely to analyse the current status of recently developed modulators given that the field has seen a lot of activity in recent years. This review provides an overview combined with a critical analysis of each class of modulators, keeping their suitability for future development in mind.
Collapse
|
16
|
Tong S, Xia T, Fan K, Jiang K, Zhai W, Li JS, Wang SH, Wang JJ. Loss of Par3 promotes lung adenocarcinoma metastasis through 14-3-3ζ protein. Oncotarget 2016; 7:64260-64273. [PMID: 27588399 PMCID: PMC5325440 DOI: 10.18632/oncotarget.11728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/13/2016] [Indexed: 12/22/2022] Open
Abstract
Partitioning defective protein 3 (Par3) can activate the Tiam1/Rac pathway to inhibit invasion and metastasis in many cancers; however, the role of Par3 in lung adenocarcinoma remains unknown. Here we show that Par3 is downregulated in lung adenocarcinoma tissues and is associated with higher rates of lymph node metastasis and recurrence. Our functional study demonstrated that knock-down of Par3 promoted lung adenocarcinoma cell growth, cell migration, tumor formation, and metastasis, all of which were effectively inhibited when 14-3-3ζ was silenced. We found that Par3 binded with 14-3-3ζ protein and also showed that Par3 abrogated the binding of 14-3-3ζ to Tiam1, which was responsible for Rac1 activation. Knock-down of 14-3-3ζ inhibited Tiam1/Rac-GTP activation and blocked the invasive behavior of cells lacking Par3. These data suggest that loss of Par3 promotes metastatic behavior in lung adenocarcinoma cells through 14-3-3ζ protein.
Collapse
Affiliation(s)
- Song Tong
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Xia
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Fan
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhai
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Song Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Hua Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Jun Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Hansraj NZ, Xiao L, Wu J, Chen G, Turner DJ, Wang JY, Rao JN. Posttranscriptional regulation of 14-3-3ζ by RNA-binding protein HuR modulating intestinal epithelial restitution after wounding. Physiol Rep 2016; 4:4/13/e12858. [PMID: 27401462 PMCID: PMC4945840 DOI: 10.14814/phy2.12858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/18/2016] [Indexed: 12/14/2022] Open
Abstract
The 14‐3‐3ζ is a member of the family of 14‐3‐3 proteins and participates in many aspects of cellular processes, but its regulation and involvement in gut mucosal homeostasis remain unknown. Here, we report that 14‐3‐3ζ expression is tightly regulated at the posttranscription level by RNA‐binding protein HuR and plays an important role in early intestinal epithelial restitution after wounding. The 14‐3‐3ζ was highly expressed in the mucosa of gastrointestinal tract and in cultured intestinal epithelial cells (IECs). The 3′ untranslated region (UTR) of the 14‐3‐3ζ mRNA was bound to HuR, and this association enhanced 14‐3‐3ζ translation without effect on its mRNA content. Conditional target deletion of HuR in IECs decreased the level of 14‐3‐3ζ protein in the intestinal mucosa. Silencing 14‐3‐3ζ by transfection with specific siRNA targeting the 14‐3‐3ζ mRNA suppressed intestinal epithelial restitution as indicated by a decrease in IEC migration after wounding, whereas ectopic overexpression of the wild‐type 14‐3‐3ζ promoted cell migration. These results indicate that HuR induces 14‐3‐3ζ translation via interaction with its 3′ UTR and that 14‐3‐3ζ is necessary for stimulation of IEC migration after wounding.
Collapse
Affiliation(s)
- Natasha Z Hansraj
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jing Wu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gang Chen
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Douglas J Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland Baltimore Veterans Affairs Medical Center, Baltimore, Maryland Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
18
|
Involvement of the MEK/ERK pathway in EGF-induced E-cadherin down-regulation. Biochem Biophys Res Commun 2016; 477:801-806. [DOI: 10.1016/j.bbrc.2016.06.138] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 06/27/2016] [Indexed: 01/11/2023]
|
19
|
Tashiro E, Imoto M. Screening and target identification of bioactive compounds that modulate cell migration and autophagy. Bioorg Med Chem 2016; 24:3283-90. [PMID: 27094149 DOI: 10.1016/j.bmc.2016.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/03/2016] [Accepted: 04/06/2016] [Indexed: 11/18/2022]
Abstract
Cell migration is a fundamental step for embryonic development, wound repair, immune responses, and tumor cell invasion and metastasis. It is well known that protrusive structures, namely filopodia and lamellipodia, can be observed at the leading edge of migrating cells. The formation of these structures is necessary for cell migration; however, the molecular mechanisms behind the formation of these structures remain largely unclear. Therefore, bioactive compounds that modulate protrusive structures are extremely powerful tools for studying the mechanisms behind the formation of these structures and subsequent cell migration. Therefore, we have screened for bioactive compounds that inhibit the formation of filopodia, lamellipodia, or cell migration from natural products, and attempted to identify the target molecules of our isolated compounds. Additionally, autophagy is a bulk, non-specific protein degradation system that is involved in the pathogenesis of cancer and neurodegenerative disorders. Recent extensive studies have revealed the molecular mechanisms of autophagy, however, they also remain largely unclear. Thus, we also have screened for bioactive compounds that modulate autophagy, and identified the target molecules. In the present article, we introduce the phenotypic screening system and target identification of four bioactive compounds.
Collapse
Affiliation(s)
- Etsu Tashiro
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama City 223-8522, Japan
| | - Masaya Imoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama City 223-8522, Japan.
| |
Collapse
|
20
|
Watanabe N, Osada H. Small molecules that target phosphorylation dependent protein-protein interaction. Bioorg Med Chem 2016; 24:3246-54. [PMID: 27017542 DOI: 10.1016/j.bmc.2016.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 12/12/2022]
Abstract
Protein-protein interaction is one of the key events in the signal transduction pathway. The interaction changes the conformations, activities, localization and stabilities of the proteins, and transduces the signal to the next step. Frequently, this interaction occurs upon the protein phosphorylation. When upstream signals are stimulated, protein kinase(s) is/are activated and phosphorylate(s) their substrates, and induce the phosphorylation dependent protein-protein interaction. For this interaction, several domains in proteins are known to specifically recognize the phosphorylated residues of target proteins. These specific domains for interaction are important in the progression of the diseases caused by disordered signal transduction such as cancer. Thus small molecules that modulate this interaction are attractive lead compounds for the treatment of such diseases. In this review, we focused on three examples of phosphorylation dependent protein-protein interaction modules (14-3-3, polo box domain of Plk1 and F-box proteins in SCF ubiquitin ligases) and summarize small molecules that modulate their interaction. We also introduce our original screening system to identify such small molecules.
Collapse
Affiliation(s)
- Nobumoto Watanabe
- Bio-Active Compounds Discovery Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Bio-Probe Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Wako, Saitama 351-0198, Japan.
| | - Hiroyuki Osada
- Bio-Probe Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Wako, Saitama 351-0198, Japan; Chemical Biology Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
21
|
Aghazadeh Y, Papadopoulos V. The role of the 14-3-3 protein family in health, disease, and drug development. Drug Discov Today 2015; 21:278-87. [PMID: 26456530 DOI: 10.1016/j.drudis.2015.09.012] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 09/21/2015] [Accepted: 09/29/2015] [Indexed: 11/18/2022]
Abstract
14-3-3 proteins regulate intracellular signaling pathways, such as signal transduction, protein trafficking, cell cycle, and apoptosis. In addition to the ubiquitous roles of 14-3-3 isoforms, unique tissue-specific functions are also described for each isoform. Owing to their role in regulating cell cycle, protein trafficking, and steroidogenesis, 14-3-3 proteins are prevalent in human diseases, such as cancer, neurodegeneration, and reproductive disorders, and, therefore, serve as valuable drug targets. In this review, we summarize the role of 14-3-3 proteins in normal and disease states, with a focus on 14-3-3γ and ɛ. We also discuss drug compounds targeting 14-3-3 proteins and their potential therapeutic uses.
Collapse
Affiliation(s)
- Yasaman Aghazadeh
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Department of Medicine, McGill University, Montreal, QC H3G 1A4, Canada
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Department of Medicine, McGill University, Montreal, QC H3G 1A4, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
22
|
Tashiro E, Imoto M. Chemical biology of compounds obtained from screening using disease models. Arch Pharm Res 2015; 38:1651-60. [PMID: 26177809 DOI: 10.1007/s12272-015-0633-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/06/2015] [Indexed: 01/06/2023]
Abstract
Bioactive compounds are extremely powerful tools for studying biological systems because they can rapidly, conditionally, often reversibly, and dose-dependently modulate the biological function of living cells. Moreover, they are expected to be drug seeds for chemotherapy of several diseases. Two approaches are used to find and obtain bioactive compounds, namely, molecular-target-based screening and phenotypic screening. Through phenotypic screening that mimics tumor metastasis, multi-drug resistance, and Parkinson's disease, we identified several compounds that inhibit cancer cell migration, anti-apoptotic function of Bcl-2/Bcl-xL, and neuronal cell death. By using MEK inhibitor that was developed by target-based screening, we discovered that MEK inhibitor selectively induces apoptosis in tumor cells with β-catenin mutation. Using target-based screening, we identified arabilin, a novel androgen antagonist. In this review, we introduce our recent studies on the identification of bioactive compounds by phenotypic screening and by target-based screening for drug-seed discovery.
Collapse
Affiliation(s)
- Estu Tashiro
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Masaya Imoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| |
Collapse
|
23
|
Chemistry and biology of the compounds that modulate cell migration. J Ind Microbiol Biotechnol 2015; 43:213-9. [PMID: 26173498 DOI: 10.1007/s10295-015-1654-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/02/2015] [Indexed: 12/21/2022]
Abstract
Cell migration is a fundamental step for embryonic development, wound repair, immune responses, and tumor cell invasion and metastasis. Extensive studies have attempted to reveal the molecular mechanisms behind cell migration; however, they remain largely unclear. Bioactive compounds that modulate cell migration show promise as not only extremely powerful tools for studying the mechanisms behind cell migration but also as drug seeds for chemotherapy against tumor metastasis. Therefore, we have screened cell migration inhibitors and analyzed their mechanisms for the inhibition of cell migration. In this mini-review, we introduce our chemical and biological studies of three cell migration inhibitors: moverastin, UTKO1, and BU-4664L.
Collapse
|
24
|
An EGFR/PI3K/AKT axis promotes accumulation of the Rac1-GEF Tiam1 that is critical in EGFR-driven tumorigenesis. Oncogene 2015; 34:5971-82. [DOI: 10.1038/onc.2015.45] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 01/21/2015] [Accepted: 01/25/2015] [Indexed: 01/23/2023]
|
25
|
Small molecules, peptides and natural products: getting a grip on 14-3-3 protein-protein modulation. Future Med Chem 2015; 6:903-21. [PMID: 24962282 DOI: 10.4155/fmc.14.47] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
One of the proteins that is found in a diverse range of eukaryotic protein-protein interactions is the adaptor protein 14-3-3. As 14-3-3 is a hub protein with very diverse interactions, it is a good model to study various protein-protein interactions. A wide range of classes of molecules, peptides, small molecules or natural products, has been used to modify the protein interactions, providing both stabilization or inhibition of the interactions of 14-3-3 with its binding partners. The first protein crystal structures were solved in 1995 and gave molecular insights for further research. The plant analog of 14-3-3 binds to a plant plasma membrane H(+)-ATPase and this protein complex is stabilized by the fungal phytotoxin fusicoccin A. The knowledge gained from the process in plants was transferred to and applied in human models to find stabilizers or inhibitors of 14-3-3 interaction in human cellular pathways.
Collapse
|
26
|
Kang PJ, Lee ME, Park HO. Bud3 activates Cdc42 to establish a proper growth site in budding yeast. ACTA ACUST UNITED AC 2014; 206:19-28. [PMID: 25002677 PMCID: PMC4085707 DOI: 10.1083/jcb.201402040] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell polarization occurs along a single axis that is generally determined by a spatial cue, yet the underlying mechanism is poorly understood. Using biochemical assays and live-cell imaging, we show that cell polarization to a proper growth site requires activation of Cdc42 by Bud3 in haploid budding yeast. Bud3 catalyzes the release of guanosine diphosphate (GDP) from Cdc42 and elevates intracellular Cdc42-guanosine triphosphate (GTP) levels in cells with inactive Cdc24, which has as of yet been the sole GDP-GTP exchange factor for Cdc42. Cdc42 is activated in two temporal steps in the G1 phase: the first depends on Bud3, whereas subsequent activation depends on Cdc24. Mutational analyses suggest that biphasic activation of Cdc42 in G1 is necessary for assembly of a proper bud site. Biphasic activation of Cdc42 or Rac GTPases may be a general mechanism for spatial cue-directed cell polarization in eukaryotes.
Collapse
Affiliation(s)
- Pil Jung Kang
- Department of Molecular Genetics and Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210
| | - Mid Eum Lee
- Department of Molecular Genetics and Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210
| | - Hay-Oak Park
- Department of Molecular Genetics and Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210Department of Molecular Genetics and Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
27
|
Aeluri M, Chamakuri S, Dasari B, Guduru SKR, Jimmidi R, Jogula S, Arya P. Small Molecule Modulators of Protein–Protein Interactions: Selected Case Studies. Chem Rev 2014; 114:4640-94. [DOI: 10.1021/cr4004049] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Madhu Aeluri
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Srinivas Chamakuri
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Bhanudas Dasari
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Shiva Krishna Reddy Guduru
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Ravikumar Jimmidi
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Srinivas Jogula
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| | - Prabhat Arya
- Dr. Reddy’s Institute
of Life Sciences (DRILS), University of Hyderabad Campus Gachibowli, Hyderabad 500046, India
| |
Collapse
|
28
|
Magi S, Takemoto Y, Kobayashi H, Kasamatsu M, Akita T, Tanaka A, Takano K, Tashiro E, Igarashi Y, Imoto M. 5-Lipoxygenase and cysteinyl leukotriene receptor 1 regulate epidermal growth factor-induced cell migration through Tiam1 upregulation and Rac1 activation. Cancer Sci 2014; 105:290-6. [PMID: 24350867 PMCID: PMC4317946 DOI: 10.1111/cas.12340] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 12/18/2022] Open
Abstract
Cell migration is an essential step for tumor metastasis. The small GTPase Rac1 plays an important role in cell migration. Previously, we reported that epidermal growth factor (EGF) induced two waves of Rac1 activation; namely, at 5 min and 12 h after stimulation. A second wave of EGF-induced Rac1 activation was required for EGF-induced cell migration, however, the spatiotemporal regulation of the second wave of EGF-induced Rac1 activation remains largely unclear. In this study, we found that 5-lipoxygenase (5-LOX) is activated in the process of EGF-induced cell migration, and that leukotriene C4 (LTC4) produced by 5-LOX mediated the second wave of Rac1 activation, as well as cell migration. Furthermore, these effects caused by LTC4 were found to be blocked in the presence of the antagonist of cysteinyl leukotriene receptor 1 (CysLT1). This blockage indicates that LTC4-mediated CysLT1 signaling regulates the second EGF-induced wave of Rac1 activation. We also found that 5-LOX inhibitors, CysLT1 antagonists and the knockdown of CysLT1 inhibited EGF-induced T cell lymphoma invasion and metastasis-inducing protein 1 (Tiam1) expression. Tiam1 expression is required for the second wave of EGF-induced Rac1 activation in A431 cells. Therefore, our results indicate that the 5-LOX/LTC4/CysLT1 signaling pathway regulates EGF-induced cell migration by increasing Tiam1 expression, leading to a second wave of Rac1 activation. Thus, CysLT1 may serve as a new molecular target for antimetastatic therapy. In addition, the CysLT1 antagonist, montelukast, which is used clinically for allergy treatment, might have great potential as a novel type of antimetastatic agent.
Collapse
Affiliation(s)
- Shigeyuki Magi
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gharechahi J, Pakzad M, Mirshavaladi S, Sharifitabar M, Baharvand H, Salekdeh GH. The effect of Rho-associated kinase inhibition on the proteome pattern of dissociated human embryonic stem cells. MOLECULAR BIOSYSTEMS 2014; 10:640-52. [DOI: 10.1039/c3mb70255c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Kaplan A, Kent CB, Charron F, Fournier AE. Switching responses: spatial and temporal regulators of axon guidance. Mol Neurobiol 2013; 49:1077-86. [PMID: 24271658 DOI: 10.1007/s12035-013-8582-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/31/2013] [Indexed: 11/29/2022]
Abstract
The ability of the axonal growth cone to switch between attraction and repulsion in response to guidance cues in the extracellular environment during nervous system development is fundamental to the precise wiring of complex neural circuits. Regulation of cell-surface receptors by means of transcriptional control, local translation, trafficking and proteolytic processing are powerful mechanisms to regulate the response of the growth cone. Important work has also revealed how intracellular signalling pathways, including calcium and cyclic nucleotide signalling, can alter the directional response elicited by a particular cue. Here, we describe how these multiple regulatory mechanisms influence growth cone turning behaviour. We focus on recent evidence that suggests a significant role for 14-3-3 adaptor proteins in modifying growth cone turning behaviour and mediating directional polarity switches during development. Characterizing how 14-3-3 s regulate growth cone signalling will provide invaluable insight into nervous system development and may facilitate the identification of novel targets for promoting nerve regeneration following injury.
Collapse
Affiliation(s)
- Andrew Kaplan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | | | | | |
Collapse
|
31
|
Cao WD, Kawai N, Miyake K, Zhang X, Fei Z, Tamiya T. Relationship of 14-3-3zeta (ζ), HIF-1α, and VEGF expression in human brain gliomas. Brain Tumor Pathol 2013; 31:1-10. [PMID: 23358800 DOI: 10.1007/s10014-013-0135-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/06/2013] [Indexed: 12/11/2022]
Abstract
Accumulating evidence suggests that tissue hypoxia and apoptosis play important roles in the malignant progression of brain tumors. We investigated the relationship of 14-3-3zeta (an apoptosis-related protein), HIF-1α, and VEGF immunohistochemistry, and evaluated the prognostic value of their expression in human brain gliomas. A semiquantitative analysis of the immunoreactivity scores (IRSs) of the 14-3-3zeta, HIF-1α, and VEGF proteins was performed in 27 patients with various grades of gliomas. The IRS of 14-3-3zeta increased with tumor grade, with grade IV gliomas having the highest score (P < 0.05). Similar results were found for the IRSs of HIF-1α and VEGF (P < 0.05). A significant positive correlation was found between the IRSs of 14-3-3zeta and HIF-1α, 14-3-3zeta and VEGF, and HIF-1α and VEGF (P < 0.001 for all). The survival time of HIF-1α in grade III and grade IV glioma patients with low IRSs (0-6) was significantly longer than that in such glioma patients with high IRSs (8-12) (P < 0.05). These data indicate that 14-3-3zeta, HIF-1α, and VEGF are involved in the same cascade of the malignant progression of gliomas. Further studies will elucidate their detailed role in the malignant progression of glioma, and will contribute to the development of a new treatment strategy for this lethal disease.
Collapse
Affiliation(s)
- Wei-Dong Cao
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Milroy LG, Brunsveld L, Ottmann C. Stabilization and inhibition of protein-protein interactions: the 14-3-3 case study. ACS Chem Biol 2013; 8:27-35. [PMID: 23210482 DOI: 10.1021/cb300599t] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Small-molecule modulation of protein-protein interactions (PPIs) is one of the most exciting but also difficult fields in chemical biology and drug development. As one of the most important "hub" proteins with at least 200-300 interaction partners, the 14-3-3 proteins are an especially fruitful case for PPI intervention. Here, we summarize recent success stories in small-molecule modulation, both inhibition and stabilization, of 14-3-3 PPIs. The chemical breath of modulators includes natural products such as fusicoccin A and derivatives but also compounds identified via high-throughput and in silico screening, which has yielded a toolbox of useful inhibitors and stabilizers for this interesting class of adapter proteins. Protein-protein interactions (PPIs) are involved in almost all biological processes, with any given protein typically engaged in complexes with other proteins for the majority of its lifetime. Hence, proteins function not simply as single, isolated entities but display their roles by interacting with other cellular components. These different interaction patterns are presumably as important as the intrinsic biochemical activity status of the protein itself. The biological role of a protein is therefore decisively dependent on the underlying PPI network that furthermore can show great spatial and temporal variations. A thorough appreciation and understanding of this concept and its regulation mechanisms could help to develop new therapeutic agents and concepts.
Collapse
Affiliation(s)
- Lech-Gustav Milroy
- Laboratory of Chemical
Biology,
Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech, 5612 AZ Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical
Biology,
Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech, 5612 AZ Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical
Biology,
Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech, 5612 AZ Eindhoven, The Netherlands
- Chemical Genomics Centre of the Max Planck Society, Otto-Hahn Straße
15, 44227 Dortmund, Germany
| |
Collapse
|
33
|
A chemical genomic study identifying diversity in cell migration signaling in cancer cells. Sci Rep 2012; 2:823. [PMID: 23139868 PMCID: PMC3492869 DOI: 10.1038/srep00823] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/17/2012] [Indexed: 01/31/2023] Open
Abstract
The aim of this study was to analyze the diversity and consistency of regulatory signaling in cancer cell migration, using a chemical genomic approach. The effects of 34 small molecular compounds were assessed quantitatively by wound healing assay in ten types of migrating cells. Hierarchical clustering was performed on the subsequent migration inhibition profile of the compounds and cancer cell types. The result was that hierarchical clustering accurately classified the compounds according to their targets. Furthermore, the cancer cells tested in this study were classified into three clusters, and the compounds were grouped into four clusters. An inhibitor of JNK suppressed all types of cell migration; however, inhibitors of ROCK, GSK-3 and p38MAPK only inhibited the migration of a subset of cell lines. Thus, our analytical system could easily distinguish between the common and cell type-specific signals responsible for cell migration.
Collapse
|
34
|
Delprato A. Topological and functional properties of the small GTPases protein interaction network. PLoS One 2012; 7:e44882. [PMID: 23028658 PMCID: PMC3441499 DOI: 10.1371/journal.pone.0044882] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 08/15/2012] [Indexed: 12/31/2022] Open
Abstract
Small GTP binding proteins of the Ras superfamily (Ras, Rho, Rab, Arf, and Ran) regulate key cellular processes such as signal transduction, cell proliferation, cell motility, and vesicle transport. A great deal of experimental evidence supports the existence of signaling cascades and feedback loops within and among the small GTPase subfamilies suggesting that these proteins function in a coordinated and cooperative manner. The interplay occurs largely through association with bi-partite regulatory and effector proteins but can also occur through the active form of the small GTPases themselves. In order to understand the connectivity of the small GTPases signaling routes, a systems-level approach that analyzes data describing direct and indirect interactions was used to construct the small GTPases protein interaction network. The data were curated from the Search Tool for the Retrieval of Interacting Genes (STRING) database and include only experimentally validated interactions. The network method enables the conceptualization of the overall structure as well as the underlying organization of the protein-protein interactions. The interaction network described here is comprised of 778 nodes and 1943 edges and has a scale-free topology. Rac1, Cdc42, RhoA, and HRas are identified as the hubs. Ten sub-network motifs are also identified in this study with themes in apoptosis, cell growth/proliferation, vesicle traffic, cell adhesion/junction dynamics, the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase response, transcription regulation, receptor-mediated endocytosis, gene silencing, and growth factor signaling. Bottleneck proteins that bridge signaling paths and proteins that overlap in multiple small GTPase networks are described along with the functional annotation of all proteins in the network.
Collapse
Affiliation(s)
- Anna Delprato
- BioScience Project, Wakefield, Massachusetts, United States of America.
| |
Collapse
|
35
|
Konakahara S, Suzuki Y, Kawakami T, Saitou M, Kajikawa M, Masuho Y, Kohroki J. A neuronal transmembrane protein LRFN4 complexes with 14-3-3s and NCK1 to induce morphological change in monocytic cells via Rac1-mediated actin cytoskeleton reorganization. FEBS Lett 2012; 586:2251-9. [PMID: 22677168 DOI: 10.1016/j.febslet.2012.05.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/08/2012] [Accepted: 05/22/2012] [Indexed: 02/08/2023]
Abstract
We previously reported that leucine-rich repeat and fibronectin type III domain-containing 4 (LRFN4) functioned in migration and morphological change (i.e. cell elongation) of monocytic cells. Here, we examined a molecular mechanism regulating LRFN4-mediated cell elongation. We found that 14-3-3 and NCK proteins complexed with LRFN4, and they were involved in LRFN4-mediated cell elongation. We also identified the regions of LRFN4 interacting with NCK1 and 14-3-3s. Finally, we demonstrated that a Rac1 small GTPase was involved in LRFN4-mediated cell elongation. These results indicated that LRFN4 complexed with 14-3-3s and NCK1 to mediate elongation in monocytic cells via Rac-1-mediated actin cytoskeleton reorganization.
Collapse
Affiliation(s)
- Shu Konakahara
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | | | | | | | | | | | | |
Collapse
|